1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * alloc.c 6 * 7 * Extent allocs and frees 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/types.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/swap.h> 17 #include <linux/quotaops.h> 18 #include <linux/blkdev.h> 19 #include <linux/sched/signal.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "aops.h" 27 #include "blockcheck.h" 28 #include "dlmglue.h" 29 #include "extent_map.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "suballoc.h" 34 #include "sysfile.h" 35 #include "file.h" 36 #include "super.h" 37 #include "uptodate.h" 38 #include "xattr.h" 39 #include "refcounttree.h" 40 #include "ocfs2_trace.h" 41 42 #include "buffer_head_io.h" 43 44 enum ocfs2_contig_type { 45 CONTIG_NONE = 0, 46 CONTIG_LEFT, 47 CONTIG_RIGHT, 48 CONTIG_LEFTRIGHT, 49 }; 50 51 static enum ocfs2_contig_type 52 ocfs2_extent_rec_contig(struct super_block *sb, 53 struct ocfs2_extent_rec *ext, 54 struct ocfs2_extent_rec *insert_rec); 55 /* 56 * Operations for a specific extent tree type. 57 * 58 * To implement an on-disk btree (extent tree) type in ocfs2, add 59 * an ocfs2_extent_tree_operations structure and the matching 60 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 61 * for the allocation portion of the extent tree. 62 */ 63 struct ocfs2_extent_tree_operations { 64 /* 65 * last_eb_blk is the block number of the right most leaf extent 66 * block. Most on-disk structures containing an extent tree store 67 * this value for fast access. The ->eo_set_last_eb_blk() and 68 * ->eo_get_last_eb_blk() operations access this value. They are 69 * both required. 70 */ 71 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 72 u64 blkno); 73 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 74 75 /* 76 * The on-disk structure usually keeps track of how many total 77 * clusters are stored in this extent tree. This function updates 78 * that value. new_clusters is the delta, and must be 79 * added to the total. Required. 80 */ 81 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 82 u32 new_clusters); 83 84 /* 85 * If this extent tree is supported by an extent map, insert 86 * a record into the map. 87 */ 88 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 89 struct ocfs2_extent_rec *rec); 90 91 /* 92 * If this extent tree is supported by an extent map, truncate the 93 * map to clusters, 94 */ 95 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 96 u32 clusters); 97 98 /* 99 * If ->eo_insert_check() exists, it is called before rec is 100 * inserted into the extent tree. It is optional. 101 */ 102 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 103 struct ocfs2_extent_rec *rec); 104 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 105 106 /* 107 * -------------------------------------------------------------- 108 * The remaining are internal to ocfs2_extent_tree and don't have 109 * accessor functions 110 */ 111 112 /* 113 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 114 * It is required. 115 */ 116 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 117 118 /* 119 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 120 * it exists. If it does not, et->et_max_leaf_clusters is set 121 * to 0 (unlimited). Optional. 122 */ 123 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 124 125 /* 126 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 127 * are contiguous or not. Optional. Don't need to set it if use 128 * ocfs2_extent_rec as the tree leaf. 129 */ 130 enum ocfs2_contig_type 131 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 132 struct ocfs2_extent_rec *ext, 133 struct ocfs2_extent_rec *insert_rec); 134 }; 135 136 137 /* 138 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 139 * in the methods. 140 */ 141 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno); 144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 145 u32 clusters); 146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 147 struct ocfs2_extent_rec *rec); 148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 149 u32 clusters); 150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 151 struct ocfs2_extent_rec *rec); 152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 154 155 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 156 struct ocfs2_extent_tree *et, 157 struct buffer_head **new_eb_bh, 158 int blk_wanted, int *blk_given); 159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 160 161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 162 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 163 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 164 .eo_update_clusters = ocfs2_dinode_update_clusters, 165 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 166 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 167 .eo_insert_check = ocfs2_dinode_insert_check, 168 .eo_sanity_check = ocfs2_dinode_sanity_check, 169 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 170 }; 171 172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 173 u64 blkno) 174 { 175 struct ocfs2_dinode *di = et->et_object; 176 177 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 178 di->i_last_eb_blk = cpu_to_le64(blkno); 179 } 180 181 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 182 { 183 struct ocfs2_dinode *di = et->et_object; 184 185 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 186 return le64_to_cpu(di->i_last_eb_blk); 187 } 188 189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 190 u32 clusters) 191 { 192 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 193 struct ocfs2_dinode *di = et->et_object; 194 195 le32_add_cpu(&di->i_clusters, clusters); 196 spin_lock(&oi->ip_lock); 197 oi->ip_clusters = le32_to_cpu(di->i_clusters); 198 spin_unlock(&oi->ip_lock); 199 } 200 201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 202 struct ocfs2_extent_rec *rec) 203 { 204 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 205 206 ocfs2_extent_map_insert_rec(inode, rec); 207 } 208 209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 210 u32 clusters) 211 { 212 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 213 214 ocfs2_extent_map_trunc(inode, clusters); 215 } 216 217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 218 struct ocfs2_extent_rec *rec) 219 { 220 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 221 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 222 223 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 224 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 225 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 226 "Device %s, asking for sparse allocation: inode %llu, " 227 "cpos %u, clusters %u\n", 228 osb->dev_str, 229 (unsigned long long)oi->ip_blkno, 230 rec->e_cpos, oi->ip_clusters); 231 232 return 0; 233 } 234 235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 236 { 237 struct ocfs2_dinode *di = et->et_object; 238 239 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 240 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 241 242 return 0; 243 } 244 245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 246 { 247 struct ocfs2_dinode *di = et->et_object; 248 249 et->et_root_el = &di->id2.i_list; 250 } 251 252 253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 254 { 255 struct ocfs2_xattr_value_buf *vb = et->et_object; 256 257 et->et_root_el = &vb->vb_xv->xr_list; 258 } 259 260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 261 u64 blkno) 262 { 263 struct ocfs2_xattr_value_buf *vb = et->et_object; 264 265 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 266 } 267 268 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 269 { 270 struct ocfs2_xattr_value_buf *vb = et->et_object; 271 272 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 273 } 274 275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 276 u32 clusters) 277 { 278 struct ocfs2_xattr_value_buf *vb = et->et_object; 279 280 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 281 } 282 283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 284 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 285 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 286 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 287 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 288 }; 289 290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 291 { 292 struct ocfs2_xattr_block *xb = et->et_object; 293 294 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 295 } 296 297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 298 { 299 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 300 et->et_max_leaf_clusters = 301 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 302 } 303 304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 305 u64 blkno) 306 { 307 struct ocfs2_xattr_block *xb = et->et_object; 308 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 309 310 xt->xt_last_eb_blk = cpu_to_le64(blkno); 311 } 312 313 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 314 { 315 struct ocfs2_xattr_block *xb = et->et_object; 316 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 317 318 return le64_to_cpu(xt->xt_last_eb_blk); 319 } 320 321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 322 u32 clusters) 323 { 324 struct ocfs2_xattr_block *xb = et->et_object; 325 326 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 327 } 328 329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 330 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 331 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 332 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 333 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 334 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 335 }; 336 337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 338 u64 blkno) 339 { 340 struct ocfs2_dx_root_block *dx_root = et->et_object; 341 342 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 343 } 344 345 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 346 { 347 struct ocfs2_dx_root_block *dx_root = et->et_object; 348 349 return le64_to_cpu(dx_root->dr_last_eb_blk); 350 } 351 352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 353 u32 clusters) 354 { 355 struct ocfs2_dx_root_block *dx_root = et->et_object; 356 357 le32_add_cpu(&dx_root->dr_clusters, clusters); 358 } 359 360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 361 { 362 struct ocfs2_dx_root_block *dx_root = et->et_object; 363 364 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 365 366 return 0; 367 } 368 369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 370 { 371 struct ocfs2_dx_root_block *dx_root = et->et_object; 372 373 et->et_root_el = &dx_root->dr_list; 374 } 375 376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 377 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 378 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 379 .eo_update_clusters = ocfs2_dx_root_update_clusters, 380 .eo_sanity_check = ocfs2_dx_root_sanity_check, 381 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 382 }; 383 384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 385 { 386 struct ocfs2_refcount_block *rb = et->et_object; 387 388 et->et_root_el = &rb->rf_list; 389 } 390 391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 392 u64 blkno) 393 { 394 struct ocfs2_refcount_block *rb = et->et_object; 395 396 rb->rf_last_eb_blk = cpu_to_le64(blkno); 397 } 398 399 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 400 { 401 struct ocfs2_refcount_block *rb = et->et_object; 402 403 return le64_to_cpu(rb->rf_last_eb_blk); 404 } 405 406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 407 u32 clusters) 408 { 409 struct ocfs2_refcount_block *rb = et->et_object; 410 411 le32_add_cpu(&rb->rf_clusters, clusters); 412 } 413 414 static enum ocfs2_contig_type 415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 416 struct ocfs2_extent_rec *ext, 417 struct ocfs2_extent_rec *insert_rec) 418 { 419 return CONTIG_NONE; 420 } 421 422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 423 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 424 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 425 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 426 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 427 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 428 }; 429 430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 431 struct ocfs2_caching_info *ci, 432 struct buffer_head *bh, 433 ocfs2_journal_access_func access, 434 void *obj, 435 const struct ocfs2_extent_tree_operations *ops) 436 { 437 et->et_ops = ops; 438 et->et_root_bh = bh; 439 et->et_ci = ci; 440 et->et_root_journal_access = access; 441 if (!obj) 442 obj = (void *)bh->b_data; 443 et->et_object = obj; 444 et->et_dealloc = NULL; 445 446 et->et_ops->eo_fill_root_el(et); 447 if (!et->et_ops->eo_fill_max_leaf_clusters) 448 et->et_max_leaf_clusters = 0; 449 else 450 et->et_ops->eo_fill_max_leaf_clusters(et); 451 } 452 453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 454 struct ocfs2_caching_info *ci, 455 struct buffer_head *bh) 456 { 457 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 458 NULL, &ocfs2_dinode_et_ops); 459 } 460 461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 462 struct ocfs2_caching_info *ci, 463 struct buffer_head *bh) 464 { 465 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 466 NULL, &ocfs2_xattr_tree_et_ops); 467 } 468 469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 470 struct ocfs2_caching_info *ci, 471 struct ocfs2_xattr_value_buf *vb) 472 { 473 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 474 &ocfs2_xattr_value_et_ops); 475 } 476 477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 478 struct ocfs2_caching_info *ci, 479 struct buffer_head *bh) 480 { 481 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 482 NULL, &ocfs2_dx_root_et_ops); 483 } 484 485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 486 struct ocfs2_caching_info *ci, 487 struct buffer_head *bh) 488 { 489 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 490 NULL, &ocfs2_refcount_tree_et_ops); 491 } 492 493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 494 u64 new_last_eb_blk) 495 { 496 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 497 } 498 499 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 500 { 501 return et->et_ops->eo_get_last_eb_blk(et); 502 } 503 504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 505 u32 clusters) 506 { 507 et->et_ops->eo_update_clusters(et, clusters); 508 } 509 510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 511 struct ocfs2_extent_rec *rec) 512 { 513 if (et->et_ops->eo_extent_map_insert) 514 et->et_ops->eo_extent_map_insert(et, rec); 515 } 516 517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 518 u32 clusters) 519 { 520 if (et->et_ops->eo_extent_map_truncate) 521 et->et_ops->eo_extent_map_truncate(et, clusters); 522 } 523 524 static inline int ocfs2_et_root_journal_access(handle_t *handle, 525 struct ocfs2_extent_tree *et, 526 int type) 527 { 528 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 529 type); 530 } 531 532 static inline enum ocfs2_contig_type 533 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 534 struct ocfs2_extent_rec *rec, 535 struct ocfs2_extent_rec *insert_rec) 536 { 537 if (et->et_ops->eo_extent_contig) 538 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 539 540 return ocfs2_extent_rec_contig( 541 ocfs2_metadata_cache_get_super(et->et_ci), 542 rec, insert_rec); 543 } 544 545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 546 struct ocfs2_extent_rec *rec) 547 { 548 int ret = 0; 549 550 if (et->et_ops->eo_insert_check) 551 ret = et->et_ops->eo_insert_check(et, rec); 552 return ret; 553 } 554 555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 556 { 557 int ret = 0; 558 559 if (et->et_ops->eo_sanity_check) 560 ret = et->et_ops->eo_sanity_check(et); 561 return ret; 562 } 563 564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 565 struct ocfs2_extent_block *eb); 566 static void ocfs2_adjust_rightmost_records(handle_t *handle, 567 struct ocfs2_extent_tree *et, 568 struct ocfs2_path *path, 569 struct ocfs2_extent_rec *insert_rec); 570 /* 571 * Reset the actual path elements so that we can re-use the structure 572 * to build another path. Generally, this involves freeing the buffer 573 * heads. 574 */ 575 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 576 { 577 int i, start = 0, depth = 0; 578 struct ocfs2_path_item *node; 579 580 if (keep_root) 581 start = 1; 582 583 for(i = start; i < path_num_items(path); i++) { 584 node = &path->p_node[i]; 585 586 brelse(node->bh); 587 node->bh = NULL; 588 node->el = NULL; 589 } 590 591 /* 592 * Tree depth may change during truncate, or insert. If we're 593 * keeping the root extent list, then make sure that our path 594 * structure reflects the proper depth. 595 */ 596 if (keep_root) 597 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 598 else 599 path_root_access(path) = NULL; 600 601 path->p_tree_depth = depth; 602 } 603 604 void ocfs2_free_path(struct ocfs2_path *path) 605 { 606 if (path) { 607 ocfs2_reinit_path(path, 0); 608 kfree(path); 609 } 610 } 611 612 /* 613 * All the elements of src into dest. After this call, src could be freed 614 * without affecting dest. 615 * 616 * Both paths should have the same root. Any non-root elements of dest 617 * will be freed. 618 */ 619 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 620 { 621 int i; 622 623 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 624 BUG_ON(path_root_el(dest) != path_root_el(src)); 625 BUG_ON(path_root_access(dest) != path_root_access(src)); 626 627 ocfs2_reinit_path(dest, 1); 628 629 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 630 dest->p_node[i].bh = src->p_node[i].bh; 631 dest->p_node[i].el = src->p_node[i].el; 632 633 if (dest->p_node[i].bh) 634 get_bh(dest->p_node[i].bh); 635 } 636 } 637 638 /* 639 * Make the *dest path the same as src and re-initialize src path to 640 * have a root only. 641 */ 642 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 643 { 644 int i; 645 646 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 647 BUG_ON(path_root_access(dest) != path_root_access(src)); 648 649 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 650 brelse(dest->p_node[i].bh); 651 652 dest->p_node[i].bh = src->p_node[i].bh; 653 dest->p_node[i].el = src->p_node[i].el; 654 655 src->p_node[i].bh = NULL; 656 src->p_node[i].el = NULL; 657 } 658 } 659 660 /* 661 * Insert an extent block at given index. 662 * 663 * This will not take an additional reference on eb_bh. 664 */ 665 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 666 struct buffer_head *eb_bh) 667 { 668 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 669 670 /* 671 * Right now, no root bh is an extent block, so this helps 672 * catch code errors with dinode trees. The assertion can be 673 * safely removed if we ever need to insert extent block 674 * structures at the root. 675 */ 676 BUG_ON(index == 0); 677 678 path->p_node[index].bh = eb_bh; 679 path->p_node[index].el = &eb->h_list; 680 } 681 682 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 683 struct ocfs2_extent_list *root_el, 684 ocfs2_journal_access_func access) 685 { 686 struct ocfs2_path *path; 687 688 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 689 690 path = kzalloc(sizeof(*path), GFP_NOFS); 691 if (path) { 692 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 693 get_bh(root_bh); 694 path_root_bh(path) = root_bh; 695 path_root_el(path) = root_el; 696 path_root_access(path) = access; 697 } 698 699 return path; 700 } 701 702 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 703 { 704 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 705 path_root_access(path)); 706 } 707 708 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 709 { 710 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 711 et->et_root_journal_access); 712 } 713 714 /* 715 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 716 * otherwise it's the root_access function. 717 * 718 * I don't like the way this function's name looks next to 719 * ocfs2_journal_access_path(), but I don't have a better one. 720 */ 721 int ocfs2_path_bh_journal_access(handle_t *handle, 722 struct ocfs2_caching_info *ci, 723 struct ocfs2_path *path, 724 int idx) 725 { 726 ocfs2_journal_access_func access = path_root_access(path); 727 728 if (!access) 729 access = ocfs2_journal_access; 730 731 if (idx) 732 access = ocfs2_journal_access_eb; 733 734 return access(handle, ci, path->p_node[idx].bh, 735 OCFS2_JOURNAL_ACCESS_WRITE); 736 } 737 738 /* 739 * Convenience function to journal all components in a path. 740 */ 741 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 742 handle_t *handle, 743 struct ocfs2_path *path) 744 { 745 int i, ret = 0; 746 747 if (!path) 748 goto out; 749 750 for(i = 0; i < path_num_items(path); i++) { 751 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 752 if (ret < 0) { 753 mlog_errno(ret); 754 goto out; 755 } 756 } 757 758 out: 759 return ret; 760 } 761 762 /* 763 * Return the index of the extent record which contains cluster #v_cluster. 764 * -1 is returned if it was not found. 765 * 766 * Should work fine on interior and exterior nodes. 767 */ 768 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 769 { 770 int ret = -1; 771 int i; 772 struct ocfs2_extent_rec *rec; 773 u32 rec_end, rec_start, clusters; 774 775 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 776 rec = &el->l_recs[i]; 777 778 rec_start = le32_to_cpu(rec->e_cpos); 779 clusters = ocfs2_rec_clusters(el, rec); 780 781 rec_end = rec_start + clusters; 782 783 if (v_cluster >= rec_start && v_cluster < rec_end) { 784 ret = i; 785 break; 786 } 787 } 788 789 return ret; 790 } 791 792 /* 793 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 794 * ocfs2_extent_rec_contig only work properly against leaf nodes! 795 */ 796 static int ocfs2_block_extent_contig(struct super_block *sb, 797 struct ocfs2_extent_rec *ext, 798 u64 blkno) 799 { 800 u64 blk_end = le64_to_cpu(ext->e_blkno); 801 802 blk_end += ocfs2_clusters_to_blocks(sb, 803 le16_to_cpu(ext->e_leaf_clusters)); 804 805 return blkno == blk_end; 806 } 807 808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 809 struct ocfs2_extent_rec *right) 810 { 811 u32 left_range; 812 813 left_range = le32_to_cpu(left->e_cpos) + 814 le16_to_cpu(left->e_leaf_clusters); 815 816 return (left_range == le32_to_cpu(right->e_cpos)); 817 } 818 819 static enum ocfs2_contig_type 820 ocfs2_extent_rec_contig(struct super_block *sb, 821 struct ocfs2_extent_rec *ext, 822 struct ocfs2_extent_rec *insert_rec) 823 { 824 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 825 826 /* 827 * Refuse to coalesce extent records with different flag 828 * fields - we don't want to mix unwritten extents with user 829 * data. 830 */ 831 if (ext->e_flags != insert_rec->e_flags) 832 return CONTIG_NONE; 833 834 if (ocfs2_extents_adjacent(ext, insert_rec) && 835 ocfs2_block_extent_contig(sb, ext, blkno)) 836 return CONTIG_RIGHT; 837 838 blkno = le64_to_cpu(ext->e_blkno); 839 if (ocfs2_extents_adjacent(insert_rec, ext) && 840 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 841 return CONTIG_LEFT; 842 843 return CONTIG_NONE; 844 } 845 846 /* 847 * NOTE: We can have pretty much any combination of contiguousness and 848 * appending. 849 * 850 * The usefulness of APPEND_TAIL is more in that it lets us know that 851 * we'll have to update the path to that leaf. 852 */ 853 enum ocfs2_append_type { 854 APPEND_NONE = 0, 855 APPEND_TAIL, 856 }; 857 858 enum ocfs2_split_type { 859 SPLIT_NONE = 0, 860 SPLIT_LEFT, 861 SPLIT_RIGHT, 862 }; 863 864 struct ocfs2_insert_type { 865 enum ocfs2_split_type ins_split; 866 enum ocfs2_append_type ins_appending; 867 enum ocfs2_contig_type ins_contig; 868 int ins_contig_index; 869 int ins_tree_depth; 870 }; 871 872 struct ocfs2_merge_ctxt { 873 enum ocfs2_contig_type c_contig_type; 874 int c_has_empty_extent; 875 int c_split_covers_rec; 876 }; 877 878 static int ocfs2_validate_extent_block(struct super_block *sb, 879 struct buffer_head *bh) 880 { 881 int rc; 882 struct ocfs2_extent_block *eb = 883 (struct ocfs2_extent_block *)bh->b_data; 884 885 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 886 887 BUG_ON(!buffer_uptodate(bh)); 888 889 /* 890 * If the ecc fails, we return the error but otherwise 891 * leave the filesystem running. We know any error is 892 * local to this block. 893 */ 894 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 895 if (rc) { 896 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 897 (unsigned long long)bh->b_blocknr); 898 return rc; 899 } 900 901 /* 902 * Errors after here are fatal. 903 */ 904 905 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 906 rc = ocfs2_error(sb, 907 "Extent block #%llu has bad signature %.*s\n", 908 (unsigned long long)bh->b_blocknr, 7, 909 eb->h_signature); 910 goto bail; 911 } 912 913 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 914 rc = ocfs2_error(sb, 915 "Extent block #%llu has an invalid h_blkno of %llu\n", 916 (unsigned long long)bh->b_blocknr, 917 (unsigned long long)le64_to_cpu(eb->h_blkno)); 918 goto bail; 919 } 920 921 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 922 rc = ocfs2_error(sb, 923 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 924 (unsigned long long)bh->b_blocknr, 925 le32_to_cpu(eb->h_fs_generation)); 926 bail: 927 return rc; 928 } 929 930 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 931 struct buffer_head **bh) 932 { 933 int rc; 934 struct buffer_head *tmp = *bh; 935 936 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 937 ocfs2_validate_extent_block); 938 939 /* If ocfs2_read_block() got us a new bh, pass it up. */ 940 if (!rc && !