xref: /linux/fs/ocfs2/alloc.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * alloc.c
6  *
7  * Extent allocs and frees
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/swap.h>
17 #include <linux/quotaops.h>
18 #include <linux/blkdev.h>
19 #include <linux/sched/signal.h>
20 
21 #include <cluster/masklog.h>
22 
23 #include "ocfs2.h"
24 
25 #include "alloc.h"
26 #include "aops.h"
27 #include "blockcheck.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "suballoc.h"
34 #include "sysfile.h"
35 #include "file.h"
36 #include "super.h"
37 #include "uptodate.h"
38 #include "xattr.h"
39 #include "refcounttree.h"
40 #include "ocfs2_trace.h"
41 
42 #include "buffer_head_io.h"
43 
44 enum ocfs2_contig_type {
45 	CONTIG_NONE = 0,
46 	CONTIG_LEFT,
47 	CONTIG_RIGHT,
48 	CONTIG_LEFTRIGHT,
49 };
50 
51 static enum ocfs2_contig_type
52 	ocfs2_extent_rec_contig(struct super_block *sb,
53 				struct ocfs2_extent_rec *ext,
54 				struct ocfs2_extent_rec *insert_rec);
55 /*
56  * Operations for a specific extent tree type.
57  *
58  * To implement an on-disk btree (extent tree) type in ocfs2, add
59  * an ocfs2_extent_tree_operations structure and the matching
60  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
61  * for the allocation portion of the extent tree.
62  */
63 struct ocfs2_extent_tree_operations {
64 	/*
65 	 * last_eb_blk is the block number of the right most leaf extent
66 	 * block.  Most on-disk structures containing an extent tree store
67 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
68 	 * ->eo_get_last_eb_blk() operations access this value.  They are
69 	 *  both required.
70 	 */
71 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
72 				   u64 blkno);
73 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
74 
75 	/*
76 	 * The on-disk structure usually keeps track of how many total
77 	 * clusters are stored in this extent tree.  This function updates
78 	 * that value.  new_clusters is the delta, and must be
79 	 * added to the total.  Required.
80 	 */
81 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
82 				   u32 new_clusters);
83 
84 	/*
85 	 * If this extent tree is supported by an extent map, insert
86 	 * a record into the map.
87 	 */
88 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
89 				     struct ocfs2_extent_rec *rec);
90 
91 	/*
92 	 * If this extent tree is supported by an extent map, truncate the
93 	 * map to clusters,
94 	 */
95 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
96 				       u32 clusters);
97 
98 	/*
99 	 * If ->eo_insert_check() exists, it is called before rec is
100 	 * inserted into the extent tree.  It is optional.
101 	 */
102 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
103 			       struct ocfs2_extent_rec *rec);
104 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
105 
106 	/*
107 	 * --------------------------------------------------------------
108 	 * The remaining are internal to ocfs2_extent_tree and don't have
109 	 * accessor functions
110 	 */
111 
112 	/*
113 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
114 	 * It is required.
115 	 */
116 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
117 
118 	/*
119 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
120 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
121 	 * to 0 (unlimited).  Optional.
122 	 */
123 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
124 
125 	/*
126 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
127 	 * are contiguous or not. Optional. Don't need to set it if use
128 	 * ocfs2_extent_rec as the tree leaf.
129 	 */
130 	enum ocfs2_contig_type
131 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
132 				    struct ocfs2_extent_rec *ext,
133 				    struct ocfs2_extent_rec *insert_rec);
134 };
135 
136 
137 /*
138  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
139  * in the methods.
140  */
141 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno);
144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
145 					 u32 clusters);
146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
147 					   struct ocfs2_extent_rec *rec);
148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
149 					     u32 clusters);
150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
151 				     struct ocfs2_extent_rec *rec);
152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
154 
155 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
156 					struct ocfs2_extent_tree *et,
157 					struct buffer_head **new_eb_bh,
158 					int blk_wanted, int *blk_given);
159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
160 
161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
162 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
163 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
164 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
165 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
166 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
167 	.eo_insert_check	= ocfs2_dinode_insert_check,
168 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
169 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
170 };
171 
172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
173 					 u64 blkno)
174 {
175 	struct ocfs2_dinode *di = et->et_object;
176 
177 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
178 	di->i_last_eb_blk = cpu_to_le64(blkno);
179 }
180 
181 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
182 {
183 	struct ocfs2_dinode *di = et->et_object;
184 
185 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
186 	return le64_to_cpu(di->i_last_eb_blk);
187 }
188 
189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
190 					 u32 clusters)
191 {
192 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
193 	struct ocfs2_dinode *di = et->et_object;
194 
195 	le32_add_cpu(&di->i_clusters, clusters);
196 	spin_lock(&oi->ip_lock);
197 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
198 	spin_unlock(&oi->ip_lock);
199 }
200 
201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
202 					   struct ocfs2_extent_rec *rec)
203 {
204 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
205 
206 	ocfs2_extent_map_insert_rec(inode, rec);
207 }
208 
209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
210 					     u32 clusters)
211 {
212 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
213 
214 	ocfs2_extent_map_trunc(inode, clusters);
215 }
216 
217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
218 				     struct ocfs2_extent_rec *rec)
219 {
220 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
221 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
222 
223 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
224 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
225 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
226 			"Device %s, asking for sparse allocation: inode %llu, "
227 			"cpos %u, clusters %u\n",
228 			osb->dev_str,
229 			(unsigned long long)oi->ip_blkno,
230 			rec->e_cpos, oi->ip_clusters);
231 
232 	return 0;
233 }
234 
235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
236 {
237 	struct ocfs2_dinode *di = et->et_object;
238 
239 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
240 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
241 
242 	return 0;
243 }
244 
245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
246 {
247 	struct ocfs2_dinode *di = et->et_object;
248 
249 	et->et_root_el = &di->id2.i_list;
250 }
251 
252 
253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
254 {
255 	struct ocfs2_xattr_value_buf *vb = et->et_object;
256 
257 	et->et_root_el = &vb->vb_xv->xr_list;
258 }
259 
260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
261 					      u64 blkno)
262 {
263 	struct ocfs2_xattr_value_buf *vb = et->et_object;
264 
265 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
266 }
267 
268 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
269 {
270 	struct ocfs2_xattr_value_buf *vb = et->et_object;
271 
272 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
273 }
274 
275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
276 					      u32 clusters)
277 {
278 	struct ocfs2_xattr_value_buf *vb = et->et_object;
279 
280 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
281 }
282 
283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
284 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
285 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
286 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
287 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
288 };
289 
290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
291 {
292 	struct ocfs2_xattr_block *xb = et->et_object;
293 
294 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
295 }
296 
297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
298 {
299 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
300 	et->et_max_leaf_clusters =
301 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
302 }
303 
304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
305 					     u64 blkno)
306 {
307 	struct ocfs2_xattr_block *xb = et->et_object;
308 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
309 
310 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
311 }
312 
313 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
314 {
315 	struct ocfs2_xattr_block *xb = et->et_object;
316 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
317 
318 	return le64_to_cpu(xt->xt_last_eb_blk);
319 }
320 
321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
322 					     u32 clusters)
323 {
324 	struct ocfs2_xattr_block *xb = et->et_object;
325 
326 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
327 }
328 
329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
330 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
331 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
332 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
333 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
334 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
335 };
336 
337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
338 					  u64 blkno)
339 {
340 	struct ocfs2_dx_root_block *dx_root = et->et_object;
341 
342 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
343 }
344 
345 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
346 {
347 	struct ocfs2_dx_root_block *dx_root = et->et_object;
348 
349 	return le64_to_cpu(dx_root->dr_last_eb_blk);
350 }
351 
352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
353 					  u32 clusters)
354 {
355 	struct ocfs2_dx_root_block *dx_root = et->et_object;
356 
357 	le32_add_cpu(&dx_root->dr_clusters, clusters);
358 }
359 
360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
361 {
362 	struct ocfs2_dx_root_block *dx_root = et->et_object;
363 
364 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
365 
366 	return 0;
367 }
368 
369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
370 {
371 	struct ocfs2_dx_root_block *dx_root = et->et_object;
372 
373 	et->et_root_el = &dx_root->dr_list;
374 }
375 
376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
377 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
378 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
379 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
380 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
381 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
382 };
383 
384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
385 {
386 	struct ocfs2_refcount_block *rb = et->et_object;
387 
388 	et->et_root_el = &rb->rf_list;
389 }
390 
391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
392 						u64 blkno)
393 {
394 	struct ocfs2_refcount_block *rb = et->et_object;
395 
396 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
397 }
398 
399 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
400 {
401 	struct ocfs2_refcount_block *rb = et->et_object;
402 
403 	return le64_to_cpu(rb->rf_last_eb_blk);
404 }
405 
406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
407 						u32 clusters)
408 {
409 	struct ocfs2_refcount_block *rb = et->et_object;
410 
411 	le32_add_cpu(&rb->rf_clusters, clusters);
412 }
413 
414 static enum ocfs2_contig_type
415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
416 				  struct ocfs2_extent_rec *ext,
417 				  struct ocfs2_extent_rec *insert_rec)
418 {
419 	return CONTIG_NONE;
420 }
421 
422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
423 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
424 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
425 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
426 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
427 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
428 };
429 
430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
431 				     struct ocfs2_caching_info *ci,
432 				     struct buffer_head *bh,
433 				     ocfs2_journal_access_func access,
434 				     void *obj,
435 				     const struct ocfs2_extent_tree_operations *ops)
436 {
437 	et->et_ops = ops;
438 	et->et_root_bh = bh;
439 	et->et_ci = ci;
440 	et->et_root_journal_access = access;
441 	if (!obj)
442 		obj = (void *)bh->b_data;
443 	et->et_object = obj;
444 	et->et_dealloc = NULL;
445 
446 	et->et_ops->eo_fill_root_el(et);
447 	if (!et->et_ops->eo_fill_max_leaf_clusters)
448 		et->et_max_leaf_clusters = 0;
449 	else
450 		et->et_ops->eo_fill_max_leaf_clusters(et);
451 }
452 
453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
454 				   struct ocfs2_caching_info *ci,
455 				   struct buffer_head *bh)
456 {
457 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
458 				 NULL, &ocfs2_dinode_et_ops);
459 }
460 
461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
462 				       struct ocfs2_caching_info *ci,
463 				       struct buffer_head *bh)
464 {
465 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
466 				 NULL, &ocfs2_xattr_tree_et_ops);
467 }
468 
469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
470 					struct ocfs2_caching_info *ci,
471 					struct ocfs2_xattr_value_buf *vb)
472 {
473 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
474 				 &ocfs2_xattr_value_et_ops);
475 }
476 
477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
478 				    struct ocfs2_caching_info *ci,
479 				    struct buffer_head *bh)
480 {
481 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
482 				 NULL, &ocfs2_dx_root_et_ops);
483 }
484 
485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
486 				     struct ocfs2_caching_info *ci,
487 				     struct buffer_head *bh)
488 {
489 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
490 				 NULL, &ocfs2_refcount_tree_et_ops);
491 }
492 
493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
494 					    u64 new_last_eb_blk)
495 {
496 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
497 }
498 
499 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
500 {
501 	return et->et_ops->eo_get_last_eb_blk(et);
502 }
503 
504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
505 					    u32 clusters)
506 {
507 	et->et_ops->eo_update_clusters(et, clusters);
508 }
509 
510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
511 					      struct ocfs2_extent_rec *rec)
512 {
513 	if (et->et_ops->eo_extent_map_insert)
514 		et->et_ops->eo_extent_map_insert(et, rec);
515 }
516 
517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
518 						u32 clusters)
519 {
520 	if (et->et_ops->eo_extent_map_truncate)
521 		et->et_ops->eo_extent_map_truncate(et, clusters);
522 }
523 
524 static inline int ocfs2_et_root_journal_access(handle_t *handle,
525 					       struct ocfs2_extent_tree *et,
526 					       int type)
527 {
528 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
529 					  type);
530 }
531 
532 static inline enum ocfs2_contig_type
533 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
534 			       struct ocfs2_extent_rec *rec,
535 			       struct ocfs2_extent_rec *insert_rec)
536 {
537 	if (et->et_ops->eo_extent_contig)
538 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
539 
540 	return ocfs2_extent_rec_contig(
541 				ocfs2_metadata_cache_get_super(et->et_ci),
542 				rec, insert_rec);
543 }
544 
545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
546 					struct ocfs2_extent_rec *rec)
547 {
548 	int ret = 0;
549 
550 	if (et->et_ops->eo_insert_check)
551 		ret = et->et_ops->eo_insert_check(et, rec);
552 	return ret;
553 }
554 
555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
556 {
557 	int ret = 0;
558 
559 	if (et->et_ops->eo_sanity_check)
560 		ret = et->et_ops->eo_sanity_check(et);
561 	return ret;
562 }
563 
564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
565 					 struct ocfs2_extent_block *eb);
566 static void ocfs2_adjust_rightmost_records(handle_t *handle,
567 					   struct ocfs2_extent_tree *et,
568 					   struct ocfs2_path *path,
569 					   struct ocfs2_extent_rec *insert_rec);
570 /*
571  * Reset the actual path elements so that we can re-use the structure
572  * to build another path. Generally, this involves freeing the buffer
573  * heads.
574  */
575 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
576 {
577 	int i, start = 0, depth = 0;
578 	struct ocfs2_path_item *node;
579 
580 	if (keep_root)
581 		start = 1;
582 
583 	for(i = start; i < path_num_items(path); i++) {
584 		node = &path->p_node[i];
585 
586 		brelse(node->bh);
587 		node->bh = NULL;
588 		node->el = NULL;
589 	}
590 
591 	/*
592 	 * Tree depth may change during truncate, or insert. If we're
593 	 * keeping the root extent list, then make sure that our path
594 	 * structure reflects the proper depth.
595 	 */
596 	if (keep_root)
597 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
598 	else
599 		path_root_access(path) = NULL;
600 
601 	path->p_tree_depth = depth;
602 }
603 
604 void ocfs2_free_path(struct ocfs2_path *path)
605 {
606 	if (path) {
607 		ocfs2_reinit_path(path, 0);
608 		kfree(path);
609 	}
610 }
611 
612 /*
613  * All the elements of src into dest. After this call, src could be freed
614  * without affecting dest.
615  *
616  * Both paths should have the same root. Any non-root elements of dest
617  * will be freed.
618  */
619 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
620 {
621 	int i;
622 
623 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
624 	BUG_ON(path_root_el(dest) != path_root_el(src));
625 	BUG_ON(path_root_access(dest) != path_root_access(src));
626 
627 	ocfs2_reinit_path(dest, 1);
628 
629 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
630 		dest->p_node[i].bh = src->p_node[i].bh;
631 		dest->p_node[i].el = src->p_node[i].el;
632 
633 		if (dest->p_node[i].bh)
634 			get_bh(dest->p_node[i].bh);
635 	}
636 }
637 
638 /*
639  * Make the *dest path the same as src and re-initialize src path to
640  * have a root only.
641  */
642 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
643 {
644 	int i;
645 
646 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
647 	BUG_ON(path_root_access(dest) != path_root_access(src));
648 
649 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
650 		brelse(dest->p_node[i].bh);
651 
652 		dest->p_node[i].bh = src->p_node[i].bh;
653 		dest->p_node[i].el = src->p_node[i].el;
654 
655 		src->p_node[i].bh = NULL;
656 		src->p_node[i].el = NULL;
657 	}
658 }
659 
660 /*
661  * Insert an extent block at given index.
662  *
663  * This will not take an additional reference on eb_bh.
664  */
665 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
666 					struct buffer_head *eb_bh)
667 {
668 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
669 
670 	/*
671 	 * Right now, no root bh is an extent block, so this helps
672 	 * catch code errors with dinode trees. The assertion can be
673 	 * safely removed if we ever need to insert extent block
674 	 * structures at the root.
675 	 */
676 	BUG_ON(index == 0);
677 
678 	path->p_node[index].bh = eb_bh;
679 	path->p_node[index].el = &eb->h_list;
680 }
681 
682 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
683 					 struct ocfs2_extent_list *root_el,
684 					 ocfs2_journal_access_func access)
685 {
686 	struct ocfs2_path *path;
687 
688 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
689 
690 	path = kzalloc(sizeof(*path), GFP_NOFS);
691 	if (path) {
692 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
693 		get_bh(root_bh);
694 		path_root_bh(path) = root_bh;
695 		path_root_el(path) = root_el;
696 		path_root_access(path) = access;
697 	}
698 
699 	return path;
700 }
701 
702 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
703 {
704 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
705 			      path_root_access(path));
706 }
707 
708 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
709 {
710 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
711 			      et->et_root_journal_access);
712 }
713 
714 /*
715  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
716  * otherwise it's the root_access function.
717  *
718  * I don't like the way this function's name looks next to
719  * ocfs2_journal_access_path(), but I don't have a better one.
720  */
721 int ocfs2_path_bh_journal_access(handle_t *handle,
722 				 struct ocfs2_caching_info *ci,
723 				 struct ocfs2_path *path,
724 				 int idx)
725 {
726 	ocfs2_journal_access_func access = path_root_access(path);
727 
728 	if (!access)
729 		access = ocfs2_journal_access;
730 
731 	if (idx)
732 		access = ocfs2_journal_access_eb;
733 
734 	return access(handle, ci, path->p_node[idx].bh,
735 		      OCFS2_JOURNAL_ACCESS_WRITE);
736 }
737 
738 /*
739  * Convenience function to journal all components in a path.
740  */
741 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
742 			      handle_t *handle,
743 			      struct ocfs2_path *path)
744 {
745 	int i, ret = 0;
746 
747 	if (!path)
748 		goto out;
749 
750 	for(i = 0; i < path_num_items(path); i++) {
751 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
752 		if (ret < 0) {
753 			mlog_errno(ret);
754 			goto out;
755 		}
756 	}
757 
758 out:
759 	return ret;
760 }
761 
762 /*
763  * Return the index of the extent record which contains cluster #v_cluster.
764  * -1 is returned if it was not found.
765  *
766  * Should work fine on interior and exterior nodes.
767  */
768 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
769 {
770 	int ret = -1;
771 	int i;
772 	struct ocfs2_extent_rec *rec;
773 	u32 rec_end, rec_start, clusters;
774 
775 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
776 		rec = &el->l_recs[i];
777 
778 		rec_start = le32_to_cpu(rec->e_cpos);
779 		clusters = ocfs2_rec_clusters(el, rec);
780 
781 		rec_end = rec_start + clusters;
782 
783 		if (v_cluster >= rec_start && v_cluster < rec_end) {
784 			ret = i;
785 			break;
786 		}
787 	}
788 
789 	return ret;
790 }
791 
792 /*
793  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
794  * ocfs2_extent_rec_contig only work properly against leaf nodes!
795  */
796 static int ocfs2_block_extent_contig(struct super_block *sb,
797 				     struct ocfs2_extent_rec *ext,
798 				     u64 blkno)
799 {
800 	u64 blk_end = le64_to_cpu(ext->e_blkno);
801 
802 	blk_end += ocfs2_clusters_to_blocks(sb,
803 				    le16_to_cpu(ext->e_leaf_clusters));
804 
805 	return blkno == blk_end;
806 }
807 
808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
809 				  struct ocfs2_extent_rec *right)
810 {
811 	u32 left_range;
812 
813 	left_range = le32_to_cpu(left->e_cpos) +
814 		le16_to_cpu(left->e_leaf_clusters);
815 
816 	return (left_range == le32_to_cpu(right->e_cpos));
817 }
818 
819 static enum ocfs2_contig_type
820 	ocfs2_extent_rec_contig(struct super_block *sb,
821 				struct ocfs2_extent_rec *ext,
822 				struct ocfs2_extent_rec *insert_rec)
823 {
824 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
825 
826 	/*
827 	 * Refuse to coalesce extent records with different flag
828 	 * fields - we don't want to mix unwritten extents with user
829 	 * data.
830 	 */
831 	if (ext->e_flags != insert_rec->e_flags)
832 		return CONTIG_NONE;
833 
834 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
835 	    ocfs2_block_extent_contig(sb, ext, blkno))
836 			return CONTIG_RIGHT;
837 
838 	blkno = le64_to_cpu(ext->e_blkno);
839 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
840 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
841 		return CONTIG_LEFT;
842 
843 	return CONTIG_NONE;
844 }
845 
846 /*
847  * NOTE: We can have pretty much any combination of contiguousness and
848  * appending.
849  *
850  * The usefulness of APPEND_TAIL is more in that it lets us know that
851  * we'll have to update the path to that leaf.
852  */
853 enum ocfs2_append_type {
854 	APPEND_NONE = 0,
855 	APPEND_TAIL,
856 };
857 
858 enum ocfs2_split_type {
859 	SPLIT_NONE = 0,
860 	SPLIT_LEFT,
861 	SPLIT_RIGHT,
862 };
863 
864 struct ocfs2_insert_type {
865 	enum ocfs2_split_type	ins_split;
866 	enum ocfs2_append_type	ins_appending;
867 	enum ocfs2_contig_type	ins_contig;
868 	int			ins_contig_index;
869 	int			ins_tree_depth;
870 };
871 
872 struct ocfs2_merge_ctxt {
873 	enum ocfs2_contig_type	c_contig_type;
874 	int			c_has_empty_extent;
875 	int			c_split_covers_rec;
876 };
877 
878 static int ocfs2_validate_extent_block(struct super_block *sb,
879 				       struct buffer_head *bh)
880 {
881 	int rc;
882 	struct ocfs2_extent_block *eb =
883 		(struct ocfs2_extent_block *)bh->b_data;
884 
885 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
886 
887 	BUG_ON(!buffer_uptodate(bh));
888 
889 	/*
890 	 * If the ecc fails, we return the error but otherwise
891 	 * leave the filesystem running.  We know any error is
892 	 * local to this block.
893 	 */
894 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
895 	if (rc) {
896 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
897 		     (unsigned long long)bh->b_blocknr);
898 		return rc;
899 	}
900 
901 	/*
902 	 * Errors after here are fatal.
903 	 */
904 
905 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
906 		rc = ocfs2_error(sb,
907 				 "Extent block #%llu has bad signature %.*s\n",
908 				 (unsigned long long)bh->b_blocknr, 7,
909 				 eb->h_signature);
910 		goto bail;
911 	}
912 
913 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
914 		rc = ocfs2_error(sb,
915 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
916 				 (unsigned long long)bh->b_blocknr,
917 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
918 		goto bail;
919 	}
920 
921 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
922 		rc = ocfs2_error(sb,
923 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
924 				 (unsigned long long)bh->b_blocknr,
925 				 le32_to_cpu(eb->h_fs_generation));
926 bail:
927 	return rc;
928 }
929 
930 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
931 			    struct buffer_head **bh)
932 {
933 	int rc;
934 	struct buffer_head *tmp = *bh;
935 
936 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
937 			      ocfs2_validate_extent_block);
938 
939 	/* If ocfs2_read_block() got us a new bh, pass it up. */
940 	if (!rc && !*bh)
941 		*bh = tmp;
942 
943 	return rc;
944 }
945 
946 
947 /*
948  * How many free extents have we got before we need more meta data?
949  */
950 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
951 {
952 	int retval;
953 	struct ocfs2_extent_list *el = NULL;
954 	struct ocfs2_extent_block *eb;
955 	struct buffer_head *eb_bh = NULL;
956 	u64 last_eb_blk = 0;
957 
958 	el = et->et_root_el;
959 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
960 
961 	if (last_eb_blk) {
962 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
963 						 &eb_bh);
964 		if (retval < 0) {
965 			mlog_errno(retval);
966 			goto bail;
967 		}
968 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
969 		el = &eb->h_list;
970 	}
971 
972 	BUG_ON(el->l_tree_depth != 0);
973 
974 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
975 bail:
976 	brelse(eb_bh);
977 
978 	trace_ocfs2_num_free_extents(retval);
979 	return retval;
980 }
981 
982 /* expects array to already be allocated
983  *
984  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
985  * l_count for you
986  */
987 static int ocfs2_create_new_meta_bhs(handle_t *handle,
988 				     struct ocfs2_extent_tree *et,
989 				     int wanted,
990 				     struct ocfs2_alloc_context *meta_ac,
991 				     struct buffer_head *bhs[])
992 {
993 	int count, status, i;
994 	u16 suballoc_bit_start;
995 	u32 num_got;
996 	u64 suballoc_loc, first_blkno;
997 	struct ocfs2_super *osb =
998 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
999 	struct ocfs2_extent_block *eb;
1000 
1001 	count = 0;
1002 	while (count < wanted) {
1003 		status = ocfs2_claim_metadata(handle,
1004 					      meta_ac,
1005 					      wanted - count,
1006 					      &suballoc_loc,
1007 					      &suballoc_bit_start,
1008 					      &num_got,
1009 					      &first_blkno);
1010 		if (status < 0) {
1011 			mlog_errno(status);
1012 			goto bail;
1013 		}
1014 
1015 		for(i = count;  i < (num_got + count); i++) {
1016 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1017 			if (bhs[i] == NULL) {
1018 				status = -ENOMEM;
1019 				mlog_errno(status);
1020 				goto bail;
1021 			}
1022 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1023 
1024 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1025 							 bhs[i],
1026 							 OCFS2_JOURNAL_ACCESS_CREATE);
1027 			if (status < 0) {
1028 				mlog_errno(status);
1029 				goto bail;
1030 			}
1031 
1032 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1033 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1034 			/* Ok, setup the minimal stuff here. */
1035 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1036 			eb->h_blkno = cpu_to_le64(first_blkno);
1037 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1038 			eb->h_suballoc_slot =
1039 				cpu_to_le16(meta_ac->ac_alloc_slot);
1040 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1041 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1042 			eb->h_list.l_count =
1043 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1044 
1045 			suballoc_bit_start++;
1046 			first_blkno++;
1047 
1048 			/* We'll also be dirtied by the caller, so
1049 			 * this isn't absolutely necessary. */
1050 			ocfs2_journal_dirty(handle, bhs[i]);
1051 		}
1052 
1053 		count += num_got;
1054 	}
1055 
1056 	status = 0;
1057 bail:
1058 	if (status < 0) {
1059 		for(i = 0; i < wanted; i++) {
1060 			brelse(bhs[i]);
1061 			bhs[i] = NULL;
1062 		}
1063 	}
1064 	return status;
1065 }
1066 
1067 /*
1068  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1069  *
1070  * Returns the sum of the rightmost extent rec logical offset and
1071  * cluster count.
1072  *
1073  * ocfs2_add_branch() uses this to determine what logical cluster
1074  * value should be populated into the leftmost new branch records.
1075  *
1076  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1077  * value for the new topmost tree record.
1078  */
1079 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1080 {
1081 	int i;
1082 
1083 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1084 
1085 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1086 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1087 }
1088 
1089 /*
1090  * Change range of the branches in the right most path according to the leaf
1091  * extent block's rightmost record.
1092  */
1093 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1094 					 struct ocfs2_extent_tree *et)
1095 {
1096 	int status;
1097 	struct ocfs2_path *path = NULL;
1098 	struct ocfs2_extent_list *el;
1099 	struct ocfs2_extent_rec *rec;
1100 
1101 	path = ocfs2_new_path_from_et(et);
1102 	if (!path) {
1103 		status = -ENOMEM;
1104 		return status;
1105 	}
1106 
1107 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1108 	if (status < 0) {
1109 		mlog_errno(status);
1110 		goto out;
1111 	}
1112 
1113 	status = ocfs2_extend_trans(handle, path_num_items(path));
1114 	if (status < 0) {
1115 		mlog_errno(status);
1116 		goto out;
1117 	}
1118 
1119 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1120 	if (status < 0) {
1121 		mlog_errno(status);
1122 		goto out;
1123 	}
1124 
1125 	el = path_leaf_el(path);
1126 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1127 
1128 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1129 
1130 out:
1131 	ocfs2_free_path(path);
1132 	return status;
1133 }
1134 
1135 /*
1136  * Add an entire tree branch to our inode. eb_bh is the extent block
1137  * to start at, if we don't want to start the branch at the root
1138  * structure.
1139  *
1140  * last_eb_bh is required as we have to update it's next_leaf pointer
1141  * for the new last extent block.
1142  *
1143  * the new branch will be 'empty' in the sense that every block will
1144  * contain a single record with cluster count == 0.
