1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 #include "refcounttree.h" 53 #include "ocfs2_trace.h" 54 55 #include "buffer_head_io.h" 56 57 enum ocfs2_contig_type { 58 CONTIG_NONE = 0, 59 CONTIG_LEFT, 60 CONTIG_RIGHT, 61 CONTIG_LEFTRIGHT, 62 }; 63 64 static enum ocfs2_contig_type 65 ocfs2_extent_rec_contig(struct super_block *sb, 66 struct ocfs2_extent_rec *ext, 67 struct ocfs2_extent_rec *insert_rec); 68 /* 69 * Operations for a specific extent tree type. 70 * 71 * To implement an on-disk btree (extent tree) type in ocfs2, add 72 * an ocfs2_extent_tree_operations structure and the matching 73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 74 * for the allocation portion of the extent tree. 75 */ 76 struct ocfs2_extent_tree_operations { 77 /* 78 * last_eb_blk is the block number of the right most leaf extent 79 * block. Most on-disk structures containing an extent tree store 80 * this value for fast access. The ->eo_set_last_eb_blk() and 81 * ->eo_get_last_eb_blk() operations access this value. They are 82 * both required. 83 */ 84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 85 u64 blkno); 86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 87 88 /* 89 * The on-disk structure usually keeps track of how many total 90 * clusters are stored in this extent tree. This function updates 91 * that value. new_clusters is the delta, and must be 92 * added to the total. Required. 93 */ 94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 95 u32 new_clusters); 96 97 /* 98 * If this extent tree is supported by an extent map, insert 99 * a record into the map. 100 */ 101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 102 struct ocfs2_extent_rec *rec); 103 104 /* 105 * If this extent tree is supported by an extent map, truncate the 106 * map to clusters, 107 */ 108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 109 u32 clusters); 110 111 /* 112 * If ->eo_insert_check() exists, it is called before rec is 113 * inserted into the extent tree. It is optional. 114 */ 115 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 116 struct ocfs2_extent_rec *rec); 117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 118 119 /* 120 * -------------------------------------------------------------- 121 * The remaining are internal to ocfs2_extent_tree and don't have 122 * accessor functions 123 */ 124 125 /* 126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 127 * It is required. 128 */ 129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 130 131 /* 132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 133 * it exists. If it does not, et->et_max_leaf_clusters is set 134 * to 0 (unlimited). Optional. 135 */ 136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 137 138 /* 139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 140 * are contiguous or not. Optional. Don't need to set it if use 141 * ocfs2_extent_rec as the tree leaf. 142 */ 143 enum ocfs2_contig_type 144 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *ext, 146 struct ocfs2_extent_rec *insert_rec); 147 }; 148 149 150 /* 151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 152 * in the methods. 153 */ 154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 156 u64 blkno); 157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 158 u32 clusters); 159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 160 struct ocfs2_extent_rec *rec); 161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 162 u32 clusters); 163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 164 struct ocfs2_extent_rec *rec); 165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 170 .eo_update_clusters = ocfs2_dinode_update_clusters, 171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 173 .eo_insert_check = ocfs2_dinode_insert_check, 174 .eo_sanity_check = ocfs2_dinode_sanity_check, 175 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 176 }; 177 178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 179 u64 blkno) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 di->i_last_eb_blk = cpu_to_le64(blkno); 185 } 186 187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 188 { 189 struct ocfs2_dinode *di = et->et_object; 190 191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 192 return le64_to_cpu(di->i_last_eb_blk); 193 } 194 195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 196 u32 clusters) 197 { 198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 199 struct ocfs2_dinode *di = et->et_object; 200 201 le32_add_cpu(&di->i_clusters, clusters); 202 spin_lock(&oi->ip_lock); 203 oi->ip_clusters = le32_to_cpu(di->i_clusters); 204 spin_unlock(&oi->ip_lock); 205 } 206 207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 208 struct ocfs2_extent_rec *rec) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_insert_rec(inode, rec); 213 } 214 215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 216 u32 clusters) 217 { 218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 219 220 ocfs2_extent_map_trunc(inode, clusters); 221 } 222 223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 224 struct ocfs2_extent_rec *rec) 225 { 226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 228 229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 232 "Device %s, asking for sparse allocation: inode %llu, " 233 "cpos %u, clusters %u\n", 234 osb->dev_str, 235 (unsigned long long)oi->ip_blkno, 236 rec->e_cpos, oi->ip_clusters); 237 238 return 0; 239 } 240 241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 242 { 243 struct ocfs2_dinode *di = et->et_object; 244 245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 246 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 247 248 return 0; 249 } 250 251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_dinode *di = et->et_object; 254 255 et->et_root_el = &di->id2.i_list; 256 } 257 258 259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 et->et_root_el = &vb->vb_xv->xr_list; 264 } 265 266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 267 u64 blkno) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 272 } 273 274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 279 } 280 281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_value_buf *vb = et->et_object; 285 286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 294 }; 295 296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 297 { 298 struct ocfs2_xattr_block *xb = et->et_object; 299 300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 301 } 302 303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 304 { 305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 306 et->et_max_leaf_clusters = 307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 308 } 309 310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 311 u64 blkno) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 xt->xt_last_eb_blk = cpu_to_le64(blkno); 317 } 318 319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 320 { 321 struct ocfs2_xattr_block *xb = et->et_object; 322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 323 324 return le64_to_cpu(xt->xt_last_eb_blk); 325 } 326 327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 328 u32 clusters) 329 { 330 struct ocfs2_xattr_block *xb = et->et_object; 331 332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 333 } 334 335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 341 }; 342 343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 344 u64 blkno) 345 { 346 struct ocfs2_dx_root_block *dx_root = et->et_object; 347 348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 349 } 350 351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 return le64_to_cpu(dx_root->dr_last_eb_blk); 356 } 357 358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 359 u32 clusters) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 le32_add_cpu(&dx_root->dr_clusters, clusters); 364 } 365 366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 367 { 368 struct ocfs2_dx_root_block *dx_root = et->et_object; 369 370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 371 372 return 0; 373 } 374 375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 376 { 377 struct ocfs2_dx_root_block *dx_root = et->et_object; 378 379 et->et_root_el = &dx_root->dr_list; 380 } 381 382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 385 .eo_update_clusters = ocfs2_dx_root_update_clusters, 386 .eo_sanity_check = ocfs2_dx_root_sanity_check, 387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 388 }; 389 390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 et->et_root_el = &rb->rf_list; 395 } 396 397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 398 u64 blkno) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 rb->rf_last_eb_blk = cpu_to_le64(blkno); 403 } 404 405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 return le64_to_cpu(rb->rf_last_eb_blk); 410 } 411 412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 413 u32 clusters) 414 { 415 struct ocfs2_refcount_block *rb = et->et_object; 416 417 le32_add_cpu(&rb->rf_clusters, clusters); 418 } 419 420 static enum ocfs2_contig_type 421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 422 struct ocfs2_extent_rec *ext, 423 struct ocfs2_extent_rec *insert_rec) 424 { 425 return CONTIG_NONE; 426 } 427 428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 434 }; 435 436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 437 struct ocfs2_caching_info *ci, 438 struct buffer_head *bh, 439 ocfs2_journal_access_func access, 440 void *obj, 441 struct ocfs2_extent_tree_operations *ops) 442 { 443 et->et_ops = ops; 444 et->et_root_bh = bh; 445 et->et_ci = ci; 446 et->et_root_journal_access = access; 447 if (!obj) 448 obj = (void *)bh->b_data; 449 et->et_object = obj; 450 451 et->et_ops->eo_fill_root_el(et); 452 if (!et->et_ops->eo_fill_max_leaf_clusters) 453 et->et_max_leaf_clusters = 0; 454 else 455 et->et_ops->eo_fill_max_leaf_clusters(et); 456 } 457 458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 459 struct ocfs2_caching_info *ci, 460 struct buffer_head *bh) 461 { 462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 463 NULL, &ocfs2_dinode_et_ops); 464 } 465 466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 467 struct ocfs2_caching_info *ci, 468 struct buffer_head *bh) 469 { 470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 471 NULL, &ocfs2_xattr_tree_et_ops); 472 } 473 474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 475 struct ocfs2_caching_info *ci, 476 struct ocfs2_xattr_value_buf *vb) 477 { 478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 479 &ocfs2_xattr_value_et_ops); 480 } 481 482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 483 struct ocfs2_caching_info *ci, 484 struct buffer_head *bh) 485 { 486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 487 NULL, &ocfs2_dx_root_et_ops); 488 } 489 490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 491 struct ocfs2_caching_info *ci, 492 struct buffer_head *bh) 493 { 494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 495 NULL, &ocfs2_refcount_tree_et_ops); 496 } 497 498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 