*bh) 941 *bh = tmp; 942 943 return rc; 944 } 945 946 947 /* 948 * How many free extents have we got before we need more meta data? 949 */ 950 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 951 { 952 int retval; 953 struct ocfs2_extent_list *el = NULL; 954 struct ocfs2_extent_block *eb; 955 struct buffer_head *eb_bh = NULL; 956 u64 last_eb_blk = 0; 957 958 el = et->et_root_el; 959 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 960 961 if (last_eb_blk) { 962 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 963 &eb_bh); 964 if (retval < 0) { 965 mlog_errno(retval); 966 goto bail; 967 } 968 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 969 el = &eb->h_list; 970 } 971 972 BUG_ON(el->l_tree_depth != 0); 973 974 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 975 bail: 976 brelse(eb_bh); 977 978 trace_ocfs2_num_free_extents(retval); 979 return retval; 980 } 981 982 /* expects array to already be allocated 983 * 984 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 985 * l_count for you 986 */ 987 static int ocfs2_create_new_meta_bhs(handle_t *handle, 988 struct ocfs2_extent_tree *et, 989 int wanted, 990 struct ocfs2_alloc_context *meta_ac, 991 struct buffer_head *bhs[]) 992 { 993 int count, status, i; 994 u16 suballoc_bit_start; 995 u32 num_got; 996 u64 suballoc_loc, first_blkno; 997 struct ocfs2_super *osb = 998 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 999 struct ocfs2_extent_block *eb; 1000 1001 count = 0; 1002 while (count < wanted) { 1003 status = ocfs2_claim_metadata(handle, 1004 meta_ac, 1005 wanted - count, 1006 &suballoc_loc, 1007 &suballoc_bit_start, 1008 &num_got, 1009 &first_blkno); 1010 if (status < 0) { 1011 mlog_errno(status); 1012 goto bail; 1013 } 1014 1015 for(i = count; i < (num_got + count); i++) { 1016 bhs[i] = sb_getblk(osb->sb, first_blkno); 1017 if (bhs[i] == NULL) { 1018 status = -ENOMEM; 1019 mlog_errno(status); 1020 goto bail; 1021 } 1022 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1023 1024 status = ocfs2_journal_access_eb(handle, et->et_ci, 1025 bhs[i], 1026 OCFS2_JOURNAL_ACCESS_CREATE); 1027 if (status < 0) { 1028 mlog_errno(status); 1029 goto bail; 1030 } 1031 1032 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1033 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1034 /* Ok, setup the minimal stuff here. */ 1035 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1036 eb->h_blkno = cpu_to_le64(first_blkno); 1037 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1038 eb->h_suballoc_slot = 1039 cpu_to_le16(meta_ac->ac_alloc_slot); 1040 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1041 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1042 eb->h_list.l_count = 1043 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1044 1045 suballoc_bit_start++; 1046 first_blkno++; 1047 1048 /* We'll also be dirtied by the caller, so 1049 * this isn't absolutely necessary. */ 1050 ocfs2_journal_dirty(handle, bhs[i]); 1051 } 1052 1053 count += num_got; 1054 } 1055 1056 status = 0; 1057 bail: 1058 if (status < 0) { 1059 for(i = 0; i < wanted; i++) { 1060 brelse(bhs[i]); 1061 bhs[i] = NULL; 1062 } 1063 } 1064 return status; 1065 } 1066 1067 /* 1068 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1069 * 1070 * Returns the sum of the rightmost extent rec logical offset and 1071 * cluster count. 1072 * 1073 * ocfs2_add_branch() uses this to determine what logical cluster 1074 * value should be populated into the leftmost new branch records. 1075 * 1076 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1077 * value for the new topmost tree record. 1078 */ 1079 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1080 { 1081 int i; 1082 1083 i = le16_to_cpu(el->l_next_free_rec) - 1; 1084 1085 return le32_to_cpu(el->l_recs[i].e_cpos) + 1086 ocfs2_rec_clusters(el, &el->l_recs[i]); 1087 } 1088 1089 /* 1090 * Change range of the branches in the right most path according to the leaf 1091 * extent block's rightmost record. 1092 */ 1093 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1094 struct ocfs2_extent_tree *et) 1095 { 1096 int status; 1097 struct ocfs2_path *path = NULL; 1098 struct ocfs2_extent_list *el; 1099 struct ocfs2_extent_rec *rec; 1100 1101 path = ocfs2_new_path_from_et(et); 1102 if (!path) { 1103 status = -ENOMEM; 1104 return status; 1105 } 1106 1107 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1108 if (status < 0) { 1109 mlog_errno(status); 1110 goto out; 1111 } 1112 1113 status = ocfs2_extend_trans(handle, path_num_items(path)); 1114 if (status < 0) { 1115 mlog_errno(status); 1116 goto out; 1117 } 1118 1119 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1120 if (status < 0) { 1121 mlog_errno(status); 1122 goto out; 1123 } 1124 1125 el = path_leaf_el(path); 1126 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1127 1128 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1129 1130 out: 1131 ocfs2_free_path(path); 1132 return status; 1133 } 1134 1135 /* 1136 * Add an entire tree branch to our inode. eb_bh is the extent block 1137 * to start at, if we don't want to start the branch at the root 1138 * structure. 1139 * 1140 * last_eb_bh is required as we have to update it's next_leaf pointer 1141 * for the new last extent block. 1142 * 1143 * the new branch will be 'empty' in the sense that every block will 1144 * contain a single record with cluster count == 0. 1145 */ 1146 static int ocfs2_add_branch(handle_t *handle, 1147 struct ocfs2_extent_tree *et, 1148 struct buffer_head *eb_bh, 1149 struct buffer_head **last_eb_bh, 1150 struct ocfs2_alloc_context *meta_ac) 1151 { 1152 int status, new_blocks, i, block_given = 0; 1153 u64 next_blkno, new_last_eb_blk; 1154 struct buffer_head *bh; 1155 struct buffer_head **new_eb_bhs = NULL; 1156 struct ocfs2_extent_block *eb; 1157 struct ocfs2_extent_list *eb_el; 1158 struct ocfs2_extent_list *el; 1159 u32 new_cpos, root_end; 1160 1161 BUG_ON(!last_eb_bh || !*last_eb_bh); 1162 1163 if (eb_bh) { 1164 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1165 el = &eb->h_list; 1166 } else 1167 el = et->et_root_el; 1168 1169 /* we never add a branch to a leaf. */ 1170 BUG_ON(!el->l_tree_depth); 1171 1172 new_blocks = le16_to_cpu(el->l_tree_depth); 1173 1174 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1175 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1176 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1177 1178 /* 1179 * If there is a gap before the root end and the real end 1180 * of the righmost leaf block, we need to remove the gap 1181 * between new_cpos and root_end first so that the tree 1182 * is consistent after we add a new branch(it will start 1183 * from new_cpos). 1184 */ 1185 if (root_end > new_cpos) { 1186 trace_ocfs2_adjust_rightmost_branch( 1187 (unsigned long long) 1188 ocfs2_metadata_cache_owner(et->et_ci), 1189 root_end, new_cpos); 1190 1191 status = ocfs2_adjust_rightmost_branch(handle, et); 1192 if (status) { 1193 mlog_errno(status); 1194 goto bail; 1195 } 1196 } 1197 1198 /* allocate the number of new eb blocks we need */ 1199 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1200 GFP_KERNEL); 1201 if (!new_eb_bhs) { 1202 status = -ENOMEM; 1203 mlog_errno(status); 1204 goto bail; 1205 } 1206 1207 /* Firstyly, try to reuse dealloc since we have already estimated how 1208 * many extent blocks we may use. 1209 */ 1210 if (!ocfs2_is_dealloc_empty(et)) { 1211 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1212 new_eb_bhs, new_blocks, 1213 &block_given); 1214 if (status < 0) { 1215 mlog_errno(status); 1216 goto bail; 1217 } 1218 } 1219 1220 BUG_ON(block_given > new_blocks); 1221 1222 if (block_given < new_blocks) { 1223 BUG_ON(!meta_ac); 1224 status = ocfs2_create_new_meta_bhs(handle, et, 1225 new_blocks - block_given, 1226 meta_ac, 1227 &new_eb_bhs[block_given]); 1228 if (status < 0) { 1229 mlog_errno(status); 1230 goto bail; 1231 } 1232 } 1233 1234 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1235 * linked with the rest of the tree. 1236 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1237 * 1238 * when we leave the loop, new_last_eb_blk will point to the 1239 * newest leaf, and next_blkno will point to the topmost extent 1240 * block. */ 1241 next_blkno = new_last_eb_blk = 0; 1242 for(i = 0; i < new_blocks; i++) { 1243 bh = new_eb_bhs[i]; 1244 eb = (struct ocfs2_extent_block *) bh->b_data; 1245 /* ocfs2_create_new_meta_bhs() should create it right! */ 1246 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1247 eb_el = &eb->h_list; 1248 1249 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1250 OCFS2_JOURNAL_ACCESS_CREATE); 1251 if (status < 0) { 1252 mlog_errno(status); 1253 goto bail; 1254 } 1255 1256 eb->h_next_leaf_blk = 0; 1257 eb_el->l_tree_depth = cpu_to_le16(i); 1258 eb_el->l_next_free_rec = cpu_to_le16(1); 1259 /* 1260 * This actually counts as an empty extent as 1261 * c_clusters == 0 1262 */ 1263 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1264 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1265 /* 1266 * eb_el isn't always an interior node, but even leaf 1267 * nodes want a zero'd flags and reserved field so 1268 * this gets the whole 32 bits regardless of use. 1269 */ 1270 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1271 if (!eb_el->l_tree_depth) 1272 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1273 1274 ocfs2_journal_dirty(handle, bh); 1275 next_blkno = le64_to_cpu(eb->h_blkno); 1276 } 1277 1278 /* This is a bit hairy. We want to update up to three blocks 1279 * here without leaving any of them in an inconsistent state 1280 * in case of error. We don't have to worry about 1281 * journal_dirty erroring as it won't unless we've aborted the 1282 * handle (in which case we would never be here) so reserving 1283 * the write with journal_access is all we need to do. */ 1284 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1285 OCFS2_JOURNAL_ACCESS_WRITE); 1286 if (status < 0) { 1287 mlog_errno(status); 1288 goto bail; 1289 } 1290 status = ocfs2_et_root_journal_access(handle, et, 1291 OCFS2_JOURNAL_ACCESS_WRITE); 1292 if (status < 0) { 1293 mlog_errno(status); 1294 goto bail; 1295 } 1296 if (eb_bh) { 1297 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1298 OCFS2_JOURNAL_ACCESS_WRITE); 1299 if (status < 0) { 1300 mlog_errno(status); 1301 goto bail; 1302 } 1303 } 1304 1305 /* Link the new branch into the rest of the tree (el will 1306 * either be on the root_bh, or the extent block passed in. */ 1307 i = le16_to_cpu(el->l_next_free_rec); 1308 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1309 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1310 el->l_recs[i].e_int_clusters = 0; 1311 le16_add_cpu(&el->l_next_free_rec, 1); 1312 1313 /* fe needs a new last extent block pointer, as does the 1314 * next_leaf on the previously last-extent-block. */ 1315 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1316 1317 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1318 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1319 1320 ocfs2_journal_dirty(handle, *last_eb_bh); 1321 ocfs2_journal_dirty(handle, et->et_root_bh); 1322 if (eb_bh) 1323 ocfs2_journal_dirty(handle, eb_bh); 1324 1325 /* 1326 * Some callers want to track the rightmost leaf so pass it 1327 * back here. 1328 */ 1329 brelse(*last_eb_bh); 1330 get_bh(new_eb_bhs[0]); 1331 *last_eb_bh = new_eb_bhs[0]; 1332 1333 status = 0; 1334 bail: 1335 if (new_eb_bhs) { 1336 for (i = 0; i < new_blocks; i++) 1337 brelse(new_eb_bhs[i]); 1338 kfree(new_eb_bhs); 1339 } 1340 1341 return status; 1342 } 1343 1344 /* 1345 * adds another level to the allocation tree. 1346 * returns back the new extent block so you can add a branch to it 1347 * after this call. 1348 */ 1349 static int ocfs2_shift_tree_depth(handle_t *handle, 1350 struct ocfs2_extent_tree *et, 1351 struct ocfs2_alloc_context *meta_ac, 1352 struct buffer_head **ret_new_eb_bh) 1353 { 1354 int status, i, block_given = 0; 1355 u32 new_clusters; 1356 struct buffer_head *new_eb_bh = NULL; 1357 struct ocfs2_extent_block *eb; 1358 struct ocfs2_extent_list *root_el; 1359 struct ocfs2_extent_list *eb_el; 1360 1361 if (!ocfs2_is_dealloc_empty(et)) { 1362 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1363 &new_eb_bh, 1, 1364 &block_given); 1365 } else if (meta_ac) { 1366 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1367 &new_eb_bh); 1368 1369 } else { 1370 BUG(); 1371 } 1372 1373 if (status < 0) { 1374 mlog_errno(status); 1375 goto bail; 1376 } 1377 1378 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1379 /* ocfs2_create_new_meta_bhs() should create it right! */ 1380 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1381 1382 eb_el = &eb->h_list; 1383 root_el = et->et_root_el; 1384 1385 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1386 OCFS2_JOURNAL_ACCESS_CREATE); 1387 if (status < 0) { 1388 mlog_errno(status); 1389 goto bail; 1390 } 1391 1392 /* copy the root extent list data into the new extent block */ 1393 eb_el->l_tree_depth = root_el->l_tree_depth; 1394 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1395 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1396 eb_el->l_recs[i] = root_el->l_recs[i]; 1397 1398 ocfs2_journal_dirty(handle, new_eb_bh); 1399 1400 status = ocfs2_et_root_journal_access(handle, et, 1401 OCFS2_JOURNAL_ACCESS_WRITE); 1402 if (status < 0) { 1403 mlog_errno(status); 1404 goto bail; 1405 } 1406 1407 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1408 1409 /* update root_bh now */ 1410 le16_add_cpu(&root_el->l_tree_depth, 1); 1411 root_el->l_recs[0].e_cpos = 0; 1412 root_el->l_recs[0].e_blkno = eb->h_blkno; 1413 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1414 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1415 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1416 root_el->l_next_free_rec = cpu_to_le16(1); 1417 1418 /* If this is our 1st tree depth shift, then last_eb_blk 1419 * becomes the allocated extent block */ 1420 if (root_el->l_tree_depth == cpu_to_le16(1)) 1421 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1422 1423 ocfs2_journal_dirty(handle, et->et_root_bh); 1424 1425 *ret_new_eb_bh = new_eb_bh; 1426 new_eb_bh = NULL; 1427 status = 0; 1428 bail: 1429 brelse(new_eb_bh); 1430 1431 return status; 1432 } 1433 1434 /* 1435 * Should only be called when there is no space left in any of the 1436 * leaf nodes. What we want to do is find the lowest tree depth 1437 * non-leaf extent block with room for new records. There are three 1438 * valid results of this search: 1439 * 1440 * 1) a lowest extent block is found, then we pass it back in 1441 * *lowest_eb_bh and return '0' 1442 * 1443 * 2) the search fails to find anything, but the root_el has room. We 1444 * pass NULL back in *lowest_eb_bh, but still return '0' 1445 * 1446 * 3) the search fails to find anything AND the root_el is full, in 1447 * which case we return > 0 1448 * 1449 * return status < 0 indicates an error. 1450 */ 1451 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1452 struct buffer_head **target_bh) 1453 { 1454 int status = 0, i; 1455 u64 blkno; 1456 struct ocfs2_extent_block *eb; 1457 struct ocfs2_extent_list *el; 1458 struct buffer_head *bh = NULL; 1459 struct buffer_head *lowest_bh = NULL; 1460 1461 *target_bh = NULL; 1462 1463 el = et->et_root_el; 1464 1465 while(le16_to_cpu(el->l_tree_depth) > 1) { 1466 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1467 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1468 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1469 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1470 goto bail; 1471 } 1472 i = le16_to_cpu(el->l_next_free_rec) - 1; 1473 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1474 if (!blkno) { 1475 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1476 "Owner %llu has extent list where extent # %d has no physical block start\n", 1477 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1478 goto bail; 1479 } 1480 1481 brelse(bh); 1482 bh = NULL; 1483 1484 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1485 if (status < 0) { 1486 mlog_errno(status); 1487 goto bail; 1488 } 1489 1490 eb = (struct ocfs2_extent_block *) bh->b_data; 1491 el = &eb->h_list; 1492 1493 if (le16_to_cpu(el->l_next_free_rec) < 1494 le16_to_cpu(el->l_count)) { 1495 brelse(lowest_bh); 1496 lowest_bh = bh; 1497 get_bh(lowest_bh); 1498 } 1499 } 1500 1501 /* If we didn't find one and the fe doesn't have any room, 1502 * then return '1' */ 1503 el = et->et_root_el; 1504 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1505 status = 1; 1506 1507 *target_bh = lowest_bh; 1508 bail: 1509 brelse(bh); 1510 1511 return status; 1512 } 1513 1514 /* 1515 * Grow a b-tree so that it has more records. 1516 * 1517 * We might shift the tree depth in which case existing paths should 1518 * be considered invalid. 1519 * 1520 * Tree depth after the grow is returned via *final_depth. 1521 * 1522 * *last_eb_bh will be updated by ocfs2_add_branch(). 1523 */ 1524 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1525 int *final_depth, struct buffer_head **last_eb_bh, 1526 struct ocfs2_alloc_context *meta_ac) 1527 { 1528 int ret, shift; 1529 struct ocfs2_extent_list *el = et->et_root_el; 1530 int depth = le16_to_cpu(el->l_tree_depth); 1531 struct buffer_head *bh = NULL; 1532 1533 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1534 1535 shift = ocfs2_find_branch_target(et, &bh); 1536 if (shift < 0) { 1537 ret = shift; 1538 mlog_errno(ret); 1539 goto out; 1540 } 1541 1542 /* We traveled all the way to the bottom of the allocation tree 1543 * and didn't find room for any more extents - we need to add 1544 * another tree level */ 1545 if (shift) { 1546 BUG_ON(bh); 1547 trace_ocfs2_grow_tree( 1548 (unsigned long long) 1549 ocfs2_metadata_cache_owner(et->et_ci), 1550 depth); 1551 1552 /* ocfs2_shift_tree_depth will return us a buffer with 1553 * the new extent block (so we can pass that to 1554 * ocfs2_add_branch). */ 1555 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1556 if (ret < 0) { 1557 mlog_errno(ret); 1558 goto out; 1559 } 1560 depth++; 1561 if (depth == 1) { 1562 /* 1563 * Special case: we have room now if we shifted from 1564 * tree_depth 0, so no more work needs to be done. 1565 * 1566 * We won't be calling add_branch, so pass 1567 * back *last_eb_bh as the new leaf. At depth 1568 * zero, it should always be null so there's 1569 * no reason to brelse. 1570 */ 1571 BUG_ON(*last_eb_bh); 1572 get_bh(bh); 1573 *last_eb_bh = bh; 1574 goto out; 1575 } 1576 } 1577 1578 /* call ocfs2_add_branch to add the final part of the tree with 1579 * the new data. */ 1580 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1581 meta_ac); 1582 if (ret < 0) 1583 mlog_errno(ret); 1584 1585 out: 1586 if (final_depth) 1587 *final_depth = depth; 1588 brelse(bh); 1589 return ret; 1590 } 1591 1592 /* 1593 * This function will discard the rightmost extent record. 1594 */ 1595 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1596 { 1597 int next_free = le16_to_cpu(el->l_next_free_rec); 1598 int count = le16_to_cpu(el->l_count); 1599 unsigned int num_bytes; 1600 1601 BUG_ON(!next_free); 1602 /* This will cause us to go off the end of our extent list. */ 1603 BUG_ON(next_free >= count); 1604 1605 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1606 1607 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1608 } 1609 1610 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1611 struct ocfs2_extent_rec *insert_rec) 1612 { 1613 int i, insert_index, next_free, has_empty, num_bytes; 1614 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1615 struct ocfs2_extent_rec *rec; 1616 1617 next_free = le16_to_cpu(el->l_next_free_rec); 1618 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1619 1620 BUG_ON(!next_free); 1621 1622 /* The tree code before us didn't allow enough room in the leaf. */ 1623 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1624 1625 /* 1626 * The easiest way to approach this is to just remove the 1627 * empty extent and temporarily decrement next_free. 1628 */ 1629 if (has_empty) { 1630 /* 1631 * If next_free was 1 (only an empty extent), this 1632 * loop won't execute, which is fine. We still want 1633 * the decrement above to happen. 1634 */ 1635 for(i = 0; i < (next_free - 1); i++) 1636 el->l_recs[i] = el->l_recs[i+1]; 1637 1638 next_free--; 1639 } 1640 1641 /* 1642 * Figure out what the new record index should be. 1643 */ 1644 for(i = 0; i < next_free; i++) { 1645 rec = &el->l_recs[i]; 1646 1647 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1648 break; 1649 } 1650 insert_index = i; 1651 1652 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1653 has_empty, next_free, 1654 le16_to_cpu(el->l_count)); 1655 1656 BUG_ON(insert_index < 0); 1657 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1658 BUG_ON(insert_index > next_free); 1659 1660 /* 1661 * No need to memmove if we're just adding to the tail. 1662 */ 1663 if (insert_index != next_free) { 1664 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1665 1666 num_bytes = next_free - insert_index; 1667 num_bytes *= sizeof(struct ocfs2_extent_rec); 1668 memmove(&el->l_recs[insert_index + 1], 1669 &el->l_recs[insert_index], 1670 num_bytes); 1671 } 1672 1673 /* 1674 * Either we had an empty extent, and need to re-increment or 1675 * there was no empty extent on a non full rightmost leaf node, 1676 * in which case we still need to increment. 1677 */ 1678 next_free++; 1679 el->l_next_free_rec = cpu_to_le16(next_free); 1680 /* 1681 * Make sure none of the math above just messed up our tree. 1682 */ 1683 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1684 1685 el->l_recs[insert_index] = *insert_rec; 1686 1687 } 1688 1689 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1690 { 1691 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1692 1693 BUG_ON(num_recs == 0); 1694 1695 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1696 num_recs--; 1697 size = num_recs * sizeof(struct ocfs2_extent_rec); 1698 memmove(&el->l_recs[0], &el->l_recs[1], size); 1699 memset(&el->l_recs[num_recs], 0, 1700 sizeof(struct ocfs2_extent_rec)); 1701 el->l_next_free_rec = cpu_to_le16(num_recs); 1702 } 1703 } 1704 1705 /* 1706 * Create an empty extent record . 1707 * 1708 * l_next_free_rec may be updated. 1709 * 1710 * If an empty extent already exists do nothing. 1711 */ 1712 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1713 { 1714 int next_free = le16_to_cpu(el->l_next_free_rec); 1715 1716 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1717 1718 if (next_free == 0) 1719 goto set_and_inc; 1720 1721 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1722 return; 1723 1724 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1725 "Asked to create an empty extent in a full list:\n" 1726 "count = %u, tree depth = %u", 1727 le16_to_cpu(el->l_count), 1728 le16_to_cpu(el->l_tree_depth)); 1729 1730 ocfs2_shift_records_right(el); 1731 1732 set_and_inc: 1733 le16_add_cpu(&el->l_next_free_rec, 1); 1734 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1735 } 1736 1737 /* 1738 * For a rotation which involves two leaf nodes, the "root node" is 1739 * the lowest level tree node which contains a path to both leafs. This 1740 * resulting set of information can be used to form a complete "subtree" 1741 * 1742 * This function is passed two full paths from the dinode down to a 1743 * pair of adjacent leaves. It's task is to figure out which path 1744 * index contains the subtree root - this can be the root index itself 1745 * in a worst-case rotation. 1746 * 1747 * The array index of the subtree root is passed back. 1748 */ 1749 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1750 struct ocfs2_path *left, 1751 struct ocfs2_path *right) 1752 { 1753 int i = 0; 1754 1755 /* 1756 * Check that the caller passed in two paths from the same tree. 1757 */ 1758 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1759 1760 do { 1761 i++; 1762 1763 /* 1764 * The caller didn't pass two adjacent paths. 1765 */ 1766 mlog_bug_on_msg(i > left->p_tree_depth, 1767 "Owner %llu, left depth %u, right depth %u\n" 1768 "left leaf blk %llu, right leaf blk %llu\n", 1769 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1770 left->p_tree_depth, right->p_tree_depth, 1771 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1772 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1773 } while (left->p_node[i].bh->b_blocknr == 1774 right->p_node[i].bh->b_blocknr); 1775 1776 return i - 1; 1777 } 1778 1779 typedef void (path_insert_t)(void *, struct buffer_head *); 1780 1781 /* 1782 * Traverse a btree path in search of cpos, starting at root_el. 1783 * 1784 * This code can be called with a cpos larger than the tree, in which 1785 * case it will return the rightmost path. 1786 */ 1787 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1788 struct ocfs2_extent_list *root_el, u32 cpos, 1789 path_insert_t *func, void *data) 1790 { 1791 int i, ret = 0; 1792 u32 range; 1793 u64 blkno; 1794 struct buffer_head *bh = NULL; 1795 struct ocfs2_extent_block *eb; 1796 struct ocfs2_extent_list *el; 1797 struct ocfs2_extent_rec *rec; 1798 1799 el = root_el; 1800 while (el->l_tree_depth) { 1801 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1802 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1803 "Owner %llu has empty extent list at depth %u\n", 1804 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1805 le16_to_cpu(el->l_tree_depth)); 1806 ret = -EROFS; 1807 goto out; 1808 1809 } 1810 1811 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1812 rec = &el->l_recs[i]; 1813 1814 /* 1815 * In the case that cpos is off the allocation 1816 * tree, this should just wind up returning the 1817 * rightmost record. 1818 */ 1819 range = le32_to_cpu(rec->e_cpos) + 1820 ocfs2_rec_clusters(el, rec); 1821 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1822 break; 1823 } 1824 1825 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1826 if (blkno == 0) { 1827 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1828 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1829 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1830 le16_to_cpu(el->l_tree_depth), i); 1831 ret = -EROFS; 1832 goto out; 1833 } 1834 1835 brelse(bh); 1836 bh = NULL; 1837 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1838 if (ret) { 1839 mlog_errno(ret); 1840 goto out; 1841 } 1842 1843 eb = (struct ocfs2_extent_block *) bh->b_data; 1844 el = &eb->h_list; 1845 1846 if (le16_to_cpu(el->l_next_free_rec) > 1847 le16_to_cpu(el->l_count)) { 1848 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1849 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1850 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1851 (unsigned long long)bh->b_blocknr, 1852 le16_to_cpu(el->l_next_free_rec), 1853 le16_to_cpu(el->l_count)); 1854 ret = -EROFS; 1855 goto out; 1856 } 1857 1858 if (func) 1859 func(data, bh); 1860 } 1861 1862 out: 1863 /* 1864 * Catch any trailing bh that the loop didn't handle. 1865 */ 1866 brelse(bh); 1867 1868 return ret; 1869 } 1870 1871 /* 1872 * Given an initialized path (that is, it has a valid root extent 1873 * list), this function will traverse the btree in search of the path 1874 * which would contain cpos. 1875 * 1876 * The path traveled is recorded in the path structure. 1877 * 1878 * Note that this will not do any comparisons on leaf node extent 1879 * records, so it will work fine in the case that we just added a tree 1880 * branch. 1881 */ 1882 struct find_path_data { 1883 int index; 1884 struct ocfs2_path *path; 1885 }; 1886 static void find_path_ins(void *data, struct buffer_head *bh) 1887 { 1888 struct find_path_data *fp = data; 1889 1890 get_bh(bh); 1891 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1892 fp->index++; 1893 } 1894 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1895 struct ocfs2_path *path, u32 cpos) 1896 { 1897 struct find_path_data data; 1898 1899 data.index = 1; 1900 data.path = path; 1901 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1902 find_path_ins, &data); 1903 } 1904 1905 static void find_leaf_ins(void *data, struct buffer_head *bh) 1906 { 1907 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1908 struct ocfs2_extent_list *el = &eb->h_list; 1909 struct buffer_head **ret = data; 1910 1911 /* We want to retain only the leaf block. */ 1912 if (le16_to_cpu(el->l_tree_depth) == 0) { 1913 get_bh(bh); 1914 *ret = bh; 1915 } 1916 } 1917 /* 1918 * Find the leaf block in the tree which would contain cpos. No 1919 * checking of the actual leaf is done. 1920 * 1921 * Some paths want to call this instead of allocating a path structure 1922 * and calling ocfs2_find_path(). 