1145  */
1146 static int ocfs2_add_branch(handle_t *handle,
1147 			    struct ocfs2_extent_tree *et,
1148 			    struct buffer_head *eb_bh,
1149 			    struct buffer_head **last_eb_bh,
1150 			    struct ocfs2_alloc_context *meta_ac)
1151 {
1152 	int status, new_blocks, i, block_given = 0;
1153 	u64 next_blkno, new_last_eb_blk;
1154 	struct buffer_head *bh;
1155 	struct buffer_head **new_eb_bhs = NULL;
1156 	struct ocfs2_extent_block *eb;
1157 	struct ocfs2_extent_list  *eb_el;
1158 	struct ocfs2_extent_list  *el;
1159 	u32 new_cpos, root_end;
1160 
1161 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1162 
1163 	if (eb_bh) {
1164 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1165 		el = &eb->h_list;
1166 	} else
1167 		el = et->et_root_el;
1168 
1169 	/* we never add a branch to a leaf. */
1170 	BUG_ON(!el->l_tree_depth);
1171 
1172 	new_blocks = le16_to_cpu(el->l_tree_depth);
1173 
1174 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1175 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1176 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1177 
1178 	/*
1179 	 * If there is a gap before the root end and the real end
1180 	 * of the righmost leaf block, we need to remove the gap
1181 	 * between new_cpos and root_end first so that the tree
1182 	 * is consistent after we add a new branch(it will start
1183 	 * from new_cpos).
1184 	 */
1185 	if (root_end > new_cpos) {
1186 		trace_ocfs2_adjust_rightmost_branch(
1187 			(unsigned long long)
1188 			ocfs2_metadata_cache_owner(et->et_ci),
1189 			root_end, new_cpos);
1190 
1191 		status = ocfs2_adjust_rightmost_branch(handle, et);
1192 		if (status) {
1193 			mlog_errno(status);
1194 			goto bail;
1195 		}
1196 	}
1197 
1198 	/* allocate the number of new eb blocks we need */
1199 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1200 			     GFP_KERNEL);
1201 	if (!new_eb_bhs) {
1202 		status = -ENOMEM;
1203 		mlog_errno(status);
1204 		goto bail;
1205 	}
1206 
1207 	/* Firstyly, try to reuse dealloc since we have already estimated how
1208 	 * many extent blocks we may use.
1209 	 */
1210 	if (!ocfs2_is_dealloc_empty(et)) {
1211 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1212 						      new_eb_bhs, new_blocks,
1213 						      &block_given);
1214 		if (status < 0) {
1215 			mlog_errno(status);
1216 			goto bail;
1217 		}
1218 	}
1219 
1220 	BUG_ON(block_given > new_blocks);
1221 
1222 	if (block_given < new_blocks) {
1223 		BUG_ON(!meta_ac);
1224 		status = ocfs2_create_new_meta_bhs(handle, et,
1225 						   new_blocks - block_given,
1226 						   meta_ac,
1227 						   &new_eb_bhs[block_given]);
1228 		if (status < 0) {
1229 			mlog_errno(status);
1230 			goto bail;
1231 		}
1232 	}
1233 
1234 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1235 	 * linked with the rest of the tree.
1236 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1237 	 *
1238 	 * when we leave the loop, new_last_eb_blk will point to the
1239 	 * newest leaf, and next_blkno will point to the topmost extent
1240 	 * block. */
1241 	next_blkno = new_last_eb_blk = 0;
1242 	for(i = 0; i < new_blocks; i++) {
1243 		bh = new_eb_bhs[i];
1244 		eb = (struct ocfs2_extent_block *) bh->b_data;
1245 		/* ocfs2_create_new_meta_bhs() should create it right! */
1246 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1247 		eb_el = &eb->h_list;
1248 
1249 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1250 						 OCFS2_JOURNAL_ACCESS_CREATE);
1251 		if (status < 0) {
1252 			mlog_errno(status);
1253 			goto bail;
1254 		}
1255 
1256 		eb->h_next_leaf_blk = 0;
1257 		eb_el->l_tree_depth = cpu_to_le16(i);
1258 		eb_el->l_next_free_rec = cpu_to_le16(1);
1259 		/*
1260 		 * This actually counts as an empty extent as
1261 		 * c_clusters == 0
1262 		 */
1263 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1264 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1265 		/*
1266 		 * eb_el isn't always an interior node, but even leaf
1267 		 * nodes want a zero'd flags and reserved field so
1268 		 * this gets the whole 32 bits regardless of use.
1269 		 */
1270 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1271 		if (!eb_el->l_tree_depth)
1272 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1273 
1274 		ocfs2_journal_dirty(handle, bh);
1275 		next_blkno = le64_to_cpu(eb->h_blkno);
1276 	}
1277 
1278 	/* This is a bit hairy. We want to update up to three blocks
1279 	 * here without leaving any of them in an inconsistent state
1280 	 * in case of error. We don't have to worry about
1281 	 * journal_dirty erroring as it won't unless we've aborted the
1282 	 * handle (in which case we would never be here) so reserving
1283 	 * the write with journal_access is all we need to do. */
1284 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1285 					 OCFS2_JOURNAL_ACCESS_WRITE);
1286 	if (status < 0) {
1287 		mlog_errno(status);
1288 		goto bail;
1289 	}
1290 	status = ocfs2_et_root_journal_access(handle, et,
1291 					      OCFS2_JOURNAL_ACCESS_WRITE);
1292 	if (status < 0) {
1293 		mlog_errno(status);
1294 		goto bail;
1295 	}
1296 	if (eb_bh) {
1297 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1298 						 OCFS2_JOURNAL_ACCESS_WRITE);
1299 		if (status < 0) {
1300 			mlog_errno(status);
1301 			goto bail;
1302 		}
1303 	}
1304 
1305 	/* Link the new branch into the rest of the tree (el will
1306 	 * either be on the root_bh, or the extent block passed in. */
1307 	i = le16_to_cpu(el->l_next_free_rec);
1308 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1309 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1310 	el->l_recs[i].e_int_clusters = 0;
1311 	le16_add_cpu(&el->l_next_free_rec, 1);
1312 
1313 	/* fe needs a new last extent block pointer, as does the
1314 	 * next_leaf on the previously last-extent-block. */
1315 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1316 
1317 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1318 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1319 
1320 	ocfs2_journal_dirty(handle, *last_eb_bh);
1321 	ocfs2_journal_dirty(handle, et->et_root_bh);
1322 	if (eb_bh)
1323 		ocfs2_journal_dirty(handle, eb_bh);
1324 
1325 	/*
1326 	 * Some callers want to track the rightmost leaf so pass it
1327 	 * back here.
1328 	 */
1329 	brelse(*last_eb_bh);
1330 	get_bh(new_eb_bhs[0]);
1331 	*last_eb_bh = new_eb_bhs[0];
1332 
1333 	status = 0;
1334 bail:
1335 	if (new_eb_bhs) {
1336 		for (i = 0; i < new_blocks; i++)
1337 			brelse(new_eb_bhs[i]);
1338 		kfree(new_eb_bhs);
1339 	}
1340 
1341 	return status;
1342 }
1343 
1344 /*
1345  * adds another level to the allocation tree.
1346  * returns back the new extent block so you can add a branch to it
1347  * after this call.
1348  */
1349 static int ocfs2_shift_tree_depth(handle_t *handle,
1350 				  struct ocfs2_extent_tree *et,
1351 				  struct ocfs2_alloc_context *meta_ac,
1352 				  struct buffer_head **ret_new_eb_bh)
1353 {
1354 	int status, i, block_given = 0;
1355 	u32 new_clusters;
1356 	struct buffer_head *new_eb_bh = NULL;
1357 	struct ocfs2_extent_block *eb;
1358 	struct ocfs2_extent_list  *root_el;
1359 	struct ocfs2_extent_list  *eb_el;
1360 
1361 	if (!ocfs2_is_dealloc_empty(et)) {
1362 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1363 						      &new_eb_bh, 1,
1364 						      &block_given);
1365 	} else if (meta_ac) {
1366 		status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1367 						   &new_eb_bh);
1368 
1369 	} else {
1370 		BUG();
1371 	}
1372 
1373 	if (status < 0) {
1374 		mlog_errno(status);
1375 		goto bail;
1376 	}
1377 
1378 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1379 	/* ocfs2_create_new_meta_bhs() should create it right! */
1380 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1381 
1382 	eb_el = &eb->h_list;
1383 	root_el = et->et_root_el;
1384 
1385 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1386 					 OCFS2_JOURNAL_ACCESS_CREATE);
1387 	if (status < 0) {
1388 		mlog_errno(status);
1389 		goto bail;
1390 	}
1391 
1392 	/* copy the root extent list data into the new extent block */
1393 	eb_el->l_tree_depth = root_el->l_tree_depth;
1394 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1395 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396 		eb_el->l_recs[i] = root_el->l_recs[i];
1397 
1398 	ocfs2_journal_dirty(handle, new_eb_bh);
1399 
1400 	status = ocfs2_et_root_journal_access(handle, et,
1401 					      OCFS2_JOURNAL_ACCESS_WRITE);
1402 	if (status < 0) {
1403 		mlog_errno(status);
1404 		goto bail;
1405 	}
1406 
1407 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1408 
1409 	/* update root_bh now */
1410 	le16_add_cpu(&root_el->l_tree_depth, 1);
1411 	root_el->l_recs[0].e_cpos = 0;
1412 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1413 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1414 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1415 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1416 	root_el->l_next_free_rec = cpu_to_le16(1);
1417 
1418 	/* If this is our 1st tree depth shift, then last_eb_blk
1419 	 * becomes the allocated extent block */
1420 	if (root_el->l_tree_depth == cpu_to_le16(1))
1421 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1422 
1423 	ocfs2_journal_dirty(handle, et->et_root_bh);
1424 
1425 	*ret_new_eb_bh = new_eb_bh;
1426 	new_eb_bh = NULL;
1427 	status = 0;
1428 bail:
1429 	brelse(new_eb_bh);
1430 
1431 	return status;
1432 }
1433 
1434 /*
1435  * Should only be called when there is no space left in any of the
1436  * leaf nodes. What we want to do is find the lowest tree depth
1437  * non-leaf extent block with room for new records. There are three
1438  * valid results of this search:
1439  *
1440  * 1) a lowest extent block is found, then we pass it back in
1441  *    *lowest_eb_bh and return '0'
1442  *
1443  * 2) the search fails to find anything, but the root_el has room. We
1444  *    pass NULL back in *lowest_eb_bh, but still return '0'
1445  *
1446  * 3) the search fails to find anything AND the root_el is full, in
1447  *    which case we return > 0
1448  *
1449  * return status < 0 indicates an error.
1450  */
1451 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1452 				    struct buffer_head **target_bh)
1453 {
1454 	int status = 0, i;
1455 	u64 blkno;
1456 	struct ocfs2_extent_block *eb;
1457 	struct ocfs2_extent_list  *el;
1458 	struct buffer_head *bh = NULL;
1459 	struct buffer_head *lowest_bh = NULL;
1460 
1461 	*target_bh = NULL;
1462 
1463 	el = et->et_root_el;
1464 
1465 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1466 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1467 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1468 					"Owner %llu has empty extent list (next_free_rec == 0)\n",
1469 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1470 			goto bail;
1471 		}
1472 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1473 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1474 		if (!blkno) {
1475 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1476 					"Owner %llu has extent list where extent # %d has no physical block start\n",
1477 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1478 			goto bail;
1479 		}
1480 
1481 		brelse(bh);
1482 		bh = NULL;
1483 
1484 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1485 		if (status < 0) {
1486 			mlog_errno(status);
1487 			goto bail;
1488 		}
1489 
1490 		eb = (struct ocfs2_extent_block *) bh->b_data;
1491 		el = &eb->h_list;
1492 
1493 		if (le16_to_cpu(el->l_next_free_rec) <
1494 		    le16_to_cpu(el->l_count)) {
1495 			brelse(lowest_bh);
1496 			lowest_bh = bh;
1497 			get_bh(lowest_bh);
1498 		}
1499 	}
1500 
1501 	/* If we didn't find one and the fe doesn't have any room,
1502 	 * then return '1' */
1503 	el = et->et_root_el;
1504 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1505 		status = 1;
1506 
1507 	*target_bh = lowest_bh;
1508 bail:
1509 	brelse(bh);
1510 
1511 	return status;
1512 }
1513 
1514 /*
1515  * Grow a b-tree so that it has more records.
1516  *
1517  * We might shift the tree depth in which case existing paths should
1518  * be considered invalid.
1519  *
1520  * Tree depth after the grow is returned via *final_depth.
1521  *
1522  * *last_eb_bh will be updated by ocfs2_add_branch().
1523  */
1524 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1525 			   int *final_depth, struct buffer_head **last_eb_bh,
1526 			   struct ocfs2_alloc_context *meta_ac)
1527 {
1528 	int ret, shift;
1529 	struct ocfs2_extent_list *el = et->et_root_el;
1530 	int depth = le16_to_cpu(el->l_tree_depth);
1531 	struct buffer_head *bh = NULL;
1532 
1533 	BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1534 
1535 	shift = ocfs2_find_branch_target(et, &bh);
1536 	if (shift < 0) {
1537 		ret = shift;
1538 		mlog_errno(ret);
1539 		goto out;
1540 	}
1541 
1542 	/* We traveled all the way to the bottom of the allocation tree
1543 	 * and didn't find room for any more extents - we need to add
1544 	 * another tree level */
1545 	if (shift) {
1546 		BUG_ON(bh);
1547 		trace_ocfs2_grow_tree(
1548 			(unsigned long long)
1549 			ocfs2_metadata_cache_owner(et->et_ci),
1550 			depth);
1551 
1552 		/* ocfs2_shift_tree_depth will return us a buffer with
1553 		 * the new extent block (so we can pass that to
1554 		 * ocfs2_add_branch). */
1555 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1556 		if (ret < 0) {
1557 			mlog_errno(ret);
1558 			goto out;
1559 		}
1560 		depth++;
1561 		if (depth == 1) {
1562 			/*
1563 			 * Special case: we have room now if we shifted from
1564 			 * tree_depth 0, so no more work needs to be done.
1565 			 *
1566 			 * We won't be calling add_branch, so pass
1567 			 * back *last_eb_bh as the new leaf. At depth
1568 			 * zero, it should always be null so there's
1569 			 * no reason to brelse.
1570 			 */
1571 			BUG_ON(*last_eb_bh);
1572 			get_bh(bh);
1573 			*last_eb_bh = bh;
1574 			goto out;
1575 		}
1576 	}
1577 
1578 	/* call ocfs2_add_branch to add the final part of the tree with
1579 	 * the new data. */
1580 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1581 			       meta_ac);
1582 	if (ret < 0)
1583 		mlog_errno(ret);
1584 
1585 out:
1586 	if (final_depth)
1587 		*final_depth = depth;
1588 	brelse(bh);
1589 	return ret;
1590 }
1591 
1592 /*
1593  * This function will discard the rightmost extent record.
1594  */
1595 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1596 {
1597 	int next_free = le16_to_cpu(el->l_next_free_rec);
1598 	int count = le16_to_cpu(el->l_count);
1599 	unsigned int num_bytes;
1600 
1601 	BUG_ON(!next_free);
1602 	/* This will cause us to go off the end of our extent list. */
1603 	BUG_ON(next_free >= count);
1604 
1605 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1606 
1607 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1608 }
1609 
1610 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1611 			      struct ocfs2_extent_rec *insert_rec)
1612 {
1613 	int i, insert_index, next_free, has_empty, num_bytes;
1614 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1615 	struct ocfs2_extent_rec *rec;
1616 
1617 	next_free = le16_to_cpu(el->l_next_free_rec);
1618 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1619 
1620 	BUG_ON(!next_free);
1621 
1622 	/* The tree code before us didn't allow enough room in the leaf. */
1623 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1624 
1625 	/*
1626 	 * The easiest way to approach this is to just remove the
1627 	 * empty extent and temporarily decrement next_free.
1628 	 */
1629 	if (has_empty) {
1630 		/*
1631 		 * If next_free was 1 (only an empty extent), this
1632 		 * loop won't execute, which is fine. We still want
1633 		 * the decrement above to happen.
1634 		 */
1635 		for(i = 0; i < (next_free - 1); i++)
1636 			el->l_recs[i] = el->l_recs[i+1];
1637 
1638 		next_free--;
1639 	}
1640 
1641 	/*
1642 	 * Figure out what the new record index should be.
1643 	 */
1644 	for(i = 0; i < next_free; i++) {
1645 		rec = &el->l_recs[i];
1646 
1647 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1648 			break;
1649 	}
1650 	insert_index = i;
1651 
1652 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1653 				has_empty, next_free,
1654 				le16_to_cpu(el->l_count));
1655 
1656 	BUG_ON(insert_index < 0);
1657 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1658 	BUG_ON(insert_index > next_free);
1659 
1660 	/*
1661 	 * No need to memmove if we're just adding to the tail.
1662 	 */
1663 	if (insert_index != next_free) {
1664 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1665 
1666 		num_bytes = next_free - insert_index;
1667 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1668 		memmove(&el->l_recs[insert_index + 1],
1669 			&el->l_recs[insert_index],
1670 			num_bytes);
1671 	}
1672 
1673 	/*
1674 	 * Either we had an empty extent, and need to re-increment or
1675 	 * there was no empty extent on a non full rightmost leaf node,
1676 	 * in which case we still need to increment.
1677 	 */
1678 	next_free++;
1679 	el->l_next_free_rec = cpu_to_le16(next_free);
1680 	/*
1681 	 * Make sure none of the math above just messed up our tree.
1682 	 */
1683 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1684 
1685 	el->l_recs[insert_index] = *insert_rec;
1686 
1687 }
1688 
1689 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1690 {
1691 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1692 
1693 	BUG_ON(num_recs == 0);
1694 
1695 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1696 		num_recs--;
1697 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1698 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1699 		memset(&el->l_recs[num_recs], 0,
1700 		       sizeof(struct ocfs2_extent_rec));
1701 		el->l_next_free_rec = cpu_to_le16(num_recs);
1702 	}
1703 }
1704 
1705 /*
1706  * Create an empty extent record .
1707  *
1708  * l_next_free_rec may be updated.
1709  *
1710  * If an empty extent already exists do nothing.
1711  */
1712 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1713 {
1714 	int next_free = le16_to_cpu(el->l_next_free_rec);
1715 
1716 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1717 
1718 	if (next_free == 0)
1719 		goto set_and_inc;
1720 
1721 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1722 		return;
1723 
1724 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1725 			"Asked to create an empty extent in a full list:\n"
1726 			"count = %u, tree depth = %u",
1727 			le16_to_cpu(el->l_count),
1728 			le16_to_cpu(el->l_tree_depth));
1729 
1730 	ocfs2_shift_records_right(el);
1731 
1732 set_and_inc:
1733 	le16_add_cpu(&el->l_next_free_rec, 1);
1734 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1735 }
1736 
1737 /*
1738  * For a rotation which involves two leaf nodes, the "root node" is
1739  * the lowest level tree node which contains a path to both leafs. This
1740  * resulting set of information can be used to form a complete "subtree"
1741  *
1742  * This function is passed two full paths from the dinode down to a
1743  * pair of adjacent leaves. It's task is to figure out which path
1744  * index contains the subtree root - this can be the root index itself
1745  * in a worst-case rotation.
1746  *
1747  * The array index of the subtree root is passed back.
1748  */
1749 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1750 			    struct ocfs2_path *left,
1751 			    struct ocfs2_path *right)
1752 {
1753 	int i = 0;
1754 
1755 	/*
1756 	 * Check that the caller passed in two paths from the same tree.
1757 	 */
1758 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1759 
1760 	do {
1761 		i++;
1762 
1763 		/*
1764 		 * The caller didn't pass two adjacent paths.
1765 		 */
1766 		mlog_bug_on_msg(i > left->p_tree_depth,
1767 				"Owner %llu, left depth %u, right depth %u\n"
1768 				"left leaf blk %llu, right leaf blk %llu\n",
1769 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1770 				left->p_tree_depth, right->p_tree_depth,
1771 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1772 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1773 	} while (left->p_node[i].bh->b_blocknr ==
1774 		 right->p_node[i].bh->b_blocknr);
1775 
1776 	return i - 1;
1777 }
1778 
1779 typedef void (path_insert_t)(void *, struct buffer_head *);
1780 
1781 /*
1782  * Traverse a btree path in search of cpos, starting at root_el.
1783  *
1784  * This code can be called with a cpos larger than the tree, in which
1785  * case it will return the rightmost path.
1786  */
1787 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1788 			     struct ocfs2_extent_list *root_el, u32 cpos,
1789 			     path_insert_t *func, void *data)
1790 {
1791 	int i, ret = 0;
1792 	u32 range;
1793 	u64 blkno;
1794 	struct buffer_head *bh = NULL;
1795 	struct ocfs2_extent_block *eb;
1796 	struct ocfs2_extent_list *el;
1797 	struct ocfs2_extent_rec *rec;
1798 
1799 	el = root_el;
1800 	while (el->l_tree_depth) {
1801 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1802 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1803 				    "Owner %llu has empty extent list at depth %u\n",
1804 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1805 				    le16_to_cpu(el->l_tree_depth));
1806 			ret = -EROFS;
1807 			goto out;
1808 
1809 		}
1810 
1811 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1812 			rec = &el->l_recs[i];
1813 
1814 			/*
1815 			 * In the case that cpos is off the allocation
1816 			 * tree, this should just wind up returning the
1817 			 * rightmost record.
1818 			 */
1819 			range = le32_to_cpu(rec->e_cpos) +
1820 				ocfs2_rec_clusters(el, rec);
1821 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1822 			    break;
1823 		}
1824 
1825 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1826 		if (blkno == 0) {
1827 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1828 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1829 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1830 				    le16_to_cpu(el->l_tree_depth), i);
1831 			ret = -EROFS;
1832 			goto out;
1833 		}
1834 
1835 		brelse(bh);
1836 		bh = NULL;
1837 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1838 		if (ret) {
1839 			mlog_errno(ret);
1840 			goto out;
1841 		}
1842 
1843 		eb = (struct ocfs2_extent_block *) bh->b_data;
1844 		el = &eb->h_list;
1845 
1846 		if (le16_to_cpu(el->l_next_free_rec) >
1847 		    le16_to_cpu(el->l_count)) {
1848 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1849 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1850 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1851 				    (unsigned long long)bh->b_blocknr,
1852 				    le16_to_cpu(el->l_next_free_rec),
1853 				    le16_to_cpu(el->l_count));
1854 			ret = -EROFS;
1855 			goto out;
1856 		}
1857 
1858 		if (func)
1859 			func(data, bh);
1860 	}
1861 
1862 out:
1863 	/*
1864 	 * Catch any trailing bh that the loop didn't handle.
1865 	 */
1866 	brelse(bh);
1867 
1868 	return ret;
1869 }
1870 
1871 /*
1872  * Given an initialized path (that is, it has a valid root extent
1873  * list), this function will traverse the btree in search of the path
1874  * which would contain cpos.
1875  *
1876  * The path traveled is recorded in the path structure.
1877  *
1878  * Note that this will not do any comparisons on leaf node extent
1879  * records, so it will work fine in the case that we just added a tree
1880  * branch.
1881  */
1882 struct find_path_data {
1883 	int index;
1884 	struct ocfs2_path *path;
1885 };
1886 static void find_path_ins(void *data, struct buffer_head *bh)
1887 {
1888 	struct find_path_data *fp = data;
1889 
1890 	get_bh(bh);
1891 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1892 	fp->index++;
1893 }
1894 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1895 		    struct ocfs2_path *path, u32 cpos)
1896 {
1897 	struct find_path_data data;
1898 
1899 	data.index = 1;
1900 	data.path = path;
1901 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1902 				 find_path_ins, &data);
1903 }
1904 
1905 static void find_leaf_ins(void *data, struct buffer_head *bh)
1906 {
1907 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1908 	struct ocfs2_extent_list *el = &eb->h_list;
1909 	struct buffer_head **ret = data;
1910 
1911 	/* We want to retain only the leaf block. */
1912 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1913 		get_bh(bh);
1914 		*ret = bh;
1915 	}
1916 }
1917 /*
1918  * Find the leaf block in the tree which would contain cpos. No
1919  * checking of the actual leaf is done.
1920  *
1921  * Some paths want to call this instead of allocating a path structure
1922  * and calling ocfs2_find_path().
1923  *
1924  * This function doesn't handle non btree extent lists.
1925  */
1926 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1927 		    struct ocfs2_extent_list *root_el, u32 cpos,
1928 		    struct buffer_head **leaf_bh)
1929 {
1930 	int ret;
1931 	struct buffer_head *bh = NULL;
1932 
1933 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1934 	if (ret) {
1935 		mlog_errno(ret);
1936 		goto out;
1937 	}
1938 
1939 	*leaf_bh = bh;
1940 out:
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1946  *
1947  * Basically, we've moved stuff around at the bottom of the tree and
1948  * we need to fix up the extent records above the changes to reflect
1949  * the new changes.
1950  *
1951  * left_rec: the record on the left.
1952  * right_rec: the record to the right of left_rec
1953  * right_child_el: is the child list pointed to by right_rec
1954  *
1955  * By definition, this only works on interior nodes.
1956  */
1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1958 				  struct ocfs2_extent_rec *right_rec,
1959 				  struct ocfs2_extent_list *right_child_el)
1960 {
1961 	u32 left_clusters, right_end;
1962 
1963 	/*
1964 	 * Interior nodes never have holes. Their cpos is the cpos of
1965 	 * the leftmost record in their child list. Their cluster
1966 	 * count covers the full theoretical range of their child list
1967 	 * - the range between their cpos and the cpos of the record
1968 	 * immediately to their right.
1969 	 */
1970 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1971 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1972 		BUG_ON(right_child_el->l_tree_depth);
1973 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1974 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1975 	}
1976 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1977 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1978 
1979 	/*
1980 	 * Calculate the rightmost cluster count boundary before
1981 	 * moving cpos - we will need to adjust clusters after
1982 	 * updating e_cpos to keep the same highest cluster count.
1983 	 */
1984 	right_end = le32_to_cpu(right_rec->e_cpos);
1985 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1986 
1987 	right_rec->e_cpos = left_rec->e_cpos;
1988 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1989 
1990 	right_end -= le32_to_cpu(right_rec->e_cpos);
1991 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1992 }
1993 
1994 /*
1995  * Adjust the adjacent root node records involved in a
1996  * rotation. left_el_blkno is passed in as a key so that we can easily
1997  * find it's index in the root list.
1998  */
1999 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2000 				      struct ocfs2_extent_list *left_el,
2001 				      struct ocfs2_extent_list *right_el,
2002 				      u64 left_el_blkno)
2003 {
2004 	int i;
2005 
2006 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2007 	       le16_to_cpu(left_el->l_tree_depth));
2008 
2009 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2010 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2011 			break;
2012 	}
2013 
2014 	/*
2015 	 * The path walking code should have never returned a root and
2016 	 * two paths which are not adjacent.
2017 	 */
2018 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2019 
2020 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2021 				      &root_el->l_recs[i + 1], right_el);
2022 }
2023 
2024 /*
2025  * We've changed a leaf block (in right_path) and need to reflect that
2026  * change back up the subtree.
2027  *
2028  * This happens in multiple places:
2029  *   - When we've moved an extent record from the left path leaf to the right
2030  *     path leaf to make room for an empty extent in the left path leaf.
2031  *   - When our insert into the right path leaf is at the leftmost edge
2032  *     and requires an update of the path immediately to it's left. This
2033  *     can occur at the end of some types of rotation and appending inserts.
2034  *   - When we've adjusted the last extent record in the left path leaf and the
2035  *     1st extent record in the right path leaf during cross extent block merge.
2036  */
2037 static void ocfs2_complete_edge_insert(handle_t *handle,
2038 				       struct ocfs2_path *left_path,
2039 				       struct ocfs2_path *right_path,
2040 				       int subtree_index)
2041 {
2042 	int i, idx;
2043 	struct ocfs2_extent_list *el, *left_el, *right_el;
2044 	struct ocfs2_extent_rec *left_rec, *right_rec;
2045 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2046 
2047 	/*
2048 	 * Update the counts and position values within all the
2049 	 * interior nodes to reflect the leaf rotation we just did.
2050 	 *
2051 	 * The root node is handled below the loop.
2052 	 *
2053 	 * We begin the loop with right_el and left_el pointing to the
2054 	 * leaf lists and work our way up.