499 u64 new_last_eb_blk) 500 { 501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 502 } 503 504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 505 { 506 return et->et_ops->eo_get_last_eb_blk(et); 507 } 508 509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 510 u32 clusters) 511 { 512 et->et_ops->eo_update_clusters(et, clusters); 513 } 514 515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 516 struct ocfs2_extent_rec *rec) 517 { 518 if (et->et_ops->eo_extent_map_insert) 519 et->et_ops->eo_extent_map_insert(et, rec); 520 } 521 522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 523 u32 clusters) 524 { 525 if (et->et_ops->eo_extent_map_truncate) 526 et->et_ops->eo_extent_map_truncate(et, clusters); 527 } 528 529 static inline int ocfs2_et_root_journal_access(handle_t *handle, 530 struct ocfs2_extent_tree *et, 531 int type) 532 { 533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 534 type); 535 } 536 537 static inline enum ocfs2_contig_type 538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 539 struct ocfs2_extent_rec *rec, 540 struct ocfs2_extent_rec *insert_rec) 541 { 542 if (et->et_ops->eo_extent_contig) 543 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 544 545 return ocfs2_extent_rec_contig( 546 ocfs2_metadata_cache_get_super(et->et_ci), 547 rec, insert_rec); 548 } 549 550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 551 struct ocfs2_extent_rec *rec) 552 { 553 int ret = 0; 554 555 if (et->et_ops->eo_insert_check) 556 ret = et->et_ops->eo_insert_check(et, rec); 557 return ret; 558 } 559 560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 561 { 562 int ret = 0; 563 564 if (et->et_ops->eo_sanity_check) 565 ret = et->et_ops->eo_sanity_check(et); 566 return ret; 567 } 568 569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 570 struct ocfs2_extent_block *eb); 571 static void ocfs2_adjust_rightmost_records(handle_t *handle, 572 struct ocfs2_extent_tree *et, 573 struct ocfs2_path *path, 574 struct ocfs2_extent_rec *insert_rec); 575 /* 576 * Reset the actual path elements so that we can re-use the structure 577 * to build another path. Generally, this involves freeing the buffer 578 * heads. 579 */ 580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 581 { 582 int i, start = 0, depth = 0; 583 struct ocfs2_path_item *node; 584 585 if (keep_root) 586 start = 1; 587 588 for(i = start; i < path_num_items(path); i++) { 589 node = &path->p_node[i]; 590 591 brelse(node->bh); 592 node->bh = NULL; 593 node->el = NULL; 594 } 595 596 /* 597 * Tree depth may change during truncate, or insert. If we're 598 * keeping the root extent list, then make sure that our path 599 * structure reflects the proper depth. 600 */ 601 if (keep_root) 602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 603 else 604 path_root_access(path) = NULL; 605 606 path->p_tree_depth = depth; 607 } 608 609 void ocfs2_free_path(struct ocfs2_path *path) 610 { 611 if (path) { 612 ocfs2_reinit_path(path, 0); 613 kfree(path); 614 } 615 } 616 617 /* 618 * All the elements of src into dest. After this call, src could be freed 619 * without affecting dest. 620 * 621 * Both paths should have the same root. Any non-root elements of dest 622 * will be freed. 623 */ 624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 625 { 626 int i; 627 628 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 629 BUG_ON(path_root_el(dest) != path_root_el(src)); 630 BUG_ON(path_root_access(dest) != path_root_access(src)); 631 632 ocfs2_reinit_path(dest, 1); 633 634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 635 dest->p_node[i].bh = src->p_node[i].bh; 636 dest->p_node[i].el = src->p_node[i].el; 637 638 if (dest->p_node[i].bh) 639 get_bh(dest->p_node[i].bh); 640 } 641 } 642 643 /* 644 * Make the *dest path the same as src and re-initialize src path to 645 * have a root only. 646 */ 647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 648 { 649 int i; 650 651 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 652 BUG_ON(path_root_access(dest) != path_root_access(src)); 653 654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 655 brelse(dest->p_node[i].bh); 656 657 dest->p_node[i].bh = src->p_node[i].bh; 658 dest->p_node[i].el = src->p_node[i].el; 659 660 src->p_node[i].bh = NULL; 661 src->p_node[i].el = NULL; 662 } 663 } 664 665 /* 666 * Insert an extent block at given index. 667 * 668 * This will not take an additional reference on eb_bh. 669 */ 670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 671 struct buffer_head *eb_bh) 672 { 673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 674 675 /* 676 * Right now, no root bh is an extent block, so this helps 677 * catch code errors with dinode trees. The assertion can be 678 * safely removed if we ever need to insert extent block 679 * structures at the root. 680 */ 681 BUG_ON(index == 0); 682 683 path->p_node[index].bh = eb_bh; 684 path->p_node[index].el = &eb->h_list; 685 } 686 687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 688 struct ocfs2_extent_list *root_el, 689 ocfs2_journal_access_func access) 690 { 691 struct ocfs2_path *path; 692 693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 694 695 path = kzalloc(sizeof(*path), GFP_NOFS); 696 if (path) { 697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 698 get_bh(root_bh); 699 path_root_bh(path) = root_bh; 700 path_root_el(path) = root_el; 701 path_root_access(path) = access; 702 } 703 704 return path; 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 708 { 709 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 710 path_root_access(path)); 711 } 712 713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 714 { 715 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 716 et->et_root_journal_access); 717 } 718 719 /* 720 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 721 * otherwise it's the root_access function. 722 * 723 * I don't like the way this function's name looks next to 724 * ocfs2_journal_access_path(), but I don't have a better one. 725 */ 726 int ocfs2_path_bh_journal_access(handle_t *handle, 727 struct ocfs2_caching_info *ci, 728 struct ocfs2_path *path, 729 int idx) 730 { 731 ocfs2_journal_access_func access = path_root_access(path); 732 733 if (!access) 734 access = ocfs2_journal_access; 735 736 if (idx) 737 access = ocfs2_journal_access_eb; 738 739 return access(handle, ci, path->p_node[idx].bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 } 742 743 /* 744 * Convenience function to journal all components in a path. 745 */ 746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 747 handle_t *handle, 748 struct ocfs2_path *path) 749 { 750 int i, ret = 0; 751 752 if (!path) 753 goto out; 754 755 for(i = 0; i < path_num_items(path); i++) { 756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 } 762 763 out: 764 return ret; 765 } 766 767 /* 768 * Return the index of the extent record which contains cluster #v_cluster. 769 * -1 is returned if it was not found. 770 * 771 * Should work fine on interior and exterior nodes. 772 */ 773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 774 { 775 int ret = -1; 776 int i; 777 struct ocfs2_extent_rec *rec; 778 u32 rec_end, rec_start, clusters; 779 780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 781 rec = &el->l_recs[i]; 782 783 rec_start = le32_to_cpu(rec->e_cpos); 784 clusters = ocfs2_rec_clusters(el, rec); 785 786 rec_end = rec_start + clusters; 787 788 if (v_cluster >= rec_start && v_cluster < rec_end) { 789 ret = i; 790 break; 791 } 792 } 793 794 return ret; 795 } 796 797 /* 798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 799 * ocfs2_extent_rec_contig only work properly against leaf nodes! 800 */ 801 static int ocfs2_block_extent_contig(struct super_block *sb, 802 struct ocfs2_extent_rec *ext, 803 u64 blkno) 804 { 805 u64 blk_end = le64_to_cpu(ext->e_blkno); 806 807 blk_end += ocfs2_clusters_to_blocks(sb, 808 le16_to_cpu(ext->e_leaf_clusters)); 809 810 return blkno == blk_end; 811 } 812 813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 814 struct ocfs2_extent_rec *right) 815 { 816 u32 left_range; 817 818 left_range = le32_to_cpu(left->e_cpos) + 819 le16_to_cpu(left->e_leaf_clusters); 820 821 return (left_range == le32_to_cpu(right->e_cpos)); 822 } 823 824 static enum ocfs2_contig_type 825 ocfs2_extent_rec_contig(struct super_block *sb, 826 struct ocfs2_extent_rec *ext, 827 struct ocfs2_extent_rec *insert_rec) 828 { 829 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 830 831 /* 832 * Refuse to coalesce extent records with different flag 833 * fields - we don't want to mix unwritten extents with user 834 * data. 835 */ 836 if (ext->e_flags != insert_rec->e_flags) 837 return CONTIG_NONE; 838 839 if (ocfs2_extents_adjacent(ext, insert_rec) && 840 ocfs2_block_extent_contig(sb, ext, blkno)) 841 return CONTIG_RIGHT; 842 843 blkno = le64_to_cpu(ext->e_blkno); 844 if (ocfs2_extents_adjacent(insert_rec, ext) && 845 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 846 return CONTIG_LEFT; 847 848 return CONTIG_NONE; 849 } 850 851 /* 852 * NOTE: We can have pretty much any combination of contiguousness and 853 * appending. 854 * 855 * The usefulness of APPEND_TAIL is more in that it lets us know that 856 * we'll have to update the path to that leaf. 857 */ 858 enum ocfs2_append_type { 859 APPEND_NONE = 0, 860 APPEND_TAIL, 861 }; 862 863 enum ocfs2_split_type { 864 SPLIT_NONE = 0, 865 SPLIT_LEFT, 866 SPLIT_RIGHT, 867 }; 868 869 struct ocfs2_insert_type { 870 enum ocfs2_split_type ins_split; 871 enum ocfs2_append_type ins_appending; 872 enum ocfs2_contig_type ins_contig; 873 int ins_contig_index; 874 int ins_tree_depth; 875 }; 876 877 struct ocfs2_merge_ctxt { 878 enum ocfs2_contig_type c_contig_type; 879 int c_has_empty_extent; 880 int c_split_covers_rec; 881 }; 882 883 static int ocfs2_validate_extent_block(struct super_block *sb, 884 struct buffer_head *bh) 885 { 886 int rc; 887 struct ocfs2_extent_block *eb = 888 (struct ocfs2_extent_block *)bh->b_data; 889 890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 891 892 BUG_ON(!buffer_uptodate(bh)); 893 894 /* 895 * If the ecc fails, we return the error but otherwise 896 * leave the filesystem running. We know any error is 897 * local to this block. 898 */ 899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 900 if (rc) { 901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 902 (unsigned long long)bh->b_blocknr); 903 return rc; 904 } 905 906 /* 907 * Errors after here are fatal. 908 */ 909 910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 911 ocfs2_error(sb, 912 "Extent block #%llu has bad signature %.*s", 913 (unsigned long long)bh->b_blocknr, 7, 914 eb->h_signature); 915 return -EINVAL; 916 } 917 918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 919 ocfs2_error(sb, 920 "Extent block #%llu has an invalid h_blkno " 921 "of %llu", 922 (unsigned long long)bh->b_blocknr, 923 (unsigned long long)le64_to_cpu(eb->h_blkno)); 924 return -EINVAL; 925 } 926 927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 928 ocfs2_error(sb, 929 "Extent block #%llu has an invalid " 930 "h_fs_generation of #%u", 931 (unsigned long long)bh->b_blocknr, 932 le32_to_cpu(eb->h_fs_generation)); 933 return -EINVAL; 934 } 935 936 return 0; 937 } 938 939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 940 struct buffer_head **bh) 941 { 942 int rc; 943 struct buffer_head *tmp = *bh; 944 945 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 946 ocfs2_validate_extent_block); 947 948 /* If ocfs2_read_block() got us a new bh, pass it up. */ 949 if (!rc && !