1923 * 1924 * This function doesn't handle non btree extent lists. 1925 */ 1926 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1927 struct ocfs2_extent_list *root_el, u32 cpos, 1928 struct buffer_head **leaf_bh) 1929 { 1930 int ret; 1931 struct buffer_head *bh = NULL; 1932 1933 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1934 if (ret) { 1935 mlog_errno(ret); 1936 goto out; 1937 } 1938 1939 *leaf_bh = bh; 1940 out: 1941 return ret; 1942 } 1943 1944 /* 1945 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1946 * 1947 * Basically, we've moved stuff around at the bottom of the tree and 1948 * we need to fix up the extent records above the changes to reflect 1949 * the new changes. 1950 * 1951 * left_rec: the record on the left. 1952 * right_rec: the record to the right of left_rec 1953 * right_child_el: is the child list pointed to by right_rec 1954 * 1955 * By definition, this only works on interior nodes. 1956 */ 1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1958 struct ocfs2_extent_rec *right_rec, 1959 struct ocfs2_extent_list *right_child_el) 1960 { 1961 u32 left_clusters, right_end; 1962 1963 /* 1964 * Interior nodes never have holes. Their cpos is the cpos of 1965 * the leftmost record in their child list. Their cluster 1966 * count covers the full theoretical range of their child list 1967 * - the range between their cpos and the cpos of the record 1968 * immediately to their right. 1969 */ 1970 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1971 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1972 BUG_ON(right_child_el->l_tree_depth); 1973 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1974 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1975 } 1976 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1977 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1978 1979 /* 1980 * Calculate the rightmost cluster count boundary before 1981 * moving cpos - we will need to adjust clusters after 1982 * updating e_cpos to keep the same highest cluster count. 1983 */ 1984 right_end = le32_to_cpu(right_rec->e_cpos); 1985 right_end += le32_to_cpu(right_rec->e_int_clusters); 1986 1987 right_rec->e_cpos = left_rec->e_cpos; 1988 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1989 1990 right_end -= le32_to_cpu(right_rec->e_cpos); 1991 right_rec->e_int_clusters = cpu_to_le32(right_end); 1992 } 1993 1994 /* 1995 * Adjust the adjacent root node records involved in a 1996 * rotation. left_el_blkno is passed in as a key so that we can easily 1997 * find it's index in the root list. 1998 */ 1999 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2000 struct ocfs2_extent_list *left_el, 2001 struct ocfs2_extent_list *right_el, 2002 u64 left_el_blkno) 2003 { 2004 int i; 2005 2006 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2007 le16_to_cpu(left_el->l_tree_depth)); 2008 2009 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2010 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2011 break; 2012 } 2013 2014 /* 2015 * The path walking code should have never returned a root and 2016 * two paths which are not adjacent. 2017 */ 2018 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2019 2020 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2021 &root_el->l_recs[i + 1], right_el); 2022 } 2023 2024 /* 2025 * We've changed a leaf block (in right_path) and need to reflect that 2026 * change back up the subtree. 2027 * 2028 * This happens in multiple places: 2029 * - When we've moved an extent record from the left path leaf to the right 2030 * path leaf to make room for an empty extent in the left path leaf. 2031 * - When our insert into the right path leaf is at the leftmost edge 2032 * and requires an update of the path immediately to it's left. This 2033 * can occur at the end of some types of rotation and appending inserts. 2034 * - When we've adjusted the last extent record in the left path leaf and the 2035 * 1st extent record in the right path leaf during cross extent block merge. 2036 */ 2037 static void ocfs2_complete_edge_insert(handle_t *handle, 2038 struct ocfs2_path *left_path, 2039 struct ocfs2_path *right_path, 2040 int subtree_index) 2041 { 2042 int i, idx; 2043 struct ocfs2_extent_list *el, *left_el, *right_el; 2044 struct ocfs2_extent_rec *left_rec, *right_rec; 2045 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2046 2047 /* 2048 * Update the counts and position values within all the 2049 * interior nodes to reflect the leaf rotation we just did. 2050 * 2051 * The root node is handled below the loop. 2052 * 2053 * We begin the loop with right_el and left_el pointing to the 2054 * leaf lists and work our way up. 2055 * 2056 * NOTE: within this loop, left_el and right_el always refer 2057 * to the *child* lists. 2058 */ 2059 left_el = path_leaf_el(left_path); 2060 right_el = path_leaf_el(right_path); 2061 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2062 trace_ocfs2_complete_edge_insert(i); 2063 2064 /* 2065 * One nice property of knowing that all of these 2066 * nodes are below the root is that we only deal with 2067 * the leftmost right node record and the rightmost 2068 * left node record. 2069 */ 2070 el = left_path->p_node[i].el; 2071 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2072 left_rec = &el->l_recs[idx]; 2073 2074 el = right_path->p_node[i].el; 2075 right_rec = &el->l_recs[0]; 2076 2077 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2078 2079 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2080 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2081 2082 /* 2083 * Setup our list pointers now so that the current 2084 * parents become children in the next iteration. 2085 */ 2086 left_el = left_path->p_node[i].el; 2087 right_el = right_path->p_node[i].el; 2088 } 2089 2090 /* 2091 * At the root node, adjust the two adjacent records which 2092 * begin our path to the leaves. 2093 */ 2094 2095 el = left_path->p_node[subtree_index].el; 2096 left_el = left_path->p_node[subtree_index + 1].el; 2097 right_el = right_path->p_node[subtree_index + 1].el; 2098 2099 ocfs2_adjust_root_records(el, left_el, right_el, 2100 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2101 2102 root_bh = left_path->p_node[subtree_index].bh; 2103 2104 ocfs2_journal_dirty(handle, root_bh); 2105 } 2106 2107 static int ocfs2_rotate_subtree_right(handle_t *handle, 2108 struct ocfs2_extent_tree *et, 2109 struct ocfs2_path *left_path, 2110 struct ocfs2_path *right_path, 2111 int subtree_index) 2112 { 2113 int ret, i; 2114 struct buffer_head *right_leaf_bh; 2115 struct buffer_head *left_leaf_bh = NULL; 2116 struct buffer_head *root_bh; 2117 struct ocfs2_extent_list *right_el, *left_el; 2118 struct ocfs2_extent_rec move_rec; 2119 2120 left_leaf_bh = path_leaf_bh(left_path); 2121 left_el = path_leaf_el(left_path); 2122 2123 if (left_el->l_next_free_rec != left_el->l_count) { 2124 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2125 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2126 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2127 (unsigned long long)left_leaf_bh->b_blocknr, 2128 le16_to_cpu(left_el->l_next_free_rec)); 2129 return -EROFS; 2130 } 2131 2132 /* 2133 * This extent block may already have an empty record, so we 2134 * return early if so. 2135 */ 2136 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2137 return 0; 2138 2139 root_bh = left_path->p_node[subtree_index].bh; 2140 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2141 2142 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2143 subtree_index); 2144 if (ret) { 2145 mlog_errno(ret); 2146 goto out; 2147 } 2148 2149 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2150 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2151 right_path, i); 2152 if (ret) { 2153 mlog_errno(ret); 2154 goto out; 2155 } 2156 2157 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2158 left_path, i); 2159 if (ret) { 2160 mlog_errno(ret); 2161 goto out; 2162 } 2163 } 2164 2165 right_leaf_bh = path_leaf_bh(right_path); 2166 right_el = path_leaf_el(right_path); 2167 2168 /* This is a code error, not a disk corruption. */ 2169 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2170 "because rightmost leaf block %llu is empty\n", 2171 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2172 (unsigned long long)right_leaf_bh->b_blocknr); 2173 2174 ocfs2_create_empty_extent(right_el); 2175 2176 ocfs2_journal_dirty(handle, right_leaf_bh); 2177 2178 /* Do the copy now. */ 2179 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2180 move_rec = left_el->l_recs[i]; 2181 right_el->l_recs[0] = move_rec; 2182 2183 /* 2184 * Clear out the record we just copied and shift everything 2185 * over, leaving an empty extent in the left leaf. 2186 * 2187 * We temporarily subtract from next_free_rec so that the 2188 * shift will lose the tail record (which is now defunct). 2189 */ 2190 le16_add_cpu(&left_el->l_next_free_rec, -1); 2191 ocfs2_shift_records_right(left_el); 2192 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2193 le16_add_cpu(&left_el->l_next_free_rec, 1); 2194 2195 ocfs2_journal_dirty(handle, left_leaf_bh); 2196 2197 ocfs2_complete_edge_insert(handle, left_path, right_path, 2198 subtree_index); 2199 2200 out: 2201 return ret; 2202 } 2203 2204 /* 2205 * Given a full path, determine what cpos value would return us a path 2206 * containing the leaf immediately to the left of the current one. 2207 * 2208 * Will return zero if the path passed in is already the leftmost path. 2209 */ 2210 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2211 struct ocfs2_path *path, u32 *cpos) 2212 { 2213 int i, j, ret = 0; 2214 u64 blkno; 2215 struct ocfs2_extent_list *el; 2216 2217 BUG_ON(path->p_tree_depth == 0); 2218 2219 *cpos = 0; 2220 2221 blkno = path_leaf_bh(path)->b_blocknr; 2222 2223 /* Start at the tree node just above the leaf and work our way up. */ 2224 i = path->p_tree_depth - 1; 2225 while (i >= 0) { 2226 el = path->p_node[i].el; 2227 2228 /* 2229 * Find the extent record just before the one in our 2230 * path. 2231 */ 2232 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2233 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2234 if (j == 0) { 2235 if (i == 0) { 2236 /* 2237 * We've determined that the 2238 * path specified is already 2239 * the leftmost one - return a 2240 * cpos of zero. 2241 */ 2242 goto out; 2243 } 2244 /* 2245 * The leftmost record points to our 2246 * leaf - we need to travel up the 2247 * tree one level. 2248 */ 2249 goto next_node; 2250 } 2251 2252 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2253 *cpos = *cpos + ocfs2_rec_clusters(el, 2254 &el->l_recs[j - 1]); 2255 *cpos = *cpos - 1; 2256 goto out; 2257 } 2258 } 2259 2260 /* 2261 * If we got here, we never found a valid node where 2262 * the tree indicated one should be. 2263 */ 2264 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2265 (unsigned long long)blkno); 2266 ret = -EROFS; 2267 goto out; 2268 2269 next_node: 2270 blkno = path->p_node[i].bh->b_blocknr; 2271 i--; 2272 } 2273 2274 out: 2275 return ret; 2276 } 2277 2278 /* 2279 * Extend the transaction by enough credits to complete the rotation, 2280 * and still leave at least the original number of credits allocated 2281 * to this transaction. 2282 */ 2283 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2284 int op_credits, 2285 struct ocfs2_path *path) 2286 { 2287 int ret = 0; 2288 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2289 2290 if (jbd2_handle_buffer_credits(handle) < credits) 2291 ret = ocfs2_extend_trans(handle, 2292 credits - jbd2_handle_buffer_credits(handle)); 2293 2294 return ret; 2295 } 2296 2297 /* 2298 * Trap the case where we're inserting into the theoretical range past 2299 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2300 * whose cpos is less than ours into the right leaf. 2301 * 2302 * It's only necessary to look at the rightmost record of the left 2303 * leaf because the logic that calls us should ensure that the 2304 * theoretical ranges in the path components above the leaves are 2305 * correct. 2306 */ 2307 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2308 u32 insert_cpos) 2309 { 2310 struct ocfs2_extent_list *left_el; 2311 struct ocfs2_extent_rec *rec; 2312 int next_free; 2313 2314 left_el = path_leaf_el(left_path); 2315 next_free = le16_to_cpu(left_el->l_next_free_rec); 2316 rec = &left_el->l_recs[next_free - 1]; 2317 2318 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2319 return 1; 2320 return 0; 2321 } 2322 2323 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2324 { 2325 int next_free = le16_to_cpu(el->l_next_free_rec); 2326 unsigned int range; 2327 struct ocfs2_extent_rec *rec; 2328 2329 if (next_free == 0) 2330 return 0; 2331 2332 rec = &el->l_recs[0]; 2333 if (ocfs2_is_empty_extent(rec)) { 2334 /* Empty list. */ 2335 if (next_free == 1) 2336 return 0; 2337 rec = &el->l_recs[1]; 2338 } 2339 2340 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2341 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2342 return 1; 2343 return 0; 2344 } 2345 2346 /* 2347 * Rotate all the records in a btree right one record, starting at insert_cpos. 2348 * 2349 * The path to the rightmost leaf should be passed in. 2350 * 2351 * The array is assumed to be large enough to hold an entire path (tree depth). 2352 * 2353 * Upon successful return from this function: 2354 * 2355 * - The 'right_path' array will contain a path to the leaf block 2356 * whose range contains e_cpos. 2357 * - That leaf block will have a single empty extent in list index 0. 2358 * - In the case that the rotation requires a post-insert update, 2359 * *ret_left_path will contain a valid path which can be passed to 2360 * ocfs2_insert_path(). 2361 */ 2362 static int ocfs2_rotate_tree_right(handle_t *handle, 2363 struct ocfs2_extent_tree *et, 2364 enum ocfs2_split_type split, 2365 u32 insert_cpos, 2366 struct ocfs2_path *right_path, 2367 struct ocfs2_path **ret_left_path) 2368 { 2369 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); 2370 u32 cpos; 2371 struct ocfs2_path *left_path = NULL; 2372 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2373 2374 *ret_left_path = NULL; 2375 2376 left_path = ocfs2_new_path_from_path(right_path); 2377 if (!left_path) { 2378 ret = -ENOMEM; 2379 mlog_errno(ret); 2380 goto out; 2381 } 2382 2383 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2384 if (ret) { 2385 mlog_errno(ret); 2386 goto out; 2387 } 2388 2389 trace_ocfs2_rotate_tree_right( 2390 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2391 insert_cpos, cpos); 2392 2393 /* 2394 * What we want to do here is: 2395 * 2396 * 1) Start with the rightmost path. 2397 * 2398 * 2) Determine a path to the leaf block directly to the left 2399 * of that leaf. 2400 * 2401 * 3) Determine the 'subtree root' - the lowest level tree node 2402 * which contains a path to both leaves. 2403 * 2404 * 4) Rotate the subtree. 2405 * 2406 * 5) Find the next subtree by considering the left path to be 2407 * the new right path. 2408 * 2409 * The check at the top of this while loop also accepts 2410 * insert_cpos == cpos because cpos is only a _theoretical_ 2411 * value to get us the left path - insert_cpos might very well 2412 * be filling that hole. 2413 * 2414 * Stop at a cpos of '0' because we either started at the 2415 * leftmost branch (i.e., a tree with one branch and a 2416 * rotation inside of it), or we've gone as far as we can in 2417 * rotating subtrees. 2418 */ 2419 while (cpos && insert_cpos <= cpos) { 2420 trace_ocfs2_rotate_tree_right( 2421 (unsigned long long) 2422 ocfs2_metadata_cache_owner(et->et_ci), 2423 insert_cpos, cpos); 2424 2425 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2426 if (ret) { 2427 mlog_errno(ret); 2428 goto out; 2429 } 2430 2431 mlog_bug_on_msg(path_leaf_bh(left_path) == 2432 path_leaf_bh(right_path), 2433 "Owner %llu: error during insert of %u " 2434 "(left path cpos %u) results in two identical " 2435 "paths ending at %llu\n", 2436 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2437 insert_cpos, cpos, 2438 (unsigned long long) 2439 path_leaf_bh(left_path)->b_blocknr); 2440 2441 if (split == SPLIT_NONE && 2442 ocfs2_rotate_requires_path_adjustment(left_path, 2443 insert_cpos)) { 2444 2445 /* 2446 * We've rotated the tree as much as we 2447 * should. The rest is up to 2448 * ocfs2_insert_path() to complete, after the 2449 * record insertion. We indicate this 2450 * situation by returning the left path. 2451 * 2452 * The reason we don't adjust the records here 2453 * before the record insert is that an error 2454 * later might break the rule where a parent 2455 * record e_cpos will reflect the actual 2456 * e_cpos of the 1st nonempty record of the 2457 * child list. 2458 */ 2459 *ret_left_path = left_path; 2460 goto out_ret_path; 2461 } 2462 2463 start = ocfs2_find_subtree_root(et, left_path, right_path); 2464 2465 trace_ocfs2_rotate_subtree(start, 2466 (unsigned long long) 2467 right_path->p_node[start].bh->b_blocknr, 2468 right_path->p_tree_depth); 2469 2470 ret = ocfs2_extend_rotate_transaction(handle, start, 2471 orig_credits, right_path); 2472 if (ret) { 2473 mlog_errno(ret); 2474 goto out; 2475 } 2476 2477 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2478 right_path, start); 2479 if (ret) { 2480 mlog_errno(ret); 2481 goto out; 2482 } 2483 2484 if (split != SPLIT_NONE && 2485 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2486 insert_cpos)) { 2487 /* 2488 * A rotate moves the rightmost left leaf 2489 * record over to the leftmost right leaf 2490 * slot. If we're doing an extent split 2491 * instead of a real insert, then we have to 2492 * check that the extent to be split wasn't 2493 * just moved over. If it was, then we can 2494 * exit here, passing left_path back - 2495 * ocfs2_split_extent() is smart enough to 2496 * search both leaves. 2497 */ 2498 *ret_left_path = left_path; 2499 goto out_ret_path; 2500 } 2501 2502 /* 2503 * There is no need to re-read the next right path 2504 * as we know that it'll be our current left 2505 * path. Optimize by copying values instead. 2506 */ 2507 ocfs2_mv_path(right_path, left_path); 2508 2509 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2510 if (ret) { 2511 mlog_errno(ret); 2512 goto out; 2513 } 2514 } 2515 2516 out: 2517 ocfs2_free_path(left_path); 2518 2519 out_ret_path: 2520 return ret; 2521 } 2522 2523 static int ocfs2_update_edge_lengths(handle_t *handle, 2524 struct ocfs2_extent_tree *et, 2525 struct ocfs2_path *path) 2526 { 2527 int i, idx, ret; 2528 struct ocfs2_extent_rec *rec; 2529 struct ocfs2_extent_list *el; 2530 struct ocfs2_extent_block *eb; 2531 u32 range; 2532 2533 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2534 if (ret) { 2535 mlog_errno(ret); 2536 goto out; 2537 } 2538 2539 /* Path should always be rightmost. */ 2540 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2541 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2542 2543 el = &eb->h_list; 2544 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2545 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2546 rec = &el->l_recs[idx]; 2547 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2548 2549 for (i = 0; i < path->p_tree_depth; i++) { 2550 el = path->p_node[i].el; 2551 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2552 rec = &el->l_recs[idx]; 2553 2554 rec->e_int_clusters = cpu_to_le32(range); 2555 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2556 2557 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2558 } 2559 out: 2560 return ret; 2561 } 2562 2563 static void ocfs2_unlink_path(handle_t *handle, 2564 struct ocfs2_extent_tree *et, 2565 struct ocfs2_cached_dealloc_ctxt *dealloc, 2566 struct ocfs2_path *path, int unlink_start) 2567 { 2568 int ret, i; 2569 struct ocfs2_extent_block *eb; 2570 struct ocfs2_extent_list *el; 2571 struct buffer_head *bh; 2572 2573 for(i = unlink_start; i < path_num_items(path); i++) { 2574 bh = path->p_node[i].bh; 2575 2576 eb = (struct ocfs2_extent_block *)bh->b_data; 2577 /* 2578 * Not all nodes might have had their final count 2579 * decremented by the caller - handle this here. 2580 */ 2581 el = &eb->h_list; 2582 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2583 mlog(ML_ERROR, 2584 "Inode %llu, attempted to remove extent block " 2585 "%llu with %u records\n", 2586 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2587 (unsigned long long)le64_to_cpu(eb->h_blkno), 2588 le16_to_cpu(el->l_next_free_rec)); 2589 2590 ocfs2_journal_dirty(handle, bh); 2591 ocfs2_remove_from_cache(et->et_ci, bh); 2592 continue; 2593 } 2594 2595 el->l_next_free_rec = 0; 2596 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2597 2598 ocfs2_journal_dirty(handle, bh); 2599 2600 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2601 if (ret) 2602 mlog_errno(ret); 2603 2604 ocfs2_remove_from_cache(et->et_ci, bh); 2605 } 2606 } 2607 2608 static void ocfs2_unlink_subtree(handle_t *handle, 2609 struct ocfs2_extent_tree *et, 2610 struct ocfs2_path *left_path, 2611 struct ocfs2_path *right_path, 2612 int subtree_index, 2613 struct ocfs2_cached_dealloc_ctxt *dealloc) 2614 { 2615 int i; 2616 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2617 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2618 struct ocfs2_extent_block *eb; 2619 2620 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2621 2622 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2623 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2624 break; 2625 2626 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2627 2628 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2629 le16_add_cpu(&root_el->l_next_free_rec, -1); 2630 2631 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2632 eb->h_next_leaf_blk = 0; 2633 2634 ocfs2_journal_dirty(handle, root_bh); 2635 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2636 2637 ocfs2_unlink_path(handle, et, dealloc, right_path, 2638 subtree_index + 1); 2639 } 2640 2641 static int ocfs2_rotate_subtree_left(handle_t *handle, 2642 struct ocfs2_extent_tree *et, 2643 struct ocfs2_path *left_path, 2644 struct ocfs2_path *right_path, 2645 int subtree_index, 2646 struct ocfs2_cached_dealloc_ctxt *dealloc, 2647 int *deleted) 2648 { 2649 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2650 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2651 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2652 struct ocfs2_extent_block *eb; 2653 2654 *deleted = 0; 2655 2656 right_leaf_el = path_leaf_el(right_path); 2657 left_leaf_el = path_leaf_el(left_path); 2658 root_bh = left_path->p_node[subtree_index].bh; 2659 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2660 2661 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2662 return 0; 2663 2664 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2665 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2666 /* 2667 * It's legal for us to proceed if the right leaf is 2668 * the rightmost one and it has an empty extent. There 2669 * are two cases to handle - whether the leaf will be 2670 * empty after removal or not. If the leaf isn't empty 2671 * then just remove the empty extent up front. The 2672 * next block will handle empty leaves by flagging 2673 * them for unlink. 2674 * 2675 * Non rightmost leaves will throw -EAGAIN and the 2676 * caller can manually move the subtree and retry. 2677 */ 2678 2679 if (eb->h_next_leaf_blk != 0ULL) 2680 return -EAGAIN; 2681 2682 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2683 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2684 path_leaf_bh(right_path), 2685 OCFS2_JOURNAL_ACCESS_WRITE); 2686 if (ret) { 2687 mlog_errno(ret); 2688 goto out; 2689 } 2690 2691 ocfs2_remove_empty_extent(right_leaf_el); 2692 } else 2693 right_has_empty = 1; 2694 } 2695 2696 if (eb->h_next_leaf_blk == 0ULL && 2697 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2698 /* 2699 * We have to update i_last_eb_blk during the meta 2700 * data delete. 2701 */ 2702 ret = ocfs2_et_root_journal_access(handle, et, 2703 OCFS2_JOURNAL_ACCESS_WRITE); 2704 if (ret) { 2705 mlog_errno(ret); 2706 goto out; 2707 } 2708 2709 del_right_subtree = 1; 2710 } 2711 2712 /* 2713 * Getting here with an empty extent in the right path implies 2714 * that it's the rightmost path and will be deleted. 2715 */ 2716 BUG_ON(right_has_empty && !del_right_subtree); 2717 2718 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2719 subtree_index); 2720 if (ret) { 2721 mlog_errno(ret); 2722 goto out; 2723 } 2724 2725 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2726 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2727 right_path, i); 2728 if (ret) { 2729 mlog_errno(ret); 2730 goto out; 2731 } 2732 2733 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2734 left_path, i); 2735 if (ret) { 2736 mlog_errno(ret); 2737 goto out; 2738 } 2739 } 2740 2741 if (!right_has_empty) { 2742 /* 2743 * Only do this if we're moving a real 2744 * record. Otherwise, the action is delayed until 2745 * after removal of the right path in which case we 2746 * can do a simple shift to remove the empty extent. 2747 */ 2748 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2749 memset(&right_leaf_el->l_recs[0], 0, 2750 sizeof(struct ocfs2_extent_rec)); 2751 } 2752 if (eb->h_next_leaf_blk == 0ULL) { 2753 /* 2754 * Move recs over to get rid of empty extent, decrease 2755 * next_free. This is allowed to remove the last 2756 * extent in our leaf (setting l_next_free_rec to 2757 * zero) - the delete code below won't care. 2758 */ 2759 ocfs2_remove_empty_extent(right_leaf_el); 2760 } 2761 2762 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2763 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2764 2765 if (del_right_subtree) { 2766 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2767 subtree_index, dealloc); 2768 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2769 if (ret) { 2770 mlog_errno(ret); 2771 goto out; 2772 } 2773 2774 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2775 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2776 2777 /* 2778 * Removal of the extent in the left leaf was skipped 2779 * above so we could delete the right path 2780 * 1st. 2781 */ 2782 if (right_has_empty) 2783 ocfs2_remove_empty_extent(left_leaf_el); 2784 2785 ocfs2_journal_dirty(handle, et_root_bh); 2786 2787 *deleted = 1; 2788 } else 2789 ocfs2_complete_edge_insert(handle, left_path, right_path, 2790 subtree_index); 2791 2792 out: 2793 return ret; 2794 } 2795 2796 /* 2797 * Given a full path, determine what cpos value would return us a path 2798 * containing the leaf immediately to the right of the current one. 2799 * 2800 * Will return zero if the path passed in is already the rightmost path. 2801 * 2802 * This looks similar, but is subtly different to 2803 * ocfs2_find_cpos_for_left_leaf(). 