2055 	 *
2056 	 * NOTE: within this loop, left_el and right_el always refer
2057 	 * to the *child* lists.
2058 	 */
2059 	left_el = path_leaf_el(left_path);
2060 	right_el = path_leaf_el(right_path);
2061 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2062 		trace_ocfs2_complete_edge_insert(i);
2063 
2064 		/*
2065 		 * One nice property of knowing that all of these
2066 		 * nodes are below the root is that we only deal with
2067 		 * the leftmost right node record and the rightmost
2068 		 * left node record.
2069 		 */
2070 		el = left_path->p_node[i].el;
2071 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2072 		left_rec = &el->l_recs[idx];
2073 
2074 		el = right_path->p_node[i].el;
2075 		right_rec = &el->l_recs[0];
2076 
2077 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2078 
2079 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2080 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2081 
2082 		/*
2083 		 * Setup our list pointers now so that the current
2084 		 * parents become children in the next iteration.
2085 		 */
2086 		left_el = left_path->p_node[i].el;
2087 		right_el = right_path->p_node[i].el;
2088 	}
2089 
2090 	/*
2091 	 * At the root node, adjust the two adjacent records which
2092 	 * begin our path to the leaves.
2093 	 */
2094 
2095 	el = left_path->p_node[subtree_index].el;
2096 	left_el = left_path->p_node[subtree_index + 1].el;
2097 	right_el = right_path->p_node[subtree_index + 1].el;
2098 
2099 	ocfs2_adjust_root_records(el, left_el, right_el,
2100 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2101 
2102 	root_bh = left_path->p_node[subtree_index].bh;
2103 
2104 	ocfs2_journal_dirty(handle, root_bh);
2105 }
2106 
2107 static int ocfs2_rotate_subtree_right(handle_t *handle,
2108 				      struct ocfs2_extent_tree *et,
2109 				      struct ocfs2_path *left_path,
2110 				      struct ocfs2_path *right_path,
2111 				      int subtree_index)
2112 {
2113 	int ret, i;
2114 	struct buffer_head *right_leaf_bh;
2115 	struct buffer_head *left_leaf_bh = NULL;
2116 	struct buffer_head *root_bh;
2117 	struct ocfs2_extent_list *right_el, *left_el;
2118 	struct ocfs2_extent_rec move_rec;
2119 
2120 	left_leaf_bh = path_leaf_bh(left_path);
2121 	left_el = path_leaf_el(left_path);
2122 
2123 	if (left_el->l_next_free_rec != left_el->l_count) {
2124 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2125 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2126 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2127 			    (unsigned long long)left_leaf_bh->b_blocknr,
2128 			    le16_to_cpu(left_el->l_next_free_rec));
2129 		return -EROFS;
2130 	}
2131 
2132 	/*
2133 	 * This extent block may already have an empty record, so we
2134 	 * return early if so.
2135 	 */
2136 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2137 		return 0;
2138 
2139 	root_bh = left_path->p_node[subtree_index].bh;
2140 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2141 
2142 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2143 					   subtree_index);
2144 	if (ret) {
2145 		mlog_errno(ret);
2146 		goto out;
2147 	}
2148 
2149 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2150 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2151 						   right_path, i);
2152 		if (ret) {
2153 			mlog_errno(ret);
2154 			goto out;
2155 		}
2156 
2157 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2158 						   left_path, i);
2159 		if (ret) {
2160 			mlog_errno(ret);
2161 			goto out;
2162 		}
2163 	}
2164 
2165 	right_leaf_bh = path_leaf_bh(right_path);
2166 	right_el = path_leaf_el(right_path);
2167 
2168 	/* This is a code error, not a disk corruption. */
2169 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2170 			"because rightmost leaf block %llu is empty\n",
2171 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2172 			(unsigned long long)right_leaf_bh->b_blocknr);
2173 
2174 	ocfs2_create_empty_extent(right_el);
2175 
2176 	ocfs2_journal_dirty(handle, right_leaf_bh);
2177 
2178 	/* Do the copy now. */
2179 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2180 	move_rec = left_el->l_recs[i];
2181 	right_el->l_recs[0] = move_rec;
2182 
2183 	/*
2184 	 * Clear out the record we just copied and shift everything
2185 	 * over, leaving an empty extent in the left leaf.
2186 	 *
2187 	 * We temporarily subtract from next_free_rec so that the
2188 	 * shift will lose the tail record (which is now defunct).
2189 	 */
2190 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2191 	ocfs2_shift_records_right(left_el);
2192 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2193 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2194 
2195 	ocfs2_journal_dirty(handle, left_leaf_bh);
2196 
2197 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2198 				   subtree_index);
2199 
2200 out:
2201 	return ret;
2202 }
2203 
2204 /*
2205  * Given a full path, determine what cpos value would return us a path
2206  * containing the leaf immediately to the left of the current one.
2207  *
2208  * Will return zero if the path passed in is already the leftmost path.
2209  */
2210 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2211 				  struct ocfs2_path *path, u32 *cpos)
2212 {
2213 	int i, j, ret = 0;
2214 	u64 blkno;
2215 	struct ocfs2_extent_list *el;
2216 
2217 	BUG_ON(path->p_tree_depth == 0);
2218 
2219 	*cpos = 0;
2220 
2221 	blkno = path_leaf_bh(path)->b_blocknr;
2222 
2223 	/* Start at the tree node just above the leaf and work our way up. */
2224 	i = path->p_tree_depth - 1;
2225 	while (i >= 0) {
2226 		el = path->p_node[i].el;
2227 
2228 		/*
2229 		 * Find the extent record just before the one in our
2230 		 * path.
2231 		 */
2232 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2233 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2234 				if (j == 0) {
2235 					if (i == 0) {
2236 						/*
2237 						 * We've determined that the
2238 						 * path specified is already
2239 						 * the leftmost one - return a
2240 						 * cpos of zero.
2241 						 */
2242 						goto out;
2243 					}
2244 					/*
2245 					 * The leftmost record points to our
2246 					 * leaf - we need to travel up the
2247 					 * tree one level.
2248 					 */
2249 					goto next_node;
2250 				}
2251 
2252 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2253 				*cpos = *cpos + ocfs2_rec_clusters(el,
2254 							   &el->l_recs[j - 1]);
2255 				*cpos = *cpos - 1;
2256 				goto out;
2257 			}
2258 		}
2259 
2260 		/*
2261 		 * If we got here, we never found a valid node where
2262 		 * the tree indicated one should be.
2263 		 */
2264 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2265 			    (unsigned long long)blkno);
2266 		ret = -EROFS;
2267 		goto out;
2268 
2269 next_node:
2270 		blkno = path->p_node[i].bh->b_blocknr;
2271 		i--;
2272 	}
2273 
2274 out:
2275 	return ret;
2276 }
2277 
2278 /*
2279  * Extend the transaction by enough credits to complete the rotation,
2280  * and still leave at least the original number of credits allocated
2281  * to this transaction.
2282  */
2283 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2284 					   int op_credits,
2285 					   struct ocfs2_path *path)
2286 {
2287 	int ret = 0;
2288 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2289 
2290 	if (jbd2_handle_buffer_credits(handle) < credits)
2291 		ret = ocfs2_extend_trans(handle,
2292 				credits - jbd2_handle_buffer_credits(handle));
2293 
2294 	return ret;
2295 }
2296 
2297 /*
2298  * Trap the case where we're inserting into the theoretical range past
2299  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2300  * whose cpos is less than ours into the right leaf.
2301  *
2302  * It's only necessary to look at the rightmost record of the left
2303  * leaf because the logic that calls us should ensure that the
2304  * theoretical ranges in the path components above the leaves are
2305  * correct.
2306  */
2307 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2308 						 u32 insert_cpos)
2309 {
2310 	struct ocfs2_extent_list *left_el;
2311 	struct ocfs2_extent_rec *rec;
2312 	int next_free;
2313 
2314 	left_el = path_leaf_el(left_path);
2315 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2316 	rec = &left_el->l_recs[next_free - 1];
2317 
2318 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2319 		return 1;
2320 	return 0;
2321 }
2322 
2323 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2324 {
2325 	int next_free = le16_to_cpu(el->l_next_free_rec);
2326 	unsigned int range;
2327 	struct ocfs2_extent_rec *rec;
2328 
2329 	if (next_free == 0)
2330 		return 0;
2331 
2332 	rec = &el->l_recs[0];
2333 	if (ocfs2_is_empty_extent(rec)) {
2334 		/* Empty list. */
2335 		if (next_free == 1)
2336 			return 0;
2337 		rec = &el->l_recs[1];
2338 	}
2339 
2340 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2341 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2342 		return 1;
2343 	return 0;
2344 }
2345 
2346 /*
2347  * Rotate all the records in a btree right one record, starting at insert_cpos.
2348  *
2349  * The path to the rightmost leaf should be passed in.
2350  *
2351  * The array is assumed to be large enough to hold an entire path (tree depth).
2352  *
2353  * Upon successful return from this function:
2354  *
2355  * - The 'right_path' array will contain a path to the leaf block
2356  *   whose range contains e_cpos.
2357  * - That leaf block will have a single empty extent in list index 0.
2358  * - In the case that the rotation requires a post-insert update,
2359  *   *ret_left_path will contain a valid path which can be passed to
2360  *   ocfs2_insert_path().
2361  */
2362 static int ocfs2_rotate_tree_right(handle_t *handle,
2363 				   struct ocfs2_extent_tree *et,
2364 				   enum ocfs2_split_type split,
2365 				   u32 insert_cpos,
2366 				   struct ocfs2_path *right_path,
2367 				   struct ocfs2_path **ret_left_path)
2368 {
2369 	int ret, start, orig_credits = jbd2_handle_buffer_credits(handle);
2370 	u32 cpos;
2371 	struct ocfs2_path *left_path = NULL;
2372 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2373 
2374 	*ret_left_path = NULL;
2375 
2376 	left_path = ocfs2_new_path_from_path(right_path);
2377 	if (!left_path) {
2378 		ret = -ENOMEM;
2379 		mlog_errno(ret);
2380 		goto out;
2381 	}
2382 
2383 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2384 	if (ret) {
2385 		mlog_errno(ret);
2386 		goto out;
2387 	}
2388 
2389 	trace_ocfs2_rotate_tree_right(
2390 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2391 		insert_cpos, cpos);
2392 
2393 	/*
2394 	 * What we want to do here is:
2395 	 *
2396 	 * 1) Start with the rightmost path.
2397 	 *
2398 	 * 2) Determine a path to the leaf block directly to the left
2399 	 *    of that leaf.
2400 	 *
2401 	 * 3) Determine the 'subtree root' - the lowest level tree node
2402 	 *    which contains a path to both leaves.
2403 	 *
2404 	 * 4) Rotate the subtree.
2405 	 *
2406 	 * 5) Find the next subtree by considering the left path to be
2407 	 *    the new right path.
2408 	 *
2409 	 * The check at the top of this while loop also accepts
2410 	 * insert_cpos == cpos because cpos is only a _theoretical_
2411 	 * value to get us the left path - insert_cpos might very well
2412 	 * be filling that hole.
2413 	 *
2414 	 * Stop at a cpos of '0' because we either started at the
2415 	 * leftmost branch (i.e., a tree with one branch and a
2416 	 * rotation inside of it), or we've gone as far as we can in
2417 	 * rotating subtrees.
2418 	 */
2419 	while (cpos && insert_cpos <= cpos) {
2420 		trace_ocfs2_rotate_tree_right(
2421 			(unsigned long long)
2422 			ocfs2_metadata_cache_owner(et->et_ci),
2423 			insert_cpos, cpos);
2424 
2425 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2426 		if (ret) {
2427 			mlog_errno(ret);
2428 			goto out;
2429 		}
2430 
2431 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2432 				path_leaf_bh(right_path),
2433 				"Owner %llu: error during insert of %u "
2434 				"(left path cpos %u) results in two identical "
2435 				"paths ending at %llu\n",
2436 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2437 				insert_cpos, cpos,
2438 				(unsigned long long)
2439 				path_leaf_bh(left_path)->b_blocknr);
2440 
2441 		if (split == SPLIT_NONE &&
2442 		    ocfs2_rotate_requires_path_adjustment(left_path,
2443 							  insert_cpos)) {
2444 
2445 			/*
2446 			 * We've rotated the tree as much as we
2447 			 * should. The rest is up to
2448 			 * ocfs2_insert_path() to complete, after the
2449 			 * record insertion. We indicate this
2450 			 * situation by returning the left path.
2451 			 *
2452 			 * The reason we don't adjust the records here
2453 			 * before the record insert is that an error
2454 			 * later might break the rule where a parent
2455 			 * record e_cpos will reflect the actual
2456 			 * e_cpos of the 1st nonempty record of the
2457 			 * child list.
2458 			 */
2459 			*ret_left_path = left_path;
2460 			goto out_ret_path;
2461 		}
2462 
2463 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2464 
2465 		trace_ocfs2_rotate_subtree(start,
2466 			(unsigned long long)
2467 			right_path->p_node[start].bh->b_blocknr,
2468 			right_path->p_tree_depth);
2469 
2470 		ret = ocfs2_extend_rotate_transaction(handle, start,
2471 						      orig_credits, right_path);
2472 		if (ret) {
2473 			mlog_errno(ret);
2474 			goto out;
2475 		}
2476 
2477 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2478 						 right_path, start);
2479 		if (ret) {
2480 			mlog_errno(ret);
2481 			goto out;
2482 		}
2483 
2484 		if (split != SPLIT_NONE &&
2485 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2486 						insert_cpos)) {
2487 			/*
2488 			 * A rotate moves the rightmost left leaf
2489 			 * record over to the leftmost right leaf
2490 			 * slot. If we're doing an extent split
2491 			 * instead of a real insert, then we have to
2492 			 * check that the extent to be split wasn't
2493 			 * just moved over. If it was, then we can
2494 			 * exit here, passing left_path back -
2495 			 * ocfs2_split_extent() is smart enough to
2496 			 * search both leaves.
2497 			 */
2498 			*ret_left_path = left_path;
2499 			goto out_ret_path;
2500 		}
2501 
2502 		/*
2503 		 * There is no need to re-read the next right path
2504 		 * as we know that it'll be our current left
2505 		 * path. Optimize by copying values instead.
2506 		 */
2507 		ocfs2_mv_path(right_path, left_path);
2508 
2509 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2510 		if (ret) {
2511 			mlog_errno(ret);
2512 			goto out;
2513 		}
2514 	}
2515 
2516 out:
2517 	ocfs2_free_path(left_path);
2518 
2519 out_ret_path:
2520 	return ret;
2521 }
2522 
2523 static int ocfs2_update_edge_lengths(handle_t *handle,
2524 				     struct ocfs2_extent_tree *et,
2525 				     struct ocfs2_path *path)
2526 {
2527 	int i, idx, ret;
2528 	struct ocfs2_extent_rec *rec;
2529 	struct ocfs2_extent_list *el;
2530 	struct ocfs2_extent_block *eb;
2531 	u32 range;
2532 
2533 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2534 	if (ret) {
2535 		mlog_errno(ret);
2536 		goto out;
2537 	}
2538 
2539 	/* Path should always be rightmost. */
2540 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2541 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2542 
2543 	el = &eb->h_list;
2544 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2545 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2546 	rec = &el->l_recs[idx];
2547 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2548 
2549 	for (i = 0; i < path->p_tree_depth; i++) {
2550 		el = path->p_node[i].el;
2551 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2552 		rec = &el->l_recs[idx];
2553 
2554 		rec->e_int_clusters = cpu_to_le32(range);
2555 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2556 
2557 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2558 	}
2559 out:
2560 	return ret;
2561 }
2562 
2563 static void ocfs2_unlink_path(handle_t *handle,
2564 			      struct ocfs2_extent_tree *et,
2565 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2566 			      struct ocfs2_path *path, int unlink_start)
2567 {
2568 	int ret, i;
2569 	struct ocfs2_extent_block *eb;
2570 	struct ocfs2_extent_list *el;
2571 	struct buffer_head *bh;
2572 
2573 	for(i = unlink_start; i < path_num_items(path); i++) {
2574 		bh = path->p_node[i].bh;
2575 
2576 		eb = (struct ocfs2_extent_block *)bh->b_data;
2577 		/*
2578 		 * Not all nodes might have had their final count
2579 		 * decremented by the caller - handle this here.
2580 		 */
2581 		el = &eb->h_list;
2582 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2583 			mlog(ML_ERROR,
2584 			     "Inode %llu, attempted to remove extent block "
2585 			     "%llu with %u records\n",
2586 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2587 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2588 			     le16_to_cpu(el->l_next_free_rec));
2589 
2590 			ocfs2_journal_dirty(handle, bh);
2591 			ocfs2_remove_from_cache(et->et_ci, bh);
2592 			continue;
2593 		}
2594 
2595 		el->l_next_free_rec = 0;
2596 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2597 
2598 		ocfs2_journal_dirty(handle, bh);
2599 
2600 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2601 		if (ret)
2602 			mlog_errno(ret);
2603 
2604 		ocfs2_remove_from_cache(et->et_ci, bh);
2605 	}
2606 }
2607 
2608 static void ocfs2_unlink_subtree(handle_t *handle,
2609 				 struct ocfs2_extent_tree *et,
2610 				 struct ocfs2_path *left_path,
2611 				 struct ocfs2_path *right_path,
2612 				 int subtree_index,
2613 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2614 {
2615 	int i;
2616 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2617 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2618 	struct ocfs2_extent_block *eb;
2619 
2620 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2621 
2622 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2623 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2624 			break;
2625 
2626 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2627 
2628 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2629 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2630 
2631 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2632 	eb->h_next_leaf_blk = 0;
2633 
2634 	ocfs2_journal_dirty(handle, root_bh);
2635 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2636 
2637 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2638 			  subtree_index + 1);
2639 }
2640 
2641 static int ocfs2_rotate_subtree_left(handle_t *handle,
2642 				     struct ocfs2_extent_tree *et,
2643 				     struct ocfs2_path *left_path,
2644 				     struct ocfs2_path *right_path,
2645 				     int subtree_index,
2646 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2647 				     int *deleted)
2648 {
2649 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2650 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2651 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2652 	struct ocfs2_extent_block *eb;
2653 
2654 	*deleted = 0;
2655 
2656 	right_leaf_el = path_leaf_el(right_path);
2657 	left_leaf_el = path_leaf_el(left_path);
2658 	root_bh = left_path->p_node[subtree_index].bh;
2659 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2660 
2661 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2662 		return 0;
2663 
2664 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2665 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2666 		/*
2667 		 * It's legal for us to proceed if the right leaf is
2668 		 * the rightmost one and it has an empty extent. There
2669 		 * are two cases to handle - whether the leaf will be
2670 		 * empty after removal or not. If the leaf isn't empty
2671 		 * then just remove the empty extent up front. The
2672 		 * next block will handle empty leaves by flagging
2673 		 * them for unlink.
2674 		 *
2675 		 * Non rightmost leaves will throw -EAGAIN and the
2676 		 * caller can manually move the subtree and retry.
2677 		 */
2678 
2679 		if (eb->h_next_leaf_blk != 0ULL)
2680 			return -EAGAIN;
2681 
2682 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2683 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2684 						      path_leaf_bh(right_path),
2685 						      OCFS2_JOURNAL_ACCESS_WRITE);
2686 			if (ret) {
2687 				mlog_errno(ret);
2688 				goto out;
2689 			}
2690 
2691 			ocfs2_remove_empty_extent(right_leaf_el);
2692 		} else
2693 			right_has_empty = 1;
2694 	}
2695 
2696 	if (eb->h_next_leaf_blk == 0ULL &&
2697 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2698 		/*
2699 		 * We have to update i_last_eb_blk during the meta
2700 		 * data delete.
2701 		 */
2702 		ret = ocfs2_et_root_journal_access(handle, et,
2703 						   OCFS2_JOURNAL_ACCESS_WRITE);
2704 		if (ret) {
2705 			mlog_errno(ret);
2706 			goto out;
2707 		}
2708 
2709 		del_right_subtree = 1;
2710 	}
2711 
2712 	/*
2713 	 * Getting here with an empty extent in the right path implies
2714 	 * that it's the rightmost path and will be deleted.
2715 	 */
2716 	BUG_ON(right_has_empty && !del_right_subtree);
2717 
2718 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2719 					   subtree_index);
2720 	if (ret) {
2721 		mlog_errno(ret);
2722 		goto out;
2723 	}
2724 
2725 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2726 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2727 						   right_path, i);
2728 		if (ret) {
2729 			mlog_errno(ret);
2730 			goto out;
2731 		}
2732 
2733 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2734 						   left_path, i);
2735 		if (ret) {
2736 			mlog_errno(ret);
2737 			goto out;
2738 		}
2739 	}
2740 
2741 	if (!right_has_empty) {
2742 		/*
2743 		 * Only do this if we're moving a real
2744 		 * record. Otherwise, the action is delayed until
2745 		 * after removal of the right path in which case we
2746 		 * can do a simple shift to remove the empty extent.
2747 		 */
2748 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2749 		memset(&right_leaf_el->l_recs[0], 0,
2750 		       sizeof(struct ocfs2_extent_rec));
2751 	}
2752 	if (eb->h_next_leaf_blk == 0ULL) {
2753 		/*
2754 		 * Move recs over to get rid of empty extent, decrease
2755 		 * next_free. This is allowed to remove the last
2756 		 * extent in our leaf (setting l_next_free_rec to
2757 		 * zero) - the delete code below won't care.
2758 		 */
2759 		ocfs2_remove_empty_extent(right_leaf_el);
2760 	}
2761 
2762 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2763 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2764 
2765 	if (del_right_subtree) {
2766 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2767 				     subtree_index, dealloc);
2768 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2769 		if (ret) {
2770 			mlog_errno(ret);
2771 			goto out;
2772 		}
2773 
2774 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2775 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2776 
2777 		/*
2778 		 * Removal of the extent in the left leaf was skipped
2779 		 * above so we could delete the right path
2780 		 * 1st.
2781 		 */
2782 		if (right_has_empty)
2783 			ocfs2_remove_empty_extent(left_leaf_el);
2784 
2785 		ocfs2_journal_dirty(handle, et_root_bh);
2786 
2787 		*deleted = 1;
2788 	} else
2789 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2790 					   subtree_index);
2791 
2792 out:
2793 	return ret;
2794 }
2795 
2796 /*
2797  * Given a full path, determine what cpos value would return us a path
2798  * containing the leaf immediately to the right of the current one.
2799  *
2800  * Will return zero if the path passed in is already the rightmost path.
2801  *
2802  * This looks similar, but is subtly different to
2803  * ocfs2_find_cpos_for_left_leaf().
2804  */
2805 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2806 				   struct ocfs2_path *path, u32 *cpos)
2807 {
2808 	int i, j, ret = 0;
2809 	u64 blkno;
2810 	struct ocfs2_extent_list *el;
2811 
2812 	*cpos = 0;
2813 
2814 	if (path->p_tree_depth == 0)
2815 		return 0;
2816 
2817 	blkno = path_leaf_bh(path)->b_blocknr;
2818 
2819 	/* Start at the tree node just above the leaf and work our way up. */
2820 	i = path->p_tree_depth - 1;
2821 	while (i >= 0) {
2822 		int next_free;
2823 
2824 		el = path->p_node[i].el;
2825 
2826 		/*
2827 		 * Find the extent record just after the one in our
2828 		 * path.
2829 		 */
2830 		next_free = le16_to_cpu(el->l_next_free_rec);
2831 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2832 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2833 				if (j == (next_free - 1)) {
2834 					if (i == 0) {
2835 						/*
2836 						 * We've determined that the
2837 						 * path specified is already
2838 						 * the rightmost one - return a
2839 						 * cpos of zero.
2840 						 */
2841 						goto out;
2842 					}
2843 					/*
2844 					 * The rightmost record points to our
2845 					 * leaf - we need to travel up the
2846 					 * tree one level.
2847 					 */
2848 					goto next_node;
2849 				}
2850 
2851 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2852 				goto out;
2853 			}
2854 		}
2855 
2856 		/*
2857 		 * If we got here, we never found a valid node where
2858 		 * the tree indicated one should be.
2859 		 */
2860 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2861 			    (unsigned long long)blkno);
2862 		ret = -EROFS;
2863 		goto out;
2864 
2865 next_node:
2866 		blkno = path->p_node[i].bh->b_blocknr;
2867 		i--;
2868 	}
2869 
2870 out:
2871 	return ret;
2872 }
2873 
2874 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2875 					    struct ocfs2_extent_tree *et,
2876 					    struct ocfs2_path *path)
2877 {
2878 	int ret;
2879 	struct buffer_head *bh = path_leaf_bh(path);
2880 	struct ocfs2_extent_list *el = path_leaf_el(path);
2881 
2882 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2883 		return 0;
2884 
2885 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2886 					   path_num_items(path) - 1);
2887 	if (ret) {
2888 		mlog_errno(ret);
2889 		goto out;
2890 	}
2891 
2892 	ocfs2_remove_empty_extent(el);
2893 	ocfs2_journal_dirty(handle, bh);
2894 
2895 out:
2896 	return ret;
2897 }
2898 
2899 static int __ocfs2_rotate_tree_left(handle_t *handle,
2900 				    struct ocfs2_extent_tree *et,
2901 				    int orig_credits,
2902 				    struct ocfs2_path *path,
2903 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2904 				    struct ocfs2_path **empty_extent_path)
2905 {
2906 	int ret, subtree_root, deleted;
2907 	u32 right_cpos;
2908 	struct ocfs2_path *left_path = NULL;
2909 	struct ocfs2_path *right_path = NULL;
2910 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2911 
2912 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2913 		return 0;
2914 
2915 	*empty_extent_path = NULL;
2916 
2917 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2918 	if (ret) {
2919 		mlog_errno(ret);
2920 		goto out;
2921 	}
2922 
2923 	left_path = ocfs2_new_path_from_path(path);
2924 	if (!left_path) {
2925 		ret = -ENOMEM;
2926 		mlog_errno(ret);
2927 		goto out;
2928 	}
2929 
2930 	ocfs2_cp_path(left_path, path);
2931 
2932 	right_path = ocfs2_new_path_from_path(path);
2933 	if (!right_path) {
2934 		ret = -ENOMEM;
2935 		mlog_errno(ret);
2936 		goto out;
2937 	}
2938 
2939 	while (right_cpos) {
2940 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2941 		if (ret) {
2942 			mlog_errno(ret);
2943 			goto out;
2944 		}
2945 
2946 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2947 						       right_path);
2948 
2949 		trace_ocfs2_rotate_subtree(subtree_root,
2950 		     (unsigned long long)
2951 		     right_path->p_node[subtree_root].bh->b_blocknr,
2952 		     right_path->p_tree_depth);
2953 
2954 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2955 						      orig_credits, left_path);
2956 		if (ret) {
2957 			mlog_errno(ret);
2958 			goto out;
2959 		}
2960 
2961 		/*
2962 		 * Caller might still want to make changes to the
2963 		 * tree root, so re-add it to the journal here.
2964 		 */
2965 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2966 						   left_path, 0);
2967 		if (ret) {
2968 			mlog_errno(ret);
2969 			goto out;
2970 		}
2971 
2972 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2973 						right_path, subtree_root,
2974 						dealloc, &deleted);
2975 		if (ret == -EAGAIN) {
2976 			/*
2977 			 * The rotation has to temporarily stop due to
2978 			 * the right subtree having an empty
2979 			 * extent. Pass it back to the caller for a
2980 			 * fixup.
2981 			 */
2982 			*empty_extent_path = right_path;
2983 			right_path = NULL;
2984 			goto out;
2985 		}
2986 		if (ret) {
2987 			mlog_errno(ret);
2988 			goto out;
2989 		}
2990 
2991 		/*
2992 		 * The subtree rotate might have removed records on
2993 		 * the rightmost edge. If so, then rotation is
2994 		 * complete.