*bh) 950 *bh = tmp; 951 952 return rc; 953 } 954 955 956 /* 957 * How many free extents have we got before we need more meta data? 958 */ 959 int ocfs2_num_free_extents(struct ocfs2_super *osb, 960 struct ocfs2_extent_tree *et) 961 { 962 int retval; 963 struct ocfs2_extent_list *el = NULL; 964 struct ocfs2_extent_block *eb; 965 struct buffer_head *eb_bh = NULL; 966 u64 last_eb_blk = 0; 967 968 el = et->et_root_el; 969 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 970 971 if (last_eb_blk) { 972 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 973 &eb_bh); 974 if (retval < 0) { 975 mlog_errno(retval); 976 goto bail; 977 } 978 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 979 el = &eb->h_list; 980 } 981 982 BUG_ON(el->l_tree_depth != 0); 983 984 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 985 bail: 986 brelse(eb_bh); 987 988 trace_ocfs2_num_free_extents(retval); 989 return retval; 990 } 991 992 /* expects array to already be allocated 993 * 994 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 995 * l_count for you 996 */ 997 static int ocfs2_create_new_meta_bhs(handle_t *handle, 998 struct ocfs2_extent_tree *et, 999 int wanted, 1000 struct ocfs2_alloc_context *meta_ac, 1001 struct buffer_head *bhs[]) 1002 { 1003 int count, status, i; 1004 u16 suballoc_bit_start; 1005 u32 num_got; 1006 u64 suballoc_loc, first_blkno; 1007 struct ocfs2_super *osb = 1008 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1009 struct ocfs2_extent_block *eb; 1010 1011 count = 0; 1012 while (count < wanted) { 1013 status = ocfs2_claim_metadata(handle, 1014 meta_ac, 1015 wanted - count, 1016 &suballoc_loc, 1017 &suballoc_bit_start, 1018 &num_got, 1019 &first_blkno); 1020 if (status < 0) { 1021 mlog_errno(status); 1022 goto bail; 1023 } 1024 1025 for(i = count; i < (num_got + count); i++) { 1026 bhs[i] = sb_getblk(osb->sb, first_blkno); 1027 if (bhs[i] == NULL) { 1028 status = -ENOMEM; 1029 mlog_errno(status); 1030 goto bail; 1031 } 1032 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1033 1034 status = ocfs2_journal_access_eb(handle, et->et_ci, 1035 bhs[i], 1036 OCFS2_JOURNAL_ACCESS_CREATE); 1037 if (status < 0) { 1038 mlog_errno(status); 1039 goto bail; 1040 } 1041 1042 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1043 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1044 /* Ok, setup the minimal stuff here. */ 1045 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1046 eb->h_blkno = cpu_to_le64(first_blkno); 1047 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1048 eb->h_suballoc_slot = 1049 cpu_to_le16(meta_ac->ac_alloc_slot); 1050 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1051 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1052 eb->h_list.l_count = 1053 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1054 1055 suballoc_bit_start++; 1056 first_blkno++; 1057 1058 /* We'll also be dirtied by the caller, so 1059 * this isn't absolutely necessary. */ 1060 ocfs2_journal_dirty(handle, bhs[i]); 1061 } 1062 1063 count += num_got; 1064 } 1065 1066 status = 0; 1067 bail: 1068 if (status < 0) { 1069 for(i = 0; i < wanted; i++) { 1070 brelse(bhs[i]); 1071 bhs[i] = NULL; 1072 } 1073 mlog_errno(status); 1074 } 1075 return status; 1076 } 1077 1078 /* 1079 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1080 * 1081 * Returns the sum of the rightmost extent rec logical offset and 1082 * cluster count. 1083 * 1084 * ocfs2_add_branch() uses this to determine what logical cluster 1085 * value should be populated into the leftmost new branch records. 1086 * 1087 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1088 * value for the new topmost tree record. 1089 */ 1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1091 { 1092 int i; 1093 1094 i = le16_to_cpu(el->l_next_free_rec) - 1; 1095 1096 return le32_to_cpu(el->l_recs[i].e_cpos) + 1097 ocfs2_rec_clusters(el, &el->l_recs[i]); 1098 } 1099 1100 /* 1101 * Change range of the branches in the right most path according to the leaf 1102 * extent block's rightmost record. 1103 */ 1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1105 struct ocfs2_extent_tree *et) 1106 { 1107 int status; 1108 struct ocfs2_path *path = NULL; 1109 struct ocfs2_extent_list *el; 1110 struct ocfs2_extent_rec *rec; 1111 1112 path = ocfs2_new_path_from_et(et); 1113 if (!path) { 1114 status = -ENOMEM; 1115 return status; 1116 } 1117 1118 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1119 if (status < 0) { 1120 mlog_errno(status); 1121 goto out; 1122 } 1123 1124 status = ocfs2_extend_trans(handle, path_num_items(path)); 1125 if (status < 0) { 1126 mlog_errno(status); 1127 goto out; 1128 } 1129 1130 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1131 if (status < 0) { 1132 mlog_errno(status); 1133 goto out; 1134 } 1135 1136 el = path_leaf_el(path); 1137 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1138 1139 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1140 1141 out: 1142 ocfs2_free_path(path); 1143 return status; 1144 } 1145 1146 /* 1147 * Add an entire tree branch to our inode. eb_bh is the extent block 1148 * to start at, if we don't want to start the branch at the root 1149 * structure. 1150 * 1151 * last_eb_bh is required as we have to update it's next_leaf pointer 1152 * for the new last extent block. 1153 * 1154 * the new branch will be 'empty' in the sense that every block will 1155 * contain a single record with cluster count == 0. 1156 */ 1157 static int ocfs2_add_branch(handle_t *handle, 1158 struct ocfs2_extent_tree *et, 1159 struct buffer_head *eb_bh, 1160 struct buffer_head **last_eb_bh, 1161 struct ocfs2_alloc_context *meta_ac) 1162 { 1163 int status, new_blocks, i; 1164 u64 next_blkno, new_last_eb_blk; 1165 struct buffer_head *bh; 1166 struct buffer_head **new_eb_bhs = NULL; 1167 struct ocfs2_extent_block *eb; 1168 struct ocfs2_extent_list *eb_el; 1169 struct ocfs2_extent_list *el; 1170 u32 new_cpos, root_end; 1171 1172 BUG_ON(!last_eb_bh || !*last_eb_bh); 1173 1174 if (eb_bh) { 1175 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1176 el = &eb->h_list; 1177 } else 1178 el = et->et_root_el; 1179 1180 /* we never add a branch to a leaf. */ 1181 BUG_ON(!el->l_tree_depth); 1182 1183 new_blocks = le16_to_cpu(el->l_tree_depth); 1184 1185 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1186 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1187 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1188 1189 /* 1190 * If there is a gap before the root end and the real end 1191 * of the righmost leaf block, we need to remove the gap 1192 * between new_cpos and root_end first so that the tree 1193 * is consistent after we add a new branch(it will start 1194 * from new_cpos). 1195 */ 1196 if (root_end > new_cpos) { 1197 trace_ocfs2_adjust_rightmost_branch( 1198 (unsigned long long) 1199 ocfs2_metadata_cache_owner(et->et_ci), 1200 root_end, new_cpos); 1201 1202 status = ocfs2_adjust_rightmost_branch(handle, et); 1203 if (status) { 1204 mlog_errno(status); 1205 goto bail; 1206 } 1207 } 1208 1209 /* allocate the number of new eb blocks we need */ 1210 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1211 GFP_KERNEL); 1212 if (!new_eb_bhs) { 1213 status = -ENOMEM; 1214 mlog_errno(status); 1215 goto bail; 1216 } 1217 1218 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1219 meta_ac, new_eb_bhs); 1220 if (status < 0) { 1221 mlog_errno(status); 1222 goto bail; 1223 } 1224 1225 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1226 * linked with the rest of the tree. 1227 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1228 * 1229 * when we leave the loop, new_last_eb_blk will point to the 1230 * newest leaf, and next_blkno will point to the topmost extent 1231 * block. */ 1232 next_blkno = new_last_eb_blk = 0; 1233 for(i = 0; i < new_blocks; i++) { 1234 bh = new_eb_bhs[i]; 1235 eb = (struct ocfs2_extent_block *) bh->b_data; 1236 /* ocfs2_create_new_meta_bhs() should create it right! */ 1237 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1238 eb_el = &eb->h_list; 1239 1240 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1241 OCFS2_JOURNAL_ACCESS_CREATE); 1242 if (status < 0) { 1243 mlog_errno(status); 1244 goto bail; 1245 } 1246 1247 eb->h_next_leaf_blk = 0; 1248 eb_el->l_tree_depth = cpu_to_le16(i); 1249 eb_el->l_next_free_rec = cpu_to_le16(1); 1250 /* 1251 * This actually counts as an empty extent as 1252 * c_clusters == 0 1253 */ 1254 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1255 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1256 /* 1257 * eb_el isn't always an interior node, but even leaf 1258 * nodes want a zero'd flags and reserved field so 1259 * this gets the whole 32 bits regardless of use. 1260 */ 1261 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1262 if (!eb_el->l_tree_depth) 1263 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1264 1265 ocfs2_journal_dirty(handle, bh); 1266 next_blkno = le64_to_cpu(eb->h_blkno); 1267 } 1268 1269 /* This is a bit hairy. We want to update up to three blocks 1270 * here without leaving any of them in an inconsistent state 1271 * in case of error. We don't have to worry about 1272 * journal_dirty erroring as it won't unless we've aborted the 1273 * handle (in which case we would never be here) so reserving 1274 * the write with journal_access is all we need to do. */ 1275 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1276 OCFS2_JOURNAL_ACCESS_WRITE); 1277 if (status < 0) { 1278 mlog_errno(status); 1279 goto bail; 1280 } 1281 status = ocfs2_et_root_journal_access(handle, et, 1282 OCFS2_JOURNAL_ACCESS_WRITE); 1283 if (status < 0) { 1284 mlog_errno(status); 1285 goto bail; 1286 } 1287 if (eb_bh) { 1288 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1289 OCFS2_JOURNAL_ACCESS_WRITE); 1290 if (status < 0) { 1291 mlog_errno(status); 1292 goto bail; 1293 } 1294 } 1295 1296 /* Link the new branch into the rest of the tree (el will 1297 * either be on the root_bh, or the extent block passed in. */ 1298 i = le16_to_cpu(el->l_next_free_rec); 1299 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1300 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1301 el->l_recs[i].e_int_clusters = 0; 1302 le16_add_cpu(&el->l_next_free_rec, 1); 1303 1304 /* fe needs a new last extent block pointer, as does the 1305 * next_leaf on the previously last-extent-block. */ 1306 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1307 1308 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1309 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1310 1311 ocfs2_journal_dirty(handle, *last_eb_bh); 1312 ocfs2_journal_dirty(handle, et->et_root_bh); 1313 if (eb_bh) 1314 