2804 */ 2805 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2806 struct ocfs2_path *path, u32 *cpos) 2807 { 2808 int i, j, ret = 0; 2809 u64 blkno; 2810 struct ocfs2_extent_list *el; 2811 2812 *cpos = 0; 2813 2814 if (path->p_tree_depth == 0) 2815 return 0; 2816 2817 blkno = path_leaf_bh(path)->b_blocknr; 2818 2819 /* Start at the tree node just above the leaf and work our way up. */ 2820 i = path->p_tree_depth - 1; 2821 while (i >= 0) { 2822 int next_free; 2823 2824 el = path->p_node[i].el; 2825 2826 /* 2827 * Find the extent record just after the one in our 2828 * path. 2829 */ 2830 next_free = le16_to_cpu(el->l_next_free_rec); 2831 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2832 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2833 if (j == (next_free - 1)) { 2834 if (i == 0) { 2835 /* 2836 * We've determined that the 2837 * path specified is already 2838 * the rightmost one - return a 2839 * cpos of zero. 2840 */ 2841 goto out; 2842 } 2843 /* 2844 * The rightmost record points to our 2845 * leaf - we need to travel up the 2846 * tree one level. 2847 */ 2848 goto next_node; 2849 } 2850 2851 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2852 goto out; 2853 } 2854 } 2855 2856 /* 2857 * If we got here, we never found a valid node where 2858 * the tree indicated one should be. 2859 */ 2860 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2861 (unsigned long long)blkno); 2862 ret = -EROFS; 2863 goto out; 2864 2865 next_node: 2866 blkno = path->p_node[i].bh->b_blocknr; 2867 i--; 2868 } 2869 2870 out: 2871 return ret; 2872 } 2873 2874 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2875 struct ocfs2_extent_tree *et, 2876 struct ocfs2_path *path) 2877 { 2878 int ret; 2879 struct buffer_head *bh = path_leaf_bh(path); 2880 struct ocfs2_extent_list *el = path_leaf_el(path); 2881 2882 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2883 return 0; 2884 2885 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2886 path_num_items(path) - 1); 2887 if (ret) { 2888 mlog_errno(ret); 2889 goto out; 2890 } 2891 2892 ocfs2_remove_empty_extent(el); 2893 ocfs2_journal_dirty(handle, bh); 2894 2895 out: 2896 return ret; 2897 } 2898 2899 static int __ocfs2_rotate_tree_left(handle_t *handle, 2900 struct ocfs2_extent_tree *et, 2901 int orig_credits, 2902 struct ocfs2_path *path, 2903 struct ocfs2_cached_dealloc_ctxt *dealloc, 2904 struct ocfs2_path **empty_extent_path) 2905 { 2906 int ret, subtree_root, deleted; 2907 u32 right_cpos; 2908 struct ocfs2_path *left_path = NULL; 2909 struct ocfs2_path *right_path = NULL; 2910 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2911 2912 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2913 return 0; 2914 2915 *empty_extent_path = NULL; 2916 2917 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2918 if (ret) { 2919 mlog_errno(ret); 2920 goto out; 2921 } 2922 2923 left_path = ocfs2_new_path_from_path(path); 2924 if (!left_path) { 2925 ret = -ENOMEM; 2926 mlog_errno(ret); 2927 goto out; 2928 } 2929 2930 ocfs2_cp_path(left_path, path); 2931 2932 right_path = ocfs2_new_path_from_path(path); 2933 if (!right_path) { 2934 ret = -ENOMEM; 2935 mlog_errno(ret); 2936 goto out; 2937 } 2938 2939 while (right_cpos) { 2940 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2941 if (ret) { 2942 mlog_errno(ret); 2943 goto out; 2944 } 2945 2946 subtree_root = ocfs2_find_subtree_root(et, left_path, 2947 right_path); 2948 2949 trace_ocfs2_rotate_subtree(subtree_root, 2950 (unsigned long long) 2951 right_path->p_node[subtree_root].bh->b_blocknr, 2952 right_path->p_tree_depth); 2953 2954 ret = ocfs2_extend_rotate_transaction(handle, 0, 2955 orig_credits, left_path); 2956 if (ret) { 2957 mlog_errno(ret); 2958 goto out; 2959 } 2960 2961 /* 2962 * Caller might still want to make changes to the 2963 * tree root, so re-add it to the journal here. 2964 */ 2965 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2966 left_path, 0); 2967 if (ret) { 2968 mlog_errno(ret); 2969 goto out; 2970 } 2971 2972 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2973 right_path, subtree_root, 2974 dealloc, &deleted); 2975 if (ret == -EAGAIN) { 2976 /* 2977 * The rotation has to temporarily stop due to 2978 * the right subtree having an empty 2979 * extent. Pass it back to the caller for a 2980 * fixup. 2981 */ 2982 *empty_extent_path = right_path; 2983 right_path = NULL; 2984 goto out; 2985 } 2986 if (ret) { 2987 mlog_errno(ret); 2988 goto out; 2989 } 2990 2991 /* 2992 * The subtree rotate might have removed records on 2993 * the rightmost edge. If so, then rotation is 2994 * complete. 2995 */ 2996 if (deleted) 2997 break; 2998 2999 ocfs2_mv_path(left_path, right_path); 3000 3001 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3002 &right_cpos); 3003 if (ret) { 3004 mlog_errno(ret); 3005 goto out; 3006 } 3007 } 3008 3009 out: 3010 ocfs2_free_path(right_path); 3011 ocfs2_free_path(left_path); 3012 3013 return ret; 3014 } 3015 3016 static int ocfs2_remove_rightmost_path(handle_t *handle, 3017 struct ocfs2_extent_tree *et, 3018 struct ocfs2_path *path, 3019 struct ocfs2_cached_dealloc_ctxt *dealloc) 3020 { 3021 int ret, subtree_index; 3022 u32 cpos; 3023 struct ocfs2_path *left_path = NULL; 3024 struct ocfs2_extent_block *eb; 3025 struct ocfs2_extent_list *el; 3026 3027 ret = ocfs2_et_sanity_check(et); 3028 if (ret) 3029 goto out; 3030 3031 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3032 if (ret) { 3033 mlog_errno(ret); 3034 goto out; 3035 } 3036 3037 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3038 path, &cpos); 3039 if (ret) { 3040 mlog_errno(ret); 3041 goto out; 3042 } 3043 3044 if (cpos) { 3045 /* 3046 * We have a path to the left of this one - it needs 3047 * an update too. 3048 */ 3049 left_path = ocfs2_new_path_from_path(path); 3050 if (!left_path) { 3051 ret = -ENOMEM; 3052 mlog_errno(ret); 3053 goto out; 3054 } 3055 3056 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3057 if (ret) { 3058 mlog_errno(ret); 3059 goto out; 3060 } 3061 3062 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3063 if (ret) { 3064 mlog_errno(ret); 3065 goto out; 3066 } 3067 3068 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3069 3070 ocfs2_unlink_subtree(handle, et, left_path, path, 3071 subtree_index, dealloc); 3072 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3073 if (ret) { 3074 mlog_errno(ret); 3075 goto out; 3076 } 3077 3078 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3079 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3080 } else { 3081 /* 3082 * 'path' is also the leftmost path which 3083 * means it must be the only one. This gets 3084 * handled differently because we want to 3085 * revert the root back to having extents 3086 * in-line. 3087 */ 3088 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3089 3090 el = et->et_root_el; 3091 el->l_tree_depth = 0; 3092 el->l_next_free_rec = 0; 3093 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3094 3095 ocfs2_et_set_last_eb_blk(et, 0); 3096 } 3097 3098 ocfs2_journal_dirty(handle, path_root_bh(path)); 3099 3100 out: 3101 ocfs2_free_path(left_path); 3102 return ret; 3103 } 3104 3105 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3106 struct ocfs2_extent_tree *et, 3107 struct ocfs2_path *path, 3108 struct ocfs2_cached_dealloc_ctxt *dealloc) 3109 { 3110 handle_t *handle; 3111 int ret; 3112 int credits = path->p_tree_depth * 2 + 1; 3113 3114 handle = ocfs2_start_trans(osb, credits); 3115 if (IS_ERR(handle)) { 3116 ret = PTR_ERR(handle); 3117 mlog_errno(ret); 3118 return ret; 3119 } 3120 3121 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3122 if (ret) 3123 mlog_errno(ret); 3124 3125 ocfs2_commit_trans(osb, handle); 3126 return ret; 3127 } 3128 3129 /* 3130 * Left rotation of btree records. 3131 * 3132 * In many ways, this is (unsurprisingly) the opposite of right 3133 * rotation. We start at some non-rightmost path containing an empty 3134 * extent in the leaf block. The code works its way to the rightmost 3135 * path by rotating records to the left in every subtree. 3136 * 3137 * This is used by any code which reduces the number of extent records 3138 * in a leaf. After removal, an empty record should be placed in the 3139 * leftmost list position. 3140 * 3141 * This won't handle a length update of the rightmost path records if 3142 * the rightmost tree leaf record is removed so the caller is 3143 * responsible for detecting and correcting that. 3144 */ 3145 static int ocfs2_rotate_tree_left(handle_t *handle, 3146 struct ocfs2_extent_tree *et, 3147 struct ocfs2_path *path, 3148 struct ocfs2_cached_dealloc_ctxt *dealloc) 3149 { 3150 int ret, orig_credits = jbd2_handle_buffer_credits(handle); 3151 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3152 struct ocfs2_extent_block *eb; 3153 struct ocfs2_extent_list *el; 3154 3155 el = path_leaf_el(path); 3156 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3157 return 0; 3158 3159 if (path->p_tree_depth == 0) { 3160 rightmost_no_delete: 3161 /* 3162 * Inline extents. This is trivially handled, so do 3163 * it up front. 3164 */ 3165 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3166 if (ret) 3167 mlog_errno(ret); 3168 goto out; 3169 } 3170 3171 /* 3172 * Handle rightmost branch now. There's several cases: 3173 * 1) simple rotation leaving records in there. That's trivial. 3174 * 2) rotation requiring a branch delete - there's no more 3175 * records left. Two cases of this: 3176 * a) There are branches to the left. 3177 * b) This is also the leftmost (the only) branch. 3178 * 3179 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3180 * 2a) we need the left branch so that we can update it with the unlink 3181 * 2b) we need to bring the root back to inline extents. 3182 */ 3183 3184 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3185 el = &eb->h_list; 3186 if (eb->h_next_leaf_blk == 0) { 3187 /* 3188 * This gets a bit tricky if we're going to delete the 3189 * rightmost path. Get the other cases out of the way 3190 * 1st. 3191 */ 3192 if (le16_to_cpu(el->l_next_free_rec) > 1) 3193 goto rightmost_no_delete; 3194 3195 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3196 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3197 "Owner %llu has empty extent block at %llu\n", 3198 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3199 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3200 goto out; 3201 } 3202 3203 /* 3204 * XXX: The caller can not trust "path" any more after 3205 * this as it will have been deleted. What do we do? 3206 * 3207 * In theory the rotate-for-merge code will never get 3208 * here because it'll always ask for a rotate in a 3209 * nonempty list. 3210 */ 3211 3212 ret = ocfs2_remove_rightmost_path(handle, et, path, 3213 dealloc); 3214 if (ret) 3215 mlog_errno(ret); 3216 goto out; 3217 } 3218 3219 /* 3220 * Now we can loop, remembering the path we get from -EAGAIN 3221 * and restarting from there. 3222 */ 3223 try_rotate: 3224 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3225 dealloc, &restart_path); 3226 if (ret && ret != -EAGAIN) { 3227 mlog_errno(ret); 3228 goto out; 3229 } 3230 3231 while (ret == -EAGAIN) { 3232 tmp_path = restart_path; 3233 restart_path = NULL; 3234 3235 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3236 tmp_path, dealloc, 3237 &restart_path); 3238 if (ret && ret != -EAGAIN) { 3239 mlog_errno(ret); 3240 goto out; 3241 } 3242 3243 ocfs2_free_path(tmp_path); 3244 tmp_path = NULL; 3245 3246 if (ret == 0) 3247 goto try_rotate; 3248 } 3249 3250 out: 3251 ocfs2_free_path(tmp_path); 3252 ocfs2_free_path(restart_path); 3253 return ret; 3254 } 3255 3256 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3257 int index) 3258 { 3259 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3260 unsigned int size; 3261 3262 if (rec->e_leaf_clusters == 0) { 3263 /* 3264 * We consumed all of the merged-from record. An empty 3265 * extent cannot exist anywhere but the 1st array 3266 * position, so move things over if the merged-from 3267 * record doesn't occupy that position. 3268 * 3269 * This creates a new empty extent so the caller 3270 * should be smart enough to have removed any existing 3271 * ones. 3272 */ 3273 if (index > 0) { 3274 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3275 size = index * sizeof(struct ocfs2_extent_rec); 3276 memmove(&el->l_recs[1], &el->l_recs[0], size); 3277 } 3278 3279 /* 3280 * Always memset - the caller doesn't check whether it 3281 * created an empty extent, so there could be junk in 3282 * the other fields. 3283 */ 3284 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3285 } 3286 } 3287 3288 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3289 struct ocfs2_path *left_path, 3290 struct ocfs2_path **ret_right_path) 3291 { 3292 int ret; 3293 u32 right_cpos; 3294 struct ocfs2_path *right_path = NULL; 3295 struct ocfs2_extent_list *left_el; 3296 3297 *ret_right_path = NULL; 3298 3299 /* This function shouldn't be called for non-trees. */ 3300 BUG_ON(left_path->p_tree_depth == 0); 3301 3302 left_el = path_leaf_el(left_path); 3303 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3304 3305 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3306 left_path, &right_cpos); 3307 if (ret) { 3308 mlog_errno(ret); 3309 goto out; 3310 } 3311 3312 /* This function shouldn't be called for the rightmost leaf. */ 3313 BUG_ON(right_cpos == 0); 3314 3315 right_path = ocfs2_new_path_from_path(left_path); 3316 if (!right_path) { 3317 ret = -ENOMEM; 3318 mlog_errno(ret); 3319 goto out; 3320 } 3321 3322 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3323 if (ret) { 3324 mlog_errno(ret); 3325 goto out; 3326 } 3327 3328 *ret_right_path = right_path; 3329 out: 3330 if (ret) 3331 ocfs2_free_path(right_path); 3332 return ret; 3333 } 3334 3335 /* 3336 * Remove split_rec clusters from the record at index and merge them 3337 * onto the beginning of the record "next" to it. 3338 * For index < l_count - 1, the next means the extent rec at index + 1. 3339 * For index == l_count - 1, the "next" means the 1st extent rec of the 3340 * next extent block. 3341 */ 3342 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3343 handle_t *handle, 3344 struct ocfs2_extent_tree *et, 3345 struct ocfs2_extent_rec *split_rec, 3346 int index) 3347 { 3348 int ret, next_free, i; 3349 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3350 struct ocfs2_extent_rec *left_rec; 3351 struct ocfs2_extent_rec *right_rec; 3352 struct ocfs2_extent_list *right_el; 3353 struct ocfs2_path *right_path = NULL; 3354 int subtree_index = 0; 3355 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3356 struct buffer_head *bh = path_leaf_bh(left_path); 3357 struct buffer_head *root_bh = NULL; 3358 3359 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3360 left_rec = &el->l_recs[index]; 3361 3362 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3363 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3364 /* we meet with a cross extent block merge. */ 3365 ret = ocfs2_get_right_path(et, left_path, &right_path); 3366 if (ret) { 3367 mlog_errno(ret); 3368 return ret; 3369 } 3370 3371 right_el = path_leaf_el(right_path); 3372 next_free = le16_to_cpu(right_el->l_next_free_rec); 3373 BUG_ON(next_free <= 0); 3374 right_rec = &right_el->l_recs[0]; 3375 if (ocfs2_is_empty_extent(right_rec)) { 3376 BUG_ON(next_free <= 1); 3377 right_rec = &right_el->l_recs[1]; 3378 } 3379 3380 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3381 le16_to_cpu(left_rec->e_leaf_clusters) != 3382 le32_to_cpu(right_rec->e_cpos)); 3383 3384 subtree_index = ocfs2_find_subtree_root(et, left_path, 3385 right_path); 3386 3387 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3388 jbd2_handle_buffer_credits(handle), 3389 right_path); 3390 if (ret) { 3391 mlog_errno(ret); 3392 goto out; 3393 } 3394 3395 root_bh = left_path->p_node[subtree_index].bh; 3396 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3397 3398 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3399 subtree_index); 3400 if (ret) { 3401 mlog_errno(ret); 3402 goto out; 3403 } 3404 3405 for (i = subtree_index + 1; 3406 i < path_num_items(right_path); i++) { 3407 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3408 right_path, i); 3409 if (ret) { 3410 mlog_errno(ret); 3411 goto out; 3412 } 3413 3414 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3415 left_path, i); 3416 if (ret) { 3417 mlog_errno(ret); 3418 goto out; 3419 } 3420 } 3421 3422 } else { 3423 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3424 right_rec = &el->l_recs[index + 1]; 3425 } 3426 3427 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3428 path_num_items(left_path) - 1); 3429 if (ret) { 3430 mlog_errno(ret); 3431 goto out; 3432 } 3433 3434 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3435 3436 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3437 le64_add_cpu(&right_rec->e_blkno, 3438 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3439 split_clusters)); 3440 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3441 3442 ocfs2_cleanup_merge(el, index); 3443 3444 ocfs2_journal_dirty(handle, bh); 3445 if (right_path) { 3446 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3447 ocfs2_complete_edge_insert(handle, left_path, right_path, 3448 subtree_index); 3449 } 3450 out: 3451 ocfs2_free_path(right_path); 3452 return ret; 3453 } 3454 3455 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3456 struct ocfs2_path *right_path, 3457 struct ocfs2_path **ret_left_path) 3458 { 3459 int ret; 3460 u32 left_cpos; 3461 struct ocfs2_path *left_path = NULL; 3462 3463 *ret_left_path = NULL; 3464 3465 /* This function shouldn't be called for non-trees. */ 3466 BUG_ON(right_path->p_tree_depth == 0); 3467 3468 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3469 right_path, &left_cpos); 3470 if (ret) { 3471 mlog_errno(ret); 3472 goto out; 3473 } 3474 3475 /* This function shouldn't be called for the leftmost leaf. */ 3476 BUG_ON(left_cpos == 0); 3477 3478 left_path = ocfs2_new_path_from_path(right_path); 3479 if (!left_path) { 3480 ret = -ENOMEM; 3481 mlog_errno(ret); 3482 goto out; 3483 } 3484 3485 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3486 if (ret) { 3487 mlog_errno(ret); 3488 goto out; 3489 } 3490 3491 *ret_left_path = left_path; 3492 out: 3493 if (ret) 3494 ocfs2_free_path(left_path); 3495 return ret; 3496 } 3497 3498 /* 3499 * Remove split_rec clusters from the record at index and merge them 3500 * onto the tail of the record "before" it. 3501 * For index > 0, the "before" means the extent rec at index - 1. 3502 * 3503 * For index == 0, the "before" means the last record of the previous 3504 * extent block. And there is also a situation that we may need to 3505 * remove the rightmost leaf extent block in the right_path and change 3506 * the right path to indicate the new rightmost path. 3507 */ 3508 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3509 handle_t *handle, 3510 struct ocfs2_extent_tree *et, 3511 struct ocfs2_extent_rec *split_rec, 3512 struct ocfs2_cached_dealloc_ctxt *dealloc, 3513 int index) 3514 { 3515 int ret, i, subtree_index = 0, has_empty_extent = 0; 3516 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3517 struct ocfs2_extent_rec *left_rec; 3518 struct ocfs2_extent_rec *right_rec; 3519 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3520 struct buffer_head *bh = path_leaf_bh(right_path); 3521 struct buffer_head *root_bh = NULL; 3522 struct ocfs2_path *left_path = NULL; 3523 struct ocfs2_extent_list *left_el; 3524 3525 BUG_ON(index < 0); 3526 3527 right_rec = &el->l_recs[index]; 3528 if (index == 0) { 3529 /* we meet with a cross extent block merge. */ 3530 ret = ocfs2_get_left_path(et, right_path, &left_path); 3531 if (ret) { 3532 mlog_errno(ret); 3533 return ret; 3534 } 3535 3536 left_el = path_leaf_el(left_path); 3537 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3538 le16_to_cpu(left_el->l_count)); 3539 3540 left_rec = &left_el->l_recs[ 3541 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3542 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3543 le16_to_cpu(left_rec->e_leaf_clusters) != 3544 le32_to_cpu(split_rec->e_cpos)); 3545 3546 subtree_index = ocfs2_find_subtree_root(et, left_path, 3547 right_path); 3548 3549 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3550 jbd2_handle_buffer_credits(handle), 3551 left_path); 3552 if (ret) { 3553 mlog_errno(ret); 3554 goto out; 3555 } 3556 3557 root_bh = left_path->p_node[subtree_index].bh; 3558 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3559 3560 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3561 subtree_index); 3562 if (ret) { 3563 mlog_errno(ret); 3564 goto out; 3565 } 3566 3567 for (i = subtree_index + 1; 3568 i < path_num_items(right_path); i++) { 3569 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3570 right_path, i); 3571 if (ret) { 3572 mlog_errno(ret); 3573 goto out; 3574 } 3575 3576 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3577 left_path, i); 3578 if (ret) { 3579 mlog_errno(ret); 3580 goto out; 3581 } 3582 } 3583 } else { 3584 left_rec = &el->l_recs[index - 1]; 3585 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3586 has_empty_extent = 1; 3587 } 3588 3589 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3590 path_num_items(right_path) - 1); 3591 if (ret) { 3592 mlog_errno(ret); 3593 goto out; 3594 } 3595 3596 if (has_empty_extent && index == 1) { 3597 /* 3598 * The easy case - we can just plop the record right in. 3599 */ 3600 *left_rec = *split_rec; 3601 } else 3602 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3603 3604 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3605 le64_add_cpu(&right_rec->e_blkno, 3606 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3607 split_clusters)); 3608 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3609 3610 ocfs2_cleanup_merge(el, index); 3611 3612 ocfs2_journal_dirty(handle, bh); 3613 if (left_path) { 3614 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3615 3616 /* 3617 * In the situation that the right_rec is empty and the extent 3618 * block is empty also, ocfs2_complete_edge_insert can't handle 3619 * it and we need to delete the right extent block. 3620 */ 3621 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3622 le16_to_cpu(el->l_next_free_rec) == 1) { 3623 /* extend credit for ocfs2_remove_rightmost_path */ 3624 ret = ocfs2_extend_rotate_transaction(handle, 0, 3625 jbd2_handle_buffer_credits(handle), 3626 right_path); 3627 if (ret) { 3628 mlog_errno(ret); 3629 goto out; 3630 } 3631 3632 ret = ocfs2_remove_rightmost_path(handle, et, 3633 right_path, 3634 dealloc); 3635 if (ret) { 3636 mlog_errno(ret); 3637 goto out; 3638 } 3639 3640 /* Now the rightmost extent block has been deleted. 3641 * So we use the new rightmost path. 3642 */ 3643 ocfs2_mv_path(right_path, left_path); 3644 left_path = NULL; 3645 } else 3646 ocfs2_complete_edge_insert(handle, left_path, 3647 right_path, subtree_index); 3648 } 3649 out: 3650 ocfs2_free_path(left_path); 3651 return ret; 3652 } 3653 3654 static int ocfs2_try_to_merge_extent(handle_t *handle, 3655 struct ocfs2_extent_tree *et, 3656 struct ocfs2_path *path, 3657 int split_index, 3658 struct ocfs2_extent_rec *split_rec, 3659 struct ocfs2_cached_dealloc_ctxt *dealloc, 3660 struct ocfs2_merge_ctxt *ctxt) 3661 { 3662 int ret = 0; 3663 struct ocfs2_extent_list *el = path_leaf_el(path); 3664 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3665 3666 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3667 3668 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3669 /* extend credit for ocfs2_remove_rightmost_path */ 3670 ret = ocfs2_extend_rotate_transaction(handle, 0, 3671 jbd2_handle_buffer_credits(handle), 3672 path); 3673 if (ret) { 3674 mlog_errno(ret); 3675 goto out; 3676 } 3677 /* 3678 * The merge code will need to create an empty 3679 * extent to take the place of the newly 3680 * emptied slot. Remove any pre-existing empty 3681 * extents - having more than one in a leaf is 3682 * illegal. 3683 */ 3684 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3685 if (ret) { 3686 mlog_errno(ret); 3687 goto out; 3688 } 3689 split_index--; 3690 rec = &el->l_recs[split_index]; 3691 } 3692 3693 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3694 /* 3695 * Left-right contig implies this. 3696 */ 3697 BUG_ON(!ctxt->c_split_covers_rec); 3698 3699 /* 3700 * Since the leftright insert always covers the entire 3701 * extent, this call will delete the insert record 3702 * entirely, resulting in an empty extent record added to 3703 * the extent block. 3704 * 3705 * Since the adding of an empty extent shifts 3706 * everything back to the right, there's no need to 3707 * update split_index here. 3708 * 3709 * When the split_index is zero, we need to merge it to the 3710 * prevoius extent block. It is more efficient and easier 3711 * if we do merge_right first and merge_left later. 3712 */ 3713 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3714 split_index); 3715 if (ret) { 3716 mlog_errno(ret); 3717 goto out; 3718 } 3719 3720 /* 3721 * We can only get this from logic error above. 3722 */ 3723 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3724 3725 /* extend credit for ocfs2_remove_rightmost_path */ 3726 ret = ocfs2_extend_rotate_transaction(handle, 0, 3727 jbd2_handle_buffer_credits(handle), 3728 path); 3729 if (ret) { 3730 mlog_errno(ret); 3731 goto out; 3732 } 3733 3734 /* The merge left us with an empty extent, remove it. */ 3735 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3736 if (ret) { 3737 mlog_errno(ret); 3738 goto out; 3739 } 3740 3741 rec = &el->l_recs[split_index]; 3742 3743 /* 3744 * Note that we don't pass split_rec here on purpose - 3745 * we've merged it into the rec already. 3746 */ 3747 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3748 dealloc, split_index); 3749 3750 if (ret) { 3751 mlog_errno(ret); 3752 goto out; 3753 } 3754 3755 /* extend credit for ocfs2_remove_rightmost_path */ 3756 ret = ocfs2_extend_rotate_transaction(handle, 0, 3757 jbd2_handle_buffer_credits(handle), 3758 path); 3759 if (ret) { 3760 mlog_errno(ret); 3761 goto out; 3762 } 3763 3764 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3765 /* 3766 * Error from this last rotate is not critical, so 3767 * print but don't bubble it up. 3768 */ 3769 if (ret) 3770 mlog_errno(ret); 3771 ret = 0; 3772 } else { 3773 /* 3774 * Merge a record to the left or right. 3775 * 3776 * 'contig_type' is relative to the existing record, 3777 * so for example, if we're "right contig", it's to 3778 * the record on the left (hence the left merge). 3779 */ 3780 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3781 ret = ocfs2_merge_rec_left(path, handle, et, 3782 split_rec, dealloc, 3783 split_index); 3784 if (ret) { 3785 mlog_errno(ret); 3786 goto out; 3787 } 3788 } else { 3789 ret = ocfs2_merge_rec_right(path, handle, 3790 et, split_rec, 3791 split_index); 3792 if (ret) { 3793 mlog_errno(ret); 3794 goto out; 3795 } 3796 } 3797 3798 if (ctxt->c_split_covers_rec) { 3799 /* extend credit for ocfs2_remove_rightmost_path */ 3800 ret = ocfs2_extend_rotate_transaction(handle, 0, 3801 jbd2_handle_buffer_credits(handle), 3802 path); 3803 if (ret) { 3804 mlog_errno(ret); 3805 ret = 0; 3806 goto out; 3807 } 3808 3809 /* 3810 * The merge may have left an empty extent in 3811 * our leaf. Try to rotate it away. 3812 */ 3813 ret = ocfs2_rotate_tree_left(handle, et, path, 3814 dealloc); 3815 if (ret) 3816 mlog_errno(ret); 3817 ret = 0; 3818 } 3819 } 3820 3821 out: 3822 return ret; 3823 } 3824 3825 static void ocfs2_subtract_from_rec(struct super_block *sb, 3826 enum ocfs2_split_type split, 3827 struct ocfs2_extent_rec *rec, 3828 struct ocfs2_extent_rec *split_rec) 3829 { 3830 u64 len_blocks; 3831 3832 len_blocks = ocfs2_clusters_to_blocks(sb, 3833 le16_to_cpu(split_rec->e_leaf_clusters)); 3834 3835 if (split == SPLIT_LEFT) { 3836 /* 3837 * Region is on the left edge of the existing 3838 * record. 