2995 		 */
2996 		if (deleted)
2997 			break;
2998 
2999 		ocfs2_mv_path(left_path, right_path);
3000 
3001 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3002 						     &right_cpos);
3003 		if (ret) {
3004 			mlog_errno(ret);
3005 			goto out;
3006 		}
3007 	}
3008 
3009 out:
3010 	ocfs2_free_path(right_path);
3011 	ocfs2_free_path(left_path);
3012 
3013 	return ret;
3014 }
3015 
3016 static int ocfs2_remove_rightmost_path(handle_t *handle,
3017 				struct ocfs2_extent_tree *et,
3018 				struct ocfs2_path *path,
3019 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3020 {
3021 	int ret, subtree_index;
3022 	u32 cpos;
3023 	struct ocfs2_path *left_path = NULL;
3024 	struct ocfs2_extent_block *eb;
3025 	struct ocfs2_extent_list *el;
3026 
3027 	ret = ocfs2_et_sanity_check(et);
3028 	if (ret)
3029 		goto out;
3030 
3031 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3032 	if (ret) {
3033 		mlog_errno(ret);
3034 		goto out;
3035 	}
3036 
3037 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3038 					    path, &cpos);
3039 	if (ret) {
3040 		mlog_errno(ret);
3041 		goto out;
3042 	}
3043 
3044 	if (cpos) {
3045 		/*
3046 		 * We have a path to the left of this one - it needs
3047 		 * an update too.
3048 		 */
3049 		left_path = ocfs2_new_path_from_path(path);
3050 		if (!left_path) {
3051 			ret = -ENOMEM;
3052 			mlog_errno(ret);
3053 			goto out;
3054 		}
3055 
3056 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3057 		if (ret) {
3058 			mlog_errno(ret);
3059 			goto out;
3060 		}
3061 
3062 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3063 		if (ret) {
3064 			mlog_errno(ret);
3065 			goto out;
3066 		}
3067 
3068 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3069 
3070 		ocfs2_unlink_subtree(handle, et, left_path, path,
3071 				     subtree_index, dealloc);
3072 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3073 		if (ret) {
3074 			mlog_errno(ret);
3075 			goto out;
3076 		}
3077 
3078 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3079 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3080 	} else {
3081 		/*
3082 		 * 'path' is also the leftmost path which
3083 		 * means it must be the only one. This gets
3084 		 * handled differently because we want to
3085 		 * revert the root back to having extents
3086 		 * in-line.
3087 		 */
3088 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3089 
3090 		el = et->et_root_el;
3091 		el->l_tree_depth = 0;
3092 		el->l_next_free_rec = 0;
3093 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3094 
3095 		ocfs2_et_set_last_eb_blk(et, 0);
3096 	}
3097 
3098 	ocfs2_journal_dirty(handle, path_root_bh(path));
3099 
3100 out:
3101 	ocfs2_free_path(left_path);
3102 	return ret;
3103 }
3104 
3105 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3106 				struct ocfs2_extent_tree *et,
3107 				struct ocfs2_path *path,
3108 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3109 {
3110 	handle_t *handle;
3111 	int ret;
3112 	int credits = path->p_tree_depth * 2 + 1;
3113 
3114 	handle = ocfs2_start_trans(osb, credits);
3115 	if (IS_ERR(handle)) {
3116 		ret = PTR_ERR(handle);
3117 		mlog_errno(ret);
3118 		return ret;
3119 	}
3120 
3121 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3122 	if (ret)
3123 		mlog_errno(ret);
3124 
3125 	ocfs2_commit_trans(osb, handle);
3126 	return ret;
3127 }
3128 
3129 /*
3130  * Left rotation of btree records.
3131  *
3132  * In many ways, this is (unsurprisingly) the opposite of right
3133  * rotation. We start at some non-rightmost path containing an empty
3134  * extent in the leaf block. The code works its way to the rightmost
3135  * path by rotating records to the left in every subtree.
3136  *
3137  * This is used by any code which reduces the number of extent records
3138  * in a leaf. After removal, an empty record should be placed in the
3139  * leftmost list position.
3140  *
3141  * This won't handle a length update of the rightmost path records if
3142  * the rightmost tree leaf record is removed so the caller is
3143  * responsible for detecting and correcting that.
3144  */
3145 static int ocfs2_rotate_tree_left(handle_t *handle,
3146 				  struct ocfs2_extent_tree *et,
3147 				  struct ocfs2_path *path,
3148 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3149 {
3150 	int ret, orig_credits = jbd2_handle_buffer_credits(handle);
3151 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3152 	struct ocfs2_extent_block *eb;
3153 	struct ocfs2_extent_list *el;
3154 
3155 	el = path_leaf_el(path);
3156 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3157 		return 0;
3158 
3159 	if (path->p_tree_depth == 0) {
3160 rightmost_no_delete:
3161 		/*
3162 		 * Inline extents. This is trivially handled, so do
3163 		 * it up front.
3164 		 */
3165 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3166 		if (ret)
3167 			mlog_errno(ret);
3168 		goto out;
3169 	}
3170 
3171 	/*
3172 	 * Handle rightmost branch now. There's several cases:
3173 	 *  1) simple rotation leaving records in there. That's trivial.
3174 	 *  2) rotation requiring a branch delete - there's no more
3175 	 *     records left. Two cases of this:
3176 	 *     a) There are branches to the left.
3177 	 *     b) This is also the leftmost (the only) branch.
3178 	 *
3179 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3180 	 *  2a) we need the left branch so that we can update it with the unlink
3181 	 *  2b) we need to bring the root back to inline extents.
3182 	 */
3183 
3184 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3185 	el = &eb->h_list;
3186 	if (eb->h_next_leaf_blk == 0) {
3187 		/*
3188 		 * This gets a bit tricky if we're going to delete the
3189 		 * rightmost path. Get the other cases out of the way
3190 		 * 1st.
3191 		 */
3192 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3193 			goto rightmost_no_delete;
3194 
3195 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3196 			ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3197 					"Owner %llu has empty extent block at %llu\n",
3198 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3199 					(unsigned long long)le64_to_cpu(eb->h_blkno));
3200 			goto out;
3201 		}
3202 
3203 		/*
3204 		 * XXX: The caller can not trust "path" any more after
3205 		 * this as it will have been deleted. What do we do?
3206 		 *
3207 		 * In theory the rotate-for-merge code will never get
3208 		 * here because it'll always ask for a rotate in a
3209 		 * nonempty list.
3210 		 */
3211 
3212 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3213 						  dealloc);
3214 		if (ret)
3215 			mlog_errno(ret);
3216 		goto out;
3217 	}
3218 
3219 	/*
3220 	 * Now we can loop, remembering the path we get from -EAGAIN
3221 	 * and restarting from there.
3222 	 */
3223 try_rotate:
3224 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3225 				       dealloc, &restart_path);
3226 	if (ret && ret != -EAGAIN) {
3227 		mlog_errno(ret);
3228 		goto out;
3229 	}
3230 
3231 	while (ret == -EAGAIN) {
3232 		tmp_path = restart_path;
3233 		restart_path = NULL;
3234 
3235 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3236 					       tmp_path, dealloc,
3237 					       &restart_path);
3238 		if (ret && ret != -EAGAIN) {
3239 			mlog_errno(ret);
3240 			goto out;
3241 		}
3242 
3243 		ocfs2_free_path(tmp_path);
3244 		tmp_path = NULL;
3245 
3246 		if (ret == 0)
3247 			goto try_rotate;
3248 	}
3249 
3250 out:
3251 	ocfs2_free_path(tmp_path);
3252 	ocfs2_free_path(restart_path);
3253 	return ret;
3254 }
3255 
3256 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3257 				int index)
3258 {
3259 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3260 	unsigned int size;
3261 
3262 	if (rec->e_leaf_clusters == 0) {
3263 		/*
3264 		 * We consumed all of the merged-from record. An empty
3265 		 * extent cannot exist anywhere but the 1st array
3266 		 * position, so move things over if the merged-from
3267 		 * record doesn't occupy that position.
3268 		 *
3269 		 * This creates a new empty extent so the caller
3270 		 * should be smart enough to have removed any existing
3271 		 * ones.
3272 		 */
3273 		if (index > 0) {
3274 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3275 			size = index * sizeof(struct ocfs2_extent_rec);
3276 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3277 		}
3278 
3279 		/*
3280 		 * Always memset - the caller doesn't check whether it
3281 		 * created an empty extent, so there could be junk in
3282 		 * the other fields.
3283 		 */
3284 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3285 	}
3286 }
3287 
3288 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3289 				struct ocfs2_path *left_path,
3290 				struct ocfs2_path **ret_right_path)
3291 {
3292 	int ret;
3293 	u32 right_cpos;
3294 	struct ocfs2_path *right_path = NULL;
3295 	struct ocfs2_extent_list *left_el;
3296 
3297 	*ret_right_path = NULL;
3298 
3299 	/* This function shouldn't be called for non-trees. */
3300 	BUG_ON(left_path->p_tree_depth == 0);
3301 
3302 	left_el = path_leaf_el(left_path);
3303 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3304 
3305 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3306 					     left_path, &right_cpos);
3307 	if (ret) {
3308 		mlog_errno(ret);
3309 		goto out;
3310 	}
3311 
3312 	/* This function shouldn't be called for the rightmost leaf. */
3313 	BUG_ON(right_cpos == 0);
3314 
3315 	right_path = ocfs2_new_path_from_path(left_path);
3316 	if (!right_path) {
3317 		ret = -ENOMEM;
3318 		mlog_errno(ret);
3319 		goto out;
3320 	}
3321 
3322 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3323 	if (ret) {
3324 		mlog_errno(ret);
3325 		goto out;
3326 	}
3327 
3328 	*ret_right_path = right_path;
3329 out:
3330 	if (ret)
3331 		ocfs2_free_path(right_path);
3332 	return ret;
3333 }
3334 
3335 /*
3336  * Remove split_rec clusters from the record at index and merge them
3337  * onto the beginning of the record "next" to it.
3338  * For index < l_count - 1, the next means the extent rec at index + 1.
3339  * For index == l_count - 1, the "next" means the 1st extent rec of the
3340  * next extent block.
3341  */
3342 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3343 				 handle_t *handle,
3344 				 struct ocfs2_extent_tree *et,
3345 				 struct ocfs2_extent_rec *split_rec,
3346 				 int index)
3347 {
3348 	int ret, next_free, i;
3349 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3350 	struct ocfs2_extent_rec *left_rec;
3351 	struct ocfs2_extent_rec *right_rec;
3352 	struct ocfs2_extent_list *right_el;
3353 	struct ocfs2_path *right_path = NULL;
3354 	int subtree_index = 0;
3355 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3356 	struct buffer_head *bh = path_leaf_bh(left_path);
3357 	struct buffer_head *root_bh = NULL;
3358 
3359 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3360 	left_rec = &el->l_recs[index];
3361 
3362 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3363 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3364 		/* we meet with a cross extent block merge. */
3365 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3366 		if (ret) {
3367 			mlog_errno(ret);
3368 			return ret;
3369 		}
3370 
3371 		right_el = path_leaf_el(right_path);
3372 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3373 		BUG_ON(next_free <= 0);
3374 		right_rec = &right_el->l_recs[0];
3375 		if (ocfs2_is_empty_extent(right_rec)) {
3376 			BUG_ON(next_free <= 1);
3377 			right_rec = &right_el->l_recs[1];
3378 		}
3379 
3380 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3381 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3382 		       le32_to_cpu(right_rec->e_cpos));
3383 
3384 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3385 							right_path);
3386 
3387 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3388 					jbd2_handle_buffer_credits(handle),
3389 					right_path);
3390 		if (ret) {
3391 			mlog_errno(ret);
3392 			goto out;
3393 		}
3394 
3395 		root_bh = left_path->p_node[subtree_index].bh;
3396 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3397 
3398 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3399 						   subtree_index);
3400 		if (ret) {
3401 			mlog_errno(ret);
3402 			goto out;
3403 		}
3404 
3405 		for (i = subtree_index + 1;
3406 		     i < path_num_items(right_path); i++) {
3407 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3408 							   right_path, i);
3409 			if (ret) {
3410 				mlog_errno(ret);
3411 				goto out;
3412 			}
3413 
3414 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3415 							   left_path, i);
3416 			if (ret) {
3417 				mlog_errno(ret);
3418 				goto out;
3419 			}
3420 		}
3421 
3422 	} else {
3423 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3424 		right_rec = &el->l_recs[index + 1];
3425 	}
3426 
3427 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3428 					   path_num_items(left_path) - 1);
3429 	if (ret) {
3430 		mlog_errno(ret);
3431 		goto out;
3432 	}
3433 
3434 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3435 
3436 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3437 	le64_add_cpu(&right_rec->e_blkno,
3438 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3439 					       split_clusters));
3440 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3441 
3442 	ocfs2_cleanup_merge(el, index);
3443 
3444 	ocfs2_journal_dirty(handle, bh);
3445 	if (right_path) {
3446 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3447 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3448 					   subtree_index);
3449 	}
3450 out:
3451 	ocfs2_free_path(right_path);
3452 	return ret;
3453 }
3454 
3455 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3456 			       struct ocfs2_path *right_path,
3457 			       struct ocfs2_path **ret_left_path)
3458 {
3459 	int ret;
3460 	u32 left_cpos;
3461 	struct ocfs2_path *left_path = NULL;
3462 
3463 	*ret_left_path = NULL;
3464 
3465 	/* This function shouldn't be called for non-trees. */
3466 	BUG_ON(right_path->p_tree_depth == 0);
3467 
3468 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3469 					    right_path, &left_cpos);
3470 	if (ret) {
3471 		mlog_errno(ret);
3472 		goto out;
3473 	}
3474 
3475 	/* This function shouldn't be called for the leftmost leaf. */
3476 	BUG_ON(left_cpos == 0);
3477 
3478 	left_path = ocfs2_new_path_from_path(right_path);
3479 	if (!left_path) {
3480 		ret = -ENOMEM;
3481 		mlog_errno(ret);
3482 		goto out;
3483 	}
3484 
3485 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3486 	if (ret) {
3487 		mlog_errno(ret);
3488 		goto out;
3489 	}
3490 
3491 	*ret_left_path = left_path;
3492 out:
3493 	if (ret)
3494 		ocfs2_free_path(left_path);
3495 	return ret;
3496 }
3497 
3498 /*
3499  * Remove split_rec clusters from the record at index and merge them
3500  * onto the tail of the record "before" it.
3501  * For index > 0, the "before" means the extent rec at index - 1.
3502  *
3503  * For index == 0, the "before" means the last record of the previous
3504  * extent block. And there is also a situation that we may need to
3505  * remove the rightmost leaf extent block in the right_path and change
3506  * the right path to indicate the new rightmost path.
3507  */
3508 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3509 				handle_t *handle,
3510 				struct ocfs2_extent_tree *et,
3511 				struct ocfs2_extent_rec *split_rec,
3512 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3513 				int index)
3514 {
3515 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3516 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3517 	struct ocfs2_extent_rec *left_rec;
3518 	struct ocfs2_extent_rec *right_rec;
3519 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3520 	struct buffer_head *bh = path_leaf_bh(right_path);
3521 	struct buffer_head *root_bh = NULL;
3522 	struct ocfs2_path *left_path = NULL;
3523 	struct ocfs2_extent_list *left_el;
3524 
3525 	BUG_ON(index < 0);
3526 
3527 	right_rec = &el->l_recs[index];
3528 	if (index == 0) {
3529 		/* we meet with a cross extent block merge. */
3530 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3531 		if (ret) {
3532 			mlog_errno(ret);
3533 			return ret;
3534 		}
3535 
3536 		left_el = path_leaf_el(left_path);
3537 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3538 		       le16_to_cpu(left_el->l_count));
3539 
3540 		left_rec = &left_el->l_recs[
3541 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3542 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3543 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3544 		       le32_to_cpu(split_rec->e_cpos));
3545 
3546 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3547 							right_path);
3548 
3549 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3550 					jbd2_handle_buffer_credits(handle),
3551 					left_path);
3552 		if (ret) {
3553 			mlog_errno(ret);
3554 			goto out;
3555 		}
3556 
3557 		root_bh = left_path->p_node[subtree_index].bh;
3558 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3559 
3560 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3561 						   subtree_index);
3562 		if (ret) {
3563 			mlog_errno(ret);
3564 			goto out;
3565 		}
3566 
3567 		for (i = subtree_index + 1;
3568 		     i < path_num_items(right_path); i++) {
3569 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3570 							   right_path, i);
3571 			if (ret) {
3572 				mlog_errno(ret);
3573 				goto out;
3574 			}
3575 
3576 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3577 							   left_path, i);
3578 			if (ret) {
3579 				mlog_errno(ret);
3580 				goto out;
3581 			}
3582 		}
3583 	} else {
3584 		left_rec = &el->l_recs[index - 1];
3585 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3586 			has_empty_extent = 1;
3587 	}
3588 
3589 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3590 					   path_num_items(right_path) - 1);
3591 	if (ret) {
3592 		mlog_errno(ret);
3593 		goto out;
3594 	}
3595 
3596 	if (has_empty_extent && index == 1) {
3597 		/*
3598 		 * The easy case - we can just plop the record right in.
3599 		 */
3600 		*left_rec = *split_rec;
3601 	} else
3602 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3603 
3604 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3605 	le64_add_cpu(&right_rec->e_blkno,
3606 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3607 					      split_clusters));
3608 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3609 
3610 	ocfs2_cleanup_merge(el, index);
3611 
3612 	ocfs2_journal_dirty(handle, bh);
3613 	if (left_path) {
3614 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3615 
3616 		/*
3617 		 * In the situation that the right_rec is empty and the extent
3618 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3619 		 * it and we need to delete the right extent block.
3620 		 */
3621 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3622 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3623 			/* extend credit for ocfs2_remove_rightmost_path */
3624 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3625 					jbd2_handle_buffer_credits(handle),
3626 					right_path);
3627 			if (ret) {
3628 				mlog_errno(ret);
3629 				goto out;
3630 			}
3631 
3632 			ret = ocfs2_remove_rightmost_path(handle, et,
3633 							  right_path,
3634 							  dealloc);
3635 			if (ret) {
3636 				mlog_errno(ret);
3637 				goto out;
3638 			}
3639 
3640 			/* Now the rightmost extent block has been deleted.
3641 			 * So we use the new rightmost path.
3642 			 */
3643 			ocfs2_mv_path(right_path, left_path);
3644 			left_path = NULL;
3645 		} else
3646 			ocfs2_complete_edge_insert(handle, left_path,
3647 						   right_path, subtree_index);
3648 	}
3649 out:
3650 	ocfs2_free_path(left_path);
3651 	return ret;
3652 }
3653 
3654 static int ocfs2_try_to_merge_extent(handle_t *handle,
3655 				     struct ocfs2_extent_tree *et,
3656 				     struct ocfs2_path *path,
3657 				     int split_index,
3658 				     struct ocfs2_extent_rec *split_rec,
3659 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3660 				     struct ocfs2_merge_ctxt *ctxt)
3661 {
3662 	int ret = 0;
3663 	struct ocfs2_extent_list *el = path_leaf_el(path);
3664 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3665 
3666 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3667 
3668 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3669 		/* extend credit for ocfs2_remove_rightmost_path */
3670 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3671 				jbd2_handle_buffer_credits(handle),
3672 				path);
3673 		if (ret) {
3674 			mlog_errno(ret);
3675 			goto out;
3676 		}
3677 		/*
3678 		 * The merge code will need to create an empty
3679 		 * extent to take the place of the newly
3680 		 * emptied slot. Remove any pre-existing empty
3681 		 * extents - having more than one in a leaf is
3682 		 * illegal.
3683 		 */
3684 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3685 		if (ret) {
3686 			mlog_errno(ret);
3687 			goto out;
3688 		}
3689 		split_index--;
3690 		rec = &el->l_recs[split_index];
3691 	}
3692 
3693 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3694 		/*
3695 		 * Left-right contig implies this.
3696 		 */
3697 		BUG_ON(!ctxt->c_split_covers_rec);
3698 
3699 		/*
3700 		 * Since the leftright insert always covers the entire
3701 		 * extent, this call will delete the insert record
3702 		 * entirely, resulting in an empty extent record added to
3703 		 * the extent block.
3704 		 *
3705 		 * Since the adding of an empty extent shifts
3706 		 * everything back to the right, there's no need to
3707 		 * update split_index here.
3708 		 *
3709 		 * When the split_index is zero, we need to merge it to the
3710 		 * prevoius extent block. It is more efficient and easier
3711 		 * if we do merge_right first and merge_left later.
3712 		 */
3713 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3714 					    split_index);
3715 		if (ret) {
3716 			mlog_errno(ret);
3717 			goto out;
3718 		}
3719 
3720 		/*
3721 		 * We can only get this from logic error above.
3722 		 */
3723 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3724 
3725 		/* extend credit for ocfs2_remove_rightmost_path */
3726 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3727 					jbd2_handle_buffer_credits(handle),
3728 					path);
3729 		if (ret) {
3730 			mlog_errno(ret);
3731 			goto out;
3732 		}
3733 
3734 		/* The merge left us with an empty extent, remove it. */
3735 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3736 		if (ret) {
3737 			mlog_errno(ret);
3738 			goto out;
3739 		}
3740 
3741 		rec = &el->l_recs[split_index];
3742 
3743 		/*
3744 		 * Note that we don't pass split_rec here on purpose -
3745 		 * we've merged it into the rec already.
3746 		 */
3747 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3748 					   dealloc, split_index);
3749 
3750 		if (ret) {
3751 			mlog_errno(ret);
3752 			goto out;
3753 		}
3754 
3755 		/* extend credit for ocfs2_remove_rightmost_path */
3756 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3757 				jbd2_handle_buffer_credits(handle),
3758 				path);
3759 		if (ret) {
3760 			mlog_errno(ret);
3761 			goto out;
3762 		}
3763 
3764 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3765 		/*
3766 		 * Error from this last rotate is not critical, so
3767 		 * print but don't bubble it up.
3768 		 */
3769 		if (ret)
3770 			mlog_errno(ret);
3771 		ret = 0;
3772 	} else {
3773 		/*
3774 		 * Merge a record to the left or right.
3775 		 *
3776 		 * 'contig_type' is relative to the existing record,
3777 		 * so for example, if we're "right contig", it's to
3778 		 * the record on the left (hence the left merge).
3779 		 */
3780 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3781 			ret = ocfs2_merge_rec_left(path, handle, et,
3782 						   split_rec, dealloc,
3783 						   split_index);
3784 			if (ret) {
3785 				mlog_errno(ret);
3786 				goto out;
3787 			}
3788 		} else {
3789 			ret = ocfs2_merge_rec_right(path, handle,
3790 						    et, split_rec,
3791 						    split_index);
3792 			if (ret) {
3793 				mlog_errno(ret);
3794 				goto out;
3795 			}
3796 		}
3797 
3798 		if (ctxt->c_split_covers_rec) {
3799 			/* extend credit for ocfs2_remove_rightmost_path */
3800 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3801 					jbd2_handle_buffer_credits(handle),
3802 					path);
3803 			if (ret) {
3804 				mlog_errno(ret);
3805 				ret = 0;
3806 				goto out;
3807 			}
3808 
3809 			/*
3810 			 * The merge may have left an empty extent in
3811 			 * our leaf. Try to rotate it away.
3812 			 */
3813 			ret = ocfs2_rotate_tree_left(handle, et, path,
3814 						     dealloc);
3815 			if (ret)
3816 				mlog_errno(ret);
3817 			ret = 0;
3818 		}
3819 	}
3820 
3821 out:
3822 	return ret;
3823 }
3824 
3825 static void ocfs2_subtract_from_rec(struct super_block *sb,
3826 				    enum ocfs2_split_type split,
3827 				    struct ocfs2_extent_rec *rec,
3828 				    struct ocfs2_extent_rec *split_rec)
3829 {
3830 	u64 len_blocks;
3831 
3832 	len_blocks = ocfs2_clusters_to_blocks(sb,
3833 				le16_to_cpu(split_rec->e_leaf_clusters));
3834 
3835 	if (split == SPLIT_LEFT) {
3836 		/*
3837 		 * Region is on the left edge of the existing
3838 		 * record.
3839 		 */
3840 		le32_add_cpu(&rec->e_cpos,
3841 			     le16_to_cpu(split_rec->e_leaf_clusters));
3842 		le64_add_cpu(&rec->e_blkno, len_blocks);
3843 		le16_add_cpu(&rec->e_leaf_clusters,
3844 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3845 	} else {
3846 		/*
3847 		 * Region is on the right edge of the existing
3848 		 * record.
3849 		 */
3850 		le16_add_cpu(&rec->e_leaf_clusters,
3851 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3852 	}
3853 }
3854 
3855 /*
3856  * Do the final bits of extent record insertion at the target leaf
3857  * list. If this leaf is part of an allocation tree, it is assumed
3858  * that the tree above has been prepared.
3859  */
3860 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3861 				 struct ocfs2_extent_rec *insert_rec,
3862 				 struct ocfs2_extent_list *el,
3863 				 struct ocfs2_insert_type *insert)
3864 {
3865 	int i = insert->ins_contig_index;
3866 	unsigned int range;
3867 	struct ocfs2_extent_rec *rec;
3868 
3869 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3870 
3871 	if (insert->ins_split != SPLIT_NONE) {
3872 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3873 		BUG_ON(i == -1);
3874 		rec = &el->l_recs[i];
3875 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3876 					insert->ins_split, rec,
3877 					insert_rec);
3878 		goto rotate;
3879 	}
3880 
3881 	/*
3882 	 * Contiguous insert - either left or right.
3883 	 */
3884 	if (insert->ins_contig != CONTIG_NONE) {
3885 		rec = &el->l_recs[i];
3886 		if (insert->ins_contig == CONTIG_LEFT) {
3887 			rec->e_blkno = insert_rec->e_blkno;
3888 			rec->e_cpos = insert_rec->e_cpos;
3889 		}
3890 		le16_add_cpu(&rec->e_leaf_clusters,
3891 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3892 		return;
3893 	}
3894 
3895 	/*
3896 	 * Handle insert into an empty leaf.
3897 	 */
3898 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3899 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3900 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3901 		el->l_recs[0] = *insert_rec;
3902 		el->l_next_free_rec = cpu_to_le16(1);
3903 		return;
3904 	}
3905 
3906 	/*
3907 	 * Appending insert.
3908 	 */
3909 	if (insert->ins_appending == APPEND_TAIL) {
3910 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3911 		rec = &el->l_recs[i];
3912 		range = le32_to_cpu(rec->e_cpos)
3913 			+ le16_to_cpu(rec->e_leaf_clusters);
3914 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3915 
3916 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3917 				le16_to_cpu(el->l_count),
3918 				"owner %llu, depth %u, count %u, next free %u, "
3919 				"rec.cpos %u, rec.clusters %u, "
3920 				"insert.cpos %u, insert.clusters %u\n",
3921 				ocfs2_metadata_cache_owner(et->et_ci),
3922 				le16_to_cpu(el->l_tree_depth),
3923 				le16_to_cpu(el->l_count),
3924 				le16_to_cpu(el->l_next_free_rec),
3925 				le32_to_cpu(el->l_recs[i].e_cpos),
3926 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3927 				le32_to_cpu(insert_rec->e_cpos),
3928 				le16_to_cpu(insert_rec->e_leaf_clusters));
3929 		i++;
3930 		el->l_recs[i] = *insert_rec;
3931 		le16_add_cpu(&el->l_next_free_rec, 1);
3932 		return;
3933 	}
3934 
3935 rotate:
3936 	/*
3937 	 * Ok, we have to rotate.
3938 	 *
3939 	 * At this point, it is safe to assume that inserting into an
3940 	 * empty leaf and appending to a leaf have both been handled
3941 	 * above.
3942 	 *
3943 	 * This leaf needs to have space, either by the empty 1st
3944 	 * extent record, or by virtue of an l_next_free_rec < l_count.
3945 	 */
3946 	ocfs2_rotate_leaf(el, insert_rec);
3947 }
3948 
3949 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3950 					   struct ocfs2_extent_tree *et,
3951 					   struct ocfs2_path *path,
3952 					   struct ocfs2_extent_rec *insert_rec)
3953 {
3954 	int i, next_free;
3955 	struct buffer_head *bh;
3956 	struct ocfs2_extent_list *el;
3957 	struct ocfs2_extent_rec *rec;
3958 
3959 	/*
3960 	 * Update everything except the leaf block.