ocfs2_journal_dirty(handle, eb_bh); 1315 1316 /* 1317 * Some callers want to track the rightmost leaf so pass it 1318 * back here. 1319 */ 1320 brelse(*last_eb_bh); 1321 get_bh(new_eb_bhs[0]); 1322 *last_eb_bh = new_eb_bhs[0]; 1323 1324 status = 0; 1325 bail: 1326 if (new_eb_bhs) { 1327 for (i = 0; i < new_blocks; i++) 1328 brelse(new_eb_bhs[i]); 1329 kfree(new_eb_bhs); 1330 } 1331 1332 return status; 1333 } 1334 1335 /* 1336 * adds another level to the allocation tree. 1337 * returns back the new extent block so you can add a branch to it 1338 * after this call. 1339 */ 1340 static int ocfs2_shift_tree_depth(handle_t *handle, 1341 struct ocfs2_extent_tree *et, 1342 struct ocfs2_alloc_context *meta_ac, 1343 struct buffer_head **ret_new_eb_bh) 1344 { 1345 int status, i; 1346 u32 new_clusters; 1347 struct buffer_head *new_eb_bh = NULL; 1348 struct ocfs2_extent_block *eb; 1349 struct ocfs2_extent_list *root_el; 1350 struct ocfs2_extent_list *eb_el; 1351 1352 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1353 &new_eb_bh); 1354 if (status < 0) { 1355 mlog_errno(status); 1356 goto bail; 1357 } 1358 1359 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1360 /* ocfs2_create_new_meta_bhs() should create it right! */ 1361 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1362 1363 eb_el = &eb->h_list; 1364 root_el = et->et_root_el; 1365 1366 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1367 OCFS2_JOURNAL_ACCESS_CREATE); 1368 if (status < 0) { 1369 mlog_errno(status); 1370 goto bail; 1371 } 1372 1373 /* copy the root extent list data into the new extent block */ 1374 eb_el->l_tree_depth = root_el->l_tree_depth; 1375 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1376 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1377 eb_el->l_recs[i] = root_el->l_recs[i]; 1378 1379 ocfs2_journal_dirty(handle, new_eb_bh); 1380 1381 status = ocfs2_et_root_journal_access(handle, et, 1382 OCFS2_JOURNAL_ACCESS_WRITE); 1383 if (status < 0) { 1384 mlog_errno(status); 1385 goto bail; 1386 } 1387 1388 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1389 1390 /* update root_bh now */ 1391 le16_add_cpu(&root_el->l_tree_depth, 1); 1392 root_el->l_recs[0].e_cpos = 0; 1393 root_el->l_recs[0].e_blkno = eb->h_blkno; 1394 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1395 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1396 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1397 root_el->l_next_free_rec = cpu_to_le16(1); 1398 1399 /* If this is our 1st tree depth shift, then last_eb_blk 1400 * becomes the allocated extent block */ 1401 if (root_el->l_tree_depth == cpu_to_le16(1)) 1402 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1403 1404 ocfs2_journal_dirty(handle, et->et_root_bh); 1405 1406 *ret_new_eb_bh = new_eb_bh; 1407 new_eb_bh = NULL; 1408 status = 0; 1409 bail: 1410 brelse(new_eb_bh); 1411 1412 return status; 1413 } 1414 1415 /* 1416 * Should only be called when there is no space left in any of the 1417 * leaf nodes. What we want to do is find the lowest tree depth 1418 * non-leaf extent block with room for new records. There are three 1419 * valid results of this search: 1420 * 1421 * 1) a lowest extent block is found, then we pass it back in 1422 * *lowest_eb_bh and return '0' 1423 * 1424 * 2) the search fails to find anything, but the root_el has room. We 1425 * pass NULL back in *lowest_eb_bh, but still return '0' 1426 * 1427 * 3) the search fails to find anything AND the root_el is full, in 1428 * which case we return > 0 1429 * 1430 * return status < 0 indicates an error. 1431 */ 1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1433 struct buffer_head **target_bh) 1434 { 1435 int status = 0, i; 1436 u64 blkno; 1437 struct ocfs2_extent_block *eb; 1438 struct ocfs2_extent_list *el; 1439 struct buffer_head *bh = NULL; 1440 struct buffer_head *lowest_bh = NULL; 1441 1442 *target_bh = NULL; 1443 1444 el = et->et_root_el; 1445 1446 while(le16_to_cpu(el->l_tree_depth) > 1) { 1447 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1448 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1449 "Owner %llu has empty " 1450 "extent list (next_free_rec == 0)", 1451 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1452 status = -EIO; 1453 goto bail; 1454 } 1455 i = le16_to_cpu(el->l_next_free_rec) - 1; 1456 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1457 if (!blkno) { 1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1459 "Owner %llu has extent " 1460 "list where extent # %d has no physical " 1461 "block start", 1462 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1463 status = -EIO; 1464 goto bail; 1465 } 1466 1467 brelse(bh); 1468 bh = NULL; 1469 1470 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1471 if (status < 0) { 1472 mlog_errno(status); 1473 goto bail; 1474 } 1475 1476 eb = (struct ocfs2_extent_block *) bh->b_data; 1477 el = &eb->h_list; 1478 1479 if (le16_to_cpu(el->l_next_free_rec) < 1480 le16_to_cpu(el->l_count)) { 1481 brelse(lowest_bh); 1482 lowest_bh = bh; 1483 get_bh(lowest_bh); 1484 } 1485 } 1486 1487 /* If we didn't find one and the fe doesn't have any room, 1488 * then return '1' */ 1489 el = et->et_root_el; 1490 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1491 status = 1; 1492 1493 *target_bh = lowest_bh; 1494 bail: 1495 brelse(bh); 1496 1497 return status; 1498 } 1499 1500 /* 1501 * Grow a b-tree so that it has more records. 1502 * 1503 * We might shift the tree depth in which case existing paths should 1504 * be considered invalid. 1505 * 1506 * Tree depth after the grow is returned via *final_depth. 1507 * 1508 * *last_eb_bh will be updated by ocfs2_add_branch(). 1509 */ 1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1511 int *final_depth, struct buffer_head **last_eb_bh, 1512 struct ocfs2_alloc_context *meta_ac) 1513 { 1514 int ret, shift; 1515 struct ocfs2_extent_list *el = et->et_root_el; 1516 int depth = le16_to_cpu(el->l_tree_depth); 1517 struct buffer_head *bh = NULL; 1518 1519 BUG_ON(meta_ac == NULL); 1520 1521 shift = ocfs2_find_branch_target(et, &bh); 1522 if (shift < 0) { 1523 ret = shift; 1524 mlog_errno(ret); 1525 goto out; 1526 } 1527 1528 /* We traveled all the way to the bottom of the allocation tree 1529 * and didn't find room for any more extents - we need to add 1530 * another tree level */ 1531 if (shift) { 1532 BUG_ON(bh); 1533 trace_ocfs2_grow_tree( 1534 (unsigned long long) 1535 ocfs2_metadata_cache_owner(et->et_ci), 1536 depth); 1537 1538 /* ocfs2_shift_tree_depth will return us a buffer with 1539 * the new extent block (so we can pass that to 1540 * ocfs2_add_branch). */ 1541 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1542 if (ret < 0) { 1543 mlog_errno(ret); 1544 goto out; 1545 } 1546 depth++; 1547 if (depth == 1) { 1548 /* 1549 * Special case: we have room now if we shifted from 1550 * tree_depth 0, so no more work needs to be done. 1551 * 1552 * We won't be calling add_branch, so pass 1553 * back *last_eb_bh as the new leaf. At depth 1554 * zero, it should always be null so there's 1555 * no reason to brelse. 1556 */ 1557 BUG_ON(*last_eb_bh); 1558 get_bh(bh); 1559 *last_eb_bh = bh; 1560 goto out; 1561 } 1562 } 1563 1564 /* call ocfs2_add_branch to add the final part of the tree with 1565 * the new data. */ 1566 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1567 meta_ac); 1568 if (ret < 0) { 1569 mlog_errno(ret); 1570 goto out; 1571 } 1572 1573 out: 1574 if (final_depth) 1575 *final_depth = depth; 1576 brelse(bh); 1577 return ret; 1578 } 1579 1580 /* 1581 * This function will discard the rightmost extent record. 1582 */ 1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1584 { 1585 int next_free = le16_to_cpu(el->l_next_free_rec); 1586 int count = le16_to_cpu(el->l_count); 1587 unsigned int num_bytes; 1588 1589 BUG_ON(!next_free); 1590 /* This will cause us to go off the end of our extent list. */ 1591 BUG_ON(next_free >= count); 1592 1593 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1594 1595 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1596 } 1597 1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1599 struct ocfs2_extent_rec *insert_rec) 1600 { 1601 int i, insert_index, next_free, has_empty, num_bytes; 1602 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1603 struct ocfs2_extent_rec *rec; 1604 1605 next_free = le16_to_cpu(el->l_next_free_rec); 1606 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1607 1608 BUG_ON(!next_free); 1609 1610 /* The tree code before us didn't allow enough room in the leaf. */ 1611 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1612 1613 /* 1614 * The easiest way to approach this is to just remove the 1615 * empty extent and temporarily decrement next_free. 1616 */ 1617 if (has_empty) { 1618 /* 1619 * If next_free was 1 (only an empty extent), this 1620 * loop won't execute, which is fine. We still want 1621 * the decrement above to happen. 1622 */ 1623 for(i = 0; i < (next_free - 1); i++) 1624 el->l_recs[i] = el->l_recs[i+1]; 1625 1626 next_free--; 1627 } 1628 1629 /* 1630 * Figure out what the new record index should be. 1631 */ 1632 for(i = 0; i < next_free; i++) { 1633 rec = &el->l_recs[i]; 1634 1635 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1636 break; 1637 } 1638 insert_index = i; 1639 1640 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1641 has_empty, next_free, 1642 le16_to_cpu(el->l_count)); 1643 1644 BUG_ON(insert_index < 0); 1645 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1646 BUG_ON(insert_index > next_free); 1647 1648 /* 1649 * No need to memmove if we're just adding to the tail. 1650 */ 1651 if (insert_index != next_free) { 1652 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1653 1654 num_bytes = next_free - insert_index; 1655 num_bytes *= sizeof(struct ocfs2_extent_rec); 1656 memmove(&el->l_recs[insert_index + 1], 1657 &el->l_recs[insert_index], 1658 num_bytes); 1659 } 1660 1661 /* 1662 * Either we had an empty extent, and need to re-increment or 1663 * there was no empty extent on a non full rightmost leaf node, 1664 * in which case we still need to increment. 1665 */ 1666 next_free++; 1667 el->l_next_free_rec = cpu_to_le16(next_free); 1668 /* 1669 * Make sure none of the math above just messed up our tree. 1670 */ 1671 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1672 1673 el->l_recs[insert_index] = *insert_rec; 1674 1675 } 1676 1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1678 { 1679 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1680 1681 BUG_ON(num_recs == 0); 1682 1683 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1684 num_recs--; 1685 size = num_recs * sizeof(struct ocfs2_extent_rec); 1686 memmove(&el->l_recs[0], &el->l_recs[1], size); 1687 memset(&el->l_recs[num_recs], 0, 1688 sizeof(struct ocfs2_extent_rec)); 1689 el->l_next_free_rec = cpu_to_le16(num_recs); 1690 } 1691 } 1692 1693 /* 1694 * Create an empty extent record . 1695 * 1696 * l_next_free_rec may be updated. 1697 * 1698 * If an empty extent already exists do nothing. 