3839 */ 3840 le32_add_cpu(&rec->e_cpos, 3841 le16_to_cpu(split_rec->e_leaf_clusters)); 3842 le64_add_cpu(&rec->e_blkno, len_blocks); 3843 le16_add_cpu(&rec->e_leaf_clusters, 3844 -le16_to_cpu(split_rec->e_leaf_clusters)); 3845 } else { 3846 /* 3847 * Region is on the right edge of the existing 3848 * record. 3849 */ 3850 le16_add_cpu(&rec->e_leaf_clusters, 3851 -le16_to_cpu(split_rec->e_leaf_clusters)); 3852 } 3853 } 3854 3855 /* 3856 * Do the final bits of extent record insertion at the target leaf 3857 * list. If this leaf is part of an allocation tree, it is assumed 3858 * that the tree above has been prepared. 3859 */ 3860 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3861 struct ocfs2_extent_rec *insert_rec, 3862 struct ocfs2_extent_list *el, 3863 struct ocfs2_insert_type *insert) 3864 { 3865 int i = insert->ins_contig_index; 3866 unsigned int range; 3867 struct ocfs2_extent_rec *rec; 3868 3869 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3870 3871 if (insert->ins_split != SPLIT_NONE) { 3872 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3873 BUG_ON(i == -1); 3874 rec = &el->l_recs[i]; 3875 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3876 insert->ins_split, rec, 3877 insert_rec); 3878 goto rotate; 3879 } 3880 3881 /* 3882 * Contiguous insert - either left or right. 3883 */ 3884 if (insert->ins_contig != CONTIG_NONE) { 3885 rec = &el->l_recs[i]; 3886 if (insert->ins_contig == CONTIG_LEFT) { 3887 rec->e_blkno = insert_rec->e_blkno; 3888 rec->e_cpos = insert_rec->e_cpos; 3889 } 3890 le16_add_cpu(&rec->e_leaf_clusters, 3891 le16_to_cpu(insert_rec->e_leaf_clusters)); 3892 return; 3893 } 3894 3895 /* 3896 * Handle insert into an empty leaf. 3897 */ 3898 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3899 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3900 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3901 el->l_recs[0] = *insert_rec; 3902 el->l_next_free_rec = cpu_to_le16(1); 3903 return; 3904 } 3905 3906 /* 3907 * Appending insert. 3908 */ 3909 if (insert->ins_appending == APPEND_TAIL) { 3910 i = le16_to_cpu(el->l_next_free_rec) - 1; 3911 rec = &el->l_recs[i]; 3912 range = le32_to_cpu(rec->e_cpos) 3913 + le16_to_cpu(rec->e_leaf_clusters); 3914 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3915 3916 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3917 le16_to_cpu(el->l_count), 3918 "owner %llu, depth %u, count %u, next free %u, " 3919 "rec.cpos %u, rec.clusters %u, " 3920 "insert.cpos %u, insert.clusters %u\n", 3921 ocfs2_metadata_cache_owner(et->et_ci), 3922 le16_to_cpu(el->l_tree_depth), 3923 le16_to_cpu(el->l_count), 3924 le16_to_cpu(el->l_next_free_rec), 3925 le32_to_cpu(el->l_recs[i].e_cpos), 3926 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3927 le32_to_cpu(insert_rec->e_cpos), 3928 le16_to_cpu(insert_rec->e_leaf_clusters)); 3929 i++; 3930 el->l_recs[i] = *insert_rec; 3931 le16_add_cpu(&el->l_next_free_rec, 1); 3932 return; 3933 } 3934 3935 rotate: 3936 /* 3937 * Ok, we have to rotate. 3938 * 3939 * At this point, it is safe to assume that inserting into an 3940 * empty leaf and appending to a leaf have both been handled 3941 * above. 3942 * 3943 * This leaf needs to have space, either by the empty 1st 3944 * extent record, or by virtue of an l_next_free_rec < l_count. 3945 */ 3946 ocfs2_rotate_leaf(el, insert_rec); 3947 } 3948 3949 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3950 struct ocfs2_extent_tree *et, 3951 struct ocfs2_path *path, 3952 struct ocfs2_extent_rec *insert_rec) 3953 { 3954 int i, next_free; 3955 struct buffer_head *bh; 3956 struct ocfs2_extent_list *el; 3957 struct ocfs2_extent_rec *rec; 3958 3959 /* 3960 * Update everything except the leaf block. 3961 */ 3962 for (i = 0; i < path->p_tree_depth; i++) { 3963 bh = path->p_node[i].bh; 3964 el = path->p_node[i].el; 3965 3966 next_free = le16_to_cpu(el->l_next_free_rec); 3967 if (next_free == 0) { 3968 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3969 "Owner %llu has a bad extent list\n", 3970 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3971 return; 3972 } 3973 3974 rec = &el->l_recs[next_free - 1]; 3975 3976 rec->e_int_clusters = insert_rec->e_cpos; 3977 le32_add_cpu(&rec->e_int_clusters, 3978 le16_to_cpu(insert_rec->e_leaf_clusters)); 3979 le32_add_cpu(&rec->e_int_clusters, 3980 -le32_to_cpu(rec->e_cpos)); 3981 3982 ocfs2_journal_dirty(handle, bh); 3983 } 3984 } 3985 3986 static int ocfs2_append_rec_to_path(handle_t *handle, 3987 struct ocfs2_extent_tree *et, 3988 struct ocfs2_extent_rec *insert_rec, 3989 struct ocfs2_path *right_path, 3990 struct ocfs2_path **ret_left_path) 3991 { 3992 int ret, next_free; 3993 struct ocfs2_extent_list *el; 3994 struct ocfs2_path *left_path = NULL; 3995 3996 *ret_left_path = NULL; 3997 3998 /* 3999 * This shouldn't happen for non-trees. The extent rec cluster 4000 * count manipulation below only works for interior nodes. 4001 */ 4002 BUG_ON(right_path->p_tree_depth == 0); 4003 4004 /* 4005 * If our appending insert is at the leftmost edge of a leaf, 4006 * then we might need to update the rightmost records of the 4007 * neighboring path. 4008 */ 4009 el = path_leaf_el(right_path); 4010 next_free = le16_to_cpu(el->l_next_free_rec); 4011 if (next_free == 0 || 4012 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4013 u32 left_cpos; 4014 4015 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4016 right_path, &left_cpos); 4017 if (ret) { 4018 mlog_errno(ret); 4019 goto out; 4020 } 4021 4022 trace_ocfs2_append_rec_to_path( 4023 (unsigned long long) 4024 ocfs2_metadata_cache_owner(et->et_ci), 4025 le32_to_cpu(insert_rec->e_cpos), 4026 left_cpos); 4027 4028 /* 4029 * No need to worry if the append is already in the 4030 * leftmost leaf. 4031 */ 4032 if (left_cpos) { 4033 left_path = ocfs2_new_path_from_path(right_path); 4034 if (!left_path) { 4035 ret = -ENOMEM; 4036 mlog_errno(ret); 4037 goto out; 4038 } 4039 4040 ret = ocfs2_find_path(et->et_ci, left_path, 4041 left_cpos); 4042 if (ret) { 4043 mlog_errno(ret); 4044 goto out; 4045 } 4046 4047 /* 4048 * ocfs2_insert_path() will pass the left_path to the 4049 * journal for us. 4050 */ 4051 } 4052 } 4053 4054 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4055 if (ret) { 4056 mlog_errno(ret); 4057 goto out; 4058 } 4059 4060 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4061 4062 *ret_left_path = left_path; 4063 ret = 0; 4064 out: 4065 if (ret != 0) 4066 ocfs2_free_path(left_path); 4067 4068 return ret; 4069 } 4070 4071 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4072 struct ocfs2_path *left_path, 4073 struct ocfs2_path *right_path, 4074 struct ocfs2_extent_rec *split_rec, 4075 enum ocfs2_split_type split) 4076 { 4077 int index; 4078 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4079 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4080 struct ocfs2_extent_rec *rec, *tmprec; 4081 4082 right_el = path_leaf_el(right_path); 4083 if (left_path) 4084 left_el = path_leaf_el(left_path); 4085 4086 el = right_el; 4087 insert_el = right_el; 4088 index = ocfs2_search_extent_list(el, cpos); 4089 if (index != -1) { 4090 if (index == 0 && left_path) { 4091 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4092 4093 /* 4094 * This typically means that the record 4095 * started in the left path but moved to the 4096 * right as a result of rotation. We either 4097 * move the existing record to the left, or we 4098 * do the later insert there. 4099 * 4100 * In this case, the left path should always 4101 * exist as the rotate code will have passed 4102 * it back for a post-insert update. 4103 */ 4104 4105 if (split == SPLIT_LEFT) { 4106 /* 4107 * It's a left split. Since we know 4108 * that the rotate code gave us an 4109 * empty extent in the left path, we 4110 * can just do the insert there. 4111 */ 4112 insert_el = left_el; 4113 } else { 4114 /* 4115 * Right split - we have to move the 4116 * existing record over to the left 4117 * leaf. The insert will be into the 4118 * newly created empty extent in the 4119 * right leaf. 4120 */ 4121 tmprec = &right_el->l_recs[index]; 4122 ocfs2_rotate_leaf(left_el, tmprec); 4123 el = left_el; 4124 4125 memset(tmprec, 0, sizeof(*tmprec)); 4126 index = ocfs2_search_extent_list(left_el, cpos); 4127 BUG_ON(index == -1); 4128 } 4129 } 4130 } else { 4131 BUG_ON(!left_path); 4132 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4133 /* 4134 * Left path is easy - we can just allow the insert to 4135 * happen. 4136 */ 4137 el = left_el; 4138 insert_el = left_el; 4139 index = ocfs2_search_extent_list(el, cpos); 4140 BUG_ON(index == -1); 4141 } 4142 4143 rec = &el->l_recs[index]; 4144 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4145 split, rec, split_rec); 4146 ocfs2_rotate_leaf(insert_el, split_rec); 4147 } 4148 4149 /* 4150 * This function only does inserts on an allocation b-tree. For tree 4151 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4152 * 4153 * right_path is the path we want to do the actual insert 4154 * in. left_path should only be passed in if we need to update that 4155 * portion of the tree after an edge insert. 4156 */ 4157 static int ocfs2_insert_path(handle_t *handle, 4158 struct ocfs2_extent_tree *et, 4159 struct ocfs2_path *left_path, 4160 struct ocfs2_path *right_path, 4161 struct ocfs2_extent_rec *insert_rec, 4162 struct ocfs2_insert_type *insert) 4163 { 4164 int ret, subtree_index; 4165 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4166 4167 if (left_path) { 4168 /* 4169 * There's a chance that left_path got passed back to 4170 * us without being accounted for in the 4171 * journal. Extend our transaction here to be sure we 4172 * can change those blocks. 4173 */ 4174 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4175 if (ret < 0) { 4176 mlog_errno(ret); 4177 goto out; 4178 } 4179 4180 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4181 if (ret < 0) { 4182 mlog_errno(ret); 4183 goto out; 4184 } 4185 } 4186 4187 /* 4188 * Pass both paths to the journal. The majority of inserts 4189 * will be touching all components anyway. 4190 */ 4191 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4192 if (ret < 0) { 4193 mlog_errno(ret); 4194 goto out; 4195 } 4196 4197 if (insert->ins_split != SPLIT_NONE) { 4198 /* 4199 * We could call ocfs2_insert_at_leaf() for some types 4200 * of splits, but it's easier to just let one separate 4201 * function sort it all out. 4202 */ 4203 ocfs2_split_record(et, left_path, right_path, 4204 insert_rec, insert->ins_split); 4205 4206 /* 4207 * Split might have modified either leaf and we don't 4208 * have a guarantee that the later edge insert will 4209 * dirty this for us. 4210 */ 4211 if (left_path) 4212 ocfs2_journal_dirty(handle, 4213 path_leaf_bh(left_path)); 4214 } else 4215 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4216 insert); 4217 4218 ocfs2_journal_dirty(handle, leaf_bh); 4219 4220 if (left_path) { 4221 /* 4222 * The rotate code has indicated that we need to fix 4223 * up portions of the tree after the insert. 4224 * 4225 * XXX: Should we extend the transaction here? 4226 */ 4227 subtree_index = ocfs2_find_subtree_root(et, left_path, 4228 right_path); 4229 ocfs2_complete_edge_insert(handle, left_path, right_path, 4230 subtree_index); 4231 } 4232 4233 ret = 0; 4234 out: 4235 return ret; 4236 } 4237 4238 static int ocfs2_do_insert_extent(handle_t *handle, 4239 struct ocfs2_extent_tree *et, 4240 struct ocfs2_extent_rec *insert_rec, 4241 struct ocfs2_insert_type *type) 4242 { 4243 int ret, rotate = 0; 4244 u32 cpos; 4245 struct ocfs2_path *right_path = NULL; 4246 struct ocfs2_path *left_path = NULL; 4247 struct ocfs2_extent_list *el; 4248 4249 el = et->et_root_el; 4250 4251 ret = ocfs2_et_root_journal_access(handle, et, 4252 OCFS2_JOURNAL_ACCESS_WRITE); 4253 if (ret) { 4254 mlog_errno(ret); 4255 goto out; 4256 } 4257 4258 if (le16_to_cpu(el->l_tree_depth) == 0) { 4259 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4260 goto out_update_clusters; 4261 } 4262 4263 right_path = ocfs2_new_path_from_et(et); 4264 if (!right_path) { 4265 ret = -ENOMEM; 4266 mlog_errno(ret); 4267 goto out; 4268 } 4269 4270 /* 4271 * Determine the path to start with. Rotations need the 4272 * rightmost path, everything else can go directly to the 4273 * target leaf. 4274 */ 4275 cpos = le32_to_cpu(insert_rec->e_cpos); 4276 if (type->ins_appending == APPEND_NONE && 4277 type->ins_contig == CONTIG_NONE) { 4278 rotate = 1; 4279 cpos = UINT_MAX; 4280 } 4281 4282 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4283 if (ret) { 4284 mlog_errno(ret); 4285 goto out; 4286 } 4287 4288 /* 4289 * Rotations and appends need special treatment - they modify 4290 * parts of the tree's above them. 4291 * 4292 * Both might pass back a path immediate to the left of the 4293 * one being inserted to. This will be cause 4294 * ocfs2_insert_path() to modify the rightmost records of 4295 * left_path to account for an edge insert. 4296 * 4297 * XXX: When modifying this code, keep in mind that an insert 4298 * can wind up skipping both of these two special cases... 4299 */ 4300 if (rotate) { 4301 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4302 le32_to_cpu(insert_rec->e_cpos), 4303 right_path, &left_path); 4304 if (ret) { 4305 mlog_errno(ret); 4306 goto out; 4307 } 4308 4309 /* 4310 * ocfs2_rotate_tree_right() might have extended the 4311 * transaction without re-journaling our tree root. 4312 */ 4313 ret = ocfs2_et_root_journal_access(handle, et, 4314 OCFS2_JOURNAL_ACCESS_WRITE); 4315 if (ret) { 4316 mlog_errno(ret); 4317 goto out; 4318 } 4319 } else if (type->ins_appending == APPEND_TAIL 4320 && type->ins_contig != CONTIG_LEFT) { 4321 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4322 right_path, &left_path); 4323 if (ret) { 4324 mlog_errno(ret); 4325 goto out; 4326 } 4327 } 4328 4329 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4330 insert_rec, type); 4331 if (ret) { 4332 mlog_errno(ret); 4333 goto out; 4334 } 4335 4336 out_update_clusters: 4337 if (type->ins_split == SPLIT_NONE) 4338 ocfs2_et_update_clusters(et, 4339 le16_to_cpu(insert_rec->e_leaf_clusters)); 4340 4341 ocfs2_journal_dirty(handle, et->et_root_bh); 4342 4343 out: 4344 ocfs2_free_path(left_path); 4345 ocfs2_free_path(right_path); 4346 4347 return ret; 4348 } 4349 4350 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4351 struct ocfs2_path *path, 4352 struct ocfs2_extent_list *el, int index, 4353 struct ocfs2_extent_rec *split_rec, 4354 struct ocfs2_merge_ctxt *ctxt) 4355 { 4356 int status = 0; 4357 enum ocfs2_contig_type ret = CONTIG_NONE; 4358 u32 left_cpos, right_cpos; 4359 struct ocfs2_extent_rec *rec = NULL; 4360 struct ocfs2_extent_list *new_el; 4361 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4362 struct buffer_head *bh; 4363 struct ocfs2_extent_block *eb; 4364 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4365 4366 if (index > 0) { 4367 rec = &el->l_recs[index - 1]; 4368 } else if (path->p_tree_depth > 0) { 4369 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4370 if (status) 4371 goto exit; 4372 4373 if (left_cpos != 0) { 4374 left_path = ocfs2_new_path_from_path(path); 4375 if (!left_path) { 4376 status = -ENOMEM; 4377 mlog_errno(status); 4378 goto exit; 4379 } 4380 4381 status = ocfs2_find_path(et->et_ci, left_path, 4382 left_cpos); 4383 if (status) 4384 goto free_left_path; 4385 4386 new_el = path_leaf_el(left_path); 4387 4388 if (le16_to_cpu(new_el->l_next_free_rec) != 4389 le16_to_cpu(new_el->l_count)) { 4390 bh = path_leaf_bh(left_path); 4391 eb = (struct ocfs2_extent_block *)bh->b_data; 4392 status = ocfs2_error(sb, 4393 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4394 (unsigned long long)le64_to_cpu(eb->h_blkno), 4395 le16_to_cpu(new_el->l_next_free_rec), 4396 le16_to_cpu(new_el->l_count)); 4397 goto free_left_path; 4398 } 4399 rec = &new_el->l_recs[ 4400 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4401 } 4402 } 4403 4404 /* 4405 * We're careful to check for an empty extent record here - 4406 * the merge code will know what to do if it sees one. 4407 */ 4408 if (rec) { 4409 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4410 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4411 ret = CONTIG_RIGHT; 4412 } else { 4413 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4414 } 4415 } 4416 4417 rec = NULL; 4418 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4419 rec = &el->l_recs[index + 1]; 4420 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4421 path->p_tree_depth > 0) { 4422 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4423 if (status) 4424 goto free_left_path; 4425 4426 if (right_cpos == 0) 4427 goto free_left_path; 4428 4429 right_path = ocfs2_new_path_from_path(path); 4430 if (!right_path) { 4431 status = -ENOMEM; 4432 mlog_errno(status); 4433 goto free_left_path; 4434 } 4435 4436 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4437 if (status) 4438 goto free_right_path; 4439 4440 new_el = path_leaf_el(right_path); 4441 rec = &new_el->l_recs[0]; 4442 if (ocfs2_is_empty_extent(rec)) { 4443 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4444 bh = path_leaf_bh(right_path); 4445 eb = (struct ocfs2_extent_block *)bh->b_data; 4446 status = ocfs2_error(sb, 4447 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4448 (unsigned long long)le64_to_cpu(eb->h_blkno), 4449 le16_to_cpu(new_el->l_next_free_rec)); 4450 goto free_right_path; 4451 } 4452 rec = &new_el->l_recs[1]; 4453 } 4454 } 4455 4456 if (rec) { 4457 enum ocfs2_contig_type contig_type; 4458 4459 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4460 4461 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4462 ret = CONTIG_LEFTRIGHT; 4463 else if (ret == CONTIG_NONE) 4464 ret = contig_type; 4465 } 4466 4467 free_right_path: 4468 ocfs2_free_path(right_path); 4469 free_left_path: 4470 ocfs2_free_path(left_path); 4471 exit: 4472 if (status == 0) 4473 ctxt->c_contig_type = ret; 4474 4475 return status; 4476 } 4477 4478 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4479 struct ocfs2_insert_type *insert, 4480 struct ocfs2_extent_list *el, 4481 struct ocfs2_extent_rec *insert_rec) 4482 { 4483 int i; 4484 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4485 4486 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4487 4488 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4489 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4490 insert_rec); 4491 if (contig_type != CONTIG_NONE) { 4492 insert->ins_contig_index = i; 4493 break; 4494 } 4495 } 4496 insert->ins_contig = contig_type; 4497 4498 if (insert->ins_contig != CONTIG_NONE) { 4499 struct ocfs2_extent_rec *rec = 4500 &el->l_recs[insert->ins_contig_index]; 4501 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4502 le16_to_cpu(insert_rec->e_leaf_clusters); 4503 4504 /* 4505 * Caller might want us to limit the size of extents, don't 4506 * calculate contiguousness if we might exceed that limit. 4507 */ 4508 if (et->et_max_leaf_clusters && 4509 (len > et->et_max_leaf_clusters)) 4510 insert->ins_contig = CONTIG_NONE; 4511 } 4512 } 4513 4514 /* 4515 * This should only be called against the righmost leaf extent list. 4516 * 4517 * ocfs2_figure_appending_type() will figure out whether we'll have to 4518 * insert at the tail of the rightmost leaf. 4519 * 4520 * This should also work against the root extent list for tree's with 0 4521 * depth. If we consider the root extent list to be the rightmost leaf node 4522 * then the logic here makes sense. 4523 */ 4524 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4525 struct ocfs2_extent_list *el, 4526 struct ocfs2_extent_rec *insert_rec) 4527 { 4528 int i; 4529 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4530 struct ocfs2_extent_rec *rec; 4531 4532 insert->ins_appending = APPEND_NONE; 4533 4534 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4535 4536 if (!el->l_next_free_rec) 4537 goto set_tail_append; 4538 4539 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4540 /* Were all records empty? */ 4541 if (le16_to_cpu(el->l_next_free_rec) == 1) 4542 goto set_tail_append; 4543 } 4544 4545 i = le16_to_cpu(el->l_next_free_rec) - 1; 4546 rec = &el->l_recs[i]; 4547 4548 if (cpos >= 4549 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4550 goto set_tail_append; 4551 4552 return; 4553 4554 set_tail_append: 4555 insert->ins_appending = APPEND_TAIL; 4556 } 4557 4558 /* 4559 * Helper function called at the beginning of an insert. 4560 * 4561 * This computes a few things that are commonly used in the process of 4562 * inserting into the btree: 4563 * - Whether the new extent is contiguous with an existing one. 4564 * - The current tree depth. 4565 * - Whether the insert is an appending one. 4566 * - The total # of free records in the tree. 4567 * 4568 * All of the information is stored on the ocfs2_insert_type 4569 * structure. 4570 */ 4571 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4572 struct buffer_head **last_eb_bh, 4573 struct ocfs2_extent_rec *insert_rec, 4574 int *free_records, 4575 struct ocfs2_insert_type *insert) 4576 { 4577 int ret; 4578 struct ocfs2_extent_block *eb; 4579 struct ocfs2_extent_list *el; 4580 struct ocfs2_path *path = NULL; 4581 struct buffer_head *bh = NULL; 4582 4583 insert->ins_split = SPLIT_NONE; 4584 4585 el = et->et_root_el; 4586 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4587 4588 if (el->l_tree_depth) { 4589 /* 4590 * If we have tree depth, we read in the 4591 * rightmost extent block ahead of time as 4592 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4593 * may want it later. 4594 */ 4595 ret = ocfs2_read_extent_block(et->et_ci, 4596 ocfs2_et_get_last_eb_blk(et), 4597 &bh); 4598 if (ret) { 4599 mlog_errno(ret); 4600 goto out; 4601 } 4602 eb = (struct ocfs2_extent_block *) bh->b_data; 4603 el = &eb->h_list; 4604 } 4605 4606 /* 4607 * Unless we have a contiguous insert, we'll need to know if 4608 * there is room left in our allocation tree for another 4609 * extent record. 4610 * 4611 * XXX: This test is simplistic, we can search for empty 4612 * extent records too. 4613 */ 4614 *free_records = le16_to_cpu(el->l_count) - 4615 le16_to_cpu(el->l_next_free_rec); 4616 4617 if (!insert->ins_tree_depth) { 4618 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4619 ocfs2_figure_appending_type(insert, el, insert_rec); 4620 return 0; 4621 } 4622 4623 path = ocfs2_new_path_from_et(et); 4624 if (!path) { 4625 ret = -ENOMEM; 4626 mlog_errno(ret); 4627 goto out; 4628 } 4629 4630 /* 4631 * In the case that we're inserting past what the tree 4632 * currently accounts for, ocfs2_find_path() will return for 4633 * us the rightmost tree path. This is accounted for below in 4634 * the appending code. 4635 */ 4636 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4637 if (ret) { 4638 mlog_errno(ret); 4639 goto out; 4640 } 4641 4642 el = path_leaf_el(path); 4643 4644 /* 4645 * Now that we have the path, there's two things we want to determine: 4646 * 1) Contiguousness (also set contig_index if this is so) 4647 * 4648 * 2) Are we doing an append? We can trivially break this up 4649 * into two types of appends: simple record append, or a 4650 * rotate inside the tail leaf. 4651 */ 4652 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4653 4654 /* 4655 * The insert code isn't quite ready to deal with all cases of 4656 * left contiguousness. Specifically, if it's an insert into 4657 * the 1st record in a leaf, it will require the adjustment of 4658 * cluster count on the last record of the path directly to it's 4659 * left. For now, just catch that case and fool the layers 4660 * above us. This works just fine for tree_depth == 0, which 4661 * is why we allow that above. 4662 */ 4663 if (insert->ins_contig == CONTIG_LEFT && 4664 insert->ins_contig_index == 0) 4665 insert->ins_contig = CONTIG_NONE; 4666 4667 /* 4668 * Ok, so we can simply compare against last_eb to figure out 4669 * whether the path doesn't exist. This will only happen in 4670 * the case that we're doing a tail append, so maybe we can 4671 * take advantage of that information somehow. 4672 */ 4673 if (ocfs2_et_get_last_eb_blk(et) == 4674 path_leaf_bh(path)->b_blocknr) { 4675 /* 4676 * Ok, ocfs2_find_path() returned us the rightmost 4677 * tree path. This might be an appending insert. There are 4678 * two cases: 4679 * 1) We're doing a true append at the tail: 4680 * -This might even be off the end of the leaf 4681 * 2) We're "appending" by rotating in the tail 4682 */ 4683 ocfs2_figure_appending_type(insert, el, insert_rec); 4684 } 4685 4686 out: 4687 ocfs2_free_path(path); 4688 4689 if (ret == 0) 4690 *last_eb_bh = bh; 4691 else 4692 brelse(bh); 4693 return ret; 4694 } 4695 4696 /* 4697 * Insert an extent into a btree. 4698 * 4699 * The caller needs to update the owning btree's cluster count. 