3961 	 */
3962 	for (i = 0; i < path->p_tree_depth; i++) {
3963 		bh = path->p_node[i].bh;
3964 		el = path->p_node[i].el;
3965 
3966 		next_free = le16_to_cpu(el->l_next_free_rec);
3967 		if (next_free == 0) {
3968 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3969 				    "Owner %llu has a bad extent list\n",
3970 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3971 			return;
3972 		}
3973 
3974 		rec = &el->l_recs[next_free - 1];
3975 
3976 		rec->e_int_clusters = insert_rec->e_cpos;
3977 		le32_add_cpu(&rec->e_int_clusters,
3978 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3979 		le32_add_cpu(&rec->e_int_clusters,
3980 			     -le32_to_cpu(rec->e_cpos));
3981 
3982 		ocfs2_journal_dirty(handle, bh);
3983 	}
3984 }
3985 
3986 static int ocfs2_append_rec_to_path(handle_t *handle,
3987 				    struct ocfs2_extent_tree *et,
3988 				    struct ocfs2_extent_rec *insert_rec,
3989 				    struct ocfs2_path *right_path,
3990 				    struct ocfs2_path **ret_left_path)
3991 {
3992 	int ret, next_free;
3993 	struct ocfs2_extent_list *el;
3994 	struct ocfs2_path *left_path = NULL;
3995 
3996 	*ret_left_path = NULL;
3997 
3998 	/*
3999 	 * This shouldn't happen for non-trees. The extent rec cluster
4000 	 * count manipulation below only works for interior nodes.
4001 	 */
4002 	BUG_ON(right_path->p_tree_depth == 0);
4003 
4004 	/*
4005 	 * If our appending insert is at the leftmost edge of a leaf,
4006 	 * then we might need to update the rightmost records of the
4007 	 * neighboring path.
4008 	 */
4009 	el = path_leaf_el(right_path);
4010 	next_free = le16_to_cpu(el->l_next_free_rec);
4011 	if (next_free == 0 ||
4012 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4013 		u32 left_cpos;
4014 
4015 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4016 						    right_path, &left_cpos);
4017 		if (ret) {
4018 			mlog_errno(ret);
4019 			goto out;
4020 		}
4021 
4022 		trace_ocfs2_append_rec_to_path(
4023 			(unsigned long long)
4024 			ocfs2_metadata_cache_owner(et->et_ci),
4025 			le32_to_cpu(insert_rec->e_cpos),
4026 			left_cpos);
4027 
4028 		/*
4029 		 * No need to worry if the append is already in the
4030 		 * leftmost leaf.
4031 		 */
4032 		if (left_cpos) {
4033 			left_path = ocfs2_new_path_from_path(right_path);
4034 			if (!left_path) {
4035 				ret = -ENOMEM;
4036 				mlog_errno(ret);
4037 				goto out;
4038 			}
4039 
4040 			ret = ocfs2_find_path(et->et_ci, left_path,
4041 					      left_cpos);
4042 			if (ret) {
4043 				mlog_errno(ret);
4044 				goto out;
4045 			}
4046 
4047 			/*
4048 			 * ocfs2_insert_path() will pass the left_path to the
4049 			 * journal for us.
4050 			 */
4051 		}
4052 	}
4053 
4054 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4055 	if (ret) {
4056 		mlog_errno(ret);
4057 		goto out;
4058 	}
4059 
4060 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4061 
4062 	*ret_left_path = left_path;
4063 	ret = 0;
4064 out:
4065 	if (ret != 0)
4066 		ocfs2_free_path(left_path);
4067 
4068 	return ret;
4069 }
4070 
4071 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4072 			       struct ocfs2_path *left_path,
4073 			       struct ocfs2_path *right_path,
4074 			       struct ocfs2_extent_rec *split_rec,
4075 			       enum ocfs2_split_type split)
4076 {
4077 	int index;
4078 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4079 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4080 	struct ocfs2_extent_rec *rec, *tmprec;
4081 
4082 	right_el = path_leaf_el(right_path);
4083 	if (left_path)
4084 		left_el = path_leaf_el(left_path);
4085 
4086 	el = right_el;
4087 	insert_el = right_el;
4088 	index = ocfs2_search_extent_list(el, cpos);
4089 	if (index != -1) {
4090 		if (index == 0 && left_path) {
4091 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4092 
4093 			/*
4094 			 * This typically means that the record
4095 			 * started in the left path but moved to the
4096 			 * right as a result of rotation. We either
4097 			 * move the existing record to the left, or we
4098 			 * do the later insert there.
4099 			 *
4100 			 * In this case, the left path should always
4101 			 * exist as the rotate code will have passed
4102 			 * it back for a post-insert update.
4103 			 */
4104 
4105 			if (split == SPLIT_LEFT) {
4106 				/*
4107 				 * It's a left split. Since we know
4108 				 * that the rotate code gave us an
4109 				 * empty extent in the left path, we
4110 				 * can just do the insert there.
4111 				 */
4112 				insert_el = left_el;
4113 			} else {
4114 				/*
4115 				 * Right split - we have to move the
4116 				 * existing record over to the left
4117 				 * leaf. The insert will be into the
4118 				 * newly created empty extent in the
4119 				 * right leaf.
4120 				 */
4121 				tmprec = &right_el->l_recs[index];
4122 				ocfs2_rotate_leaf(left_el, tmprec);
4123 				el = left_el;
4124 
4125 				memset(tmprec, 0, sizeof(*tmprec));
4126 				index = ocfs2_search_extent_list(left_el, cpos);
4127 				BUG_ON(index == -1);
4128 			}
4129 		}
4130 	} else {
4131 		BUG_ON(!left_path);
4132 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4133 		/*
4134 		 * Left path is easy - we can just allow the insert to
4135 		 * happen.
4136 		 */
4137 		el = left_el;
4138 		insert_el = left_el;
4139 		index = ocfs2_search_extent_list(el, cpos);
4140 		BUG_ON(index == -1);
4141 	}
4142 
4143 	rec = &el->l_recs[index];
4144 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4145 				split, rec, split_rec);
4146 	ocfs2_rotate_leaf(insert_el, split_rec);
4147 }
4148 
4149 /*
4150  * This function only does inserts on an allocation b-tree. For tree
4151  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4152  *
4153  * right_path is the path we want to do the actual insert
4154  * in. left_path should only be passed in if we need to update that
4155  * portion of the tree after an edge insert.
4156  */
4157 static int ocfs2_insert_path(handle_t *handle,
4158 			     struct ocfs2_extent_tree *et,
4159 			     struct ocfs2_path *left_path,
4160 			     struct ocfs2_path *right_path,
4161 			     struct ocfs2_extent_rec *insert_rec,
4162 			     struct ocfs2_insert_type *insert)
4163 {
4164 	int ret, subtree_index;
4165 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4166 
4167 	if (left_path) {
4168 		/*
4169 		 * There's a chance that left_path got passed back to
4170 		 * us without being accounted for in the
4171 		 * journal. Extend our transaction here to be sure we
4172 		 * can change those blocks.
4173 		 */
4174 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4175 		if (ret < 0) {
4176 			mlog_errno(ret);
4177 			goto out;
4178 		}
4179 
4180 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4181 		if (ret < 0) {
4182 			mlog_errno(ret);
4183 			goto out;
4184 		}
4185 	}
4186 
4187 	/*
4188 	 * Pass both paths to the journal. The majority of inserts
4189 	 * will be touching all components anyway.
4190 	 */
4191 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4192 	if (ret < 0) {
4193 		mlog_errno(ret);
4194 		goto out;
4195 	}
4196 
4197 	if (insert->ins_split != SPLIT_NONE) {
4198 		/*
4199 		 * We could call ocfs2_insert_at_leaf() for some types
4200 		 * of splits, but it's easier to just let one separate
4201 		 * function sort it all out.
4202 		 */
4203 		ocfs2_split_record(et, left_path, right_path,
4204 				   insert_rec, insert->ins_split);
4205 
4206 		/*
4207 		 * Split might have modified either leaf and we don't
4208 		 * have a guarantee that the later edge insert will
4209 		 * dirty this for us.
4210 		 */
4211 		if (left_path)
4212 			ocfs2_journal_dirty(handle,
4213 					    path_leaf_bh(left_path));
4214 	} else
4215 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4216 				     insert);
4217 
4218 	ocfs2_journal_dirty(handle, leaf_bh);
4219 
4220 	if (left_path) {
4221 		/*
4222 		 * The rotate code has indicated that we need to fix
4223 		 * up portions of the tree after the insert.
4224 		 *
4225 		 * XXX: Should we extend the transaction here?
4226 		 */
4227 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4228 							right_path);
4229 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4230 					   subtree_index);
4231 	}
4232 
4233 	ret = 0;
4234 out:
4235 	return ret;
4236 }
4237 
4238 static int ocfs2_do_insert_extent(handle_t *handle,
4239 				  struct ocfs2_extent_tree *et,
4240 				  struct ocfs2_extent_rec *insert_rec,
4241 				  struct ocfs2_insert_type *type)
4242 {
4243 	int ret, rotate = 0;
4244 	u32 cpos;
4245 	struct ocfs2_path *right_path = NULL;
4246 	struct ocfs2_path *left_path = NULL;
4247 	struct ocfs2_extent_list *el;
4248 
4249 	el = et->et_root_el;
4250 
4251 	ret = ocfs2_et_root_journal_access(handle, et,
4252 					   OCFS2_JOURNAL_ACCESS_WRITE);
4253 	if (ret) {
4254 		mlog_errno(ret);
4255 		goto out;
4256 	}
4257 
4258 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4259 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4260 		goto out_update_clusters;
4261 	}
4262 
4263 	right_path = ocfs2_new_path_from_et(et);
4264 	if (!right_path) {
4265 		ret = -ENOMEM;
4266 		mlog_errno(ret);
4267 		goto out;
4268 	}
4269 
4270 	/*
4271 	 * Determine the path to start with. Rotations need the
4272 	 * rightmost path, everything else can go directly to the
4273 	 * target leaf.
4274 	 */
4275 	cpos = le32_to_cpu(insert_rec->e_cpos);
4276 	if (type->ins_appending == APPEND_NONE &&
4277 	    type->ins_contig == CONTIG_NONE) {
4278 		rotate = 1;
4279 		cpos = UINT_MAX;
4280 	}
4281 
4282 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4283 	if (ret) {
4284 		mlog_errno(ret);
4285 		goto out;
4286 	}
4287 
4288 	/*
4289 	 * Rotations and appends need special treatment - they modify
4290 	 * parts of the tree's above them.
4291 	 *
4292 	 * Both might pass back a path immediate to the left of the
4293 	 * one being inserted to. This will be cause
4294 	 * ocfs2_insert_path() to modify the rightmost records of
4295 	 * left_path to account for an edge insert.
4296 	 *
4297 	 * XXX: When modifying this code, keep in mind that an insert
4298 	 * can wind up skipping both of these two special cases...
4299 	 */
4300 	if (rotate) {
4301 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4302 					      le32_to_cpu(insert_rec->e_cpos),
4303 					      right_path, &left_path);
4304 		if (ret) {
4305 			mlog_errno(ret);
4306 			goto out;
4307 		}
4308 
4309 		/*
4310 		 * ocfs2_rotate_tree_right() might have extended the
4311 		 * transaction without re-journaling our tree root.
4312 		 */
4313 		ret = ocfs2_et_root_journal_access(handle, et,
4314 						   OCFS2_JOURNAL_ACCESS_WRITE);
4315 		if (ret) {
4316 			mlog_errno(ret);
4317 			goto out;
4318 		}
4319 	} else if (type->ins_appending == APPEND_TAIL
4320 		   && type->ins_contig != CONTIG_LEFT) {
4321 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4322 					       right_path, &left_path);
4323 		if (ret) {
4324 			mlog_errno(ret);
4325 			goto out;
4326 		}
4327 	}
4328 
4329 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4330 				insert_rec, type);
4331 	if (ret) {
4332 		mlog_errno(ret);
4333 		goto out;
4334 	}
4335 
4336 out_update_clusters:
4337 	if (type->ins_split == SPLIT_NONE)
4338 		ocfs2_et_update_clusters(et,
4339 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4340 
4341 	ocfs2_journal_dirty(handle, et->et_root_bh);
4342 
4343 out:
4344 	ocfs2_free_path(left_path);
4345 	ocfs2_free_path(right_path);
4346 
4347 	return ret;
4348 }
4349 
4350 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4351 			       struct ocfs2_path *path,
4352 			       struct ocfs2_extent_list *el, int index,
4353 			       struct ocfs2_extent_rec *split_rec,
4354 			       struct ocfs2_merge_ctxt *ctxt)
4355 {
4356 	int status = 0;
4357 	enum ocfs2_contig_type ret = CONTIG_NONE;
4358 	u32 left_cpos, right_cpos;
4359 	struct ocfs2_extent_rec *rec = NULL;
4360 	struct ocfs2_extent_list *new_el;
4361 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4362 	struct buffer_head *bh;
4363 	struct ocfs2_extent_block *eb;
4364 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4365 
4366 	if (index > 0) {
4367 		rec = &el->l_recs[index - 1];
4368 	} else if (path->p_tree_depth > 0) {
4369 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4370 		if (status)
4371 			goto exit;
4372 
4373 		if (left_cpos != 0) {
4374 			left_path = ocfs2_new_path_from_path(path);
4375 			if (!left_path) {
4376 				status = -ENOMEM;
4377 				mlog_errno(status);
4378 				goto exit;
4379 			}
4380 
4381 			status = ocfs2_find_path(et->et_ci, left_path,
4382 						 left_cpos);
4383 			if (status)
4384 				goto free_left_path;
4385 
4386 			new_el = path_leaf_el(left_path);
4387 
4388 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4389 			    le16_to_cpu(new_el->l_count)) {
4390 				bh = path_leaf_bh(left_path);
4391 				eb = (struct ocfs2_extent_block *)bh->b_data;
4392 				status = ocfs2_error(sb,
4393 						"Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4394 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4395 						le16_to_cpu(new_el->l_next_free_rec),
4396 						le16_to_cpu(new_el->l_count));
4397 				goto free_left_path;
4398 			}
4399 			rec = &new_el->l_recs[
4400 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4401 		}
4402 	}
4403 
4404 	/*
4405 	 * We're careful to check for an empty extent record here -
4406 	 * the merge code will know what to do if it sees one.
4407 	 */
4408 	if (rec) {
4409 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4410 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4411 				ret = CONTIG_RIGHT;
4412 		} else {
4413 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4414 		}
4415 	}
4416 
4417 	rec = NULL;
4418 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4419 		rec = &el->l_recs[index + 1];
4420 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4421 		 path->p_tree_depth > 0) {
4422 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4423 		if (status)
4424 			goto free_left_path;
4425 
4426 		if (right_cpos == 0)
4427 			goto free_left_path;
4428 
4429 		right_path = ocfs2_new_path_from_path(path);
4430 		if (!right_path) {
4431 			status = -ENOMEM;
4432 			mlog_errno(status);
4433 			goto free_left_path;
4434 		}
4435 
4436 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4437 		if (status)
4438 			goto free_right_path;
4439 
4440 		new_el = path_leaf_el(right_path);
4441 		rec = &new_el->l_recs[0];
4442 		if (ocfs2_is_empty_extent(rec)) {
4443 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4444 				bh = path_leaf_bh(right_path);
4445 				eb = (struct ocfs2_extent_block *)bh->b_data;
4446 				status = ocfs2_error(sb,
4447 						"Extent block #%llu has an invalid l_next_free_rec of %d\n",
4448 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4449 						le16_to_cpu(new_el->l_next_free_rec));
4450 				goto free_right_path;
4451 			}
4452 			rec = &new_el->l_recs[1];
4453 		}
4454 	}
4455 
4456 	if (rec) {
4457 		enum ocfs2_contig_type contig_type;
4458 
4459 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4460 
4461 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4462 			ret = CONTIG_LEFTRIGHT;
4463 		else if (ret == CONTIG_NONE)
4464 			ret = contig_type;
4465 	}
4466 
4467 free_right_path:
4468 	ocfs2_free_path(right_path);
4469 free_left_path:
4470 	ocfs2_free_path(left_path);
4471 exit:
4472 	if (status == 0)
4473 		ctxt->c_contig_type = ret;
4474 
4475 	return status;
4476 }
4477 
4478 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4479 				     struct ocfs2_insert_type *insert,
4480 				     struct ocfs2_extent_list *el,
4481 				     struct ocfs2_extent_rec *insert_rec)
4482 {
4483 	int i;
4484 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4485 
4486 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4487 
4488 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4489 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4490 						     insert_rec);
4491 		if (contig_type != CONTIG_NONE) {
4492 			insert->ins_contig_index = i;
4493 			break;
4494 		}
4495 	}
4496 	insert->ins_contig = contig_type;
4497 
4498 	if (insert->ins_contig != CONTIG_NONE) {
4499 		struct ocfs2_extent_rec *rec =
4500 				&el->l_recs[insert->ins_contig_index];
4501 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4502 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4503 
4504 		/*
4505 		 * Caller might want us to limit the size of extents, don't
4506 		 * calculate contiguousness if we might exceed that limit.
4507 		 */
4508 		if (et->et_max_leaf_clusters &&
4509 		    (len > et->et_max_leaf_clusters))
4510 			insert->ins_contig = CONTIG_NONE;
4511 	}
4512 }
4513 
4514 /*
4515  * This should only be called against the righmost leaf extent list.
4516  *
4517  * ocfs2_figure_appending_type() will figure out whether we'll have to
4518  * insert at the tail of the rightmost leaf.
4519  *
4520  * This should also work against the root extent list for tree's with 0
4521  * depth. If we consider the root extent list to be the rightmost leaf node
4522  * then the logic here makes sense.
4523  */
4524 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4525 					struct ocfs2_extent_list *el,
4526 					struct ocfs2_extent_rec *insert_rec)
4527 {
4528 	int i;
4529 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4530 	struct ocfs2_extent_rec *rec;
4531 
4532 	insert->ins_appending = APPEND_NONE;
4533 
4534 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4535 
4536 	if (!el->l_next_free_rec)
4537 		goto set_tail_append;
4538 
4539 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4540 		/* Were all records empty? */
4541 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4542 			goto set_tail_append;
4543 	}
4544 
4545 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4546 	rec = &el->l_recs[i];
4547 
4548 	if (cpos >=
4549 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4550 		goto set_tail_append;
4551 
4552 	return;
4553 
4554 set_tail_append:
4555 	insert->ins_appending = APPEND_TAIL;
4556 }
4557 
4558 /*
4559  * Helper function called at the beginning of an insert.
4560  *
4561  * This computes a few things that are commonly used in the process of
4562  * inserting into the btree:
4563  *   - Whether the new extent is contiguous with an existing one.
4564  *   - The current tree depth.
4565  *   - Whether the insert is an appending one.
4566  *   - The total # of free records in the tree.
4567  *
4568  * All of the information is stored on the ocfs2_insert_type
4569  * structure.
4570  */
4571 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4572 				    struct buffer_head **last_eb_bh,
4573 				    struct ocfs2_extent_rec *insert_rec,
4574 				    int *free_records,
4575 				    struct ocfs2_insert_type *insert)
4576 {
4577 	int ret;
4578 	struct ocfs2_extent_block *eb;
4579 	struct ocfs2_extent_list *el;
4580 	struct ocfs2_path *path = NULL;
4581 	struct buffer_head *bh = NULL;
4582 
4583 	insert->ins_split = SPLIT_NONE;
4584 
4585 	el = et->et_root_el;
4586 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4587 
4588 	if (el->l_tree_depth) {
4589 		/*
4590 		 * If we have tree depth, we read in the
4591 		 * rightmost extent block ahead of time as
4592 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4593 		 * may want it later.
4594 		 */
4595 		ret = ocfs2_read_extent_block(et->et_ci,
4596 					      ocfs2_et_get_last_eb_blk(et),
4597 					      &bh);
4598 		if (ret) {
4599 			mlog_errno(ret);
4600 			goto out;
4601 		}
4602 		eb = (struct ocfs2_extent_block *) bh->b_data;
4603 		el = &eb->h_list;
4604 	}
4605 
4606 	/*
4607 	 * Unless we have a contiguous insert, we'll need to know if
4608 	 * there is room left in our allocation tree for another
4609 	 * extent record.
4610 	 *
4611 	 * XXX: This test is simplistic, we can search for empty
4612 	 * extent records too.
4613 	 */
4614 	*free_records = le16_to_cpu(el->l_count) -
4615 		le16_to_cpu(el->l_next_free_rec);
4616 
4617 	if (!insert->ins_tree_depth) {
4618 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4619 		ocfs2_figure_appending_type(insert, el, insert_rec);
4620 		return 0;
4621 	}
4622 
4623 	path = ocfs2_new_path_from_et(et);
4624 	if (!path) {
4625 		ret = -ENOMEM;
4626 		mlog_errno(ret);
4627 		goto out;
4628 	}
4629 
4630 	/*
4631 	 * In the case that we're inserting past what the tree
4632 	 * currently accounts for, ocfs2_find_path() will return for
4633 	 * us the rightmost tree path. This is accounted for below in
4634 	 * the appending code.
4635 	 */
4636 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4637 	if (ret) {
4638 		mlog_errno(ret);
4639 		goto out;
4640 	}
4641 
4642 	el = path_leaf_el(path);
4643 
4644 	/*
4645 	 * Now that we have the path, there's two things we want to determine:
4646 	 * 1) Contiguousness (also set contig_index if this is so)
4647 	 *
4648 	 * 2) Are we doing an append? We can trivially break this up
4649          *     into two types of appends: simple record append, or a
4650          *     rotate inside the tail leaf.
4651 	 */
4652 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4653 
4654 	/*
4655 	 * The insert code isn't quite ready to deal with all cases of
4656 	 * left contiguousness. Specifically, if it's an insert into
4657 	 * the 1st record in a leaf, it will require the adjustment of
4658 	 * cluster count on the last record of the path directly to it's
4659 	 * left. For now, just catch that case and fool the layers
4660 	 * above us. This works just fine for tree_depth == 0, which
4661 	 * is why we allow that above.
4662 	 */
4663 	if (insert->ins_contig == CONTIG_LEFT &&
4664 	    insert->ins_contig_index == 0)
4665 		insert->ins_contig = CONTIG_NONE;
4666 
4667 	/*
4668 	 * Ok, so we can simply compare against last_eb to figure out
4669 	 * whether the path doesn't exist. This will only happen in
4670 	 * the case that we're doing a tail append, so maybe we can
4671 	 * take advantage of that information somehow.
4672 	 */
4673 	if (ocfs2_et_get_last_eb_blk(et) ==
4674 	    path_leaf_bh(path)->b_blocknr) {
4675 		/*
4676 		 * Ok, ocfs2_find_path() returned us the rightmost
4677 		 * tree path. This might be an appending insert. There are
4678 		 * two cases:
4679 		 *    1) We're doing a true append at the tail:
4680 		 *	-This might even be off the end of the leaf
4681 		 *    2) We're "appending" by rotating in the tail
4682 		 */
4683 		ocfs2_figure_appending_type(insert, el, insert_rec);
4684 	}
4685 
4686 out:
4687 	ocfs2_free_path(path);
4688 
4689 	if (ret == 0)
4690 		*last_eb_bh = bh;
4691 	else
4692 		brelse(bh);
4693 	return ret;
4694 }
4695 
4696 /*
4697  * Insert an extent into a btree.
4698  *
4699  * The caller needs to update the owning btree's cluster count.
4700  */
4701 int ocfs2_insert_extent(handle_t *handle,
4702 			struct ocfs2_extent_tree *et,
4703 			u32 cpos,
4704 			u64 start_blk,
4705 			u32 new_clusters,
4706 			u8 flags,
4707 			struct ocfs2_alloc_context *meta_ac)
4708 {
4709 	int status;
4710 	int uninitialized_var(free_records);
4711 	struct buffer_head *last_eb_bh = NULL;
4712 	struct ocfs2_insert_type insert = {0, };
4713 	struct ocfs2_extent_rec rec;
4714 
4715 	trace_ocfs2_insert_extent_start(
4716 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4717 		cpos, new_clusters);
4718 
4719 	memset(&rec, 0, sizeof(rec));
4720 	rec.e_cpos = cpu_to_le32(cpos);
4721 	rec.e_blkno = cpu_to_le64(start_blk);
4722 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4723 	rec.e_flags = flags;
4724 	status = ocfs2_et_insert_check(et, &rec);
4725 	if (status) {
4726 		mlog_errno(status);
4727 		goto bail;
4728 	}
4729 
4730 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4731 					  &free_records, &insert);
4732 	if (status < 0) {
4733 		mlog_errno(status);
4734 		goto bail;
4735 	}
4736 
4737 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4738 				  insert.ins_contig_index, free_records,
4739 				  insert.ins_tree_depth);
4740 
4741 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4742 		status = ocfs2_grow_tree(handle, et,
4743 					 &insert.ins_tree_depth, &last_eb_bh,
4744 					 meta_ac);
4745 		if (status) {
4746 			mlog_errno(status);
4747 			goto bail;
4748 		}
4749 	}
4750 
4751 	/* Finally, we can add clusters. This might rotate the tree for us. */
4752 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4753 	if (status < 0)
4754 		mlog_errno(status);
4755 	else
4756 		ocfs2_et_extent_map_insert(et, &rec);
4757 
4758 bail:
4759 	brelse(last_eb_bh);
4760 
4761 	return status;
4762 }
4763 
4764 /*
4765  * Allcate and add clusters into the extent b-tree.
4766  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4767  * The extent b-tree's root is specified by et, and
4768  * it is not limited to the file storage. Any extent tree can use this
4769  * function if it implements the proper ocfs2_extent_tree.
4770  */
4771 int ocfs2_add_clusters_in_btree(handle_t *handle,
4772 				struct ocfs2_extent_tree *et,
4773 				u32 *logical_offset,
4774 				u32 clusters_to_add,
4775 				int mark_unwritten,
4776 				struct ocfs2_alloc_context *data_ac,
4777 				struct ocfs2_alloc_context *meta_ac,
4778 				enum ocfs2_alloc_restarted *reason_ret)
4779 {
4780 	int status = 0, err = 0;
4781 	int need_free = 0;
4782 	int free_extents;
4783 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4784 	u32 bit_off, num_bits;
4785 	u64 block;
4786 	u8 flags = 0;
4787 	struct ocfs2_super *osb =
4788 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4789 
4790 	BUG_ON(!clusters_to_add);
4791 
4792 	if (mark_unwritten)
4793 		flags = OCFS2_EXT_UNWRITTEN;
4794 
4795 	free_extents = ocfs2_num_free_extents(et);
4796 	if (free_extents < 0) {
4797 		status = free_extents;
4798 		mlog_errno(status);
4799 		goto leave;
4800 	}
4801 
4802 	/* there are two cases which could cause us to EAGAIN in the
4803 	 * we-need-more-metadata case:
4804 	 * 1) we haven't reserved *any*
4805 	 * 2) we are so fragmented, we've needed to add metadata too
4806 	 *    many times. */
4807 	if (!free_extents && !meta_ac) {
4808 		err = -1;
4809 		status = -EAGAIN;
4810 		reason = RESTART_META;
4811 		goto leave;
4812 	} else if ((!free_extents)
4813 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4814 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4815 		err = -2;
4816 		status = -EAGAIN;
4817 		reason = RESTART_META;
4818 		goto leave;
4819 	}
4820 
4821 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4822 					clusters_to_add, &bit_off, &num_bits);
4823 	if (status < 0) {
4824 		if (status != -ENOSPC)
4825 			mlog_errno(status);
4826 		goto leave;
4827 	}
4828 
4829 	BUG_ON(num_bits > clusters_to_add);
4830 
4831 	/* reserve our write early -- insert_extent may update the tree root */
4832 	status = ocfs2_et_root_journal_access(handle, et,
4833 					      OCFS2_JOURNAL_ACCESS_WRITE);
4834 	if (status < 0) {
4835 		mlog_errno(status);
4836 		need_free = 1;
4837 		goto bail;
4838 	}
4839 
4840 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4841 	trace_ocfs2_add_clusters_in_btree(
4842 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4843 	     bit_off, num_bits);
4844 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4845 				     num_bits, flags, meta_ac);
4846 	if (status < 0) {
4847 		mlog_errno(status);
4848 		need_free = 1;
4849 		goto bail;
4850 	}
4851 
4852 	ocfs2_journal_dirty(handle, et->et_root_bh);
4853 
4854 	clusters_to_add -= num_bits;
4855 	*logical_offset += num_bits;
4856 
4857 	if (clusters_to_add) {
4858 		err = clusters_to_add;
4859 		status = -EAGAIN;
4860 		reason = RESTART_TRANS;
4861 	}
4862 
4863 bail:
4864 	if (need_free) {
4865 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4866 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4867 					bit_off, num_bits);
4868 		else
4869 			ocfs2_free_clusters(handle,
4870 					data_ac->ac_inode,
4871 					data_ac->ac_bh,
4872 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4873 					num_bits);
4874 	}
4875 
4876 leave:
4877 	if (reason_ret)
4878 		*reason_ret = reason;
4879 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4880 	return status;
4881 }
4882 
4883 static void ocfs2_make_right_split_rec(struct super_block *sb,
4884 				       struct ocfs2_extent_rec *split_rec,
4885 				       u32 cpos,
4886 				       struct ocfs2_extent_rec *rec)
4887 {
4888 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4889 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4890 
4891 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4892 
4893 	split_rec->e_cpos = cpu_to_le32(cpos);
4894 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4895 
4896 	split_rec->e_blkno = rec->e_blkno;
4897 	le64_add_cpu(&split_rec->e_blkno,
4898 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4899 
4900 	split_rec->e_flags = rec->e_flags;
4901 }
4902 
4903 static int ocfs2_split_and_insert(handle_t *handle,
4904 				  struct ocfs2_extent_tree *et,
4905 				  struct ocfs2_path *path,
4906 				  struct buffer_head **last_eb_bh,
4907 				  int split_index,
4908 				  struct ocfs2_extent_rec *orig_split_rec,
4909 				  struct ocfs2_alloc_context *meta_ac)
4910 {
4911 	int ret = 0, depth;
4912 	unsigned int insert_range, rec_range, do_leftright = 0;
4913 	struct ocfs2_extent_rec tmprec;
4914 	struct ocfs2_extent_list *rightmost_el;
4915 	struct ocfs2_extent_rec rec;
4916 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4917 	struct ocfs2_insert_type insert;
4918 	struct ocfs2_extent_block *eb;
4919 
4920 leftright:
4921 	/*
4922 	 * Store a copy of the record on the stack - it might move
4923 	 * around as the tree is manipulated below.