1699 */ 1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1701 { 1702 int next_free = le16_to_cpu(el->l_next_free_rec); 1703 1704 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1705 1706 if (next_free == 0) 1707 goto set_and_inc; 1708 1709 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1710 return; 1711 1712 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1713 "Asked to create an empty extent in a full list:\n" 1714 "count = %u, tree depth = %u", 1715 le16_to_cpu(el->l_count), 1716 le16_to_cpu(el->l_tree_depth)); 1717 1718 ocfs2_shift_records_right(el); 1719 1720 set_and_inc: 1721 le16_add_cpu(&el->l_next_free_rec, 1); 1722 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1723 } 1724 1725 /* 1726 * For a rotation which involves two leaf nodes, the "root node" is 1727 * the lowest level tree node which contains a path to both leafs. This 1728 * resulting set of information can be used to form a complete "subtree" 1729 * 1730 * This function is passed two full paths from the dinode down to a 1731 * pair of adjacent leaves. It's task is to figure out which path 1732 * index contains the subtree root - this can be the root index itself 1733 * in a worst-case rotation. 1734 * 1735 * The array index of the subtree root is passed back. 1736 */ 1737 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1738 struct ocfs2_path *left, 1739 struct ocfs2_path *right) 1740 { 1741 int i = 0; 1742 1743 /* 1744 * Check that the caller passed in two paths from the same tree. 1745 */ 1746 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1747 1748 do { 1749 i++; 1750 1751 /* 1752 * The caller didn't pass two adjacent paths. 1753 */ 1754 mlog_bug_on_msg(i > left->p_tree_depth, 1755 "Owner %llu, left depth %u, right depth %u\n" 1756 "left leaf blk %llu, right leaf blk %llu\n", 1757 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1758 left->p_tree_depth, right->p_tree_depth, 1759 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1760 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1761 } while (left->p_node[i].bh->b_blocknr == 1762 right->p_node[i].bh->b_blocknr); 1763 1764 return i - 1; 1765 } 1766 1767 typedef void (path_insert_t)(void *, struct buffer_head *); 1768 1769 /* 1770 * Traverse a btree path in search of cpos, starting at root_el. 1771 * 1772 * This code can be called with a cpos larger than the tree, in which 1773 * case it will return the rightmost path. 1774 */ 1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1776 struct ocfs2_extent_list *root_el, u32 cpos, 1777 path_insert_t *func, void *data) 1778 { 1779 int i, ret = 0; 1780 u32 range; 1781 u64 blkno; 1782 struct buffer_head *bh = NULL; 1783 struct ocfs2_extent_block *eb; 1784 struct ocfs2_extent_list *el; 1785 struct ocfs2_extent_rec *rec; 1786 1787 el = root_el; 1788 while (el->l_tree_depth) { 1789 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1790 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1791 "Owner %llu has empty extent list at " 1792 "depth %u\n", 1793 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1794 le16_to_cpu(el->l_tree_depth)); 1795 ret = -EROFS; 1796 goto out; 1797 1798 } 1799 1800 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1801 rec = &el->l_recs[i]; 1802 1803 /* 1804 * In the case that cpos is off the allocation 1805 * tree, this should just wind up returning the 1806 * rightmost record. 1807 */ 1808 range = le32_to_cpu(rec->e_cpos) + 1809 ocfs2_rec_clusters(el, rec); 1810 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1811 break; 1812 } 1813 1814 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1815 if (blkno == 0) { 1816 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1817 "Owner %llu has bad blkno in extent list " 1818 "at depth %u (index %d)\n", 1819 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1820 le16_to_cpu(el->l_tree_depth), i); 1821 ret = -EROFS; 1822 goto out; 1823 } 1824 1825 brelse(bh); 1826 bh = NULL; 1827 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1828 if (ret) { 1829 mlog_errno(ret); 1830 goto out; 1831 } 1832 1833 eb = (struct ocfs2_extent_block *) bh->b_data; 1834 el = &eb->h_list; 1835 1836 if (le16_to_cpu(el->l_next_free_rec) > 1837 le16_to_cpu(el->l_count)) { 1838 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1839 "Owner %llu has bad count in extent list " 1840 "at block %llu (next free=%u, count=%u)\n", 1841 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1842 (unsigned long long)bh->b_blocknr, 1843 le16_to_cpu(el->l_next_free_rec), 1844 le16_to_cpu(el->l_count)); 1845 ret = -EROFS; 1846 goto out; 1847 } 1848 1849 if (func) 1850 func(data, bh); 1851 } 1852 1853 out: 1854 /* 1855 * Catch any trailing bh that the loop didn't handle. 1856 */ 1857 brelse(bh); 1858 1859 return ret; 1860 } 1861 1862 /* 1863 * Given an initialized path (that is, it has a valid root extent 1864 * list), this function will traverse the btree in search of the path 1865 * which would contain cpos. 1866 * 1867 * The path traveled is recorded in the path structure. 1868 * 1869 * Note that this will not do any comparisons on leaf node extent 1870 * records, so it will work fine in the case that we just added a tree 1871 * branch. 1872 */ 1873 struct find_path_data { 1874 int index; 1875 struct ocfs2_path *path; 1876 }; 1877 static void find_path_ins(void *data, struct buffer_head *bh) 1878 { 1879 struct find_path_data *fp = data; 1880 1881 get_bh(bh); 1882 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1883 fp->index++; 1884 } 1885 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1886 struct ocfs2_path *path, u32 cpos) 1887 { 1888 struct find_path_data data; 1889 1890 data.index = 1; 1891 data.path = path; 1892 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1893 find_path_ins, &data); 1894 } 1895 1896 static void find_leaf_ins(void *data, struct buffer_head *bh) 1897 { 1898 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1899 struct ocfs2_extent_list *el = &eb->h_list; 1900 struct buffer_head **ret = data; 1901 1902 /* We want to retain only the leaf block. */ 1903 if (le16_to_cpu(el->l_tree_depth) == 0) { 1904 get_bh(bh); 1905 *ret = bh; 1906 } 1907 } 1908 /* 1909 * Find the leaf block in the tree which would contain cpos. No 1910 * checking of the actual leaf is done. 1911 * 1912 * Some paths want to call this instead of allocating a path structure 1913 * and calling ocfs2_find_path(). 1914 * 1915 * This function doesn't handle non btree extent lists. 1916 */ 1917 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1918 struct ocfs2_extent_list *root_el, u32 cpos, 1919 struct buffer_head **leaf_bh) 1920 { 1921 int ret; 1922 struct buffer_head *bh = NULL; 1923 1924 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1925 if (ret) { 1926 mlog_errno(ret); 1927 goto out; 1928 } 1929 1930 *leaf_bh = bh; 1931 out: 1932 return ret; 1933 } 1934 1935 /* 1936 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1937 * 1938 * Basically, we've moved stuff around at the bottom of the tree and 1939 * we need to fix up the extent records above the changes to reflect 1940 * the new changes. 1941 * 1942 * left_rec: the record on the left. 1943 * left_child_el: is the child list pointed to by left_rec 1944 * right_rec: the record to the right of left_rec 1945 * right_child_el: is the child list pointed to by right_rec 1946 * 1947 * By definition, this only works on interior nodes. 1948 */ 1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1950 struct ocfs2_extent_list *left_child_el, 1951 struct ocfs2_extent_rec *right_rec, 1952 struct ocfs2_extent_list *right_child_el) 1953 { 1954 u32 left_clusters, right_end; 1955 1956 /* 1957 * Interior nodes never have holes. Their cpos is the cpos of 1958 * the leftmost record in their child list. Their cluster 1959 * count covers the full theoretical range of their child list 1960 * - the range between their cpos and the cpos of the record 1961 * immediately to their right. 1962 */ 1963 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1964 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1965 BUG_ON(right_child_el->l_tree_depth); 1966 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1967 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1968 } 1969 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1970 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1971 1972 /* 1973 * Calculate the rightmost cluster count boundary before 1974 * moving cpos - we will need to adjust clusters after 1975 * updating e_cpos to keep the same highest cluster count. 1976 */ 1977 right_end = le32_to_cpu(right_rec->e_cpos); 1978 right_end += le32_to_cpu(right_rec->e_int_clusters); 1979 1980 right_rec->e_cpos = left_rec->e_cpos; 1981 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1982 1983 right_end -= le32_to_cpu(right_rec->e_cpos); 1984 right_rec->e_int_clusters = cpu_to_le32(right_end); 1985 } 1986 1987 /* 1988 * Adjust the adjacent root node records involved in a 1989 * rotation. left_el_blkno is passed in as a key so that we can easily 1990 * find it's index in the root list. 1991 */ 1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1993 struct ocfs2_extent_list *left_el, 1994 struct ocfs2_extent_list *right_el, 1995 u64 left_el_blkno) 1996 { 1997 int i; 1998 1999 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2000 le16_to_cpu(left_el->l_tree_depth)); 2001 2002 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2003 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2004 break; 2005 } 2006 2007 /* 2008 * The path walking code should have never returned a root and 2009 * two paths which are not adjacent. 2010 */ 2011 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2012 2013 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2014 &root_el->l_recs[i + 1], right_el); 2015 } 2016 2017 /* 2018 * We've changed a leaf block (in right_path) and need to reflect that 2019 * change back up the subtree. 2020 * 2021 * This happens in multiple places: 2022 * - When we've moved an extent record from the left path leaf to the right 2023 * path leaf to make room for an empty extent in the left path leaf. 2024 * - When our insert into the right path leaf is at the leftmost edge 2025 * and requires an update of the path immediately to it's left. This 2026 * can occur at the end of some types of rotation and appending inserts. 2027 * - When we've adjusted the last extent record in the left path leaf and the 2028 * 1st extent record in the right path leaf during cross extent block merge. 2029 */ 2030 static void ocfs2_complete_edge_insert(handle_t *handle, 2031 struct ocfs2_path *left_path, 2032 struct ocfs2_path *right_path, 2033 int subtree_index) 2034 { 2035 int i, idx; 2036 struct ocfs2_extent_list *el, *left_el, *right_el; 2037 struct ocfs2_extent_rec *left_rec, *right_rec; 2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2039 2040 /* 2041 * Update the counts and position values within all the 2042 * interior nodes to reflect the leaf rotation we just did. 2043 * 2044 * The root node is handled below the loop. 2045 * 2046 * We begin the loop with right_el and left_el pointing to the 2047 * leaf lists and work our way up. 2048 * 2049 * NOTE: within this loop, left_el and right_el always refer 2050 * to the *child* lists. 