4700 */ 4701 int ocfs2_insert_extent(handle_t *handle, 4702 struct ocfs2_extent_tree *et, 4703 u32 cpos, 4704 u64 start_blk, 4705 u32 new_clusters, 4706 u8 flags, 4707 struct ocfs2_alloc_context *meta_ac) 4708 { 4709 int status; 4710 int uninitialized_var(free_records); 4711 struct buffer_head *last_eb_bh = NULL; 4712 struct ocfs2_insert_type insert = {0, }; 4713 struct ocfs2_extent_rec rec; 4714 4715 trace_ocfs2_insert_extent_start( 4716 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4717 cpos, new_clusters); 4718 4719 memset(&rec, 0, sizeof(rec)); 4720 rec.e_cpos = cpu_to_le32(cpos); 4721 rec.e_blkno = cpu_to_le64(start_blk); 4722 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4723 rec.e_flags = flags; 4724 status = ocfs2_et_insert_check(et, &rec); 4725 if (status) { 4726 mlog_errno(status); 4727 goto bail; 4728 } 4729 4730 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4731 &free_records, &insert); 4732 if (status < 0) { 4733 mlog_errno(status); 4734 goto bail; 4735 } 4736 4737 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4738 insert.ins_contig_index, free_records, 4739 insert.ins_tree_depth); 4740 4741 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4742 status = ocfs2_grow_tree(handle, et, 4743 &insert.ins_tree_depth, &last_eb_bh, 4744 meta_ac); 4745 if (status) { 4746 mlog_errno(status); 4747 goto bail; 4748 } 4749 } 4750 4751 /* Finally, we can add clusters. This might rotate the tree for us. */ 4752 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4753 if (status < 0) 4754 mlog_errno(status); 4755 else 4756 ocfs2_et_extent_map_insert(et, &rec); 4757 4758 bail: 4759 brelse(last_eb_bh); 4760 4761 return status; 4762 } 4763 4764 /* 4765 * Allcate and add clusters into the extent b-tree. 4766 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4767 * The extent b-tree's root is specified by et, and 4768 * it is not limited to the file storage. Any extent tree can use this 4769 * function if it implements the proper ocfs2_extent_tree. 4770 */ 4771 int ocfs2_add_clusters_in_btree(handle_t *handle, 4772 struct ocfs2_extent_tree *et, 4773 u32 *logical_offset, 4774 u32 clusters_to_add, 4775 int mark_unwritten, 4776 struct ocfs2_alloc_context *data_ac, 4777 struct ocfs2_alloc_context *meta_ac, 4778 enum ocfs2_alloc_restarted *reason_ret) 4779 { 4780 int status = 0, err = 0; 4781 int need_free = 0; 4782 int free_extents; 4783 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4784 u32 bit_off, num_bits; 4785 u64 block; 4786 u8 flags = 0; 4787 struct ocfs2_super *osb = 4788 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4789 4790 BUG_ON(!clusters_to_add); 4791 4792 if (mark_unwritten) 4793 flags = OCFS2_EXT_UNWRITTEN; 4794 4795 free_extents = ocfs2_num_free_extents(et); 4796 if (free_extents < 0) { 4797 status = free_extents; 4798 mlog_errno(status); 4799 goto leave; 4800 } 4801 4802 /* there are two cases which could cause us to EAGAIN in the 4803 * we-need-more-metadata case: 4804 * 1) we haven't reserved *any* 4805 * 2) we are so fragmented, we've needed to add metadata too 4806 * many times. */ 4807 if (!free_extents && !meta_ac) { 4808 err = -1; 4809 status = -EAGAIN; 4810 reason = RESTART_META; 4811 goto leave; 4812 } else if ((!free_extents) 4813 && (ocfs2_alloc_context_bits_left(meta_ac) 4814 < ocfs2_extend_meta_needed(et->et_root_el))) { 4815 err = -2; 4816 status = -EAGAIN; 4817 reason = RESTART_META; 4818 goto leave; 4819 } 4820 4821 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4822 clusters_to_add, &bit_off, &num_bits); 4823 if (status < 0) { 4824 if (status != -ENOSPC) 4825 mlog_errno(status); 4826 goto leave; 4827 } 4828 4829 BUG_ON(num_bits > clusters_to_add); 4830 4831 /* reserve our write early -- insert_extent may update the tree root */ 4832 status = ocfs2_et_root_journal_access(handle, et, 4833 OCFS2_JOURNAL_ACCESS_WRITE); 4834 if (status < 0) { 4835 mlog_errno(status); 4836 need_free = 1; 4837 goto bail; 4838 } 4839 4840 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4841 trace_ocfs2_add_clusters_in_btree( 4842 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4843 bit_off, num_bits); 4844 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4845 num_bits, flags, meta_ac); 4846 if (status < 0) { 4847 mlog_errno(status); 4848 need_free = 1; 4849 goto bail; 4850 } 4851 4852 ocfs2_journal_dirty(handle, et->et_root_bh); 4853 4854 clusters_to_add -= num_bits; 4855 *logical_offset += num_bits; 4856 4857 if (clusters_to_add) { 4858 err = clusters_to_add; 4859 status = -EAGAIN; 4860 reason = RESTART_TRANS; 4861 } 4862 4863 bail: 4864 if (need_free) { 4865 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4866 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4867 bit_off, num_bits); 4868 else 4869 ocfs2_free_clusters(handle, 4870 data_ac->ac_inode, 4871 data_ac->ac_bh, 4872 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4873 num_bits); 4874 } 4875 4876 leave: 4877 if (reason_ret) 4878 *reason_ret = reason; 4879 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4880 return status; 4881 } 4882 4883 static void ocfs2_make_right_split_rec(struct super_block *sb, 4884 struct ocfs2_extent_rec *split_rec, 4885 u32 cpos, 4886 struct ocfs2_extent_rec *rec) 4887 { 4888 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4889 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4890 4891 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4892 4893 split_rec->e_cpos = cpu_to_le32(cpos); 4894 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4895 4896 split_rec->e_blkno = rec->e_blkno; 4897 le64_add_cpu(&split_rec->e_blkno, 4898 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4899 4900 split_rec->e_flags = rec->e_flags; 4901 } 4902 4903 static int ocfs2_split_and_insert(handle_t *handle, 4904 struct ocfs2_extent_tree *et, 4905 struct ocfs2_path *path, 4906 struct buffer_head **last_eb_bh, 4907 int split_index, 4908 struct ocfs2_extent_rec *orig_split_rec, 4909 struct ocfs2_alloc_context *meta_ac) 4910 { 4911 int ret = 0, depth; 4912 unsigned int insert_range, rec_range, do_leftright = 0; 4913 struct ocfs2_extent_rec tmprec; 4914 struct ocfs2_extent_list *rightmost_el; 4915 struct ocfs2_extent_rec rec; 4916 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4917 struct ocfs2_insert_type insert; 4918 struct ocfs2_extent_block *eb; 4919 4920 leftright: 4921 /* 4922 * Store a copy of the record on the stack - it might move 4923 * around as the tree is manipulated below. 4924 */ 4925 rec = path_leaf_el(path)->l_recs[split_index]; 4926 4927 rightmost_el = et->et_root_el; 4928 4929 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4930 if (depth) { 4931 BUG_ON(!(*last_eb_bh)); 4932 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4933 rightmost_el = &eb->h_list; 4934 } 4935 4936 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4937 le16_to_cpu(rightmost_el->l_count)) { 4938 ret = ocfs2_grow_tree(handle, et, 4939 &depth, last_eb_bh, meta_ac); 4940 if (ret) { 4941 mlog_errno(ret); 4942 goto out; 4943 } 4944 } 4945 4946 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4947 insert.ins_appending = APPEND_NONE; 4948 insert.ins_contig = CONTIG_NONE; 4949 insert.ins_tree_depth = depth; 4950 4951 insert_range = le32_to_cpu(split_rec.e_cpos) + 4952 le16_to_cpu(split_rec.e_leaf_clusters); 4953 rec_range = le32_to_cpu(rec.e_cpos) + 4954 le16_to_cpu(rec.e_leaf_clusters); 4955 4956 if (split_rec.e_cpos == rec.e_cpos) { 4957 insert.ins_split = SPLIT_LEFT; 4958 } else if (insert_range == rec_range) { 4959 insert.ins_split = SPLIT_RIGHT; 4960 } else { 4961 /* 4962 * Left/right split. We fake this as a right split 4963 * first and then make a second pass as a left split. 4964 */ 4965 insert.ins_split = SPLIT_RIGHT; 4966 4967 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4968 &tmprec, insert_range, &rec); 4969 4970 split_rec = tmprec; 4971 4972 BUG_ON(do_leftright); 4973 do_leftright = 1; 4974 } 4975 4976 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4977 if (ret) { 4978 mlog_errno(ret); 4979 goto out; 4980 } 4981 4982 if (do_leftright == 1) { 4983 u32 cpos; 4984 struct ocfs2_extent_list *el; 4985 4986 do_leftright++; 4987 split_rec = *orig_split_rec; 4988 4989 ocfs2_reinit_path(path, 1); 4990 4991 cpos = le32_to_cpu(split_rec.e_cpos); 4992 ret = ocfs2_find_path(et->et_ci, path, cpos); 4993 if (ret) { 4994 mlog_errno(ret); 4995 goto out; 4996 } 4997 4998 el = path_leaf_el(path); 4999 split_index = ocfs2_search_extent_list(el, cpos); 5000 if (split_index == -1) { 5001 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5002 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5003 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5004 cpos); 5005 ret = -EROFS; 5006 goto out; 5007 } 5008 goto leftright; 5009 } 5010 out: 5011 5012 return ret; 5013 } 5014 5015 static int ocfs2_replace_extent_rec(handle_t *handle, 5016 struct ocfs2_extent_tree *et, 5017 struct ocfs2_path *path, 5018 struct ocfs2_extent_list *el, 5019 int split_index, 5020 struct ocfs2_extent_rec *split_rec) 5021 { 5022 int ret; 5023 5024 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5025 path_num_items(path) - 1); 5026 if (ret) { 5027 mlog_errno(ret); 5028 goto out; 5029 } 5030 5031 el->l_recs[split_index] = *split_rec; 5032 5033 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5034 out: 5035 return ret; 5036 } 5037 5038 /* 5039 * Split part or all of the extent record at split_index in the leaf 5040 * pointed to by path. Merge with the contiguous extent record if needed. 5041 * 5042 * Care is taken to handle contiguousness so as to not grow the tree. 5043 * 5044 * meta_ac is not strictly necessary - we only truly need it if growth 5045 * of the tree is required. All other cases will degrade into a less 5046 * optimal tree layout. 5047 * 5048 * last_eb_bh should be the rightmost leaf block for any extent 5049 * btree. Since a split may grow the tree or a merge might shrink it, 5050 * the caller cannot trust the contents of that buffer after this call. 5051 * 5052 * This code is optimized for readability - several passes might be 5053 * made over certain portions of the tree. All of those blocks will 5054 * have been brought into cache (and pinned via the journal), so the 5055 * extra overhead is not expressed in terms of disk reads. 5056 */ 5057 int ocfs2_split_extent(handle_t *handle, 5058 struct ocfs2_extent_tree *et, 5059 struct ocfs2_path *path, 5060 int split_index, 5061 struct ocfs2_extent_rec *split_rec, 5062 struct ocfs2_alloc_context *meta_ac, 5063 struct ocfs2_cached_dealloc_ctxt *dealloc) 5064 { 5065 int ret = 0; 5066 struct ocfs2_extent_list *el = path_leaf_el(path); 5067 struct buffer_head *last_eb_bh = NULL; 5068 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5069 struct ocfs2_merge_ctxt ctxt; 5070 5071 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5072 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5073 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5074 ret = -EIO; 5075 mlog_errno(ret); 5076 goto out; 5077 } 5078 5079 ret = ocfs2_figure_merge_contig_type(et, path, el, 5080 split_index, 5081 split_rec, 5082 &ctxt); 5083 if (ret) { 5084 mlog_errno(ret); 5085 goto out; 5086 } 5087 5088 /* 5089 * The core merge / split code wants to know how much room is 5090 * left in this allocation tree, so we pass the 5091 * rightmost extent list. 5092 */ 5093 if (path->p_tree_depth) { 5094 ret = ocfs2_read_extent_block(et->et_ci, 5095 ocfs2_et_get_last_eb_blk(et), 5096 &last_eb_bh); 5097 if (ret) { 5098 mlog_errno(ret); 5099 goto out; 5100 } 5101 } 5102 5103 if (rec->e_cpos == split_rec->e_cpos && 5104 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5105 ctxt.c_split_covers_rec = 1; 5106 else 5107 ctxt.c_split_covers_rec = 0; 5108 5109 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5110 5111 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5112 ctxt.c_has_empty_extent, 5113 ctxt.c_split_covers_rec); 5114 5115 if (ctxt.c_contig_type == CONTIG_NONE) { 5116 if (ctxt.c_split_covers_rec) 5117 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5118 split_index, split_rec); 5119 else 5120 ret = ocfs2_split_and_insert(handle, et, path, 5121 &last_eb_bh, split_index, 5122 split_rec, meta_ac); 5123 if (ret) 5124 mlog_errno(ret); 5125 } else { 5126 ret = ocfs2_try_to_merge_extent(handle, et, path, 5127 split_index, split_rec, 5128 dealloc, &ctxt); 5129 if (ret) 5130 mlog_errno(ret); 5131 } 5132 5133 out: 5134 brelse(last_eb_bh); 5135 return ret; 5136 } 5137 5138 /* 5139 * Change the flags of the already-existing extent at cpos for len clusters. 5140 * 5141 * new_flags: the flags we want to set. 5142 * clear_flags: the flags we want to clear. 5143 * phys: the new physical offset we want this new extent starts from. 5144 * 5145 * If the existing extent is larger than the request, initiate a 5146 * split. An attempt will be made at merging with adjacent extents. 5147 * 5148 * The caller is responsible for passing down meta_ac if we'll need it. 5149 */ 5150 int ocfs2_change_extent_flag(handle_t *handle, 5151 struct ocfs2_extent_tree *et, 5152 u32 cpos, u32 len, u32 phys, 5153 struct ocfs2_alloc_context *meta_ac, 5154 struct ocfs2_cached_dealloc_ctxt *dealloc, 5155 int new_flags, int clear_flags) 5156 { 5157 int ret, index; 5158 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5159 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5160 struct ocfs2_extent_rec split_rec; 5161 struct ocfs2_path *left_path = NULL; 5162 struct ocfs2_extent_list *el; 5163 struct ocfs2_extent_rec *rec; 5164 5165 left_path = ocfs2_new_path_from_et(et); 5166 if (!left_path) { 5167 ret = -ENOMEM; 5168 mlog_errno(ret); 5169 goto out; 5170 } 5171 5172 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5173 if (ret) { 5174 mlog_errno(ret); 5175 goto out; 5176 } 5177 el = path_leaf_el(left_path); 5178 5179 index = ocfs2_search_extent_list(el, cpos); 5180 if (index == -1) { 5181 ocfs2_error(sb, 5182 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5183 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5184 cpos); 5185 ret = -EROFS; 5186 goto out; 5187 } 5188 5189 ret = -EIO; 5190 rec = &el->l_recs[index]; 5191 if (new_flags && (rec->e_flags & new_flags)) { 5192 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5193 "extent that already had them\n", 5194 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5195 new_flags); 5196 goto out; 5197 } 5198 5199 if (clear_flags && !(rec->e_flags & clear_flags)) { 5200 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5201 "extent that didn't have them\n", 5202 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5203 clear_flags); 5204 goto out; 5205 } 5206 5207 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5208 split_rec.e_cpos = cpu_to_le32(cpos); 5209 split_rec.e_leaf_clusters = cpu_to_le16(len); 5210 split_rec.e_blkno = cpu_to_le64(start_blkno); 5211 split_rec.e_flags = rec->e_flags; 5212 if (new_flags) 5213 split_rec.e_flags |= new_flags; 5214 if (clear_flags) 5215 split_rec.e_flags &= ~clear_flags; 5216 5217 ret = ocfs2_split_extent(handle, et, left_path, 5218 index, &split_rec, meta_ac, 5219 dealloc); 5220 if (ret) 5221 mlog_errno(ret); 5222 5223 out: 5224 ocfs2_free_path(left_path); 5225 return ret; 5226 5227 } 5228 5229 /* 5230 * Mark the already-existing extent at cpos as written for len clusters. 5231 * This removes the unwritten extent flag. 5232 * 5233 * If the existing extent is larger than the request, initiate a 5234 * split. An attempt will be made at merging with adjacent extents. 5235 * 5236 * The caller is responsible for passing down meta_ac if we'll need it. 5237 */ 5238 int ocfs2_mark_extent_written(struct inode *inode, 5239 struct ocfs2_extent_tree *et, 5240 handle_t *handle, u32 cpos, u32 len, u32 phys, 5241 struct ocfs2_alloc_context *meta_ac, 5242 struct ocfs2_cached_dealloc_ctxt *dealloc) 5243 { 5244 int ret; 5245 5246 trace_ocfs2_mark_extent_written( 5247 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5248 cpos, len, phys); 5249 5250 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5251 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5252 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5253 ret = -EROFS; 5254 goto out; 5255 } 5256 5257 /* 5258 * XXX: This should be fixed up so that we just re-insert the 5259 * next extent records. 5260 */ 5261 ocfs2_et_extent_map_truncate(et, 0); 5262 5263 ret = ocfs2_change_extent_flag(handle, et, cpos, 5264 len, phys, meta_ac, dealloc, 5265 0, OCFS2_EXT_UNWRITTEN); 5266 if (ret) 5267 mlog_errno(ret); 5268 5269 out: 5270 return ret; 5271 } 5272 5273 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5274 struct ocfs2_path *path, 5275 int index, u32 new_range, 5276 struct ocfs2_alloc_context *meta_ac) 5277 { 5278 int ret, depth, credits; 5279 struct buffer_head *last_eb_bh = NULL; 5280 struct ocfs2_extent_block *eb; 5281 struct ocfs2_extent_list *rightmost_el, *el; 5282 struct ocfs2_extent_rec split_rec; 5283 struct ocfs2_extent_rec *rec; 5284 struct ocfs2_insert_type insert; 5285 5286 /* 5287 * Setup the record to split before we grow the tree. 5288 */ 5289 el = path_leaf_el(path); 5290 rec = &el->l_recs[index]; 5291 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5292 &split_rec, new_range, rec); 5293 5294 depth = path->p_tree_depth; 5295 if (depth > 0) { 5296 ret = ocfs2_read_extent_block(et->et_ci, 5297 ocfs2_et_get_last_eb_blk(et), 5298 &last_eb_bh); 5299 if (ret < 0) { 5300 mlog_errno(ret); 5301 goto out; 5302 } 5303 5304 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5305 rightmost_el = &eb->h_list; 5306 } else 5307 rightmost_el = path_leaf_el(path); 5308 5309 credits = path->p_tree_depth + 5310 ocfs2_extend_meta_needed(et->et_root_el); 5311 ret = ocfs2_extend_trans(handle, credits); 5312 if (ret) { 5313 mlog_errno(ret); 5314 goto out; 5315 } 5316 5317 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5318 le16_to_cpu(rightmost_el->l_count)) { 5319 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5320 meta_ac); 5321 if (ret) { 5322 mlog_errno(ret); 5323 goto out; 5324 } 5325 } 5326 5327 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5328 insert.ins_appending = APPEND_NONE; 5329 insert.ins_contig = CONTIG_NONE; 5330 insert.ins_split = SPLIT_RIGHT; 5331 insert.ins_tree_depth = depth; 5332 5333 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5334 if (ret) 5335 mlog_errno(ret); 5336 5337 out: 5338 brelse(last_eb_bh); 5339 return ret; 5340 } 5341 5342 static int ocfs2_truncate_rec(handle_t *handle, 5343 struct ocfs2_extent_tree *et, 5344 struct ocfs2_path *path, int index, 5345 struct ocfs2_cached_dealloc_ctxt *dealloc, 5346 u32 cpos, u32 len) 5347 { 5348 int ret; 5349 u32 left_cpos, rec_range, trunc_range; 5350 int is_rightmost_tree_rec = 0; 5351 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5352 struct ocfs2_path *left_path = NULL; 5353 struct ocfs2_extent_list *el = path_leaf_el(path); 5354 struct ocfs2_extent_rec *rec; 5355 struct ocfs2_extent_block *eb; 5356 5357 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5358 /* extend credit for ocfs2_remove_rightmost_path */ 5359 ret = ocfs2_extend_rotate_transaction(handle, 0, 5360 jbd2_handle_buffer_credits(handle), 5361 path); 5362 if (ret) { 5363 mlog_errno(ret); 5364 goto out; 5365 } 5366 5367 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5368 if (ret) { 5369 mlog_errno(ret); 5370 goto out; 5371 } 5372 5373 index--; 5374 } 5375 5376 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5377 path->p_tree_depth) { 5378 /* 5379 * Check whether this is the rightmost tree record. If 5380 * we remove all of this record or part of its right 5381 * edge then an update of the record lengths above it 5382 * will be required. 5383 */ 5384 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5385 if (eb->h_next_leaf_blk == 0) 5386 is_rightmost_tree_rec = 1; 5387 } 5388 5389 rec = &el->l_recs[index]; 5390 if (index == 0 && path->p_tree_depth && 5391 le32_to_cpu(rec->e_cpos) == cpos) { 5392 /* 5393 * Changing the leftmost offset (via partial or whole 5394 * record truncate) of an interior (or rightmost) path 5395 * means we have to update the subtree that is formed 5396 * by this leaf and the one to it's left. 5397 * 5398 * There are two cases we can skip: 5399 * 1) Path is the leftmost one in our btree. 5400 * 2) The leaf is rightmost and will be empty after 5401 * we remove the extent record - the rotate code 5402 * knows how to update the newly formed edge. 5403 */ 5404 5405 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5406 if (ret) { 5407 mlog_errno(ret); 5408 goto out; 5409 } 5410 5411 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5412 left_path = ocfs2_new_path_from_path(path); 5413 if (!left_path) { 5414 ret = -ENOMEM; 5415 mlog_errno(ret); 5416 goto out; 5417 } 5418 5419 ret = ocfs2_find_path(et->et_ci, left_path, 5420 left_cpos); 5421 if (ret) { 5422 mlog_errno(ret); 5423 goto out; 5424 } 5425 } 5426 } 5427 5428 ret = ocfs2_extend_rotate_transaction(handle, 0, 5429 jbd2_handle_buffer_credits(handle), 5430 path); 5431 if (ret) { 5432 mlog_errno(ret); 5433 goto out; 5434 } 5435 5436 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5437 if (ret) { 5438 mlog_errno(ret); 5439 goto out; 5440 } 5441 5442 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5443 if (ret) { 5444 mlog_errno(ret); 5445 goto out; 5446 } 5447 5448 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5449 trunc_range = cpos + len; 5450 5451 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5452 int next_free; 5453 5454 memset(rec, 0, sizeof(*rec)); 5455 ocfs2_cleanup_merge(el, index); 5456 5457 next_free = le16_to_cpu(el->l_next_free_rec); 5458 if (is_rightmost_tree_rec && next_free > 1) { 5459 /* 5460 * We skip the edge update if this path will 5461 * be deleted by the rotate code. 5462 */ 5463 rec = &el->l_recs[next_free - 1]; 5464 ocfs2_adjust_rightmost_records(handle, et, path, 5465 rec); 5466 } 5467 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5468 /* Remove leftmost portion of the record. */ 5469 le32_add_cpu(&rec->e_cpos, len); 5470 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5471 le16_add_cpu(&rec->e_leaf_clusters, -len); 5472 } else if (rec_range == trunc_range) { 5473 /* Remove rightmost portion of the record */ 5474 le16_add_cpu(&rec->e_leaf_clusters, -len); 5475 if (is_rightmost_tree_rec) 5476 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5477 } else { 5478 /* Caller should have trapped this. */ 5479 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5480 "(%u, %u)\n", 5481 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5482 le32_to_cpu(rec->e_cpos), 5483 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5484 BUG(); 5485 } 5486 5487 if (left_path) { 5488 int subtree_index; 5489 5490 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5491 ocfs2_complete_edge_insert(handle, left_path, path, 5492 subtree_index); 5493 } 5494 5495 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5496 5497 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5498 if (ret) 5499 mlog_errno(ret); 5500 5501 out: 5502 ocfs2_free_path(left_path); 5503 return ret; 5504 } 5505 5506 int ocfs2_remove_extent(handle_t *handle, 5507 struct ocfs2_extent_tree *et, 5508 u32 cpos, u32 len, 5509 struct ocfs2_alloc_context *meta_ac, 5510 struct ocfs2_cached_dealloc_ctxt *dealloc) 5511 { 5512 int ret, index; 5513 u32 rec_range, trunc_range; 5514 struct ocfs2_extent_rec *rec; 5515 struct ocfs2_extent_list *el; 5516 struct ocfs2_path *path = NULL; 5517 5518 /* 5519 * XXX: Why are we truncating to 0 instead of wherever this 5520 * affects us? 5521 */ 5522 ocfs2_et_extent_map_truncate(et, 0); 5523 5524 path = ocfs2_new_path_from_et(et); 5525 if (!path) { 5526 ret = -ENOMEM; 5527 mlog_errno(ret); 5528 goto out; 5529 } 5530 5531 ret = ocfs2_find_path(et->et_ci, path, cpos); 5532 if (ret) { 5533 mlog_errno(ret); 5534 goto out; 5535 } 5536 5537 el = path_leaf_el(path); 5538 index = ocfs2_search_extent_list(el, cpos); 5539 if (index == -1) { 5540 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5541 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5542 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5543 cpos); 5544 ret = -EROFS; 5545 goto out; 5546 } 5547 5548 /* 5549 * We have 3 cases of extent removal: 5550 * 1) Range covers the entire extent rec 5551 * 2) Range begins or ends on one edge of the extent rec 5552 * 3) Range is in the middle of the extent rec (no shared edges) 5553 * 5554 * For case 1 we remove the extent rec and left rotate to 5555 * fill the hole. 5556 * 5557 * For case 2 we just shrink the existing extent rec, with a 5558 * tree update if the shrinking edge is also the edge of an 5559 * extent block. 5560 * 5561 * For case 3 we do a right split to turn the extent rec into 5562 * something case 2 can handle. 5563 */ 5564 rec = &el->l_recs[index]; 5565 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5566 trunc_range = cpos + len; 5567 5568 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5569 5570 trace_ocfs2_remove_extent( 5571 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5572 cpos, len, index, le32_to_cpu(rec->e_cpos), 5573 ocfs2_rec_clusters(el, rec)); 5574 5575 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5576 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5577 cpos, len); 5578 if (ret) { 5579 mlog_errno(ret); 5580 goto out; 5581 } 5582 } else { 5583 ret = ocfs2_split_tree(handle, et, path, index, 5584 trunc_range, meta_ac); 5585 if (ret) { 5586 mlog_errno(ret); 5587 goto out; 5588 } 5589 5590 /* 5591 * The split could have manipulated the tree enough to 5592 * move the record location, so we have to look for it again. 5593 */ 5594 ocfs2_reinit_path(path, 1); 5595 5596 ret = ocfs2_find_path(et->et_ci, path, cpos); 5597 if (ret) { 5598 mlog_errno(ret); 5599 goto out; 5600 } 5601 5602 el = path_leaf_el(path); 5603 index = ocfs2_search_extent_list(el, cpos); 5604 if (index == -1) { 5605 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5606 "Owner %llu: split at cpos %u lost record\n", 5607 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5608 cpos); 5609 ret = -EROFS; 5610 goto out; 5611 } 5612 5613 /* 5614 * Double check our values here. If anything is fishy, 5615 * it's easier to catch it at the top level. 5616 */ 5617 rec = &el->l_recs[index]; 5618 rec_range = le32_to_cpu(rec->e_cpos) + 5619 ocfs2_rec_clusters(el, rec); 5620 if (rec_range != trunc_range) { 5621 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5622 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5623 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5624 cpos, len, le32_to_cpu(rec->e_cpos), 5625 ocfs2_rec_clusters(el, rec)); 5626 ret = -EROFS; 5627 goto out; 5628 } 5629 5630 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5631 cpos, len); 5632 if (ret) 5633 mlog_errno(ret); 5634 } 5635 5636 out: 5637 ocfs2_free_path(path); 5638 return ret; 5639 } 5640 5641 /* 5642 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5643 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5644 * number to reserve some extra blocks, and it only handles meta 5645 * data allocations. 5646 * 5647 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5648 * and punching holes. 