4924 	 */
4925 	rec = path_leaf_el(path)->l_recs[split_index];
4926 
4927 	rightmost_el = et->et_root_el;
4928 
4929 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4930 	if (depth) {
4931 		BUG_ON(!(*last_eb_bh));
4932 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4933 		rightmost_el = &eb->h_list;
4934 	}
4935 
4936 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4937 	    le16_to_cpu(rightmost_el->l_count)) {
4938 		ret = ocfs2_grow_tree(handle, et,
4939 				      &depth, last_eb_bh, meta_ac);
4940 		if (ret) {
4941 			mlog_errno(ret);
4942 			goto out;
4943 		}
4944 	}
4945 
4946 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4947 	insert.ins_appending = APPEND_NONE;
4948 	insert.ins_contig = CONTIG_NONE;
4949 	insert.ins_tree_depth = depth;
4950 
4951 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4952 		le16_to_cpu(split_rec.e_leaf_clusters);
4953 	rec_range = le32_to_cpu(rec.e_cpos) +
4954 		le16_to_cpu(rec.e_leaf_clusters);
4955 
4956 	if (split_rec.e_cpos == rec.e_cpos) {
4957 		insert.ins_split = SPLIT_LEFT;
4958 	} else if (insert_range == rec_range) {
4959 		insert.ins_split = SPLIT_RIGHT;
4960 	} else {
4961 		/*
4962 		 * Left/right split. We fake this as a right split
4963 		 * first and then make a second pass as a left split.
4964 		 */
4965 		insert.ins_split = SPLIT_RIGHT;
4966 
4967 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4968 					   &tmprec, insert_range, &rec);
4969 
4970 		split_rec = tmprec;
4971 
4972 		BUG_ON(do_leftright);
4973 		do_leftright = 1;
4974 	}
4975 
4976 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4977 	if (ret) {
4978 		mlog_errno(ret);
4979 		goto out;
4980 	}
4981 
4982 	if (do_leftright == 1) {
4983 		u32 cpos;
4984 		struct ocfs2_extent_list *el;
4985 
4986 		do_leftright++;
4987 		split_rec = *orig_split_rec;
4988 
4989 		ocfs2_reinit_path(path, 1);
4990 
4991 		cpos = le32_to_cpu(split_rec.e_cpos);
4992 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4993 		if (ret) {
4994 			mlog_errno(ret);
4995 			goto out;
4996 		}
4997 
4998 		el = path_leaf_el(path);
4999 		split_index = ocfs2_search_extent_list(el, cpos);
5000 		if (split_index == -1) {
5001 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5002 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5003 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5004 				    cpos);
5005 			ret = -EROFS;
5006 			goto out;
5007 		}
5008 		goto leftright;
5009 	}
5010 out:
5011 
5012 	return ret;
5013 }
5014 
5015 static int ocfs2_replace_extent_rec(handle_t *handle,
5016 				    struct ocfs2_extent_tree *et,
5017 				    struct ocfs2_path *path,
5018 				    struct ocfs2_extent_list *el,
5019 				    int split_index,
5020 				    struct ocfs2_extent_rec *split_rec)
5021 {
5022 	int ret;
5023 
5024 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5025 					   path_num_items(path) - 1);
5026 	if (ret) {
5027 		mlog_errno(ret);
5028 		goto out;
5029 	}
5030 
5031 	el->l_recs[split_index] = *split_rec;
5032 
5033 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5034 out:
5035 	return ret;
5036 }
5037 
5038 /*
5039  * Split part or all of the extent record at split_index in the leaf
5040  * pointed to by path. Merge with the contiguous extent record if needed.
5041  *
5042  * Care is taken to handle contiguousness so as to not grow the tree.
5043  *
5044  * meta_ac is not strictly necessary - we only truly need it if growth
5045  * of the tree is required. All other cases will degrade into a less
5046  * optimal tree layout.
5047  *
5048  * last_eb_bh should be the rightmost leaf block for any extent
5049  * btree. Since a split may grow the tree or a merge might shrink it,
5050  * the caller cannot trust the contents of that buffer after this call.
5051  *
5052  * This code is optimized for readability - several passes might be
5053  * made over certain portions of the tree. All of those blocks will
5054  * have been brought into cache (and pinned via the journal), so the
5055  * extra overhead is not expressed in terms of disk reads.
5056  */
5057 int ocfs2_split_extent(handle_t *handle,
5058 		       struct ocfs2_extent_tree *et,
5059 		       struct ocfs2_path *path,
5060 		       int split_index,
5061 		       struct ocfs2_extent_rec *split_rec,
5062 		       struct ocfs2_alloc_context *meta_ac,
5063 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5064 {
5065 	int ret = 0;
5066 	struct ocfs2_extent_list *el = path_leaf_el(path);
5067 	struct buffer_head *last_eb_bh = NULL;
5068 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5069 	struct ocfs2_merge_ctxt ctxt;
5070 
5071 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5072 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5073 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5074 		ret = -EIO;
5075 		mlog_errno(ret);
5076 		goto out;
5077 	}
5078 
5079 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5080 					     split_index,
5081 					     split_rec,
5082 					     &ctxt);
5083 	if (ret) {
5084 		mlog_errno(ret);
5085 		goto out;
5086 	}
5087 
5088 	/*
5089 	 * The core merge / split code wants to know how much room is
5090 	 * left in this allocation tree, so we pass the
5091 	 * rightmost extent list.
5092 	 */
5093 	if (path->p_tree_depth) {
5094 		ret = ocfs2_read_extent_block(et->et_ci,
5095 					      ocfs2_et_get_last_eb_blk(et),
5096 					      &last_eb_bh);
5097 		if (ret) {
5098 			mlog_errno(ret);
5099 			goto out;
5100 		}
5101 	}
5102 
5103 	if (rec->e_cpos == split_rec->e_cpos &&
5104 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5105 		ctxt.c_split_covers_rec = 1;
5106 	else
5107 		ctxt.c_split_covers_rec = 0;
5108 
5109 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5110 
5111 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5112 				 ctxt.c_has_empty_extent,
5113 				 ctxt.c_split_covers_rec);
5114 
5115 	if (ctxt.c_contig_type == CONTIG_NONE) {
5116 		if (ctxt.c_split_covers_rec)
5117 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5118 						       split_index, split_rec);
5119 		else
5120 			ret = ocfs2_split_and_insert(handle, et, path,
5121 						     &last_eb_bh, split_index,
5122 						     split_rec, meta_ac);
5123 		if (ret)
5124 			mlog_errno(ret);
5125 	} else {
5126 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5127 						split_index, split_rec,
5128 						dealloc, &ctxt);
5129 		if (ret)
5130 			mlog_errno(ret);
5131 	}
5132 
5133 out:
5134 	brelse(last_eb_bh);
5135 	return ret;
5136 }
5137 
5138 /*
5139  * Change the flags of the already-existing extent at cpos for len clusters.
5140  *
5141  * new_flags: the flags we want to set.
5142  * clear_flags: the flags we want to clear.
5143  * phys: the new physical offset we want this new extent starts from.
5144  *
5145  * If the existing extent is larger than the request, initiate a
5146  * split. An attempt will be made at merging with adjacent extents.
5147  *
5148  * The caller is responsible for passing down meta_ac if we'll need it.
5149  */
5150 int ocfs2_change_extent_flag(handle_t *handle,
5151 			     struct ocfs2_extent_tree *et,
5152 			     u32 cpos, u32 len, u32 phys,
5153 			     struct ocfs2_alloc_context *meta_ac,
5154 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5155 			     int new_flags, int clear_flags)
5156 {
5157 	int ret, index;
5158 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5159 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5160 	struct ocfs2_extent_rec split_rec;
5161 	struct ocfs2_path *left_path = NULL;
5162 	struct ocfs2_extent_list *el;
5163 	struct ocfs2_extent_rec *rec;
5164 
5165 	left_path = ocfs2_new_path_from_et(et);
5166 	if (!left_path) {
5167 		ret = -ENOMEM;
5168 		mlog_errno(ret);
5169 		goto out;
5170 	}
5171 
5172 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5173 	if (ret) {
5174 		mlog_errno(ret);
5175 		goto out;
5176 	}
5177 	el = path_leaf_el(left_path);
5178 
5179 	index = ocfs2_search_extent_list(el, cpos);
5180 	if (index == -1) {
5181 		ocfs2_error(sb,
5182 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5183 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5184 			    cpos);
5185 		ret = -EROFS;
5186 		goto out;
5187 	}
5188 
5189 	ret = -EIO;
5190 	rec = &el->l_recs[index];
5191 	if (new_flags && (rec->e_flags & new_flags)) {
5192 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5193 		     "extent that already had them\n",
5194 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5195 		     new_flags);
5196 		goto out;
5197 	}
5198 
5199 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5200 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5201 		     "extent that didn't have them\n",
5202 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5203 		     clear_flags);
5204 		goto out;
5205 	}
5206 
5207 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5208 	split_rec.e_cpos = cpu_to_le32(cpos);
5209 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5210 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5211 	split_rec.e_flags = rec->e_flags;
5212 	if (new_flags)
5213 		split_rec.e_flags |= new_flags;
5214 	if (clear_flags)
5215 		split_rec.e_flags &= ~clear_flags;
5216 
5217 	ret = ocfs2_split_extent(handle, et, left_path,
5218 				 index, &split_rec, meta_ac,
5219 				 dealloc);
5220 	if (ret)
5221 		mlog_errno(ret);
5222 
5223 out:
5224 	ocfs2_free_path(left_path);
5225 	return ret;
5226 
5227 }
5228 
5229 /*
5230  * Mark the already-existing extent at cpos as written for len clusters.
5231  * This removes the unwritten extent flag.
5232  *
5233  * If the existing extent is larger than the request, initiate a
5234  * split. An attempt will be made at merging with adjacent extents.
5235  *
5236  * The caller is responsible for passing down meta_ac if we'll need it.
5237  */
5238 int ocfs2_mark_extent_written(struct inode *inode,
5239 			      struct ocfs2_extent_tree *et,
5240 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5241 			      struct ocfs2_alloc_context *meta_ac,
5242 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5243 {
5244 	int ret;
5245 
5246 	trace_ocfs2_mark_extent_written(
5247 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5248 		cpos, len, phys);
5249 
5250 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5251 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5252 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5253 		ret = -EROFS;
5254 		goto out;
5255 	}
5256 
5257 	/*
5258 	 * XXX: This should be fixed up so that we just re-insert the
5259 	 * next extent records.
5260 	 */
5261 	ocfs2_et_extent_map_truncate(et, 0);
5262 
5263 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5264 				       len, phys, meta_ac, dealloc,
5265 				       0, OCFS2_EXT_UNWRITTEN);
5266 	if (ret)
5267 		mlog_errno(ret);
5268 
5269 out:
5270 	return ret;
5271 }
5272 
5273 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5274 			    struct ocfs2_path *path,
5275 			    int index, u32 new_range,
5276 			    struct ocfs2_alloc_context *meta_ac)
5277 {
5278 	int ret, depth, credits;
5279 	struct buffer_head *last_eb_bh = NULL;
5280 	struct ocfs2_extent_block *eb;
5281 	struct ocfs2_extent_list *rightmost_el, *el;
5282 	struct ocfs2_extent_rec split_rec;
5283 	struct ocfs2_extent_rec *rec;
5284 	struct ocfs2_insert_type insert;
5285 
5286 	/*
5287 	 * Setup the record to split before we grow the tree.
5288 	 */
5289 	el = path_leaf_el(path);
5290 	rec = &el->l_recs[index];
5291 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5292 				   &split_rec, new_range, rec);
5293 
5294 	depth = path->p_tree_depth;
5295 	if (depth > 0) {
5296 		ret = ocfs2_read_extent_block(et->et_ci,
5297 					      ocfs2_et_get_last_eb_blk(et),
5298 					      &last_eb_bh);
5299 		if (ret < 0) {
5300 			mlog_errno(ret);
5301 			goto out;
5302 		}
5303 
5304 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5305 		rightmost_el = &eb->h_list;
5306 	} else
5307 		rightmost_el = path_leaf_el(path);
5308 
5309 	credits = path->p_tree_depth +
5310 		  ocfs2_extend_meta_needed(et->et_root_el);
5311 	ret = ocfs2_extend_trans(handle, credits);
5312 	if (ret) {
5313 		mlog_errno(ret);
5314 		goto out;
5315 	}
5316 
5317 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5318 	    le16_to_cpu(rightmost_el->l_count)) {
5319 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5320 				      meta_ac);
5321 		if (ret) {
5322 			mlog_errno(ret);
5323 			goto out;
5324 		}
5325 	}
5326 
5327 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5328 	insert.ins_appending = APPEND_NONE;
5329 	insert.ins_contig = CONTIG_NONE;
5330 	insert.ins_split = SPLIT_RIGHT;
5331 	insert.ins_tree_depth = depth;
5332 
5333 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5334 	if (ret)
5335 		mlog_errno(ret);
5336 
5337 out:
5338 	brelse(last_eb_bh);
5339 	return ret;
5340 }
5341 
5342 static int ocfs2_truncate_rec(handle_t *handle,
5343 			      struct ocfs2_extent_tree *et,
5344 			      struct ocfs2_path *path, int index,
5345 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5346 			      u32 cpos, u32 len)
5347 {
5348 	int ret;
5349 	u32 left_cpos, rec_range, trunc_range;
5350 	int is_rightmost_tree_rec = 0;
5351 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5352 	struct ocfs2_path *left_path = NULL;
5353 	struct ocfs2_extent_list *el = path_leaf_el(path);
5354 	struct ocfs2_extent_rec *rec;
5355 	struct ocfs2_extent_block *eb;
5356 
5357 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5358 		/* extend credit for ocfs2_remove_rightmost_path */
5359 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5360 				jbd2_handle_buffer_credits(handle),
5361 				path);
5362 		if (ret) {
5363 			mlog_errno(ret);
5364 			goto out;
5365 		}
5366 
5367 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5368 		if (ret) {
5369 			mlog_errno(ret);
5370 			goto out;
5371 		}
5372 
5373 		index--;
5374 	}
5375 
5376 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5377 	    path->p_tree_depth) {
5378 		/*
5379 		 * Check whether this is the rightmost tree record. If
5380 		 * we remove all of this record or part of its right
5381 		 * edge then an update of the record lengths above it
5382 		 * will be required.
5383 		 */
5384 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5385 		if (eb->h_next_leaf_blk == 0)
5386 			is_rightmost_tree_rec = 1;
5387 	}
5388 
5389 	rec = &el->l_recs[index];
5390 	if (index == 0 && path->p_tree_depth &&
5391 	    le32_to_cpu(rec->e_cpos) == cpos) {
5392 		/*
5393 		 * Changing the leftmost offset (via partial or whole
5394 		 * record truncate) of an interior (or rightmost) path
5395 		 * means we have to update the subtree that is formed
5396 		 * by this leaf and the one to it's left.
5397 		 *
5398 		 * There are two cases we can skip:
5399 		 *   1) Path is the leftmost one in our btree.
5400 		 *   2) The leaf is rightmost and will be empty after
5401 		 *      we remove the extent record - the rotate code
5402 		 *      knows how to update the newly formed edge.
5403 		 */
5404 
5405 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5406 		if (ret) {
5407 			mlog_errno(ret);
5408 			goto out;
5409 		}
5410 
5411 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5412 			left_path = ocfs2_new_path_from_path(path);
5413 			if (!left_path) {
5414 				ret = -ENOMEM;
5415 				mlog_errno(ret);
5416 				goto out;
5417 			}
5418 
5419 			ret = ocfs2_find_path(et->et_ci, left_path,
5420 					      left_cpos);
5421 			if (ret) {
5422 				mlog_errno(ret);
5423 				goto out;
5424 			}
5425 		}
5426 	}
5427 
5428 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5429 					jbd2_handle_buffer_credits(handle),
5430 					path);
5431 	if (ret) {
5432 		mlog_errno(ret);
5433 		goto out;
5434 	}
5435 
5436 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5437 	if (ret) {
5438 		mlog_errno(ret);
5439 		goto out;
5440 	}
5441 
5442 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5443 	if (ret) {
5444 		mlog_errno(ret);
5445 		goto out;
5446 	}
5447 
5448 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5449 	trunc_range = cpos + len;
5450 
5451 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5452 		int next_free;
5453 
5454 		memset(rec, 0, sizeof(*rec));
5455 		ocfs2_cleanup_merge(el, index);
5456 
5457 		next_free = le16_to_cpu(el->l_next_free_rec);
5458 		if (is_rightmost_tree_rec && next_free > 1) {
5459 			/*
5460 			 * We skip the edge update if this path will
5461 			 * be deleted by the rotate code.
5462 			 */
5463 			rec = &el->l_recs[next_free - 1];
5464 			ocfs2_adjust_rightmost_records(handle, et, path,
5465 						       rec);
5466 		}
5467 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5468 		/* Remove leftmost portion of the record. */
5469 		le32_add_cpu(&rec->e_cpos, len);
5470 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5471 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5472 	} else if (rec_range == trunc_range) {
5473 		/* Remove rightmost portion of the record */
5474 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5475 		if (is_rightmost_tree_rec)
5476 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5477 	} else {
5478 		/* Caller should have trapped this. */
5479 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5480 		     "(%u, %u)\n",
5481 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5482 		     le32_to_cpu(rec->e_cpos),
5483 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5484 		BUG();
5485 	}
5486 
5487 	if (left_path) {
5488 		int subtree_index;
5489 
5490 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5491 		ocfs2_complete_edge_insert(handle, left_path, path,
5492 					   subtree_index);
5493 	}
5494 
5495 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5496 
5497 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5498 	if (ret)
5499 		mlog_errno(ret);
5500 
5501 out:
5502 	ocfs2_free_path(left_path);
5503 	return ret;
5504 }
5505 
5506 int ocfs2_remove_extent(handle_t *handle,
5507 			struct ocfs2_extent_tree *et,
5508 			u32 cpos, u32 len,
5509 			struct ocfs2_alloc_context *meta_ac,
5510 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5511 {
5512 	int ret, index;
5513 	u32 rec_range, trunc_range;
5514 	struct ocfs2_extent_rec *rec;
5515 	struct ocfs2_extent_list *el;
5516 	struct ocfs2_path *path = NULL;
5517 
5518 	/*
5519 	 * XXX: Why are we truncating to 0 instead of wherever this
5520 	 * affects us?
5521 	 */
5522 	ocfs2_et_extent_map_truncate(et, 0);
5523 
5524 	path = ocfs2_new_path_from_et(et);
5525 	if (!path) {
5526 		ret = -ENOMEM;
5527 		mlog_errno(ret);
5528 		goto out;
5529 	}
5530 
5531 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5532 	if (ret) {
5533 		mlog_errno(ret);
5534 		goto out;
5535 	}
5536 
5537 	el = path_leaf_el(path);
5538 	index = ocfs2_search_extent_list(el, cpos);
5539 	if (index == -1) {
5540 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5541 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5542 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5543 			    cpos);
5544 		ret = -EROFS;
5545 		goto out;
5546 	}
5547 
5548 	/*
5549 	 * We have 3 cases of extent removal:
5550 	 *   1) Range covers the entire extent rec
5551 	 *   2) Range begins or ends on one edge of the extent rec
5552 	 *   3) Range is in the middle of the extent rec (no shared edges)
5553 	 *
5554 	 * For case 1 we remove the extent rec and left rotate to
5555 	 * fill the hole.
5556 	 *
5557 	 * For case 2 we just shrink the existing extent rec, with a
5558 	 * tree update if the shrinking edge is also the edge of an
5559 	 * extent block.
5560 	 *
5561 	 * For case 3 we do a right split to turn the extent rec into
5562 	 * something case 2 can handle.
5563 	 */
5564 	rec = &el->l_recs[index];
5565 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5566 	trunc_range = cpos + len;
5567 
5568 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5569 
5570 	trace_ocfs2_remove_extent(
5571 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5572 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5573 		ocfs2_rec_clusters(el, rec));
5574 
5575 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5576 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5577 					 cpos, len);
5578 		if (ret) {
5579 			mlog_errno(ret);
5580 			goto out;
5581 		}
5582 	} else {
5583 		ret = ocfs2_split_tree(handle, et, path, index,
5584 				       trunc_range, meta_ac);
5585 		if (ret) {
5586 			mlog_errno(ret);
5587 			goto out;
5588 		}
5589 
5590 		/*
5591 		 * The split could have manipulated the tree enough to
5592 		 * move the record location, so we have to look for it again.
5593 		 */
5594 		ocfs2_reinit_path(path, 1);
5595 
5596 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5597 		if (ret) {
5598 			mlog_errno(ret);
5599 			goto out;
5600 		}
5601 
5602 		el = path_leaf_el(path);
5603 		index = ocfs2_search_extent_list(el, cpos);
5604 		if (index == -1) {
5605 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5606 				    "Owner %llu: split at cpos %u lost record\n",
5607 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5608 				    cpos);
5609 			ret = -EROFS;
5610 			goto out;
5611 		}
5612 
5613 		/*
5614 		 * Double check our values here. If anything is fishy,
5615 		 * it's easier to catch it at the top level.
5616 		 */
5617 		rec = &el->l_recs[index];
5618 		rec_range = le32_to_cpu(rec->e_cpos) +
5619 			ocfs2_rec_clusters(el, rec);
5620 		if (rec_range != trunc_range) {
5621 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5622 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5623 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5624 				    cpos, len, le32_to_cpu(rec->e_cpos),
5625 				    ocfs2_rec_clusters(el, rec));
5626 			ret = -EROFS;
5627 			goto out;
5628 		}
5629 
5630 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5631 					 cpos, len);
5632 		if (ret)
5633 			mlog_errno(ret);
5634 	}
5635 
5636 out:
5637 	ocfs2_free_path(path);
5638 	return ret;
5639 }
5640 
5641 /*
5642  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5643  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5644  * number to reserve some extra blocks, and it only handles meta
5645  * data allocations.
5646  *
5647  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5648  * and punching holes.
5649  */
5650 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5651 					      struct ocfs2_extent_tree *et,
5652 					      u32 extents_to_split,
5653 					      struct ocfs2_alloc_context **ac,
5654 					      int extra_blocks)
5655 {
5656 	int ret = 0, num_free_extents;
5657 	unsigned int max_recs_needed = 2 * extents_to_split;
5658 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5659 
5660 	*ac = NULL;
5661 
5662 	num_free_extents = ocfs2_num_free_extents(et);
5663 	if (num_free_extents < 0) {
5664 		ret = num_free_extents;
5665 		mlog_errno(ret);
5666 		goto out;
5667 	}
5668 
5669 	if (!num_free_extents ||
5670 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5671 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5672 
5673 	if (extra_blocks) {
5674 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5675 		if (ret < 0) {
5676 			if (ret != -ENOSPC)
5677 				mlog_errno(ret);
5678 		}
5679 	}
5680 
5681 out:
5682 	if (ret) {
5683 		if (*ac) {
5684 			ocfs2_free_alloc_context(*ac);
5685 			*ac = NULL;
5686 		}
5687 	}
5688 
5689 	return ret;
5690 }
5691 
5692 int ocfs2_remove_btree_range(struct inode *inode,
5693 			     struct ocfs2_extent_tree *et,
5694 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5695 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5696 			     u64 refcount_loc, bool refcount_tree_locked)
5697 {
5698 	int ret, credits = 0, extra_blocks = 0;
5699 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5700 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5701 	struct inode *tl_inode = osb->osb_tl_inode;
5702 	handle_t *handle;
5703 	struct ocfs2_alloc_context *meta_ac = NULL;
5704 	struct ocfs2_refcount_tree *ref_tree = NULL;
5705 
5706 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5707 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5708 
5709 		if (!refcount_tree_locked) {
5710 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5711 						       &ref_tree, NULL);
5712 			if (ret) {
5713 				mlog_errno(ret);
5714 				goto bail;
5715 			}
5716 		}
5717 
5718 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5719 							    refcount_loc,
5720 							    phys_blkno,
5721 							    len,
5722 							    &credits,
5723 							    &extra_blocks);
5724 		if (ret < 0) {
5725 			mlog_errno(ret);
5726 			goto bail;
5727 		}
5728 	}
5729 
5730 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5731 						 extra_blocks);
5732 	if (ret) {
5733 		mlog_errno(ret);
5734 		goto bail;
5735 	}
5736 
5737 	inode_lock(tl_inode);
5738 
5739 	if (ocfs2_truncate_log_needs_flush(osb)) {
5740 		ret = __ocfs2_flush_truncate_log(osb);
5741 		if (ret < 0) {
5742 			mlog_errno(ret);
5743 			goto out;
5744 		}
5745 	}
5746 
5747 	handle = ocfs2_start_trans(osb,
5748 			ocfs2_remove_extent_credits(osb->sb) + credits);
5749 	if (IS_ERR(handle)) {
5750 		ret = PTR_ERR(handle);
5751 		mlog_errno(ret);
5752 		goto out;
5753 	}
5754 
5755 	ret = ocfs2_et_root_journal_access(handle, et,
5756 					   OCFS2_JOURNAL_ACCESS_WRITE);
5757 	if (ret) {
5758 		mlog_errno(ret);
5759 		goto out_commit;
5760 	}
5761 
5762 	dquot_free_space_nodirty(inode,
5763 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5764 
5765 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5766 	if (ret) {
5767 		mlog_errno(ret);
5768 		goto out_commit;
5769 	}
5770 
5771 	ocfs2_et_update_clusters(et, -len);
5772 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5773 
5774 	ocfs2_journal_dirty(handle, et->et_root_bh);
5775 
5776 	if (phys_blkno) {
5777 		if (flags & OCFS2_EXT_REFCOUNTED)
5778 			ret = ocfs2_decrease_refcount(inode, handle,
5779 					ocfs2_blocks_to_clusters(osb->sb,
5780 								 phys_blkno),
5781 					len, meta_ac,
5782 					dealloc, 1);
5783 		else
5784 			ret = ocfs2_truncate_log_append(osb, handle,
5785 							phys_blkno, len);
5786 		if (ret)
5787 			mlog_errno(ret);
5788 
5789 	}
5790 
5791 out_commit:
5792 	ocfs2_commit_trans(osb, handle);
5793 out:
5794 	inode_unlock(tl_inode);
5795 bail:
5796 	if (meta_ac)
5797 		ocfs2_free_alloc_context(meta_ac);
5798 
5799 	if (ref_tree)
5800 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5801 
5802 	return ret;
5803 }
5804 
5805 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5806 {
5807 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5808 	struct ocfs2_dinode *di;
5809 	struct ocfs2_truncate_log *tl;
5810 
5811 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5812 	tl = &di->id2.i_dealloc;
5813 
5814 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5815 			"slot %d, invalid truncate log parameters: used = "
5816 			"%u, count = %u\n", osb->slot_num,
5817 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5818 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5819 }
5820 
5821 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5822 					   unsigned int new_start)
5823 {
5824 	unsigned int tail_index;
5825 	unsigned int current_tail;
5826 
5827 	/* No records, nothing to coalesce */
5828 	if (!le16_to_cpu(tl->tl_used))
5829 		return 0;
5830 
5831 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5832 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5833 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5834 
5835 	return current_tail == new_start;
5836 }
5837 
5838 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5839 			      handle_t *handle,
5840 			      u64 start_blk,
5841 			      unsigned int num_clusters)
5842 {
5843 	int status, index;
5844 	unsigned int start_cluster, tl_count;
5845 	struct inode *tl_inode = osb->osb_tl_inode;
5846 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5847 	struct ocfs2_dinode *di;
5848 	struct ocfs2_truncate_log *tl;
5849 
5850 	BUG_ON(inode_trylock(tl_inode));
5851 
5852 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5853 
5854 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5855 
5856 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5857 	 * by the underlying call to ocfs2_read_inode_block(), so any
5858 	 * corruption is a code bug */
5859 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5860 
5861 	tl = &di->id2.i_dealloc;
5862 	tl_count = le16_to_cpu(tl->tl_count);
5863 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5864 			tl_count == 0,
5865 			"Truncate record count on #%llu invalid "
5866 			"wanted %u, actual %u\n",
5867 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5868 			ocfs2_truncate_recs_per_inode(osb->sb),
5869 			le16_to_cpu(tl->tl_count));
5870 
5871 	/* Caller should have known to flush before calling us. */
5872 	index = le16_to_cpu(tl->tl_used);
5873 	if (index >= tl_count) {
5874 		status = -ENOSPC;
5875 		mlog_errno(status);
5876 		goto bail;
5877 	}
5878 
5879 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5880 					 OCFS2_JOURNAL_ACCESS_WRITE);
5881 	if (status < 0) {
5882 		mlog_errno(status);
5883 		goto bail;
5884 	}
5885 
5886 	trace_ocfs2_truncate_log_append(
5887 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5888 		start_cluster, num_clusters);
5889 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5890 		/*
5891 		 * Move index back to the record we are coalescing with.