2051 */ 2052 left_el = path_leaf_el(left_path); 2053 right_el = path_leaf_el(right_path); 2054 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2055 trace_ocfs2_complete_edge_insert(i); 2056 2057 /* 2058 * One nice property of knowing that all of these 2059 * nodes are below the root is that we only deal with 2060 * the leftmost right node record and the rightmost 2061 * left node record. 2062 */ 2063 el = left_path->p_node[i].el; 2064 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2065 left_rec = &el->l_recs[idx]; 2066 2067 el = right_path->p_node[i].el; 2068 right_rec = &el->l_recs[0]; 2069 2070 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2071 right_el); 2072 2073 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2074 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2075 2076 /* 2077 * Setup our list pointers now so that the current 2078 * parents become children in the next iteration. 2079 */ 2080 left_el = left_path->p_node[i].el; 2081 right_el = right_path->p_node[i].el; 2082 } 2083 2084 /* 2085 * At the root node, adjust the two adjacent records which 2086 * begin our path to the leaves. 2087 */ 2088 2089 el = left_path->p_node[subtree_index].el; 2090 left_el = left_path->p_node[subtree_index + 1].el; 2091 right_el = right_path->p_node[subtree_index + 1].el; 2092 2093 ocfs2_adjust_root_records(el, left_el, right_el, 2094 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2095 2096 root_bh = left_path->p_node[subtree_index].bh; 2097 2098 ocfs2_journal_dirty(handle, root_bh); 2099 } 2100 2101 static int ocfs2_rotate_subtree_right(handle_t *handle, 2102 struct ocfs2_extent_tree *et, 2103 struct ocfs2_path *left_path, 2104 struct ocfs2_path *right_path, 2105 int subtree_index) 2106 { 2107 int ret, i; 2108 struct buffer_head *right_leaf_bh; 2109 struct buffer_head *left_leaf_bh = NULL; 2110 struct buffer_head *root_bh; 2111 struct ocfs2_extent_list *right_el, *left_el; 2112 struct ocfs2_extent_rec move_rec; 2113 2114 left_leaf_bh = path_leaf_bh(left_path); 2115 left_el = path_leaf_el(left_path); 2116 2117 if (left_el->l_next_free_rec != left_el->l_count) { 2118 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2119 "Inode %llu has non-full interior leaf node %llu" 2120 "(next free = %u)", 2121 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2122 (unsigned long long)left_leaf_bh->b_blocknr, 2123 le16_to_cpu(left_el->l_next_free_rec)); 2124 return -EROFS; 2125 } 2126 2127 /* 2128 * This extent block may already have an empty record, so we 2129 * return early if so. 2130 */ 2131 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2132 return 0; 2133 2134 root_bh = left_path->p_node[subtree_index].bh; 2135 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2136 2137 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2138 subtree_index); 2139 if (ret) { 2140 mlog_errno(ret); 2141 goto out; 2142 } 2143 2144 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2146 right_path, i); 2147 if (ret) { 2148 mlog_errno(ret); 2149 goto out; 2150 } 2151 2152 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2153 left_path, i); 2154 if (ret) { 2155 mlog_errno(ret); 2156 goto out; 2157 } 2158 } 2159 2160 right_leaf_bh = path_leaf_bh(right_path); 2161 right_el = path_leaf_el(right_path); 2162 2163 /* This is a code error, not a disk corruption. */ 2164 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2165 "because rightmost leaf block %llu is empty\n", 2166 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2167 (unsigned long long)right_leaf_bh->b_blocknr); 2168 2169 ocfs2_create_empty_extent(right_el); 2170 2171 ocfs2_journal_dirty(handle, right_leaf_bh); 2172 2173 /* Do the copy now. */ 2174 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2175 move_rec = left_el->l_recs[i]; 2176 right_el->l_recs[0] = move_rec; 2177 2178 /* 2179 * Clear out the record we just copied and shift everything 2180 * over, leaving an empty extent in the left leaf. 2181 * 2182 * We temporarily subtract from next_free_rec so that the 2183 * shift will lose the tail record (which is now defunct). 2184 */ 2185 le16_add_cpu(&left_el->l_next_free_rec, -1); 2186 ocfs2_shift_records_right(left_el); 2187 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2188 le16_add_cpu(&left_el->l_next_free_rec, 1); 2189 2190 ocfs2_journal_dirty(handle, left_leaf_bh); 2191 2192 ocfs2_complete_edge_insert(handle, left_path, right_path, 2193 subtree_index); 2194 2195 out: 2196 return ret; 2197 } 2198 2199 /* 2200 * Given a full path, determine what cpos value would return us a path 2201 * containing the leaf immediately to the left of the current one. 2202 * 2203 * Will return zero if the path passed in is already the leftmost path. 2204 */ 2205 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2206 struct ocfs2_path *path, u32 *cpos) 2207 { 2208 int i, j, ret = 0; 2209 u64 blkno; 2210 struct ocfs2_extent_list *el; 2211 2212 BUG_ON(path->p_tree_depth == 0); 2213 2214 *cpos = 0; 2215 2216 blkno = path_leaf_bh(path)->b_blocknr; 2217 2218 /* Start at the tree node just above the leaf and work our way up. */ 2219 i = path->p_tree_depth - 1; 2220 while (i >= 0) { 2221 el = path->p_node[i].el; 2222 2223 /* 2224 * Find the extent record just before the one in our 2225 * path. 2226 */ 2227 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2228 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2229 if (j == 0) { 2230 if (i == 0) { 2231 /* 2232 * We've determined that the 2233 * path specified is already 2234 * the leftmost one - return a 2235 * cpos of zero. 2236 */ 2237 goto out; 2238 } 2239 /* 2240 * The leftmost record points to our 2241 * leaf - we need to travel up the 2242 * tree one level. 2243 */ 2244 goto next_node; 2245 } 2246 2247 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2248 *cpos = *cpos + ocfs2_rec_clusters(el, 2249 &el->l_recs[j - 1]); 2250 *cpos = *cpos - 1; 2251 goto out; 2252 } 2253 } 2254 2255 /* 2256 * If we got here, we never found a valid node where 2257 * the tree indicated one should be. 2258 */ 2259 ocfs2_error(sb, 2260 "Invalid extent tree at extent block %llu\n", 2261 (unsigned long long)blkno); 2262 ret = -EROFS; 2263 goto out; 2264 2265 next_node: 2266 blkno = path->p_node[i].bh->b_blocknr; 2267 i--; 2268 } 2269 2270 out: 2271 return ret; 2272 } 2273 2274 /* 2275 * Extend the transaction by enough credits to complete the rotation, 2276 * and still leave at least the original number of credits allocated 2277 * to this transaction. 2278 */ 2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2280 int op_credits, 2281 struct ocfs2_path *path) 2282 { 2283 int ret = 0; 2284 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2285 2286 if (handle->h_buffer_credits < credits) 2287 ret = ocfs2_extend_trans(handle, 2288 credits - handle->h_buffer_credits); 2289 2290 return ret; 2291 } 2292 2293 /* 2294 * Trap the case where we're inserting into the theoretical range past 2295 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2296 * whose cpos is less than ours into the right leaf. 2297 * 2298 * It's only necessary to look at the rightmost record of the left 2299 * leaf because the logic that calls us should ensure that the 2300 * theoretical ranges in the path components above the leaves are 2301 * correct. 2302 */ 2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2304 u32 insert_cpos) 2305 { 2306 struct ocfs2_extent_list *left_el; 2307 struct ocfs2_extent_rec *rec; 2308 int next_free; 2309 2310 left_el = path_leaf_el(left_path); 2311 next_free = le16_to_cpu(left_el->l_next_free_rec); 2312 rec = &left_el->l_recs[next_free - 1]; 2313 2314 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2315 return 1; 2316 return 0; 2317 } 2318 2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2320 { 2321 int next_free = le16_to_cpu(el->l_next_free_rec); 2322 unsigned int range; 2323 struct ocfs2_extent_rec *rec; 2324 2325 if (next_free == 0) 2326 return 0; 2327 2328 rec = &el->l_recs[0]; 2329 if (ocfs2_is_empty_extent(rec)) { 2330 /* Empty list. */ 2331 if (next_free == 1) 2332 return 0; 2333 rec = &el->l_recs[1]; 2334 } 2335 2336 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2337 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2338 return 1; 2339 return 0; 2340 } 2341 2342 /* 2343 * Rotate all the records in a btree right one record, starting at insert_cpos. 2344 * 2345 * The path to the rightmost leaf should be passed in. 2346 * 2347 * The array is assumed to be large enough to hold an entire path (tree depth). 2348 * 2349 * Upon successful return from this function: 2350 * 2351 * - The 'right_path' array will contain a path to the leaf block 2352 * whose range contains e_cpos. 2353 * - That leaf block will have a single empty extent in list index 0. 2354 * - In the case that the rotation requires a post-insert update, 2355 * *ret_left_path will contain a valid path which can be passed to 2356 * ocfs2_insert_path(). 2357 */ 2358 static int ocfs2_rotate_tree_right(handle_t *handle, 2359 struct ocfs2_extent_tree *et, 2360 enum ocfs2_split_type split, 2361 u32 insert_cpos, 2362 struct ocfs2_path *right_path, 2363 struct ocfs2_path **ret_left_path) 2364 { 2365 int ret, start, orig_credits = handle->h_buffer_credits; 2366 u32 cpos; 2367 struct ocfs2_path *left_path = NULL; 2368 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2369 2370 *ret_left_path = NULL; 2371 2372 left_path = ocfs2_new_path_from_path(right_path); 2373 if (!left_path) { 2374 ret = -ENOMEM; 2375 mlog_errno(ret); 2376 goto out; 2377 } 2378 2379 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2380 if (ret) { 2381 mlog_errno(ret); 2382 goto out; 2383 } 2384 2385 trace_ocfs2_rotate_tree_right( 2386 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2387 insert_cpos, cpos); 2388 2389 /* 2390 * What we want to do here is: 2391 * 2392 * 1) Start with the rightmost path. 2393 * 2394 * 2) Determine a path to the leaf block directly to the left 2395 * of that leaf. 2396 * 2397 * 3) Determine the 'subtree root' - the lowest level tree node 2398 * which contains a path to both leaves. 2399 * 2400 * 4) Rotate the subtree. 2401 * 2402 * 5) Find the next subtree by considering the left path to be 2403 * the new right path. 2404 * 2405 * The check at the top of this while loop also accepts 2406 * insert_cpos == cpos because cpos is only a _theoretical_ 2407 * value to get us the left path - insert_cpos might very well 2408 * be filling that hole. 2409 * 2410 * Stop at a cpos of '0' because we either started at the 2411 * leftmost branch (i.e., a tree with one branch and a 2412 * rotation inside of it), or we've gone as far as we can in 2413 * rotating subtrees. 