5649 */ 5650 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5651 struct ocfs2_extent_tree *et, 5652 u32 extents_to_split, 5653 struct ocfs2_alloc_context **ac, 5654 int extra_blocks) 5655 { 5656 int ret = 0, num_free_extents; 5657 unsigned int max_recs_needed = 2 * extents_to_split; 5658 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5659 5660 *ac = NULL; 5661 5662 num_free_extents = ocfs2_num_free_extents(et); 5663 if (num_free_extents < 0) { 5664 ret = num_free_extents; 5665 mlog_errno(ret); 5666 goto out; 5667 } 5668 5669 if (!num_free_extents || 5670 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5671 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5672 5673 if (extra_blocks) { 5674 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5675 if (ret < 0) { 5676 if (ret != -ENOSPC) 5677 mlog_errno(ret); 5678 } 5679 } 5680 5681 out: 5682 if (ret) { 5683 if (*ac) { 5684 ocfs2_free_alloc_context(*ac); 5685 *ac = NULL; 5686 } 5687 } 5688 5689 return ret; 5690 } 5691 5692 int ocfs2_remove_btree_range(struct inode *inode, 5693 struct ocfs2_extent_tree *et, 5694 u32 cpos, u32 phys_cpos, u32 len, int flags, 5695 struct ocfs2_cached_dealloc_ctxt *dealloc, 5696 u64 refcount_loc, bool refcount_tree_locked) 5697 { 5698 int ret, credits = 0, extra_blocks = 0; 5699 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5700 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5701 struct inode *tl_inode = osb->osb_tl_inode; 5702 handle_t *handle; 5703 struct ocfs2_alloc_context *meta_ac = NULL; 5704 struct ocfs2_refcount_tree *ref_tree = NULL; 5705 5706 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5707 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5708 5709 if (!refcount_tree_locked) { 5710 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5711 &ref_tree, NULL); 5712 if (ret) { 5713 mlog_errno(ret); 5714 goto bail; 5715 } 5716 } 5717 5718 ret = ocfs2_prepare_refcount_change_for_del(inode, 5719 refcount_loc, 5720 phys_blkno, 5721 len, 5722 &credits, 5723 &extra_blocks); 5724 if (ret < 0) { 5725 mlog_errno(ret); 5726 goto bail; 5727 } 5728 } 5729 5730 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5731 extra_blocks); 5732 if (ret) { 5733 mlog_errno(ret); 5734 goto bail; 5735 } 5736 5737 inode_lock(tl_inode); 5738 5739 if (ocfs2_truncate_log_needs_flush(osb)) { 5740 ret = __ocfs2_flush_truncate_log(osb); 5741 if (ret < 0) { 5742 mlog_errno(ret); 5743 goto out; 5744 } 5745 } 5746 5747 handle = ocfs2_start_trans(osb, 5748 ocfs2_remove_extent_credits(osb->sb) + credits); 5749 if (IS_ERR(handle)) { 5750 ret = PTR_ERR(handle); 5751 mlog_errno(ret); 5752 goto out; 5753 } 5754 5755 ret = ocfs2_et_root_journal_access(handle, et, 5756 OCFS2_JOURNAL_ACCESS_WRITE); 5757 if (ret) { 5758 mlog_errno(ret); 5759 goto out_commit; 5760 } 5761 5762 dquot_free_space_nodirty(inode, 5763 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5764 5765 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5766 if (ret) { 5767 mlog_errno(ret); 5768 goto out_commit; 5769 } 5770 5771 ocfs2_et_update_clusters(et, -len); 5772 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5773 5774 ocfs2_journal_dirty(handle, et->et_root_bh); 5775 5776 if (phys_blkno) { 5777 if (flags & OCFS2_EXT_REFCOUNTED) 5778 ret = ocfs2_decrease_refcount(inode, handle, 5779 ocfs2_blocks_to_clusters(osb->sb, 5780 phys_blkno), 5781 len, meta_ac, 5782 dealloc, 1); 5783 else 5784 ret = ocfs2_truncate_log_append(osb, handle, 5785 phys_blkno, len); 5786 if (ret) 5787 mlog_errno(ret); 5788 5789 } 5790 5791 out_commit: 5792 ocfs2_commit_trans(osb, handle); 5793 out: 5794 inode_unlock(tl_inode); 5795 bail: 5796 if (meta_ac) 5797 ocfs2_free_alloc_context(meta_ac); 5798 5799 if (ref_tree) 5800 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5801 5802 return ret; 5803 } 5804 5805 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5806 { 5807 struct buffer_head *tl_bh = osb->osb_tl_bh; 5808 struct ocfs2_dinode *di; 5809 struct ocfs2_truncate_log *tl; 5810 5811 di = (struct ocfs2_dinode *) tl_bh->b_data; 5812 tl = &di->id2.i_dealloc; 5813 5814 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5815 "slot %d, invalid truncate log parameters: used = " 5816 "%u, count = %u\n", osb->slot_num, 5817 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5818 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5819 } 5820 5821 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5822 unsigned int new_start) 5823 { 5824 unsigned int tail_index; 5825 unsigned int current_tail; 5826 5827 /* No records, nothing to coalesce */ 5828 if (!le16_to_cpu(tl->tl_used)) 5829 return 0; 5830 5831 tail_index = le16_to_cpu(tl->tl_used) - 1; 5832 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5833 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5834 5835 return current_tail == new_start; 5836 } 5837 5838 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5839 handle_t *handle, 5840 u64 start_blk, 5841 unsigned int num_clusters) 5842 { 5843 int status, index; 5844 unsigned int start_cluster, tl_count; 5845 struct inode *tl_inode = osb->osb_tl_inode; 5846 struct buffer_head *tl_bh = osb->osb_tl_bh; 5847 struct ocfs2_dinode *di; 5848 struct ocfs2_truncate_log *tl; 5849 5850 BUG_ON(inode_trylock(tl_inode)); 5851 5852 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5853 5854 di = (struct ocfs2_dinode *) tl_bh->b_data; 5855 5856 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5857 * by the underlying call to ocfs2_read_inode_block(), so any 5858 * corruption is a code bug */ 5859 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5860 5861 tl = &di->id2.i_dealloc; 5862 tl_count = le16_to_cpu(tl->tl_count); 5863 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5864 tl_count == 0, 5865 "Truncate record count on #%llu invalid " 5866 "wanted %u, actual %u\n", 5867 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5868 ocfs2_truncate_recs_per_inode(osb->sb), 5869 le16_to_cpu(tl->tl_count)); 5870 5871 /* Caller should have known to flush before calling us. */ 5872 index = le16_to_cpu(tl->tl_used); 5873 if (index >= tl_count) { 5874 status = -ENOSPC; 5875 mlog_errno(status); 5876 goto bail; 5877 } 5878 5879 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5880 OCFS2_JOURNAL_ACCESS_WRITE); 5881 if (status < 0) { 5882 mlog_errno(status); 5883 goto bail; 5884 } 5885 5886 trace_ocfs2_truncate_log_append( 5887 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5888 start_cluster, num_clusters); 5889 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5890 /* 5891 * Move index back to the record we are coalescing with. 5892 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5893 */ 5894 index--; 5895 5896 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5897 trace_ocfs2_truncate_log_append( 5898 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5899 index, le32_to_cpu(tl->tl_recs[index].t_start), 5900 num_clusters); 5901 } else { 5902 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5903 tl->tl_used = cpu_to_le16(index + 1); 5904 } 5905 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5906 5907 ocfs2_journal_dirty(handle, tl_bh); 5908 5909 osb->truncated_clusters += num_clusters; 5910 bail: 5911 return status; 5912 } 5913 5914 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5915 struct inode *data_alloc_inode, 5916 struct buffer_head *data_alloc_bh) 5917 { 5918 int status = 0; 5919 int i; 5920 unsigned int num_clusters; 5921 u64 start_blk; 5922 struct ocfs2_truncate_rec rec; 5923 struct ocfs2_dinode *di; 5924 struct ocfs2_truncate_log *tl; 5925 struct inode *tl_inode = osb->osb_tl_inode; 5926 struct buffer_head *tl_bh = osb->osb_tl_bh; 5927 handle_t *handle; 5928 5929 di = (struct ocfs2_dinode *) tl_bh->b_data; 5930 tl = &di->id2.i_dealloc; 5931 i = le16_to_cpu(tl->tl_used) - 1; 5932 while (i >= 0) { 5933 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5934 if (IS_ERR(handle)) { 5935 status = PTR_ERR(handle); 5936 mlog_errno(status); 5937 goto bail; 5938 } 5939 5940 /* Caller has given us at least enough credits to 5941 * update the truncate log dinode */ 5942 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5943 OCFS2_JOURNAL_ACCESS_WRITE); 5944 if (status < 0) { 5945 mlog_errno(status); 5946 goto bail; 5947 } 5948 5949 tl->tl_used = cpu_to_le16(i); 5950 5951 ocfs2_journal_dirty(handle, tl_bh); 5952 5953 rec = tl->tl_recs[i]; 5954 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5955 le32_to_cpu(rec.t_start)); 5956 num_clusters = le32_to_cpu(rec.t_clusters); 5957 5958 /* if start_blk is not set, we ignore the record as 5959 * invalid. */ 5960 if (start_blk) { 5961 trace_ocfs2_replay_truncate_records( 5962 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5963 i, le32_to_cpu(rec.t_start), num_clusters); 5964 5965 status = ocfs2_free_clusters(handle, data_alloc_inode, 5966 data_alloc_bh, start_blk, 5967 num_clusters); 5968 if (status < 0) { 5969 mlog_errno(status); 5970 goto bail; 5971 } 5972 } 5973 5974 ocfs2_commit_trans(osb, handle); 5975 i--; 5976 } 5977 5978 osb->truncated_clusters = 0; 5979 5980 bail: 5981 return status; 5982 } 5983 5984 /* Expects you to already be holding tl_inode->i_mutex */ 5985 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5986 { 5987 int status; 5988 unsigned int num_to_flush; 5989 struct inode *tl_inode = osb->osb_tl_inode; 5990 struct inode *data_alloc_inode = NULL; 5991 struct buffer_head *tl_bh = osb->osb_tl_bh; 5992 struct buffer_head *data_alloc_bh = NULL; 5993 struct ocfs2_dinode *di; 5994 struct ocfs2_truncate_log *tl; 5995 struct ocfs2_journal *journal = osb->journal; 5996 5997 BUG_ON(inode_trylock(tl_inode)); 5998 5999 di = (struct ocfs2_dinode *) tl_bh->b_data; 6000 6001 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6002 * by the underlying call to ocfs2_read_inode_block(), so any 6003 * corruption is a code bug */ 6004 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6005 6006 tl = &di->id2.i_dealloc; 6007 num_to_flush = le16_to_cpu(tl->tl_used); 6008 trace_ocfs2_flush_truncate_log( 6009 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6010 num_to_flush); 6011 if (!num_to_flush) { 6012 status = 0; 6013 goto out; 6014 } 6015 6016 /* Appending truncate log(TA) and and flushing truncate log(TF) are 6017 * two separated transactions. They can be both committed but not 6018 * checkpointed. If crash occurs then, both two transaction will be 6019 * replayed with several already released to global bitmap clusters. 6020 * Then truncate log will be replayed resulting in cluster double free. 6021 */ 6022 jbd2_journal_lock_updates(journal->j_journal); 6023 status = jbd2_journal_flush(journal->j_journal); 6024 jbd2_journal_unlock_updates(journal->j_journal); 6025 if (status < 0) { 6026 mlog_errno(status); 6027 goto out; 6028 } 6029 6030 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6031 GLOBAL_BITMAP_SYSTEM_INODE, 6032 OCFS2_INVALID_SLOT); 6033 if (!data_alloc_inode) { 6034 status = -EINVAL; 6035 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6036 goto out; 6037 } 6038 6039 inode_lock(data_alloc_inode); 6040 6041 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6042 if (status < 0) { 6043 mlog_errno(status); 6044 goto out_mutex; 6045 } 6046 6047 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6048 data_alloc_bh); 6049 if (status < 0) 6050 mlog_errno(status); 6051 6052 brelse(data_alloc_bh); 6053 ocfs2_inode_unlock(data_alloc_inode, 1); 6054 6055 out_mutex: 6056 inode_unlock(data_alloc_inode); 6057 iput(data_alloc_inode); 6058 6059 out: 6060 return status; 6061 } 6062 6063 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6064 { 6065 int status; 6066 struct inode *tl_inode = osb->osb_tl_inode; 6067 6068 inode_lock(tl_inode); 6069 status = __ocfs2_flush_truncate_log(osb); 6070 inode_unlock(tl_inode); 6071 6072 return status; 6073 } 6074 6075 static void ocfs2_truncate_log_worker(struct work_struct *work) 6076 { 6077 int status; 6078 struct ocfs2_super *osb = 6079 container_of(work, struct ocfs2_super, 6080 osb_truncate_log_wq.work); 6081 6082 status = ocfs2_flush_truncate_log(osb); 6083 if (status < 0) 6084 mlog_errno(status); 6085 else 6086 ocfs2_init_steal_slots(osb); 6087 } 6088 6089 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6090 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6091 int cancel) 6092 { 6093 if (osb->osb_tl_inode && 6094 atomic_read(&osb->osb_tl_disable) == 0) { 6095 /* We want to push off log flushes while truncates are 6096 * still running. */ 6097 if (cancel) 6098 cancel_delayed_work(&osb->osb_truncate_log_wq); 6099 6100 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6101 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6102 } 6103 } 6104 6105 /* 6106 * Try to flush truncate logs if we can free enough clusters from it. 6107 * As for return value, "< 0" means error, "0" no space and "1" means 6108 * we have freed enough spaces and let the caller try to allocate again. 6109 */ 6110 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6111 unsigned int needed) 6112 { 6113 tid_t target; 6114 int ret = 0; 6115 unsigned int truncated_clusters; 6116 6117 inode_lock(osb->osb_tl_inode); 6118 truncated_clusters = osb->truncated_clusters; 6119 inode_unlock(osb->osb_tl_inode); 6120 6121 /* 6122 * Check whether we can succeed in allocating if we free 6123 * the truncate log. 6124 */ 6125 if (truncated_clusters < needed) 6126 goto out; 6127 6128 ret = ocfs2_flush_truncate_log(osb); 6129 if (ret) { 6130 mlog_errno(ret); 6131 goto out; 6132 } 6133 6134 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6135 jbd2_log_wait_commit(osb->journal->j_journal, target); 6136 ret = 1; 6137 } 6138 out: 6139 return ret; 6140 } 6141 6142 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6143 int slot_num, 6144 struct inode **tl_inode, 6145 struct buffer_head **tl_bh) 6146 { 6147 int status; 6148 struct inode *inode = NULL; 6149 struct buffer_head *bh = NULL; 6150 6151 inode = ocfs2_get_system_file_inode(osb, 6152 TRUNCATE_LOG_SYSTEM_INODE, 6153 slot_num); 6154 if (!inode) { 6155 status = -EINVAL; 6156 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6157 goto bail; 6158 } 6159 6160 status = ocfs2_read_inode_block(inode, &bh); 6161 if (status < 0) { 6162 iput(inode); 6163 mlog_errno(status); 6164 goto bail; 6165 } 6166 6167 *tl_inode = inode; 6168 *tl_bh = bh; 6169 bail: 6170 return status; 6171 } 6172 6173 /* called during the 1st stage of node recovery. we stamp a clean 6174 * truncate log and pass back a copy for processing later. if the 6175 * truncate log does not require processing, a *tl_copy is set to 6176 * NULL. */ 6177 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6178 int slot_num, 6179 struct ocfs2_dinode **tl_copy) 6180 { 6181 int status; 6182 struct inode *tl_inode = NULL; 6183 struct buffer_head *tl_bh = NULL; 6184 struct ocfs2_dinode *di; 6185 struct ocfs2_truncate_log *tl; 6186 6187 *tl_copy = NULL; 6188 6189 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6190 6191 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6192 if (status < 0) { 6193 mlog_errno(status); 6194 goto bail; 6195 } 6196 6197 di = (struct ocfs2_dinode *) tl_bh->b_data; 6198 6199 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6200 * validated by the underlying call to ocfs2_read_inode_block(), 6201 * so any corruption is a code bug */ 6202 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6203 6204 tl = &di->id2.i_dealloc; 6205 if (le16_to_cpu(tl->tl_used)) { 6206 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6207 6208 /* 6209 * Assuming the write-out below goes well, this copy will be 6210 * passed back to recovery for processing. 6211 */ 6212 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); 6213 if (!(*tl_copy)) { 6214 status = -ENOMEM; 6215 mlog_errno(status); 6216 goto bail; 6217 } 6218 6219 /* All we need to do to clear the truncate log is set 6220 * tl_used. */ 6221 tl->tl_used = 0; 6222 6223 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6224 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6225 if (status < 0) { 6226 mlog_errno(status); 6227 goto bail; 6228 } 6229 } 6230 6231 bail: 6232 iput(tl_inode); 6233 brelse(tl_bh); 6234 6235 if (status < 0) { 6236 kfree(*tl_copy); 6237 *tl_copy = NULL; 6238 mlog_errno(status); 6239 } 6240 6241 return status; 6242 } 6243 6244 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6245 struct ocfs2_dinode *tl_copy) 6246 { 6247 int status = 0; 6248 int i; 6249 unsigned int clusters, num_recs, start_cluster; 6250 u64 start_blk; 6251 handle_t *handle; 6252 struct inode *tl_inode = osb->osb_tl_inode; 6253 struct ocfs2_truncate_log *tl; 6254 6255 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6256 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6257 return -EINVAL; 6258 } 6259 6260 tl = &tl_copy->id2.i_dealloc; 6261 num_recs = le16_to_cpu(tl->tl_used); 6262 trace_ocfs2_complete_truncate_log_recovery( 6263 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6264 num_recs); 6265 6266 inode_lock(tl_inode); 6267 for(i = 0; i < num_recs; i++) { 6268 if (ocfs2_truncate_log_needs_flush(osb)) { 6269 status = __ocfs2_flush_truncate_log(osb); 6270 if (status < 0) { 6271 mlog_errno(status); 6272 goto bail_up; 6273 } 6274 } 6275 6276 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6277 if (IS_ERR(handle)) { 6278 status = PTR_ERR(handle); 6279 mlog_errno(status); 6280 goto bail_up; 6281 } 6282 6283 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6284 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6285 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6286 6287 status = ocfs2_truncate_log_append(osb, handle, 6288 start_blk, clusters); 6289 ocfs2_commit_trans(osb, handle); 6290 if (status < 0) { 6291 mlog_errno(status); 6292 goto bail_up; 6293 } 6294 } 6295 6296 bail_up: 6297 inode_unlock(tl_inode); 6298 6299 return status; 6300 } 6301 6302 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6303 { 6304 int status; 6305 struct inode *tl_inode = osb->osb_tl_inode; 6306 6307 atomic_set(&osb->osb_tl_disable, 1); 6308 6309 if (tl_inode) { 6310 cancel_delayed_work(&osb->osb_truncate_log_wq); 6311 flush_workqueue(osb->ocfs2_wq); 6312 6313 status = ocfs2_flush_truncate_log(osb); 6314 if (status < 0) 6315 mlog_errno(status); 6316 6317 brelse(osb->osb_tl_bh); 6318 iput(osb->osb_tl_inode); 6319 } 6320 } 6321 6322 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6323 { 6324 int status; 6325 struct inode *tl_inode = NULL; 6326 struct buffer_head *tl_bh = NULL; 6327 6328 status = ocfs2_get_truncate_log_info(osb, 6329 osb->slot_num, 6330 &tl_inode, 6331 &tl_bh); 6332 if (status < 0) 6333 mlog_errno(status); 6334 6335 /* ocfs2_truncate_log_shutdown keys on the existence of 6336 * osb->osb_tl_inode so we don't set any of the osb variables 6337 * until we're sure all is well. */ 6338 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6339 ocfs2_truncate_log_worker); 6340 atomic_set(&osb->osb_tl_disable, 0); 6341 osb->osb_tl_bh = tl_bh; 6342 osb->osb_tl_inode = tl_inode; 6343 6344 return status; 6345 } 6346 6347 /* 6348 * Delayed de-allocation of suballocator blocks. 6349 * 6350 * Some sets of block de-allocations might involve multiple suballocator inodes. 6351 * 6352 * The locking for this can get extremely complicated, especially when 6353 * the suballocator inodes to delete from aren't known until deep 6354 * within an unrelated codepath. 6355 * 6356 * ocfs2_extent_block structures are a good example of this - an inode 6357 * btree could have been grown by any number of nodes each allocating 6358 * out of their own suballoc inode. 6359 * 6360 * These structures allow the delay of block de-allocation until a 6361 * later time, when locking of multiple cluster inodes won't cause 6362 * deadlock. 6363 */ 6364 6365 /* 6366 * Describe a single bit freed from a suballocator. For the block 6367 * suballocators, it represents one block. For the global cluster 6368 * allocator, it represents some clusters and free_bit indicates 6369 * clusters number. 6370 */ 6371 struct ocfs2_cached_block_free { 6372 struct ocfs2_cached_block_free *free_next; 6373 u64 free_bg; 6374 u64 free_blk; 6375 unsigned int free_bit; 6376 }; 6377 6378 struct ocfs2_per_slot_free_list { 6379 struct ocfs2_per_slot_free_list *f_next_suballocator; 6380 int f_inode_type; 6381 int f_slot; 6382 struct ocfs2_cached_block_free *f_first; 6383 }; 6384 6385 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6386 int sysfile_type, 6387 int slot, 6388 struct ocfs2_cached_block_free *head) 6389 { 6390 int ret; 6391 u64 bg_blkno; 6392 handle_t *handle; 6393 struct inode *inode; 6394 struct buffer_head *di_bh = NULL; 6395 struct ocfs2_cached_block_free *tmp; 6396 6397 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6398 if (!inode) { 6399 ret = -EINVAL; 6400 mlog_errno(ret); 6401 goto out; 6402 } 6403 6404 inode_lock(inode); 6405 6406 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6407 if (ret) { 6408 mlog_errno(ret); 6409 goto out_mutex; 6410 } 6411 6412 while (head) { 6413 if (head->free_bg) 6414 bg_blkno = head->free_bg; 6415 else 6416 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6417 head->free_bit); 6418 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6419 if (IS_ERR(handle)) { 6420 ret = PTR_ERR(handle); 6421 mlog_errno(ret); 6422 goto out_unlock; 6423 } 6424 6425 trace_ocfs2_free_cached_blocks( 6426 (unsigned long long)head->free_blk, head->free_bit); 6427 6428 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6429 head->free_bit, bg_blkno, 1); 6430 if (ret) 6431 mlog_errno(ret); 6432 6433 ocfs2_commit_trans(osb, handle); 6434 6435 tmp = head; 6436 head = head->free_next; 6437 kfree(tmp); 6438 } 6439 6440 out_unlock: 6441 ocfs2_inode_unlock(inode, 1); 6442 brelse(di_bh); 6443 out_mutex: 6444 inode_unlock(inode); 6445 iput(inode); 6446 out: 6447 while(head) { 6448 /* Premature exit may have left some dangling items. */ 6449 tmp = head; 6450 head = head->free_next; 6451 kfree(tmp); 6452 } 6453 6454 return ret; 6455 } 6456 6457 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6458 u64 blkno, unsigned int bit) 6459 { 6460 int ret = 0; 6461 struct ocfs2_cached_block_free *item; 6462 6463 item = kzalloc(sizeof(*item), GFP_NOFS); 6464 if (item == NULL) { 6465 ret = -ENOMEM; 6466 mlog_errno(ret); 6467 return ret; 6468 } 6469 6470 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6471 6472 item->free_blk = blkno; 6473 item->free_bit = bit; 6474 item->free_next = ctxt->c_global_allocator; 6475 6476 ctxt->c_global_allocator = item; 6477 return ret; 6478 } 6479 6480 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6481 struct ocfs2_cached_block_free *head) 6482 { 6483 struct ocfs2_cached_block_free *tmp; 6484 struct inode *tl_inode = osb->osb_tl_inode; 6485 handle_t *handle; 6486 int ret = 0; 6487 6488 inode_lock(tl_inode); 6489 6490 while (head) { 6491 if (ocfs2_truncate_log_needs_flush(osb)) { 6492 ret = __ocfs2_flush_truncate_log(osb); 6493 if (ret < 0) { 6494 mlog_errno(ret); 6495 break; 6496 } 6497 } 6498 6499 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6500 if (IS_ERR(handle)) { 6501 ret = PTR_ERR(handle); 6502 mlog_errno(ret); 6503 break; 6504 } 6505 6506 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6507 head->free_bit); 6508 6509 ocfs2_commit_trans(osb, handle); 6510 tmp = head; 6511 head = head->free_next; 6512 kfree(tmp); 6513 6514 if (ret < 0) { 6515 mlog_errno(ret); 6516 break; 6517 } 6518 } 6519 6520 inode_unlock(tl_inode); 6521 6522 while (head) { 6523 /* Premature exit may have left some dangling items. */ 6524 tmp = head; 6525 head = head->free_next; 6526 kfree(tmp); 6527 } 6528 6529 return ret; 6530 } 6531 6532 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6533 struct ocfs2_cached_dealloc_ctxt *ctxt) 6534 { 6535 int ret = 0, ret2; 6536 struct ocfs2_per_slot_free_list *fl; 6537 6538 if (!ctxt) 6539 return 0; 6540 6541 while (ctxt->c_first_suballocator) { 6542 fl = ctxt->c_first_suballocator; 6543 6544 if (fl->f_first) { 6545 trace_ocfs2_run_deallocs(fl->f_inode_type, 6546 fl->f_slot); 6547 ret2 = ocfs2_free_cached_blocks(osb, 6548 fl->f_inode_type, 6549 fl->f_slot, 6550 fl->f_first); 6551 if (ret2) 6552 mlog_errno(ret2); 6553 if (!ret) 6554 ret = ret2; 6555 } 6556 6557 ctxt->c_first_suballocator = fl->f_next_suballocator; 6558 kfree(fl); 6559 } 6560 6561 if (ctxt->c_global_allocator) { 6562 ret2 = ocfs2_free_cached_clusters(osb, 6563 ctxt->c_global_allocator); 6564 if (ret2) 6565 mlog_errno(ret2); 6566 if (!ret) 6567 ret = ret2; 6568 6569 ctxt->c_global_allocator = NULL; 6570 } 6571 6572 return ret; 6573 } 6574 6575 static struct ocfs2_per_slot_free_list * 6576 ocfs2_find_per_slot_free_list(int type, 6577 int slot, 6578 struct ocfs2_cached_dealloc_ctxt *ctxt) 6579 { 6580 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6581 6582 while (fl) { 6583 if (fl->f_inode_type == type && fl->f_slot == slot) 6584 return fl; 6585 6586 fl = fl->f_next_suballocator; 6587 } 6588 6589 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6590 if (fl) { 6591 fl->f_inode_type = type; 6592 fl->f_slot = slot; 6593 fl->f_first = NULL; 6594 fl->f_next_suballocator = ctxt->c_first_suballocator; 6595 6596 ctxt->c_first_suballocator = fl; 6597 } 6598 return fl; 6599 } 6600 6601 static struct ocfs2_per_slot_free_list * 6602 ocfs2_find_preferred_free_list(int type, 6603 int preferred_slot, 6604 int *real_slot, 6605 struct ocfs2_cached_dealloc_ctxt *ctxt) 6606 { 6607 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6608 6609 while (fl) { 6610 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6611 *real_slot = fl->f_slot; 6612 return fl; 6613 } 6614 6615 fl = fl->f_next_suballocator; 6616 } 6617 6618 /* If we can't find any free list matching preferred slot, just use 6619 * the first one. 6620 */ 6621 fl = ctxt->c_first_suballocator; 6622 *real_slot = fl->f_slot; 6623 6624 return fl; 6625 } 6626 6627 /* Return Value 1 indicates empty */ 6628 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6629 { 6630 struct ocfs2_per_slot_free_list *fl = NULL; 6631 6632 if (!et->et_dealloc) 6633 return 1; 6634 6635 fl = et->et_dealloc->c_first_suballocator; 6636 if (!fl) 6637 return 1; 6638 6639 if (!fl->f_first) 6640 return 1; 6641 6642 return 0; 6643 } 6644 6645 /* If extent was deleted from tree due to extent rotation and merging, and 6646 * no metadata is reserved ahead of time. Try to reuse some extents 6647 * just deleted. This is only used to reuse extent blocks. 6648 * It is supposed to find enough extent blocks in dealloc if our estimation 6649 * on metadata is accurate. 6650 */ 6651 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6652 struct ocfs2_extent_tree *et, 6653 struct buffer_head **new_eb_bh, 6654 int blk_wanted, int *blk_given) 6655 { 6656 int i, status = 0, real_slot; 6657 struct ocfs2_cached_dealloc_ctxt *dealloc; 6658 struct ocfs2_per_slot_free_list *fl; 6659 struct ocfs2_cached_block_free *bf; 6660 struct ocfs2_extent_block *eb; 6661 struct ocfs2_super *osb = 6662 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6663 6664 *blk_given = 0; 6665 6666 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6667 * tell upper caller dealloc can't provide any block and it should 6668 * ask for alloc to claim more space. 6669 */ 6670 dealloc = et->et_dealloc; 6671 if (!dealloc) 6672 goto bail; 6673 6674 for (i = 0; i < blk_wanted; i++) { 6675 /* Prefer to use local slot */ 6676 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6677 osb->slot_num, &real_slot, 6678 dealloc); 6679 /* If no more block can be reused, we should claim more 6680 * from alloc. Just return here normally. 6681 */ 6682 if (!fl) { 6683 status = 0; 6684 break; 6685 } 6686 6687 bf = fl->f_first; 6688 fl->f_first = bf->free_next; 6689 6690 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6691 if (new_eb_bh[i] == NULL) { 6692 status = -ENOMEM; 6693 mlog_errno(status); 6694 goto bail; 6695 } 6696 6697 mlog(0, "Reusing block(%llu) from " 6698 "dealloc(local slot:%d, real slot:%d)\n", 6699 bf->free_blk, osb->slot_num, real_slot); 6700 6701 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6702 6703 status = ocfs2_journal_access_eb(handle, et->et_ci, 6704 new_eb_bh[i], 6705 OCFS2_JOURNAL_ACCESS_CREATE); 6706 if (status < 0) { 6707 mlog_errno(status); 6708 goto bail; 6709 } 6710 6711 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6712 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6713 6714 /* We can't guarantee that buffer head is still cached, so 6715 * polutlate the extent block again. 6716 */ 6717 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6718 eb->h_blkno = cpu_to_le64(bf->free_blk); 6719 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6720 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6721 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6722 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6723 eb->h_list.l_count = 6724 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6725 6726 /* We'll also be dirtied by the caller, so 6727 * this isn't absolutely necessary. 