5892 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5893 		 */
5894 		index--;
5895 
5896 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5897 		trace_ocfs2_truncate_log_append(
5898 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5899 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5900 			num_clusters);
5901 	} else {
5902 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5903 		tl->tl_used = cpu_to_le16(index + 1);
5904 	}
5905 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5906 
5907 	ocfs2_journal_dirty(handle, tl_bh);
5908 
5909 	osb->truncated_clusters += num_clusters;
5910 bail:
5911 	return status;
5912 }
5913 
5914 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5915 					 struct inode *data_alloc_inode,
5916 					 struct buffer_head *data_alloc_bh)
5917 {
5918 	int status = 0;
5919 	int i;
5920 	unsigned int num_clusters;
5921 	u64 start_blk;
5922 	struct ocfs2_truncate_rec rec;
5923 	struct ocfs2_dinode *di;
5924 	struct ocfs2_truncate_log *tl;
5925 	struct inode *tl_inode = osb->osb_tl_inode;
5926 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5927 	handle_t *handle;
5928 
5929 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5930 	tl = &di->id2.i_dealloc;
5931 	i = le16_to_cpu(tl->tl_used) - 1;
5932 	while (i >= 0) {
5933 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5934 		if (IS_ERR(handle)) {
5935 			status = PTR_ERR(handle);
5936 			mlog_errno(status);
5937 			goto bail;
5938 		}
5939 
5940 		/* Caller has given us at least enough credits to
5941 		 * update the truncate log dinode */
5942 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5943 						 OCFS2_JOURNAL_ACCESS_WRITE);
5944 		if (status < 0) {
5945 			mlog_errno(status);
5946 			goto bail;
5947 		}
5948 
5949 		tl->tl_used = cpu_to_le16(i);
5950 
5951 		ocfs2_journal_dirty(handle, tl_bh);
5952 
5953 		rec = tl->tl_recs[i];
5954 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5955 						    le32_to_cpu(rec.t_start));
5956 		num_clusters = le32_to_cpu(rec.t_clusters);
5957 
5958 		/* if start_blk is not set, we ignore the record as
5959 		 * invalid. */
5960 		if (start_blk) {
5961 			trace_ocfs2_replay_truncate_records(
5962 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5963 				i, le32_to_cpu(rec.t_start), num_clusters);
5964 
5965 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5966 						     data_alloc_bh, start_blk,
5967 						     num_clusters);
5968 			if (status < 0) {
5969 				mlog_errno(status);
5970 				goto bail;
5971 			}
5972 		}
5973 
5974 		ocfs2_commit_trans(osb, handle);
5975 		i--;
5976 	}
5977 
5978 	osb->truncated_clusters = 0;
5979 
5980 bail:
5981 	return status;
5982 }
5983 
5984 /* Expects you to already be holding tl_inode->i_mutex */
5985 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5986 {
5987 	int status;
5988 	unsigned int num_to_flush;
5989 	struct inode *tl_inode = osb->osb_tl_inode;
5990 	struct inode *data_alloc_inode = NULL;
5991 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5992 	struct buffer_head *data_alloc_bh = NULL;
5993 	struct ocfs2_dinode *di;
5994 	struct ocfs2_truncate_log *tl;
5995 	struct ocfs2_journal *journal = osb->journal;
5996 
5997 	BUG_ON(inode_trylock(tl_inode));
5998 
5999 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6000 
6001 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6002 	 * by the underlying call to ocfs2_read_inode_block(), so any
6003 	 * corruption is a code bug */
6004 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6005 
6006 	tl = &di->id2.i_dealloc;
6007 	num_to_flush = le16_to_cpu(tl->tl_used);
6008 	trace_ocfs2_flush_truncate_log(
6009 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6010 		num_to_flush);
6011 	if (!num_to_flush) {
6012 		status = 0;
6013 		goto out;
6014 	}
6015 
6016 	/* Appending truncate log(TA) and and flushing truncate log(TF) are
6017 	 * two separated transactions. They can be both committed but not
6018 	 * checkpointed. If crash occurs then, both two transaction will be
6019 	 * replayed with several already released to global bitmap clusters.
6020 	 * Then truncate log will be replayed resulting in cluster double free.
6021 	 */
6022 	jbd2_journal_lock_updates(journal->j_journal);
6023 	status = jbd2_journal_flush(journal->j_journal);
6024 	jbd2_journal_unlock_updates(journal->j_journal);
6025 	if (status < 0) {
6026 		mlog_errno(status);
6027 		goto out;
6028 	}
6029 
6030 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6031 						       GLOBAL_BITMAP_SYSTEM_INODE,
6032 						       OCFS2_INVALID_SLOT);
6033 	if (!data_alloc_inode) {
6034 		status = -EINVAL;
6035 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6036 		goto out;
6037 	}
6038 
6039 	inode_lock(data_alloc_inode);
6040 
6041 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6042 	if (status < 0) {
6043 		mlog_errno(status);
6044 		goto out_mutex;
6045 	}
6046 
6047 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6048 					       data_alloc_bh);
6049 	if (status < 0)
6050 		mlog_errno(status);
6051 
6052 	brelse(data_alloc_bh);
6053 	ocfs2_inode_unlock(data_alloc_inode, 1);
6054 
6055 out_mutex:
6056 	inode_unlock(data_alloc_inode);
6057 	iput(data_alloc_inode);
6058 
6059 out:
6060 	return status;
6061 }
6062 
6063 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6064 {
6065 	int status;
6066 	struct inode *tl_inode = osb->osb_tl_inode;
6067 
6068 	inode_lock(tl_inode);
6069 	status = __ocfs2_flush_truncate_log(osb);
6070 	inode_unlock(tl_inode);
6071 
6072 	return status;
6073 }
6074 
6075 static void ocfs2_truncate_log_worker(struct work_struct *work)
6076 {
6077 	int status;
6078 	struct ocfs2_super *osb =
6079 		container_of(work, struct ocfs2_super,
6080 			     osb_truncate_log_wq.work);
6081 
6082 	status = ocfs2_flush_truncate_log(osb);
6083 	if (status < 0)
6084 		mlog_errno(status);
6085 	else
6086 		ocfs2_init_steal_slots(osb);
6087 }
6088 
6089 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6090 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6091 				       int cancel)
6092 {
6093 	if (osb->osb_tl_inode &&
6094 			atomic_read(&osb->osb_tl_disable) == 0) {
6095 		/* We want to push off log flushes while truncates are
6096 		 * still running. */
6097 		if (cancel)
6098 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6099 
6100 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6101 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6102 	}
6103 }
6104 
6105 /*
6106  * Try to flush truncate logs if we can free enough clusters from it.
6107  * As for return value, "< 0" means error, "0" no space and "1" means
6108  * we have freed enough spaces and let the caller try to allocate again.
6109  */
6110 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6111 					unsigned int needed)
6112 {
6113 	tid_t target;
6114 	int ret = 0;
6115 	unsigned int truncated_clusters;
6116 
6117 	inode_lock(osb->osb_tl_inode);
6118 	truncated_clusters = osb->truncated_clusters;
6119 	inode_unlock(osb->osb_tl_inode);
6120 
6121 	/*
6122 	 * Check whether we can succeed in allocating if we free
6123 	 * the truncate log.
6124 	 */
6125 	if (truncated_clusters < needed)
6126 		goto out;
6127 
6128 	ret = ocfs2_flush_truncate_log(osb);
6129 	if (ret) {
6130 		mlog_errno(ret);
6131 		goto out;
6132 	}
6133 
6134 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6135 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6136 		ret = 1;
6137 	}
6138 out:
6139 	return ret;
6140 }
6141 
6142 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6143 				       int slot_num,
6144 				       struct inode **tl_inode,
6145 				       struct buffer_head **tl_bh)
6146 {
6147 	int status;
6148 	struct inode *inode = NULL;
6149 	struct buffer_head *bh = NULL;
6150 
6151 	inode = ocfs2_get_system_file_inode(osb,
6152 					   TRUNCATE_LOG_SYSTEM_INODE,
6153 					   slot_num);
6154 	if (!inode) {
6155 		status = -EINVAL;
6156 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6157 		goto bail;
6158 	}
6159 
6160 	status = ocfs2_read_inode_block(inode, &bh);
6161 	if (status < 0) {
6162 		iput(inode);
6163 		mlog_errno(status);
6164 		goto bail;
6165 	}
6166 
6167 	*tl_inode = inode;
6168 	*tl_bh    = bh;
6169 bail:
6170 	return status;
6171 }
6172 
6173 /* called during the 1st stage of node recovery. we stamp a clean
6174  * truncate log and pass back a copy for processing later. if the
6175  * truncate log does not require processing, a *tl_copy is set to
6176  * NULL. */
6177 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6178 				      int slot_num,
6179 				      struct ocfs2_dinode **tl_copy)
6180 {
6181 	int status;
6182 	struct inode *tl_inode = NULL;
6183 	struct buffer_head *tl_bh = NULL;
6184 	struct ocfs2_dinode *di;
6185 	struct ocfs2_truncate_log *tl;
6186 
6187 	*tl_copy = NULL;
6188 
6189 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6190 
6191 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6192 	if (status < 0) {
6193 		mlog_errno(status);
6194 		goto bail;
6195 	}
6196 
6197 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6198 
6199 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6200 	 * validated by the underlying call to ocfs2_read_inode_block(),
6201 	 * so any corruption is a code bug */
6202 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6203 
6204 	tl = &di->id2.i_dealloc;
6205 	if (le16_to_cpu(tl->tl_used)) {
6206 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6207 
6208 		/*
6209 		 * Assuming the write-out below goes well, this copy will be
6210 		 * passed back to recovery for processing.
6211 		 */
6212 		*tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6213 		if (!(*tl_copy)) {
6214 			status = -ENOMEM;
6215 			mlog_errno(status);
6216 			goto bail;
6217 		}
6218 
6219 		/* All we need to do to clear the truncate log is set
6220 		 * tl_used. */
6221 		tl->tl_used = 0;
6222 
6223 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6224 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6225 		if (status < 0) {
6226 			mlog_errno(status);
6227 			goto bail;
6228 		}
6229 	}
6230 
6231 bail:
6232 	iput(tl_inode);
6233 	brelse(tl_bh);
6234 
6235 	if (status < 0) {
6236 		kfree(*tl_copy);
6237 		*tl_copy = NULL;
6238 		mlog_errno(status);
6239 	}
6240 
6241 	return status;
6242 }
6243 
6244 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6245 					 struct ocfs2_dinode *tl_copy)
6246 {
6247 	int status = 0;
6248 	int i;
6249 	unsigned int clusters, num_recs, start_cluster;
6250 	u64 start_blk;
6251 	handle_t *handle;
6252 	struct inode *tl_inode = osb->osb_tl_inode;
6253 	struct ocfs2_truncate_log *tl;
6254 
6255 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6256 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6257 		return -EINVAL;
6258 	}
6259 
6260 	tl = &tl_copy->id2.i_dealloc;
6261 	num_recs = le16_to_cpu(tl->tl_used);
6262 	trace_ocfs2_complete_truncate_log_recovery(
6263 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6264 		num_recs);
6265 
6266 	inode_lock(tl_inode);
6267 	for(i = 0; i < num_recs; i++) {
6268 		if (ocfs2_truncate_log_needs_flush(osb)) {
6269 			status = __ocfs2_flush_truncate_log(osb);
6270 			if (status < 0) {
6271 				mlog_errno(status);
6272 				goto bail_up;
6273 			}
6274 		}
6275 
6276 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6277 		if (IS_ERR(handle)) {
6278 			status = PTR_ERR(handle);
6279 			mlog_errno(status);
6280 			goto bail_up;
6281 		}
6282 
6283 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6284 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6285 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6286 
6287 		status = ocfs2_truncate_log_append(osb, handle,
6288 						   start_blk, clusters);
6289 		ocfs2_commit_trans(osb, handle);
6290 		if (status < 0) {
6291 			mlog_errno(status);
6292 			goto bail_up;
6293 		}
6294 	}
6295 
6296 bail_up:
6297 	inode_unlock(tl_inode);
6298 
6299 	return status;
6300 }
6301 
6302 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6303 {
6304 	int status;
6305 	struct inode *tl_inode = osb->osb_tl_inode;
6306 
6307 	atomic_set(&osb->osb_tl_disable, 1);
6308 
6309 	if (tl_inode) {
6310 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6311 		flush_workqueue(osb->ocfs2_wq);
6312 
6313 		status = ocfs2_flush_truncate_log(osb);
6314 		if (status < 0)
6315 			mlog_errno(status);
6316 
6317 		brelse(osb->osb_tl_bh);
6318 		iput(osb->osb_tl_inode);
6319 	}
6320 }
6321 
6322 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6323 {
6324 	int status;
6325 	struct inode *tl_inode = NULL;
6326 	struct buffer_head *tl_bh = NULL;
6327 
6328 	status = ocfs2_get_truncate_log_info(osb,
6329 					     osb->slot_num,
6330 					     &tl_inode,
6331 					     &tl_bh);
6332 	if (status < 0)
6333 		mlog_errno(status);
6334 
6335 	/* ocfs2_truncate_log_shutdown keys on the existence of
6336 	 * osb->osb_tl_inode so we don't set any of the osb variables
6337 	 * until we're sure all is well. */
6338 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6339 			  ocfs2_truncate_log_worker);
6340 	atomic_set(&osb->osb_tl_disable, 0);
6341 	osb->osb_tl_bh    = tl_bh;
6342 	osb->osb_tl_inode = tl_inode;
6343 
6344 	return status;
6345 }
6346 
6347 /*
6348  * Delayed de-allocation of suballocator blocks.
6349  *
6350  * Some sets of block de-allocations might involve multiple suballocator inodes.
6351  *
6352  * The locking for this can get extremely complicated, especially when
6353  * the suballocator inodes to delete from aren't known until deep
6354  * within an unrelated codepath.
6355  *
6356  * ocfs2_extent_block structures are a good example of this - an inode
6357  * btree could have been grown by any number of nodes each allocating
6358  * out of their own suballoc inode.
6359  *
6360  * These structures allow the delay of block de-allocation until a
6361  * later time, when locking of multiple cluster inodes won't cause
6362  * deadlock.
6363  */
6364 
6365 /*
6366  * Describe a single bit freed from a suballocator.  For the block
6367  * suballocators, it represents one block.  For the global cluster
6368  * allocator, it represents some clusters and free_bit indicates
6369  * clusters number.
6370  */
6371 struct ocfs2_cached_block_free {
6372 	struct ocfs2_cached_block_free		*free_next;
6373 	u64					free_bg;
6374 	u64					free_blk;
6375 	unsigned int				free_bit;
6376 };
6377 
6378 struct ocfs2_per_slot_free_list {
6379 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6380 	int					f_inode_type;
6381 	int					f_slot;
6382 	struct ocfs2_cached_block_free		*f_first;
6383 };
6384 
6385 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6386 				    int sysfile_type,
6387 				    int slot,
6388 				    struct ocfs2_cached_block_free *head)
6389 {
6390 	int ret;
6391 	u64 bg_blkno;
6392 	handle_t *handle;
6393 	struct inode *inode;
6394 	struct buffer_head *di_bh = NULL;
6395 	struct ocfs2_cached_block_free *tmp;
6396 
6397 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6398 	if (!inode) {
6399 		ret = -EINVAL;
6400 		mlog_errno(ret);
6401 		goto out;
6402 	}
6403 
6404 	inode_lock(inode);
6405 
6406 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6407 	if (ret) {
6408 		mlog_errno(ret);
6409 		goto out_mutex;
6410 	}
6411 
6412 	while (head) {
6413 		if (head->free_bg)
6414 			bg_blkno = head->free_bg;
6415 		else
6416 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6417 							      head->free_bit);
6418 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6419 		if (IS_ERR(handle)) {
6420 			ret = PTR_ERR(handle);
6421 			mlog_errno(ret);
6422 			goto out_unlock;
6423 		}
6424 
6425 		trace_ocfs2_free_cached_blocks(
6426 		     (unsigned long long)head->free_blk, head->free_bit);
6427 
6428 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6429 					       head->free_bit, bg_blkno, 1);
6430 		if (ret)
6431 			mlog_errno(ret);
6432 
6433 		ocfs2_commit_trans(osb, handle);
6434 
6435 		tmp = head;
6436 		head = head->free_next;
6437 		kfree(tmp);
6438 	}
6439 
6440 out_unlock:
6441 	ocfs2_inode_unlock(inode, 1);
6442 	brelse(di_bh);
6443 out_mutex:
6444 	inode_unlock(inode);
6445 	iput(inode);
6446 out:
6447 	while(head) {
6448 		/* Premature exit may have left some dangling items. */
6449 		tmp = head;
6450 		head = head->free_next;
6451 		kfree(tmp);
6452 	}
6453 
6454 	return ret;
6455 }
6456 
6457 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6458 				u64 blkno, unsigned int bit)
6459 {
6460 	int ret = 0;
6461 	struct ocfs2_cached_block_free *item;
6462 
6463 	item = kzalloc(sizeof(*item), GFP_NOFS);
6464 	if (item == NULL) {
6465 		ret = -ENOMEM;
6466 		mlog_errno(ret);
6467 		return ret;
6468 	}
6469 
6470 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6471 
6472 	item->free_blk = blkno;
6473 	item->free_bit = bit;
6474 	item->free_next = ctxt->c_global_allocator;
6475 
6476 	ctxt->c_global_allocator = item;
6477 	return ret;
6478 }
6479 
6480 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6481 				      struct ocfs2_cached_block_free *head)
6482 {
6483 	struct ocfs2_cached_block_free *tmp;
6484 	struct inode *tl_inode = osb->osb_tl_inode;
6485 	handle_t *handle;
6486 	int ret = 0;
6487 
6488 	inode_lock(tl_inode);
6489 
6490 	while (head) {
6491 		if (ocfs2_truncate_log_needs_flush(osb)) {
6492 			ret = __ocfs2_flush_truncate_log(osb);
6493 			if (ret < 0) {
6494 				mlog_errno(ret);
6495 				break;
6496 			}
6497 		}
6498 
6499 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6500 		if (IS_ERR(handle)) {
6501 			ret = PTR_ERR(handle);
6502 			mlog_errno(ret);
6503 			break;
6504 		}
6505 
6506 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6507 						head->free_bit);
6508 
6509 		ocfs2_commit_trans(osb, handle);
6510 		tmp = head;
6511 		head = head->free_next;
6512 		kfree(tmp);
6513 
6514 		if (ret < 0) {
6515 			mlog_errno(ret);
6516 			break;
6517 		}
6518 	}
6519 
6520 	inode_unlock(tl_inode);
6521 
6522 	while (head) {
6523 		/* Premature exit may have left some dangling items. */
6524 		tmp = head;
6525 		head = head->free_next;
6526 		kfree(tmp);
6527 	}
6528 
6529 	return ret;
6530 }
6531 
6532 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6533 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6534 {
6535 	int ret = 0, ret2;
6536 	struct ocfs2_per_slot_free_list *fl;
6537 
6538 	if (!ctxt)
6539 		return 0;
6540 
6541 	while (ctxt->c_first_suballocator) {
6542 		fl = ctxt->c_first_suballocator;
6543 
6544 		if (fl->f_first) {
6545 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6546 						 fl->f_slot);
6547 			ret2 = ocfs2_free_cached_blocks(osb,
6548 							fl->f_inode_type,
6549 							fl->f_slot,
6550 							fl->f_first);
6551 			if (ret2)
6552 				mlog_errno(ret2);
6553 			if (!ret)
6554 				ret = ret2;
6555 		}
6556 
6557 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6558 		kfree(fl);
6559 	}
6560 
6561 	if (ctxt->c_global_allocator) {
6562 		ret2 = ocfs2_free_cached_clusters(osb,
6563 						  ctxt->c_global_allocator);
6564 		if (ret2)
6565 			mlog_errno(ret2);
6566 		if (!ret)
6567 			ret = ret2;
6568 
6569 		ctxt->c_global_allocator = NULL;
6570 	}
6571 
6572 	return ret;
6573 }
6574 
6575 static struct ocfs2_per_slot_free_list *
6576 ocfs2_find_per_slot_free_list(int type,
6577 			      int slot,
6578 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6579 {
6580 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6581 
6582 	while (fl) {
6583 		if (fl->f_inode_type == type && fl->f_slot == slot)
6584 			return fl;
6585 
6586 		fl = fl->f_next_suballocator;
6587 	}
6588 
6589 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6590 	if (fl) {
6591 		fl->f_inode_type = type;
6592 		fl->f_slot = slot;
6593 		fl->f_first = NULL;
6594 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6595 
6596 		ctxt->c_first_suballocator = fl;
6597 	}
6598 	return fl;
6599 }
6600 
6601 static struct ocfs2_per_slot_free_list *
6602 ocfs2_find_preferred_free_list(int type,
6603 			       int preferred_slot,
6604 			       int *real_slot,
6605 			       struct ocfs2_cached_dealloc_ctxt *ctxt)
6606 {
6607 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6608 
6609 	while (fl) {
6610 		if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6611 			*real_slot = fl->f_slot;
6612 			return fl;
6613 		}
6614 
6615 		fl = fl->f_next_suballocator;
6616 	}
6617 
6618 	/* If we can't find any free list matching preferred slot, just use
6619 	 * the first one.
6620 	 */
6621 	fl = ctxt->c_first_suballocator;
6622 	*real_slot = fl->f_slot;
6623 
6624 	return fl;
6625 }
6626 
6627 /* Return Value 1 indicates empty */
6628 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6629 {
6630 	struct ocfs2_per_slot_free_list *fl = NULL;
6631 
6632 	if (!et->et_dealloc)
6633 		return 1;
6634 
6635 	fl = et->et_dealloc->c_first_suballocator;
6636 	if (!fl)
6637 		return 1;
6638 
6639 	if (!fl->f_first)
6640 		return 1;
6641 
6642 	return 0;
6643 }
6644 
6645 /* If extent was deleted from tree due to extent rotation and merging, and
6646  * no metadata is reserved ahead of time. Try to reuse some extents
6647  * just deleted. This is only used to reuse extent blocks.
6648  * It is supposed to find enough extent blocks in dealloc if our estimation
6649  * on metadata is accurate.
6650  */
6651 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6652 					struct ocfs2_extent_tree *et,
6653 					struct buffer_head **new_eb_bh,
6654 					int blk_wanted, int *blk_given)
6655 {
6656 	int i, status = 0, real_slot;
6657 	struct ocfs2_cached_dealloc_ctxt *dealloc;
6658 	struct ocfs2_per_slot_free_list *fl;
6659 	struct ocfs2_cached_block_free *bf;
6660 	struct ocfs2_extent_block *eb;
6661 	struct ocfs2_super *osb =
6662 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6663 
6664 	*blk_given = 0;
6665 
6666 	/* If extent tree doesn't have a dealloc, this is not faulty. Just
6667 	 * tell upper caller dealloc can't provide any block and it should
6668 	 * ask for alloc to claim more space.
6669 	 */
6670 	dealloc = et->et_dealloc;
6671 	if (!dealloc)
6672 		goto bail;
6673 
6674 	for (i = 0; i < blk_wanted; i++) {
6675 		/* Prefer to use local slot */
6676 		fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6677 						    osb->slot_num, &real_slot,
6678 						    dealloc);
6679 		/* If no more block can be reused, we should claim more
6680 		 * from alloc. Just return here normally.
6681 		 */
6682 		if (!fl) {
6683 			status = 0;
6684 			break;
6685 		}
6686 
6687 		bf = fl->f_first;
6688 		fl->f_first = bf->free_next;
6689 
6690 		new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6691 		if (new_eb_bh[i] == NULL) {
6692 			status = -ENOMEM;
6693 			mlog_errno(status);
6694 			goto bail;
6695 		}
6696 
6697 		mlog(0, "Reusing block(%llu) from "
6698 		     "dealloc(local slot:%d, real slot:%d)\n",
6699 		     bf->free_blk, osb->slot_num, real_slot);
6700 
6701 		ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6702 
6703 		status = ocfs2_journal_access_eb(handle, et->et_ci,
6704 						 new_eb_bh[i],
6705 						 OCFS2_JOURNAL_ACCESS_CREATE);
6706 		if (status < 0) {
6707 			mlog_errno(status);
6708 			goto bail;
6709 		}
6710 
6711 		memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6712 		eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6713 
6714 		/* We can't guarantee that buffer head is still cached, so
6715 		 * polutlate the extent block again.
6716 		 */
6717 		strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6718 		eb->h_blkno = cpu_to_le64(bf->free_blk);
6719 		eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6720 		eb->h_suballoc_slot = cpu_to_le16(real_slot);
6721 		eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6722 		eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6723 		eb->h_list.l_count =
6724 			cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6725 
6726 		/* We'll also be dirtied by the caller, so
6727 		 * this isn't absolutely necessary.