2414 */ 2415 while (cpos && insert_cpos <= cpos) { 2416 trace_ocfs2_rotate_tree_right( 2417 (unsigned long long) 2418 ocfs2_metadata_cache_owner(et->et_ci), 2419 insert_cpos, cpos); 2420 2421 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2422 if (ret) { 2423 mlog_errno(ret); 2424 goto out; 2425 } 2426 2427 mlog_bug_on_msg(path_leaf_bh(left_path) == 2428 path_leaf_bh(right_path), 2429 "Owner %llu: error during insert of %u " 2430 "(left path cpos %u) results in two identical " 2431 "paths ending at %llu\n", 2432 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2433 insert_cpos, cpos, 2434 (unsigned long long) 2435 path_leaf_bh(left_path)->b_blocknr); 2436 2437 if (split == SPLIT_NONE && 2438 ocfs2_rotate_requires_path_adjustment(left_path, 2439 insert_cpos)) { 2440 2441 /* 2442 * We've rotated the tree as much as we 2443 * should. The rest is up to 2444 * ocfs2_insert_path() to complete, after the 2445 * record insertion. We indicate this 2446 * situation by returning the left path. 2447 * 2448 * The reason we don't adjust the records here 2449 * before the record insert is that an error 2450 * later might break the rule where a parent 2451 * record e_cpos will reflect the actual 2452 * e_cpos of the 1st nonempty record of the 2453 * child list. 2454 */ 2455 *ret_left_path = left_path; 2456 goto out_ret_path; 2457 } 2458 2459 start = ocfs2_find_subtree_root(et, left_path, right_path); 2460 2461 trace_ocfs2_rotate_subtree(start, 2462 (unsigned long long) 2463 right_path->p_node[start].bh->b_blocknr, 2464 right_path->p_tree_depth); 2465 2466 ret = ocfs2_extend_rotate_transaction(handle, start, 2467 orig_credits, right_path); 2468 if (ret) { 2469 mlog_errno(ret); 2470 goto out; 2471 } 2472 2473 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2474 right_path, start); 2475 if (ret) { 2476 mlog_errno(ret); 2477 goto out; 2478 } 2479 2480 if (split != SPLIT_NONE && 2481 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2482 insert_cpos)) { 2483 /* 2484 * A rotate moves the rightmost left leaf 2485 * record over to the leftmost right leaf 2486 * slot. If we're doing an extent split 2487 * instead of a real insert, then we have to 2488 * check that the extent to be split wasn't 2489 * just moved over. If it was, then we can 2490 * exit here, passing left_path back - 2491 * ocfs2_split_extent() is smart enough to 2492 * search both leaves. 2493 */ 2494 *ret_left_path = left_path; 2495 goto out_ret_path; 2496 } 2497 2498 /* 2499 * There is no need to re-read the next right path 2500 * as we know that it'll be our current left 2501 * path. Optimize by copying values instead. 2502 */ 2503 ocfs2_mv_path(right_path, left_path); 2504 2505 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2506 if (ret) { 2507 mlog_errno(ret); 2508 goto out; 2509 } 2510 } 2511 2512 out: 2513 ocfs2_free_path(left_path); 2514 2515 out_ret_path: 2516 return ret; 2517 } 2518 2519 static int ocfs2_update_edge_lengths(handle_t *handle, 2520 struct ocfs2_extent_tree *et, 2521 int subtree_index, struct ocfs2_path *path) 2522 { 2523 int i, idx, ret; 2524 struct ocfs2_extent_rec *rec; 2525 struct ocfs2_extent_list *el; 2526 struct ocfs2_extent_block *eb; 2527 u32 range; 2528 2529 /* 2530 * In normal tree rotation process, we will never touch the 2531 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2532 * doesn't reserve the credits for them either. 2533 * 2534 * But we do have a special case here which will update the rightmost 2535 * records for all the bh in the path. 2536 * So we have to allocate extra credits and access them. 2537 */ 2538 ret = ocfs2_extend_trans(handle, subtree_index); 2539 if (ret) { 2540 mlog_errno(ret); 2541 goto out; 2542 } 2543 2544 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2545 if (ret) { 2546 mlog_errno(ret); 2547 goto out; 2548 } 2549 2550 /* Path should always be rightmost. */ 2551 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2552 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2553 2554 el = &eb->h_list; 2555 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2556 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2557 rec = &el->l_recs[idx]; 2558 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2559 2560 for (i = 0; i < path->p_tree_depth; i++) { 2561 el = path->p_node[i].el; 2562 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2563 rec = &el->l_recs[idx]; 2564 2565 rec->e_int_clusters = cpu_to_le32(range); 2566 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2567 2568 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2569 } 2570 out: 2571 return ret; 2572 } 2573 2574 static void ocfs2_unlink_path(handle_t *handle, 2575 struct ocfs2_extent_tree *et, 2576 struct ocfs2_cached_dealloc_ctxt *dealloc, 2577 struct ocfs2_path *path, int unlink_start) 2578 { 2579 int ret, i; 2580 struct ocfs2_extent_block *eb; 2581 struct ocfs2_extent_list *el; 2582 struct buffer_head *bh; 2583 2584 for(i = unlink_start; i < path_num_items(path); i++) { 2585 bh = path->p_node[i].bh; 2586 2587 eb = (struct ocfs2_extent_block *)bh->b_data; 2588 /* 2589 * Not all nodes might have had their final count 2590 * decremented by the caller - handle this here. 2591 */ 2592 el = &eb->h_list; 2593 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2594 mlog(ML_ERROR, 2595 "Inode %llu, attempted to remove extent block " 2596 "%llu with %u records\n", 2597 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2598 (unsigned long long)le64_to_cpu(eb->h_blkno), 2599 le16_to_cpu(el->l_next_free_rec)); 2600 2601 ocfs2_journal_dirty(handle, bh); 2602 ocfs2_remove_from_cache(et->et_ci, bh); 2603 continue; 2604 } 2605 2606 el->l_next_free_rec = 0; 2607 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2608 2609 ocfs2_journal_dirty(handle, bh); 2610 2611 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2612 if (ret) 2613 mlog_errno(ret); 2614 2615 ocfs2_remove_from_cache(et->et_ci, bh); 2616 } 2617 } 2618 2619 static void ocfs2_unlink_subtree(handle_t *handle, 2620 struct ocfs2_extent_tree *et, 2621 struct ocfs2_path *left_path, 2622 struct ocfs2_path *right_path, 2623 int subtree_index, 2624 struct ocfs2_cached_dealloc_ctxt *dealloc) 2625 { 2626 int i; 2627 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2628 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2629 struct ocfs2_extent_list *el; 2630 struct ocfs2_extent_block *eb; 2631 2632 el = path_leaf_el(left_path); 2633 2634 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2635 2636 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2637 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2638 break; 2639 2640 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2641 2642 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2643 le16_add_cpu(&root_el->l_next_free_rec, -1); 2644 2645 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2646 eb->h_next_leaf_blk = 0; 2647 2648 ocfs2_journal_dirty(handle, root_bh); 2649 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2650 2651 ocfs2_unlink_path(handle, et, dealloc, right_path, 2652 subtree_index + 1); 2653 } 2654 2655 static int ocfs2_rotate_subtree_left(handle_t *handle, 2656 struct ocfs2_extent_tree *et, 2657 struct ocfs2_path *left_path, 2658 struct ocfs2_path *right_path, 2659 int subtree_index, 2660 struct ocfs2_cached_dealloc_ctxt *dealloc, 2661 int *deleted) 2662 { 2663 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2664 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2665 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2666 struct ocfs2_extent_block *eb; 2667 2668 *deleted = 0; 2669 2670 right_leaf_el = path_leaf_el(right_path); 2671 left_leaf_el = path_leaf_el(left_path); 2672 root_bh = left_path->p_node[subtree_index].bh; 2673 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2674 2675 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2676 return 0; 2677 2678 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2679 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2680 /* 2681 * It's legal for us to proceed if the right leaf is 2682 * the rightmost one and it has an empty extent. There 2683 * are two cases to handle - whether the leaf will be 2684 * empty after removal or not. If the leaf isn't empty 2685 * then just remove the empty extent up front. The 2686 * next block will handle empty leaves by flagging 2687 * them for unlink. 2688 * 2689 * Non rightmost leaves will throw -EAGAIN and the 2690 * caller can manually move the subtree and retry. 2691 */ 2692 2693 if (eb->h_next_leaf_blk != 0ULL) 2694 return -EAGAIN; 2695 2696 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2697 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2698 path_leaf_bh(right_path), 2699 OCFS2_JOURNAL_ACCESS_WRITE); 2700 if (ret) { 2701 mlog_errno(ret); 2702 goto out; 2703 } 2704 2705 ocfs2_remove_empty_extent(right_leaf_el); 2706 } else 2707 right_has_empty = 1; 2708 } 2709 2710 if (eb->h_next_leaf_blk == 0ULL && 2711 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2712 /* 2713 * We have to update i_last_eb_blk during the meta 2714 * data delete. 2715 */ 2716 ret = ocfs2_et_root_journal_access(handle, et, 2717 OCFS2_JOURNAL_ACCESS_WRITE); 2718 if (ret) { 2719 mlog_errno(ret); 2720 goto out; 2721 } 2722 2723 del_right_subtree = 1; 2724 } 2725 2726 /* 2727 * Getting here with an empty extent in the right path implies 2728 * that it's the rightmost path and will be deleted. 2729 */ 2730 BUG_ON(right_has_empty && !del_right_subtree); 2731 2732 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2733 subtree_index); 2734 if (ret) { 2735 mlog_errno(ret); 2736 goto out; 2737 } 2738 2739 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2740 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2741 right_path, i); 2742 if (ret) { 2743 mlog_errno(ret); 2744 goto out; 2745 } 2746 2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2748 left_path, i); 2749 if (ret) { 2750 mlog_errno(ret); 2751 goto out; 2752 } 2753 } 2754 2755 if (!right_has_empty) { 2756 /* 2757 * Only do this if we're moving a real 2758 * record. Otherwise, the action is delayed until 2759 * after removal of the right path in which case we 2760 * can do a simple shift to remove the empty extent. 2761 */ 2762 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2763 memset(&right_leaf_el->l_recs[0], 0, 2764 sizeof(struct ocfs2_extent_rec)); 2765 } 2766 if (eb->h_next_leaf_blk == 0ULL) { 2767 /* 2768 * Move recs over to get rid of empty extent, decrease 2769 * next_free. This is allowed to remove the last 2770 * extent in our leaf (setting l_next_free_rec to 2771 * zero) - the delete code below won't care. 2772 */ 2773 ocfs2_remove_empty_extent(right_leaf_el); 2774 } 2775 2776 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2777 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2778 2779 if (del_right_subtree) { 2780 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2781 subtree_index, dealloc); 2782 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2783 left_path); 2784 if (ret) { 2785 mlog_errno(ret); 2786 goto out; 2787 } 2788 2789 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2790 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2791 2792 /* 2793 * Removal of the extent in the left leaf was skipped 2794 * above so we could delete the right path 2795 * 1st. 2796 */ 2797 if (right_has_empty) 2798 ocfs2_remove_empty_extent(left_leaf_el); 2799 2800 ocfs2_journal_dirty(handle, et_root_bh); 2801 2802 *deleted = 1; 2803 } else 2804 ocfs2_complete_edge_insert(handle, left_path, right_path, 2805 subtree_index); 2806 2807 out: 2808 return ret; 2809 } 2810 2811 /* 2812 * Given a full path, determine what cpos value would return us a path 2813 * containing the leaf immediately to the right of the current one. 2814 * 2815 * Will return zero if the path passed in is already the rightmost path. 2816 * 2817 * This looks similar, but is subtly different to 2818 * ocfs2_find_cpos_for_left_leaf(). 