6728 */ 6729 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6730 6731 if (!fl->f_first) { 6732 dealloc->c_first_suballocator = fl->f_next_suballocator; 6733 kfree(fl); 6734 } 6735 kfree(bf); 6736 } 6737 6738 *blk_given = i; 6739 6740 bail: 6741 if (unlikely(status < 0)) { 6742 for (i = 0; i < blk_wanted; i++) 6743 brelse(new_eb_bh[i]); 6744 } 6745 6746 return status; 6747 } 6748 6749 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6750 int type, int slot, u64 suballoc, 6751 u64 blkno, unsigned int bit) 6752 { 6753 int ret; 6754 struct ocfs2_per_slot_free_list *fl; 6755 struct ocfs2_cached_block_free *item; 6756 6757 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6758 if (fl == NULL) { 6759 ret = -ENOMEM; 6760 mlog_errno(ret); 6761 goto out; 6762 } 6763 6764 item = kzalloc(sizeof(*item), GFP_NOFS); 6765 if (item == NULL) { 6766 ret = -ENOMEM; 6767 mlog_errno(ret); 6768 goto out; 6769 } 6770 6771 trace_ocfs2_cache_block_dealloc(type, slot, 6772 (unsigned long long)suballoc, 6773 (unsigned long long)blkno, bit); 6774 6775 item->free_bg = suballoc; 6776 item->free_blk = blkno; 6777 item->free_bit = bit; 6778 item->free_next = fl->f_first; 6779 6780 fl->f_first = item; 6781 6782 ret = 0; 6783 out: 6784 return ret; 6785 } 6786 6787 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6788 struct ocfs2_extent_block *eb) 6789 { 6790 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6791 le16_to_cpu(eb->h_suballoc_slot), 6792 le64_to_cpu(eb->h_suballoc_loc), 6793 le64_to_cpu(eb->h_blkno), 6794 le16_to_cpu(eb->h_suballoc_bit)); 6795 } 6796 6797 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6798 { 6799 set_buffer_uptodate(bh); 6800 mark_buffer_dirty(bh); 6801 return 0; 6802 } 6803 6804 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6805 unsigned int from, unsigned int to, 6806 struct page *page, int zero, u64 *phys) 6807 { 6808 int ret, partial = 0; 6809 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from; 6810 loff_t length = to - from; 6811 6812 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6813 if (ret) 6814 mlog_errno(ret); 6815 6816 if (zero) 6817 zero_user_segment(page, from, to); 6818 6819 /* 6820 * Need to set the buffers we zero'd into uptodate 6821 * here if they aren't - ocfs2_map_page_blocks() 6822 * might've skipped some 6823 */ 6824 ret = walk_page_buffers(handle, page_buffers(page), 6825 from, to, &partial, 6826 ocfs2_zero_func); 6827 if (ret < 0) 6828 mlog_errno(ret); 6829 else if (ocfs2_should_order_data(inode)) { 6830 ret = ocfs2_jbd2_inode_add_write(handle, inode, 6831 start_byte, length); 6832 if (ret < 0) 6833 mlog_errno(ret); 6834 } 6835 6836 if (!partial) 6837 SetPageUptodate(page); 6838 6839 flush_dcache_page(page); 6840 } 6841 6842 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6843 loff_t end, struct page **pages, 6844 int numpages, u64 phys, handle_t *handle) 6845 { 6846 int i; 6847 struct page *page; 6848 unsigned int from, to = PAGE_SIZE; 6849 struct super_block *sb = inode->i_sb; 6850 6851 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6852 6853 if (numpages == 0) 6854 goto out; 6855 6856 to = PAGE_SIZE; 6857 for(i = 0; i < numpages; i++) { 6858 page = pages[i]; 6859 6860 from = start & (PAGE_SIZE - 1); 6861 if ((end >> PAGE_SHIFT) == page->index) 6862 to = end & (PAGE_SIZE - 1); 6863 6864 BUG_ON(from > PAGE_SIZE); 6865 BUG_ON(to > PAGE_SIZE); 6866 6867 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6868 &phys); 6869 6870 start = (page->index + 1) << PAGE_SHIFT; 6871 } 6872 out: 6873 if (pages) 6874 ocfs2_unlock_and_free_pages(pages, numpages); 6875 } 6876 6877 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6878 struct page **pages, int *num) 6879 { 6880 int numpages, ret = 0; 6881 struct address_space *mapping = inode->i_mapping; 6882 unsigned long index; 6883 loff_t last_page_bytes; 6884 6885 BUG_ON(start > end); 6886 6887 numpages = 0; 6888 last_page_bytes = PAGE_ALIGN(end); 6889 index = start >> PAGE_SHIFT; 6890 do { 6891 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6892 if (!pages[numpages]) { 6893 ret = -ENOMEM; 6894 mlog_errno(ret); 6895 goto out; 6896 } 6897 6898 numpages++; 6899 index++; 6900 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6901 6902 out: 6903 if (ret != 0) { 6904 if (pages) 6905 ocfs2_unlock_and_free_pages(pages, numpages); 6906 numpages = 0; 6907 } 6908 6909 *num = numpages; 6910 6911 return ret; 6912 } 6913 6914 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6915 struct page **pages, int *num) 6916 { 6917 struct super_block *sb = inode->i_sb; 6918 6919 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6920 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6921 6922 return ocfs2_grab_pages(inode, start, end, pages, num); 6923 } 6924 6925 /* 6926 * Zero the area past i_size but still within an allocated 6927 * cluster. This avoids exposing nonzero data on subsequent file 6928 * extends. 6929 * 6930 * We need to call this before i_size is updated on the inode because 6931 * otherwise block_write_full_page() will skip writeout of pages past 6932 * i_size. The new_i_size parameter is passed for this reason. 6933 */ 6934 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6935 u64 range_start, u64 range_end) 6936 { 6937 int ret = 0, numpages; 6938 struct page **pages = NULL; 6939 u64 phys; 6940 unsigned int ext_flags; 6941 struct super_block *sb = inode->i_sb; 6942 6943 /* 6944 * File systems which don't support sparse files zero on every 6945 * extend. 6946 */ 6947 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6948 return 0; 6949 6950 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6951 sizeof(struct page *), GFP_NOFS); 6952 if (pages == NULL) { 6953 ret = -ENOMEM; 6954 mlog_errno(ret); 6955 goto out; 6956 } 6957 6958 if (range_start == range_end) 6959 goto out; 6960 6961 ret = ocfs2_extent_map_get_blocks(inode, 6962 range_start >> sb->s_blocksize_bits, 6963 &phys, NULL, &ext_flags); 6964 if (ret) { 6965 mlog_errno(ret); 6966 goto out; 6967 } 6968 6969 /* 6970 * Tail is a hole, or is marked unwritten. In either case, we 6971 * can count on read and write to return/push zero's. 6972 */ 6973 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6974 goto out; 6975 6976 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6977 &numpages); 6978 if (ret) { 6979 mlog_errno(ret); 6980 goto out; 6981 } 6982 6983 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6984 numpages, phys, handle); 6985 6986 /* 6987 * Initiate writeout of the pages we zero'd here. We don't 6988 * wait on them - the truncate_inode_pages() call later will 6989 * do that for us. 6990 */ 6991 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6992 range_end - 1); 6993 if (ret) 6994 mlog_errno(ret); 6995 6996 out: 6997 kfree(pages); 6998 6999 return ret; 7000 } 7001 7002 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7003 struct ocfs2_dinode *di) 7004 { 7005 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7006 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7007 7008 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7009 memset(&di->id2, 0, blocksize - 7010 offsetof(struct ocfs2_dinode, id2) - 7011 xattrsize); 7012 else 7013 memset(&di->id2, 0, blocksize - 7014 offsetof(struct ocfs2_dinode, id2)); 7015 } 7016 7017 void ocfs2_dinode_new_extent_list(struct inode *inode, 7018 struct ocfs2_dinode *di) 7019 { 7020 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7021 di->id2.i_list.l_tree_depth = 0; 7022 di->id2.i_list.l_next_free_rec = 0; 7023 di->id2.i_list.l_count = cpu_to_le16( 7024 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7025 } 7026 7027 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7028 { 7029 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7030 struct ocfs2_inline_data *idata = &di->id2.i_data; 7031 7032 spin_lock(&oi->ip_lock); 7033 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7034 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7035 spin_unlock(&oi->ip_lock); 7036 7037 /* 7038 * We clear the entire i_data structure here so that all 7039 * fields can be properly initialized. 7040 */ 7041 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7042 7043 idata->id_count = cpu_to_le16( 7044 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7045 } 7046 7047 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7048 struct buffer_head *di_bh) 7049 { 7050 int ret, i, has_data, num_pages = 0; 7051 int need_free = 0; 7052 u32 bit_off, num; 7053 handle_t *handle; 7054 u64 uninitialized_var(block); 7055 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7056 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7057 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7058 struct ocfs2_alloc_context *data_ac = NULL; 7059 struct page **pages = NULL; 7060 loff_t end = osb->s_clustersize; 7061 struct ocfs2_extent_tree et; 7062 int did_quota = 0; 7063 7064 has_data = i_size_read(inode) ? 1 : 0; 7065 7066 if (has_data) { 7067 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7068 sizeof(struct page *), GFP_NOFS); 7069 if (pages == NULL) { 7070 ret = -ENOMEM; 7071 mlog_errno(ret); 7072 return ret; 7073 } 7074 7075 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7076 if (ret) { 7077 mlog_errno(ret); 7078 goto free_pages; 7079 } 7080 } 7081 7082 handle = ocfs2_start_trans(osb, 7083 ocfs2_inline_to_extents_credits(osb->sb)); 7084 if (IS_ERR(handle)) { 7085 ret = PTR_ERR(handle); 7086 mlog_errno(ret); 7087 goto out; 7088 } 7089 7090 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7091 OCFS2_JOURNAL_ACCESS_WRITE); 7092 if (ret) { 7093 mlog_errno(ret); 7094 goto out_commit; 7095 } 7096 7097 if (has_data) { 7098 unsigned int page_end; 7099 u64 phys; 7100 7101 ret = dquot_alloc_space_nodirty(inode, 7102 ocfs2_clusters_to_bytes(osb->sb, 1)); 7103 if (ret) 7104 goto out_commit; 7105 did_quota = 1; 7106 7107 data_ac->ac_resv = &oi->ip_la_data_resv; 7108 7109 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7110 &num); 7111 if (ret) { 7112 mlog_errno(ret); 7113 goto out_commit; 7114 } 7115 7116 /* 7117 * Save two copies, one for insert, and one that can 7118 * be changed by ocfs2_map_and_dirty_page() below. 7119 */ 7120 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7121 7122 /* 7123 * Non sparse file systems zero on extend, so no need 7124 * to do that now. 7125 */ 7126 if (!ocfs2_sparse_alloc(osb) && 7127 PAGE_SIZE < osb->s_clustersize) 7128 end = PAGE_SIZE; 7129 7130 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7131 if (ret) { 7132 mlog_errno(ret); 7133 need_free = 1; 7134 goto out_commit; 7135 } 7136 7137 /* 7138 * This should populate the 1st page for us and mark 7139 * it up to date. 7140 */ 7141 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7142 if (ret) { 7143 mlog_errno(ret); 7144 need_free = 1; 7145 goto out_unlock; 7146 } 7147 7148 page_end = PAGE_SIZE; 7149 if (PAGE_SIZE > osb->s_clustersize) 7150 page_end = osb->s_clustersize; 7151 7152 for (i = 0; i < num_pages; i++) 7153 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7154 pages[i], i > 0, &phys); 7155 } 7156 7157 spin_lock(&oi->ip_lock); 7158 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7159 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7160 spin_unlock(&oi->ip_lock); 7161 7162 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7163 ocfs2_dinode_new_extent_list(inode, di); 7164 7165 ocfs2_journal_dirty(handle, di_bh); 7166 7167 if (has_data) { 7168 /* 7169 * An error at this point should be extremely rare. If 7170 * this proves to be false, we could always re-build 7171 * the in-inode data from our pages. 7172 */ 7173 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7174 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7175 if (ret) { 7176 mlog_errno(ret); 7177 need_free = 1; 7178 goto out_unlock; 7179 } 7180 7181 inode->i_blocks = ocfs2_inode_sector_count(inode); 7182 } 7183 7184 out_unlock: 7185 if (pages) 7186 ocfs2_unlock_and_free_pages(pages, num_pages); 7187 7188 out_commit: 7189 if (ret < 0 && did_quota) 7190 dquot_free_space_nodirty(inode, 7191 ocfs2_clusters_to_bytes(osb->sb, 1)); 7192 7193 if (need_free) { 7194 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7195 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7196 bit_off, num); 7197 else 7198 ocfs2_free_clusters(handle, 7199 data_ac->ac_inode, 7200 data_ac->ac_bh, 7201 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7202 num); 7203 } 7204 7205 ocfs2_commit_trans(osb, handle); 7206 7207 out: 7208 if (data_ac) 7209 ocfs2_free_alloc_context(data_ac); 7210 free_pages: 7211 kfree(pages); 7212 return ret; 7213 } 7214 7215 /* 7216 * It is expected, that by the time you call this function, 7217 * inode->i_size and fe->i_size have been adjusted. 7218 * 7219 * WARNING: This will kfree the truncate context 7220 */ 7221 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7222 struct inode *inode, 7223 struct buffer_head *di_bh) 7224 { 7225 int status = 0, i, flags = 0; 7226 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7227 u64 blkno = 0; 7228 struct ocfs2_extent_list *el; 7229 struct ocfs2_extent_rec *rec; 7230 struct ocfs2_path *path = NULL; 7231 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7232 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7233 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7234 struct ocfs2_extent_tree et; 7235 struct ocfs2_cached_dealloc_ctxt dealloc; 7236 struct ocfs2_refcount_tree *ref_tree = NULL; 7237 7238 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7239 ocfs2_init_dealloc_ctxt(&dealloc); 7240 7241 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7242 i_size_read(inode)); 7243 7244 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7245 ocfs2_journal_access_di); 7246 if (!path) { 7247 status = -ENOMEM; 7248 mlog_errno(status); 7249 goto bail; 7250 } 7251 7252 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7253 7254 start: 7255 /* 7256 * Check that we still have allocation to delete. 7257 */ 7258 if (OCFS2_I(inode)->ip_clusters == 0) { 7259 status = 0; 7260 goto bail; 7261 } 7262 7263 /* 7264 * Truncate always works against the rightmost tree branch. 7265 */ 7266 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7267 if (status) { 7268 mlog_errno(status); 7269 goto bail; 7270 } 7271 7272 trace_ocfs2_commit_truncate( 7273 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7274 new_highest_cpos, 7275 OCFS2_I(inode)->ip_clusters, 7276 path->p_tree_depth); 7277 7278 /* 7279 * By now, el will point to the extent list on the bottom most 7280 * portion of this tree. Only the tail record is considered in 7281 * each pass. 7282 * 7283 * We handle the following cases, in order: 7284 * - empty extent: delete the remaining branch 7285 * - remove the entire record 7286 * - remove a partial record 7287 * - no record needs to be removed (truncate has completed) 7288 */ 7289 el = path_leaf_el(path); 7290 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7291 ocfs2_error(inode->i_sb, 7292 "Inode %llu has empty extent block at %llu\n", 7293 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7294 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7295 status = -EROFS; 7296 goto bail; 7297 } 7298 7299 i = le16_to_cpu(el->l_next_free_rec) - 1; 7300 rec = &el->l_recs[i]; 7301 flags = rec->e_flags; 7302 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7303 7304 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7305 /* 7306 * Lower levels depend on this never happening, but it's best 7307 * to check it up here before changing the tree. 7308 */ 7309 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7310 mlog(ML_ERROR, "Inode %lu has an empty " 7311 "extent record, depth %u\n", inode->i_ino, 7312 le16_to_cpu(root_el->l_tree_depth)); 7313 status = ocfs2_remove_rightmost_empty_extent(osb, 7314 &et, path, &dealloc); 7315 if (status) { 7316 mlog_errno(status); 7317 goto bail; 7318 } 7319 7320 ocfs2_reinit_path(path, 1); 7321 goto start; 7322 } else { 7323 trunc_cpos = le32_to_cpu(rec->e_cpos); 7324 trunc_len = 0; 7325 blkno = 0; 7326 } 7327 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7328 /* 7329 * Truncate entire record. 7330 */ 7331 trunc_cpos = le32_to_cpu(rec->e_cpos); 7332 trunc_len = ocfs2_rec_clusters(el, rec); 7333 blkno = le64_to_cpu(rec->e_blkno); 7334 } else if (range > new_highest_cpos) { 7335 /* 7336 * Partial truncate. it also should be 7337 * the last truncate we're doing. 7338 */ 7339 trunc_cpos = new_highest_cpos; 7340 trunc_len = range - new_highest_cpos; 7341 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7342 blkno = le64_to_cpu(rec->e_blkno) + 7343 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7344 } else { 7345 /* 7346 * Truncate completed, leave happily. 7347 */ 7348 status = 0; 7349 goto bail; 7350 } 7351 7352 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7353 7354 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7355 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7356 &ref_tree, NULL); 7357 if (status) { 7358 mlog_errno(status); 7359 goto bail; 7360 } 7361 } 7362 7363 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7364 phys_cpos, trunc_len, flags, &dealloc, 7365 refcount_loc, true); 7366 if (status < 0) { 7367 mlog_errno(status); 7368 goto bail; 7369 } 7370 7371 ocfs2_reinit_path(path, 1); 7372 7373 /* 7374 * The check above will catch the case where we've truncated 7375 * away all allocation. 7376 */ 7377 goto start; 7378 7379 bail: 7380 if (ref_tree) 7381 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7382 7383 ocfs2_schedule_truncate_log_flush(osb, 1); 7384 7385 ocfs2_run_deallocs(osb, &dealloc); 7386 7387 ocfs2_free_path(path); 7388 7389 return status; 7390 } 7391 7392 /* 7393 * 'start' is inclusive, 'end' is not. 7394 */ 7395 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7396 unsigned int start, unsigned int end, int trunc) 7397 { 7398 int ret; 7399 unsigned int numbytes; 7400 handle_t *handle; 7401 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7402 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7403 struct ocfs2_inline_data *idata = &di->id2.i_data; 7404 7405 /* No need to punch hole beyond i_size. */ 7406 if (start >= i_size_read(inode)) 7407 return 0; 7408 7409 if (end > i_size_read(inode)) 7410 end = i_size_read(inode); 7411 7412 BUG_ON(start > end); 7413 7414 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7415 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7416 !ocfs2_supports_inline_data(osb)) { 7417 ocfs2_error(inode->i_sb, 7418 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7419 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7420 le16_to_cpu(di->i_dyn_features), 7421 OCFS2_I(inode)->ip_dyn_features, 7422 osb->s_feature_incompat); 7423 ret = -EROFS; 7424 goto out; 7425 } 7426 7427 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7428 if (IS_ERR(handle)) { 7429 ret = PTR_ERR(handle); 7430 mlog_errno(ret); 7431 goto out; 7432 } 7433 7434 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7435 OCFS2_JOURNAL_ACCESS_WRITE); 7436 if (ret) { 7437 mlog_errno(ret); 7438 goto out_commit; 7439 } 7440 7441 numbytes = end - start; 7442 memset(idata->id_data + start, 0, numbytes); 7443 7444 /* 7445 * No need to worry about the data page here - it's been 7446 * truncated already and inline data doesn't need it for 7447 * pushing zero's to disk, so we'll let readpage pick it up 7448 * later. 7449 */ 7450 if (trunc) { 7451 i_size_write(inode, start); 7452 di->i_size = cpu_to_le64(start); 7453 } 7454 7455 inode->i_blocks = ocfs2_inode_sector_count(inode); 7456 inode->i_ctime = inode->i_mtime = current_time(inode); 7457 7458 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7459 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7460 7461 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7462 ocfs2_journal_dirty(handle, di_bh); 7463 7464 out_commit: 7465 ocfs2_commit_trans(osb, handle); 7466 7467 out: 7468 return ret; 7469 } 7470 7471 static int ocfs2_trim_extent(struct super_block *sb, 7472 struct ocfs2_group_desc *gd, 7473 u64 group, u32 start, u32 count) 7474 { 7475 u64 discard, bcount; 7476 struct ocfs2_super *osb = OCFS2_SB(sb); 7477 7478 bcount = ocfs2_clusters_to_blocks(sb, count); 7479 discard = ocfs2_clusters_to_blocks(sb, start); 7480 7481 /* 7482 * For the first cluster group, the gd->bg_blkno is not at the start 7483 * of the group, but at an offset from the start. If we add it while 7484 * calculating discard for first group, we will wrongly start fstrim a 7485 * few blocks after the desried start block and the range can cross 7486 * over into the next cluster group. So, add it only if this is not 7487 * the first cluster group. 7488 */ 7489 if (group != osb->first_cluster_group_blkno) 7490 discard += le64_to_cpu(gd->bg_blkno); 7491 7492 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7493 7494 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7495 } 7496 7497 static int ocfs2_trim_group(struct super_block *sb, 7498 struct ocfs2_group_desc *gd, u64 group, 7499 u32 start, u32 max, u32 minbits) 7500 { 7501 int ret = 0, count = 0, next; 7502 void *bitmap = gd->bg_bitmap; 7503 7504 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7505 return 0; 7506 7507 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7508 start, max, minbits); 7509 7510 while (start < max) { 7511 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7512 if (start >= max) 7513 break; 7514 next = ocfs2_find_next_bit(bitmap, max, start); 7515 7516 if ((next - start) >= minbits) { 7517 ret = ocfs2_trim_extent(sb, gd, group, 7518 start, next - start); 7519 if (ret < 0) { 7520 mlog_errno(ret); 7521 break; 7522 } 7523 count += next - start; 7524 } 7525 start = next + 1; 7526 7527 if (fatal_signal_pending(current)) { 7528 count = -ERESTARTSYS; 7529 break; 7530 } 7531 7532 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7533 break; 7534 } 7535 7536 if (ret < 0) 7537 count = ret; 7538 7539 return count; 7540 } 7541 7542 static 7543 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) 7544 { 7545 struct ocfs2_super *osb = OCFS2_SB(sb); 7546 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; 7547 int ret, cnt; 7548 u32 first_bit, last_bit, minlen; 7549 struct buffer_head *main_bm_bh = NULL; 7550 struct inode *main_bm_inode = NULL; 7551 struct buffer_head *gd_bh = NULL; 7552 struct ocfs2_dinode *main_bm; 7553 struct ocfs2_group_desc *gd = NULL; 7554 7555 start = range->start >> osb->s_clustersize_bits; 7556 len = range->len >> osb->s_clustersize_bits; 7557 minlen = range->minlen >> osb->s_clustersize_bits; 7558 7559 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7560 return -EINVAL; 7561 7562 trace_ocfs2_trim_mainbm(start, len, minlen); 7563 7564 next_group: 7565 main_bm_inode = ocfs2_get_system_file_inode(osb, 7566 GLOBAL_BITMAP_SYSTEM_INODE, 7567 OCFS2_INVALID_SLOT); 7568 if (!main_bm_inode) { 7569 ret = -EIO; 7570 mlog_errno(ret); 7571 goto out; 7572 } 7573 7574 inode_lock(main_bm_inode); 7575 7576 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7577 if (ret < 0) { 7578 mlog_errno(ret); 7579 goto out_mutex; 7580 } 7581 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7582 7583 /* 7584 * Do some check before trim the first group. 7585 */ 7586 if (!group) { 7587 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7588 ret = -EINVAL; 7589 goto out_unlock; 7590 } 7591 7592 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7593 len = le32_to_cpu(main_bm->i_clusters) - start; 7594 7595 /* 7596 * Determine first and last group to examine based on 7597 * start and len 7598 */ 7599 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7600 if (first_group == osb->first_cluster_group_blkno) 7601 first_bit = start; 7602 else 7603 first_bit = start - ocfs2_blocks_to_clusters(sb, 7604 first_group); 7605 last_group = ocfs2_which_cluster_group(main_bm_inode, 7606 start + len - 1); 7607 group = first_group; 7608 } 7609 7610 do { 7611 if (first_bit + len >= osb->bitmap_cpg) 7612 last_bit = osb->bitmap_cpg; 7613 else 7614 last_bit = first_bit + len; 7615 7616 ret = ocfs2_read_group_descriptor(main_bm_inode, 7617 main_bm, group, 7618 &gd_bh); 7619 if (ret < 0) { 7620 mlog_errno(ret); 7621 break; 7622 } 7623 7624 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7625 cnt = ocfs2_trim_group(sb, gd, group, 7626 first_bit, last_bit, minlen); 7627 brelse(gd_bh); 7628 gd_bh = NULL; 7629 if (cnt < 0) { 7630 ret = cnt; 7631 mlog_errno(ret); 7632 break; 7633 } 7634 7635 trimmed += cnt; 7636 len -= osb->bitmap_cpg - first_bit; 7637 first_bit = 0; 7638 if (group == osb->first_cluster_group_blkno) 7639 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7640 else 7641 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7642 } while (0); 7643 7644 out_unlock: 7645 ocfs2_inode_unlock(main_bm_inode, 0); 7646 brelse(main_bm_bh); 7647 main_bm_bh = NULL; 7648 out_mutex: 7649 inode_unlock(main_bm_inode); 7650 iput(main_bm_inode); 7651 7652 /* 7653 * If all the groups trim are not done or failed, but we should release 7654 * main_bm related locks for avoiding the current IO starve, then go to 7655 * trim the next group 7656 */ 7657 if (ret >= 0 && group <= last_group) 7658 goto next_group; 7659 out: 7660 range->len = trimmed * sb->s_blocksize; 7661 return ret; 7662 } 7663 7664 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7665 { 7666 int ret; 7667 struct ocfs2_super *osb = OCFS2_SB(sb); 7668 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7669 7670 ocfs2_trim_fs_lock_res_init(osb); 7671 7672 trace_ocfs2_trim_fs(range->start, range->len, range->minlen); 7673 7674 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7675 if (ret < 0) { 7676 if (ret != -EAGAIN) { 7677 mlog_errno(ret); 7678 ocfs2_trim_fs_lock_res_uninit(osb); 7679 return ret; 7680 } 7681 7682 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7683 "finish, which is running from another node.\n", 7684 osb->dev_str); 7685 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7686 if (ret < 0) { 7687 mlog_errno(ret); 7688 ocfs2_trim_fs_lock_res_uninit(osb); 7689 return ret; 7690 } 7691 7692 if (info.tf_valid && info.tf_success && 7693 info.tf_start == range->start && 7694 info.tf_len == range->len && 7695 info.tf_minlen == range->minlen) { 7696 /* Avoid sending duplicated trim to a shared device */ 7697 mlog(ML_NOTICE, "The same trim on device (%s) was " 7698 "just done from node (%u), return.\n", 7699 osb->dev_str, info.tf_nodenum); 7700 range->len = info.tf_trimlen; 7701 goto out; 7702 } 7703 } 7704 7705 info.tf_nodenum = osb->node_num; 7706 info.tf_start = range->start; 7707 info.tf_len = range->len; 7708 info.tf_minlen = range->minlen; 7709 7710 ret = ocfs2_trim_mainbm(sb, range); 7711 7712 info.tf_trimlen = range->len; 7713 info.tf_success = (ret < 0 ? 0 : 1); 7714 pinfo = &info; 7715 out: 7716 ocfs2_trim_fs_unlock(osb, pinfo); 7717 ocfs2_trim_fs_lock_res_uninit(osb); 7718 return ret; 7719 } 7720