6728 		 */
6729 		ocfs2_journal_dirty(handle, new_eb_bh[i]);
6730 
6731 		if (!fl->f_first) {
6732 			dealloc->c_first_suballocator = fl->f_next_suballocator;
6733 			kfree(fl);
6734 		}
6735 		kfree(bf);
6736 	}
6737 
6738 	*blk_given = i;
6739 
6740 bail:
6741 	if (unlikely(status < 0)) {
6742 		for (i = 0; i < blk_wanted; i++)
6743 			brelse(new_eb_bh[i]);
6744 	}
6745 
6746 	return status;
6747 }
6748 
6749 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6750 			      int type, int slot, u64 suballoc,
6751 			      u64 blkno, unsigned int bit)
6752 {
6753 	int ret;
6754 	struct ocfs2_per_slot_free_list *fl;
6755 	struct ocfs2_cached_block_free *item;
6756 
6757 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6758 	if (fl == NULL) {
6759 		ret = -ENOMEM;
6760 		mlog_errno(ret);
6761 		goto out;
6762 	}
6763 
6764 	item = kzalloc(sizeof(*item), GFP_NOFS);
6765 	if (item == NULL) {
6766 		ret = -ENOMEM;
6767 		mlog_errno(ret);
6768 		goto out;
6769 	}
6770 
6771 	trace_ocfs2_cache_block_dealloc(type, slot,
6772 					(unsigned long long)suballoc,
6773 					(unsigned long long)blkno, bit);
6774 
6775 	item->free_bg = suballoc;
6776 	item->free_blk = blkno;
6777 	item->free_bit = bit;
6778 	item->free_next = fl->f_first;
6779 
6780 	fl->f_first = item;
6781 
6782 	ret = 0;
6783 out:
6784 	return ret;
6785 }
6786 
6787 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6788 					 struct ocfs2_extent_block *eb)
6789 {
6790 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6791 					 le16_to_cpu(eb->h_suballoc_slot),
6792 					 le64_to_cpu(eb->h_suballoc_loc),
6793 					 le64_to_cpu(eb->h_blkno),
6794 					 le16_to_cpu(eb->h_suballoc_bit));
6795 }
6796 
6797 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6798 {
6799 	set_buffer_uptodate(bh);
6800 	mark_buffer_dirty(bh);
6801 	return 0;
6802 }
6803 
6804 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6805 			      unsigned int from, unsigned int to,
6806 			      struct page *page, int zero, u64 *phys)
6807 {
6808 	int ret, partial = 0;
6809 	loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6810 	loff_t length = to - from;
6811 
6812 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6813 	if (ret)
6814 		mlog_errno(ret);
6815 
6816 	if (zero)
6817 		zero_user_segment(page, from, to);
6818 
6819 	/*
6820 	 * Need to set the buffers we zero'd into uptodate
6821 	 * here if they aren't - ocfs2_map_page_blocks()
6822 	 * might've skipped some
6823 	 */
6824 	ret = walk_page_buffers(handle, page_buffers(page),
6825 				from, to, &partial,
6826 				ocfs2_zero_func);
6827 	if (ret < 0)
6828 		mlog_errno(ret);
6829 	else if (ocfs2_should_order_data(inode)) {
6830 		ret = ocfs2_jbd2_inode_add_write(handle, inode,
6831 						 start_byte, length);
6832 		if (ret < 0)
6833 			mlog_errno(ret);
6834 	}
6835 
6836 	if (!partial)
6837 		SetPageUptodate(page);
6838 
6839 	flush_dcache_page(page);
6840 }
6841 
6842 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6843 				     loff_t end, struct page **pages,
6844 				     int numpages, u64 phys, handle_t *handle)
6845 {
6846 	int i;
6847 	struct page *page;
6848 	unsigned int from, to = PAGE_SIZE;
6849 	struct super_block *sb = inode->i_sb;
6850 
6851 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6852 
6853 	if (numpages == 0)
6854 		goto out;
6855 
6856 	to = PAGE_SIZE;
6857 	for(i = 0; i < numpages; i++) {
6858 		page = pages[i];
6859 
6860 		from = start & (PAGE_SIZE - 1);
6861 		if ((end >> PAGE_SHIFT) == page->index)
6862 			to = end & (PAGE_SIZE - 1);
6863 
6864 		BUG_ON(from > PAGE_SIZE);
6865 		BUG_ON(to > PAGE_SIZE);
6866 
6867 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6868 					 &phys);
6869 
6870 		start = (page->index + 1) << PAGE_SHIFT;
6871 	}
6872 out:
6873 	if (pages)
6874 		ocfs2_unlock_and_free_pages(pages, numpages);
6875 }
6876 
6877 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6878 		     struct page **pages, int *num)
6879 {
6880 	int numpages, ret = 0;
6881 	struct address_space *mapping = inode->i_mapping;
6882 	unsigned long index;
6883 	loff_t last_page_bytes;
6884 
6885 	BUG_ON(start > end);
6886 
6887 	numpages = 0;
6888 	last_page_bytes = PAGE_ALIGN(end);
6889 	index = start >> PAGE_SHIFT;
6890 	do {
6891 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6892 		if (!pages[numpages]) {
6893 			ret = -ENOMEM;
6894 			mlog_errno(ret);
6895 			goto out;
6896 		}
6897 
6898 		numpages++;
6899 		index++;
6900 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6901 
6902 out:
6903 	if (ret != 0) {
6904 		if (pages)
6905 			ocfs2_unlock_and_free_pages(pages, numpages);
6906 		numpages = 0;
6907 	}
6908 
6909 	*num = numpages;
6910 
6911 	return ret;
6912 }
6913 
6914 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6915 				struct page **pages, int *num)
6916 {
6917 	struct super_block *sb = inode->i_sb;
6918 
6919 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6920 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6921 
6922 	return ocfs2_grab_pages(inode, start, end, pages, num);
6923 }
6924 
6925 /*
6926  * Zero the area past i_size but still within an allocated
6927  * cluster. This avoids exposing nonzero data on subsequent file
6928  * extends.
6929  *
6930  * We need to call this before i_size is updated on the inode because
6931  * otherwise block_write_full_page() will skip writeout of pages past
6932  * i_size. The new_i_size parameter is passed for this reason.
6933  */
6934 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6935 				  u64 range_start, u64 range_end)
6936 {
6937 	int ret = 0, numpages;
6938 	struct page **pages = NULL;
6939 	u64 phys;
6940 	unsigned int ext_flags;
6941 	struct super_block *sb = inode->i_sb;
6942 
6943 	/*
6944 	 * File systems which don't support sparse files zero on every
6945 	 * extend.
6946 	 */
6947 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6948 		return 0;
6949 
6950 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6951 			sizeof(struct page *), GFP_NOFS);
6952 	if (pages == NULL) {
6953 		ret = -ENOMEM;
6954 		mlog_errno(ret);
6955 		goto out;
6956 	}
6957 
6958 	if (range_start == range_end)
6959 		goto out;
6960 
6961 	ret = ocfs2_extent_map_get_blocks(inode,
6962 					  range_start >> sb->s_blocksize_bits,
6963 					  &phys, NULL, &ext_flags);
6964 	if (ret) {
6965 		mlog_errno(ret);
6966 		goto out;
6967 	}
6968 
6969 	/*
6970 	 * Tail is a hole, or is marked unwritten. In either case, we
6971 	 * can count on read and write to return/push zero's.
6972 	 */
6973 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6974 		goto out;
6975 
6976 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6977 				   &numpages);
6978 	if (ret) {
6979 		mlog_errno(ret);
6980 		goto out;
6981 	}
6982 
6983 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6984 				 numpages, phys, handle);
6985 
6986 	/*
6987 	 * Initiate writeout of the pages we zero'd here. We don't
6988 	 * wait on them - the truncate_inode_pages() call later will
6989 	 * do that for us.
6990 	 */
6991 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6992 				       range_end - 1);
6993 	if (ret)
6994 		mlog_errno(ret);
6995 
6996 out:
6997 	kfree(pages);
6998 
6999 	return ret;
7000 }
7001 
7002 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7003 					     struct ocfs2_dinode *di)
7004 {
7005 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7006 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7007 
7008 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7009 		memset(&di->id2, 0, blocksize -
7010 				    offsetof(struct ocfs2_dinode, id2) -
7011 				    xattrsize);
7012 	else
7013 		memset(&di->id2, 0, blocksize -
7014 				    offsetof(struct ocfs2_dinode, id2));
7015 }
7016 
7017 void ocfs2_dinode_new_extent_list(struct inode *inode,
7018 				  struct ocfs2_dinode *di)
7019 {
7020 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7021 	di->id2.i_list.l_tree_depth = 0;
7022 	di->id2.i_list.l_next_free_rec = 0;
7023 	di->id2.i_list.l_count = cpu_to_le16(
7024 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7025 }
7026 
7027 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7028 {
7029 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7030 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7031 
7032 	spin_lock(&oi->ip_lock);
7033 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7034 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7035 	spin_unlock(&oi->ip_lock);
7036 
7037 	/*
7038 	 * We clear the entire i_data structure here so that all
7039 	 * fields can be properly initialized.
7040 	 */
7041 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7042 
7043 	idata->id_count = cpu_to_le16(
7044 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7045 }
7046 
7047 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7048 					 struct buffer_head *di_bh)
7049 {
7050 	int ret, i, has_data, num_pages = 0;
7051 	int need_free = 0;
7052 	u32 bit_off, num;
7053 	handle_t *handle;
7054 	u64 uninitialized_var(block);
7055 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7056 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7057 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7058 	struct ocfs2_alloc_context *data_ac = NULL;
7059 	struct page **pages = NULL;
7060 	loff_t end = osb->s_clustersize;
7061 	struct ocfs2_extent_tree et;
7062 	int did_quota = 0;
7063 
7064 	has_data = i_size_read(inode) ? 1 : 0;
7065 
7066 	if (has_data) {
7067 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7068 				sizeof(struct page *), GFP_NOFS);
7069 		if (pages == NULL) {
7070 			ret = -ENOMEM;
7071 			mlog_errno(ret);
7072 			return ret;
7073 		}
7074 
7075 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7076 		if (ret) {
7077 			mlog_errno(ret);
7078 			goto free_pages;
7079 		}
7080 	}
7081 
7082 	handle = ocfs2_start_trans(osb,
7083 				   ocfs2_inline_to_extents_credits(osb->sb));
7084 	if (IS_ERR(handle)) {
7085 		ret = PTR_ERR(handle);
7086 		mlog_errno(ret);
7087 		goto out;
7088 	}
7089 
7090 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7091 				      OCFS2_JOURNAL_ACCESS_WRITE);
7092 	if (ret) {
7093 		mlog_errno(ret);
7094 		goto out_commit;
7095 	}
7096 
7097 	if (has_data) {
7098 		unsigned int page_end;
7099 		u64 phys;
7100 
7101 		ret = dquot_alloc_space_nodirty(inode,
7102 				       ocfs2_clusters_to_bytes(osb->sb, 1));
7103 		if (ret)
7104 			goto out_commit;
7105 		did_quota = 1;
7106 
7107 		data_ac->ac_resv = &oi->ip_la_data_resv;
7108 
7109 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7110 					   &num);
7111 		if (ret) {
7112 			mlog_errno(ret);
7113 			goto out_commit;
7114 		}
7115 
7116 		/*
7117 		 * Save two copies, one for insert, and one that can
7118 		 * be changed by ocfs2_map_and_dirty_page() below.
7119 		 */
7120 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7121 
7122 		/*
7123 		 * Non sparse file systems zero on extend, so no need
7124 		 * to do that now.
7125 		 */
7126 		if (!ocfs2_sparse_alloc(osb) &&
7127 		    PAGE_SIZE < osb->s_clustersize)
7128 			end = PAGE_SIZE;
7129 
7130 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7131 		if (ret) {
7132 			mlog_errno(ret);
7133 			need_free = 1;
7134 			goto out_commit;
7135 		}
7136 
7137 		/*
7138 		 * This should populate the 1st page for us and mark
7139 		 * it up to date.
7140 		 */
7141 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7142 		if (ret) {
7143 			mlog_errno(ret);
7144 			need_free = 1;
7145 			goto out_unlock;
7146 		}
7147 
7148 		page_end = PAGE_SIZE;
7149 		if (PAGE_SIZE > osb->s_clustersize)
7150 			page_end = osb->s_clustersize;
7151 
7152 		for (i = 0; i < num_pages; i++)
7153 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7154 						 pages[i], i > 0, &phys);
7155 	}
7156 
7157 	spin_lock(&oi->ip_lock);
7158 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7159 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7160 	spin_unlock(&oi->ip_lock);
7161 
7162 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7163 	ocfs2_dinode_new_extent_list(inode, di);
7164 
7165 	ocfs2_journal_dirty(handle, di_bh);
7166 
7167 	if (has_data) {
7168 		/*
7169 		 * An error at this point should be extremely rare. If
7170 		 * this proves to be false, we could always re-build
7171 		 * the in-inode data from our pages.
7172 		 */
7173 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7174 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7175 		if (ret) {
7176 			mlog_errno(ret);
7177 			need_free = 1;
7178 			goto out_unlock;
7179 		}
7180 
7181 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7182 	}
7183 
7184 out_unlock:
7185 	if (pages)
7186 		ocfs2_unlock_and_free_pages(pages, num_pages);
7187 
7188 out_commit:
7189 	if (ret < 0 && did_quota)
7190 		dquot_free_space_nodirty(inode,
7191 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7192 
7193 	if (need_free) {
7194 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7195 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7196 					bit_off, num);
7197 		else
7198 			ocfs2_free_clusters(handle,
7199 					data_ac->ac_inode,
7200 					data_ac->ac_bh,
7201 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7202 					num);
7203 	}
7204 
7205 	ocfs2_commit_trans(osb, handle);
7206 
7207 out:
7208 	if (data_ac)
7209 		ocfs2_free_alloc_context(data_ac);
7210 free_pages:
7211 	kfree(pages);
7212 	return ret;
7213 }
7214 
7215 /*
7216  * It is expected, that by the time you call this function,
7217  * inode->i_size and fe->i_size have been adjusted.
7218  *
7219  * WARNING: This will kfree the truncate context
7220  */
7221 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7222 			  struct inode *inode,
7223 			  struct buffer_head *di_bh)
7224 {
7225 	int status = 0, i, flags = 0;
7226 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7227 	u64 blkno = 0;
7228 	struct ocfs2_extent_list *el;
7229 	struct ocfs2_extent_rec *rec;
7230 	struct ocfs2_path *path = NULL;
7231 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7232 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7233 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7234 	struct ocfs2_extent_tree et;
7235 	struct ocfs2_cached_dealloc_ctxt dealloc;
7236 	struct ocfs2_refcount_tree *ref_tree = NULL;
7237 
7238 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7239 	ocfs2_init_dealloc_ctxt(&dealloc);
7240 
7241 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7242 						     i_size_read(inode));
7243 
7244 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7245 			      ocfs2_journal_access_di);
7246 	if (!path) {
7247 		status = -ENOMEM;
7248 		mlog_errno(status);
7249 		goto bail;
7250 	}
7251 
7252 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7253 
7254 start:
7255 	/*
7256 	 * Check that we still have allocation to delete.
7257 	 */
7258 	if (OCFS2_I(inode)->ip_clusters == 0) {
7259 		status = 0;
7260 		goto bail;
7261 	}
7262 
7263 	/*
7264 	 * Truncate always works against the rightmost tree branch.
7265 	 */
7266 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7267 	if (status) {
7268 		mlog_errno(status);
7269 		goto bail;
7270 	}
7271 
7272 	trace_ocfs2_commit_truncate(
7273 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7274 		new_highest_cpos,
7275 		OCFS2_I(inode)->ip_clusters,
7276 		path->p_tree_depth);
7277 
7278 	/*
7279 	 * By now, el will point to the extent list on the bottom most
7280 	 * portion of this tree. Only the tail record is considered in
7281 	 * each pass.
7282 	 *
7283 	 * We handle the following cases, in order:
7284 	 * - empty extent: delete the remaining branch
7285 	 * - remove the entire record
7286 	 * - remove a partial record
7287 	 * - no record needs to be removed (truncate has completed)
7288 	 */
7289 	el = path_leaf_el(path);
7290 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7291 		ocfs2_error(inode->i_sb,
7292 			    "Inode %llu has empty extent block at %llu\n",
7293 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7294 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7295 		status = -EROFS;
7296 		goto bail;
7297 	}
7298 
7299 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7300 	rec = &el->l_recs[i];
7301 	flags = rec->e_flags;
7302 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7303 
7304 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7305 		/*
7306 		 * Lower levels depend on this never happening, but it's best
7307 		 * to check it up here before changing the tree.
7308 		*/
7309 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7310 			mlog(ML_ERROR, "Inode %lu has an empty "
7311 				    "extent record, depth %u\n", inode->i_ino,
7312 				    le16_to_cpu(root_el->l_tree_depth));
7313 			status = ocfs2_remove_rightmost_empty_extent(osb,
7314 					&et, path, &dealloc);
7315 			if (status) {
7316 				mlog_errno(status);
7317 				goto bail;
7318 			}
7319 
7320 			ocfs2_reinit_path(path, 1);
7321 			goto start;
7322 		} else {
7323 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7324 			trunc_len = 0;
7325 			blkno = 0;
7326 		}
7327 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7328 		/*
7329 		 * Truncate entire record.
7330 		 */
7331 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7332 		trunc_len = ocfs2_rec_clusters(el, rec);
7333 		blkno = le64_to_cpu(rec->e_blkno);
7334 	} else if (range > new_highest_cpos) {
7335 		/*
7336 		 * Partial truncate. it also should be
7337 		 * the last truncate we're doing.
7338 		 */
7339 		trunc_cpos = new_highest_cpos;
7340 		trunc_len = range - new_highest_cpos;
7341 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7342 		blkno = le64_to_cpu(rec->e_blkno) +
7343 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7344 	} else {
7345 		/*
7346 		 * Truncate completed, leave happily.
7347 		 */
7348 		status = 0;
7349 		goto bail;
7350 	}
7351 
7352 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7353 
7354 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7355 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7356 				&ref_tree, NULL);
7357 		if (status) {
7358 			mlog_errno(status);
7359 			goto bail;
7360 		}
7361 	}
7362 
7363 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7364 					  phys_cpos, trunc_len, flags, &dealloc,
7365 					  refcount_loc, true);
7366 	if (status < 0) {
7367 		mlog_errno(status);
7368 		goto bail;
7369 	}
7370 
7371 	ocfs2_reinit_path(path, 1);
7372 
7373 	/*
7374 	 * The check above will catch the case where we've truncated
7375 	 * away all allocation.
7376 	 */
7377 	goto start;
7378 
7379 bail:
7380 	if (ref_tree)
7381 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7382 
7383 	ocfs2_schedule_truncate_log_flush(osb, 1);
7384 
7385 	ocfs2_run_deallocs(osb, &dealloc);
7386 
7387 	ocfs2_free_path(path);
7388 
7389 	return status;
7390 }
7391 
7392 /*
7393  * 'start' is inclusive, 'end' is not.
7394  */
7395 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7396 			  unsigned int start, unsigned int end, int trunc)
7397 {
7398 	int ret;
7399 	unsigned int numbytes;
7400 	handle_t *handle;
7401 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7402 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7403 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7404 
7405 	/* No need to punch hole beyond i_size. */
7406 	if (start >= i_size_read(inode))
7407 		return 0;
7408 
7409 	if (end > i_size_read(inode))
7410 		end = i_size_read(inode);
7411 
7412 	BUG_ON(start > end);
7413 
7414 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7415 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7416 	    !ocfs2_supports_inline_data(osb)) {
7417 		ocfs2_error(inode->i_sb,
7418 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7419 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7420 			    le16_to_cpu(di->i_dyn_features),
7421 			    OCFS2_I(inode)->ip_dyn_features,
7422 			    osb->s_feature_incompat);
7423 		ret = -EROFS;
7424 		goto out;
7425 	}
7426 
7427 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7428 	if (IS_ERR(handle)) {
7429 		ret = PTR_ERR(handle);
7430 		mlog_errno(ret);
7431 		goto out;
7432 	}
7433 
7434 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7435 				      OCFS2_JOURNAL_ACCESS_WRITE);
7436 	if (ret) {
7437 		mlog_errno(ret);
7438 		goto out_commit;
7439 	}
7440 
7441 	numbytes = end - start;
7442 	memset(idata->id_data + start, 0, numbytes);
7443 
7444 	/*
7445 	 * No need to worry about the data page here - it's been
7446 	 * truncated already and inline data doesn't need it for
7447 	 * pushing zero's to disk, so we'll let readpage pick it up
7448 	 * later.
7449 	 */
7450 	if (trunc) {
7451 		i_size_write(inode, start);
7452 		di->i_size = cpu_to_le64(start);
7453 	}
7454 
7455 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7456 	inode->i_ctime = inode->i_mtime = current_time(inode);
7457 
7458 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7459 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7460 
7461 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7462 	ocfs2_journal_dirty(handle, di_bh);
7463 
7464 out_commit:
7465 	ocfs2_commit_trans(osb, handle);
7466 
7467 out:
7468 	return ret;
7469 }
7470 
7471 static int ocfs2_trim_extent(struct super_block *sb,
7472 			     struct ocfs2_group_desc *gd,
7473 			     u64 group, u32 start, u32 count)
7474 {
7475 	u64 discard, bcount;
7476 	struct ocfs2_super *osb = OCFS2_SB(sb);
7477 
7478 	bcount = ocfs2_clusters_to_blocks(sb, count);
7479 	discard = ocfs2_clusters_to_blocks(sb, start);
7480 
7481 	/*
7482 	 * For the first cluster group, the gd->bg_blkno is not at the start
7483 	 * of the group, but at an offset from the start. If we add it while
7484 	 * calculating discard for first group, we will wrongly start fstrim a
7485 	 * few blocks after the desried start block and the range can cross
7486 	 * over into the next cluster group. So, add it only if this is not
7487 	 * the first cluster group.
7488 	 */
7489 	if (group != osb->first_cluster_group_blkno)
7490 		discard += le64_to_cpu(gd->bg_blkno);
7491 
7492 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7493 
7494 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7495 }
7496 
7497 static int ocfs2_trim_group(struct super_block *sb,
7498 			    struct ocfs2_group_desc *gd, u64 group,
7499 			    u32 start, u32 max, u32 minbits)
7500 {
7501 	int ret = 0, count = 0, next;
7502 	void *bitmap = gd->bg_bitmap;
7503 
7504 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7505 		return 0;
7506 
7507 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7508 			       start, max, minbits);
7509 
7510 	while (start < max) {
7511 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7512 		if (start >= max)
7513 			break;
7514 		next = ocfs2_find_next_bit(bitmap, max, start);
7515 
7516 		if ((next - start) >= minbits) {
7517 			ret = ocfs2_trim_extent(sb, gd, group,
7518 						start, next - start);
7519 			if (ret < 0) {
7520 				mlog_errno(ret);
7521 				break;
7522 			}
7523 			count += next - start;
7524 		}
7525 		start = next + 1;
7526 
7527 		if (fatal_signal_pending(current)) {
7528 			count = -ERESTARTSYS;
7529 			break;
7530 		}
7531 
7532 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7533 			break;
7534 	}
7535 
7536 	if (ret < 0)
7537 		count = ret;
7538 
7539 	return count;
7540 }
7541 
7542 static
7543 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7544 {
7545 	struct ocfs2_super *osb = OCFS2_SB(sb);
7546 	u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7547 	int ret, cnt;
7548 	u32 first_bit, last_bit, minlen;
7549 	struct buffer_head *main_bm_bh = NULL;
7550 	struct inode *main_bm_inode = NULL;
7551 	struct buffer_head *gd_bh = NULL;
7552 	struct ocfs2_dinode *main_bm;
7553 	struct ocfs2_group_desc *gd = NULL;
7554 
7555 	start = range->start >> osb->s_clustersize_bits;
7556 	len = range->len >> osb->s_clustersize_bits;
7557 	minlen = range->minlen >> osb->s_clustersize_bits;
7558 
7559 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7560 		return -EINVAL;
7561 
7562 	trace_ocfs2_trim_mainbm(start, len, minlen);
7563 
7564 next_group:
7565 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7566 						    GLOBAL_BITMAP_SYSTEM_INODE,
7567 						    OCFS2_INVALID_SLOT);
7568 	if (!main_bm_inode) {
7569 		ret = -EIO;
7570 		mlog_errno(ret);
7571 		goto out;
7572 	}
7573 
7574 	inode_lock(main_bm_inode);
7575 
7576 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7577 	if (ret < 0) {
7578 		mlog_errno(ret);
7579 		goto out_mutex;
7580 	}
7581 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7582 
7583 	/*
7584 	 * Do some check before trim the first group.
7585 	 */
7586 	if (!group) {
7587 		if (start >= le32_to_cpu(main_bm->i_clusters)) {
7588 			ret = -EINVAL;
7589 			goto out_unlock;
7590 		}
7591 
7592 		if (start + len > le32_to_cpu(main_bm->i_clusters))
7593 			len = le32_to_cpu(main_bm->i_clusters) - start;
7594 
7595 		/*
7596 		 * Determine first and last group to examine based on
7597 		 * start and len
7598 		 */
7599 		first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7600 		if (first_group == osb->first_cluster_group_blkno)
7601 			first_bit = start;
7602 		else
7603 			first_bit = start - ocfs2_blocks_to_clusters(sb,
7604 								first_group);
7605 		last_group = ocfs2_which_cluster_group(main_bm_inode,
7606 						       start + len - 1);
7607 		group = first_group;
7608 	}
7609 
7610 	do {
7611 		if (first_bit + len >= osb->bitmap_cpg)
7612 			last_bit = osb->bitmap_cpg;
7613 		else
7614 			last_bit = first_bit + len;
7615 
7616 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7617 						  main_bm, group,
7618 						  &gd_bh);
7619 		if (ret < 0) {
7620 			mlog_errno(ret);
7621 			break;
7622 		}
7623 
7624 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7625 		cnt = ocfs2_trim_group(sb, gd, group,
7626 				       first_bit, last_bit, minlen);
7627 		brelse(gd_bh);
7628 		gd_bh = NULL;
7629 		if (cnt < 0) {
7630 			ret = cnt;
7631 			mlog_errno(ret);
7632 			break;
7633 		}
7634 
7635 		trimmed += cnt;
7636 		len -= osb->bitmap_cpg - first_bit;
7637 		first_bit = 0;
7638 		if (group == osb->first_cluster_group_blkno)
7639 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7640 		else
7641 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7642 	} while (0);
7643 
7644 out_unlock:
7645 	ocfs2_inode_unlock(main_bm_inode, 0);
7646 	brelse(main_bm_bh);
7647 	main_bm_bh = NULL;
7648 out_mutex:
7649 	inode_unlock(main_bm_inode);
7650 	iput(main_bm_inode);
7651 
7652 	/*
7653 	 * If all the groups trim are not done or failed, but we should release
7654 	 * main_bm related locks for avoiding the current IO starve, then go to
7655 	 * trim the next group
7656 	 */
7657 	if (ret >= 0 && group <= last_group)
7658 		goto next_group;
7659 out:
7660 	range->len = trimmed * sb->s_blocksize;
7661 	return ret;
7662 }
7663 
7664 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7665 {
7666 	int ret;
7667 	struct ocfs2_super *osb = OCFS2_SB(sb);
7668 	struct ocfs2_trim_fs_info info, *pinfo = NULL;
7669 
7670 	ocfs2_trim_fs_lock_res_init(osb);
7671 
7672 	trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7673 
7674 	ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7675 	if (ret < 0) {
7676 		if (ret != -EAGAIN) {
7677 			mlog_errno(ret);
7678 			ocfs2_trim_fs_lock_res_uninit(osb);
7679 			return ret;
7680 		}
7681 
7682 		mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7683 		     "finish, which is running from another node.\n",
7684 		     osb->dev_str);
7685 		ret = ocfs2_trim_fs_lock(osb, &info, 0);
7686 		if (ret < 0) {
7687 			mlog_errno(ret);
7688 			ocfs2_trim_fs_lock_res_uninit(osb);
7689 			return ret;
7690 		}
7691 
7692 		if (info.tf_valid && info.tf_success &&
7693 		    info.tf_start == range->start &&
7694 		    info.tf_len == range->len &&
7695 		    info.tf_minlen == range->minlen) {
7696 			/* Avoid sending duplicated trim to a shared device */
7697 			mlog(ML_NOTICE, "The same trim on device (%s) was "
7698 			     "just done from node (%u), return.\n",
7699 			     osb->dev_str, info.tf_nodenum);
7700 			range->len = info.tf_trimlen;
7701 			goto out;
7702 		}
7703 	}
7704 
7705 	info.tf_nodenum = osb->node_num;
7706 	info.tf_start = range->start;
7707 	info.tf_len = range->len;
7708 	info.tf_minlen = range->minlen;
7709 
7710 	ret = ocfs2_trim_mainbm(sb, range);
7711 
7712 	info.tf_trimlen = range->len;
7713 	info.tf_success = (ret < 0 ? 0 : 1);
7714 	pinfo = &info;
7715 out:
7716 	ocfs2_trim_fs_unlock(osb, pinfo);
7717 	ocfs2_trim_fs_lock_res_uninit(osb);
7718 	return ret;
7719 }
7720