2819 */ 2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2821 struct ocfs2_path *path, u32 *cpos) 2822 { 2823 int i, j, ret = 0; 2824 u64 blkno; 2825 struct ocfs2_extent_list *el; 2826 2827 *cpos = 0; 2828 2829 if (path->p_tree_depth == 0) 2830 return 0; 2831 2832 blkno = path_leaf_bh(path)->b_blocknr; 2833 2834 /* Start at the tree node just above the leaf and work our way up. */ 2835 i = path->p_tree_depth - 1; 2836 while (i >= 0) { 2837 int next_free; 2838 2839 el = path->p_node[i].el; 2840 2841 /* 2842 * Find the extent record just after the one in our 2843 * path. 2844 */ 2845 next_free = le16_to_cpu(el->l_next_free_rec); 2846 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2847 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2848 if (j == (next_free - 1)) { 2849 if (i == 0) { 2850 /* 2851 * We've determined that the 2852 * path specified is already 2853 * the rightmost one - return a 2854 * cpos of zero. 2855 */ 2856 goto out; 2857 } 2858 /* 2859 * The rightmost record points to our 2860 * leaf - we need to travel up the 2861 * tree one level. 2862 */ 2863 goto next_node; 2864 } 2865 2866 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2867 goto out; 2868 } 2869 } 2870 2871 /* 2872 * If we got here, we never found a valid node where 2873 * the tree indicated one should be. 2874 */ 2875 ocfs2_error(sb, 2876 "Invalid extent tree at extent block %llu\n", 2877 (unsigned long long)blkno); 2878 ret = -EROFS; 2879 goto out; 2880 2881 next_node: 2882 blkno = path->p_node[i].bh->b_blocknr; 2883 i--; 2884 } 2885 2886 out: 2887 return ret; 2888 } 2889 2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2891 struct ocfs2_extent_tree *et, 2892 struct ocfs2_path *path) 2893 { 2894 int ret; 2895 struct buffer_head *bh = path_leaf_bh(path); 2896 struct ocfs2_extent_list *el = path_leaf_el(path); 2897 2898 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2899 return 0; 2900 2901 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2902 path_num_items(path) - 1); 2903 if (ret) { 2904 mlog_errno(ret); 2905 goto out; 2906 } 2907 2908 ocfs2_remove_empty_extent(el); 2909 ocfs2_journal_dirty(handle, bh); 2910 2911 out: 2912 return ret; 2913 } 2914 2915 static int __ocfs2_rotate_tree_left(handle_t *handle, 2916 struct ocfs2_extent_tree *et, 2917 int orig_credits, 2918 struct ocfs2_path *path, 2919 struct ocfs2_cached_dealloc_ctxt *dealloc, 2920 struct ocfs2_path **empty_extent_path) 2921 { 2922 int ret, subtree_root, deleted; 2923 u32 right_cpos; 2924 struct ocfs2_path *left_path = NULL; 2925 struct ocfs2_path *right_path = NULL; 2926 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2927 2928 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2929 2930 *empty_extent_path = NULL; 2931 2932 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2933 if (ret) { 2934 mlog_errno(ret); 2935 goto out; 2936 } 2937 2938 left_path = ocfs2_new_path_from_path(path); 2939 if (!left_path) { 2940 ret = -ENOMEM; 2941 mlog_errno(ret); 2942 goto out; 2943 } 2944 2945 ocfs2_cp_path(left_path, path); 2946 2947 right_path = ocfs2_new_path_from_path(path); 2948 if (!right_path) { 2949 ret = -ENOMEM; 2950 mlog_errno(ret); 2951 goto out; 2952 } 2953 2954 while (right_cpos) { 2955 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2956 if (ret) { 2957 mlog_errno(ret); 2958 goto out; 2959 } 2960 2961 subtree_root = ocfs2_find_subtree_root(et, left_path, 2962 right_path); 2963 2964 trace_ocfs2_rotate_subtree(subtree_root, 2965 (unsigned long long) 2966 right_path->p_node[subtree_root].bh->b_blocknr, 2967 right_path->p_tree_depth); 2968 2969 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2970 orig_credits, left_path); 2971 if (ret) { 2972 mlog_errno(ret); 2973 goto out; 2974 } 2975 2976 /* 2977 * Caller might still want to make changes to the 2978 * tree root, so re-add it to the journal here. 2979 */ 2980 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2981 left_path, 0); 2982 if (ret) { 2983 mlog_errno(ret); 2984 goto out; 2985 } 2986 2987 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2988 right_path, subtree_root, 2989 dealloc, &deleted); 2990 if (ret == -EAGAIN) { 2991 /* 2992 * The rotation has to temporarily stop due to 2993 * the right subtree having an empty 2994 * extent. Pass it back to the caller for a 2995 * fixup. 2996 */ 2997 *empty_extent_path = right_path; 2998 right_path = NULL; 2999 goto out; 3000 } 3001 if (ret) { 3002 mlog_errno(ret); 3003 goto out; 3004 } 3005 3006 /* 3007 * The subtree rotate might have removed records on 3008 * the rightmost edge. If so, then rotation is 3009 * complete. 3010 */ 3011 if (deleted) 3012 break; 3013 3014 ocfs2_mv_path(left_path, right_path); 3015 3016 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3017 &right_cpos); 3018 if (ret) { 3019 mlog_errno(ret); 3020 goto out; 3021 } 3022 } 3023 3024 out: 3025 ocfs2_free_path(right_path); 3026 ocfs2_free_path(left_path); 3027 3028 return ret; 3029 } 3030 3031 static int ocfs2_remove_rightmost_path(handle_t *handle, 3032 struct ocfs2_extent_tree *et, 3033 struct ocfs2_path *path, 3034 struct ocfs2_cached_dealloc_ctxt *dealloc) 3035 { 3036 int ret, subtree_index; 3037 u32 cpos; 3038 struct ocfs2_path *left_path = NULL; 3039 struct ocfs2_extent_block *eb; 3040 struct ocfs2_extent_list *el; 3041 3042 3043 ret = ocfs2_et_sanity_check(et); 3044 if (ret) 3045 goto out; 3046 /* 3047 * There's two ways we handle this depending on 3048 * whether path is the only existing one. 3049 */ 3050 ret = ocfs2_extend_rotate_transaction(handle, 0, 3051 handle->h_buffer_credits, 3052 path); 3053 if (ret) { 3054 mlog_errno(ret); 3055 goto out; 3056 } 3057 3058 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3059 if (ret) { 3060 mlog_errno(ret); 3061 goto out; 3062 } 3063 3064 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3065 path, &cpos); 3066 if (ret) { 3067 mlog_errno(ret); 3068 goto out; 3069 } 3070 3071 if (cpos) { 3072 /* 3073 * We have a path to the left of this one - it needs 3074 * an update too. 3075 */ 3076 left_path = ocfs2_new_path_from_path(path); 3077 if (!left_path) { 3078 ret = -ENOMEM; 3079 mlog_errno(ret); 3080 goto out; 3081 } 3082 3083 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3084 if (ret) { 3085 mlog_errno(ret); 3086 goto out; 3087 } 3088 3089 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3090 if (ret) { 3091 mlog_errno(ret); 3092 goto out; 3093 } 3094 3095 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3096 3097 ocfs2_unlink_subtree(handle, et, left_path, path, 3098 subtree_index, dealloc); 3099 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3100 left_path); 3101 if (ret) { 3102 mlog_errno(ret); 3103 goto out; 3104 } 3105 3106 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3107 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3108 } else { 3109 /* 3110 * 'path' is also the leftmost path which 3111 * means it must be the only one. This gets 3112 * handled differently because we want to 3113 * revert the root back to having extents 3114 * in-line. 3115 */ 3116 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3117 3118 el = et->et_root_el; 3119 el->l_tree_depth = 0; 3120 el->l_next_free_rec = 0; 3121 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3122 3123 ocfs2_et_set_last_eb_blk(et, 0); 3124 } 3125 3126 ocfs2_journal_dirty(handle, path_root_bh(path)); 3127 3128 out: 3129 ocfs2_free_path(left_path); 3130 return ret; 3131 } 3132 3133 /* 3134 * Left rotation of btree records. 3135 * 3136 * In many ways, this is (unsurprisingly) the opposite of right 3137 * rotation. We start at some non-rightmost path containing an empty 3138 * extent in the leaf block. The code works its way to the rightmost 3139 * path by rotating records to the left in every subtree. 3140 * 3141 * This is used by any code which reduces the number of extent records 3142 * in a leaf. After removal, an empty record should be placed in the 3143 * leftmost list position. 3144 * 3145 * This won't handle a length update of the rightmost path records if 3146 * the rightmost tree leaf record is removed so the caller is 3147 * responsible for detecting and correcting that. 3148 */ 3149 static int ocfs2_rotate_tree_left(handle_t *handle, 3150 struct ocfs2_extent_tree *et, 3151 struct ocfs2_path *path, 3152 struct ocfs2_cached_dealloc_ctxt *dealloc) 3153 { 3154 int ret, orig_credits = handle->h_buffer_credits; 3155 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3156 struct ocfs2_extent_block *eb; 3157 struct ocfs2_extent_list *el; 3158 3159 el = path_leaf_el(path); 3160 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3161 return 0; 3162 3163 if (path->p_tree_depth == 0) { 3164 rightmost_no_delete: 3165 /* 3166 * Inline extents. This is trivially handled, so do 3167 * it up front. 3168 */ 3169 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3170 if (ret) 3171 mlog_errno(ret); 3172 goto out; 3173 } 3174 3175 /* 3176 * Handle rightmost branch now. There's several cases: 3177 * 1) simple rotation leaving records in there. That's trivial. 3178 * 2) rotation requiring a branch delete - there's no more 3179 * records left. Two cases of this: 3180 * a) There are branches to the left. 3181 * b) This is also the leftmost (the only) branch. 3182 * 3183 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3184 * 2a) we need the left branch so that we can update it with the unlink 3185 * 2b) we need to bring the root back to inline extents. 3186 */ 3187 3188 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3189 el = &eb->h_list; 3190 if (eb->h_next_leaf_blk == 0) { 3191 /* 3192 * This gets a bit tricky if we're going to delete the 3193 * rightmost path. Get the other cases out of the way 3194 * 1st. 3195 */ 3196 if (le16_to_cpu(el->l_next_free_rec) > 1) 3197 goto rightmost_no_delete; 3198 3199 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3200 ret = -EIO; 3201 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3202 "Owner %llu has empty extent block at %llu", 3203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3204 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3205 goto out; 3206 } 3207 3208 /* 3209 * XXX: The caller can not trust "path" any more after 3210 * this as it will have been deleted. What do we do? 3211 * 3212 * In theory the rotate-for-merge code will never get 3213 * here because it'll always ask for a rotate in a 3214 * nonempty list. 3215 */ 3216 3217 ret = ocfs2_remove_rightmost_path(handle, et, path, 3218 dealloc); 3219 if (ret) 3220 mlog_errno(ret); 3221 goto out; 3222 } 3223 3224 /* 3225 * Now we can loop, remembering the path we get from -EAGAIN 3226 * and restarting from there. 3227 */ 3228 try_rotate: 3229 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3230 dealloc, &restart_path); 3231 if (ret && ret != -EAGAIN) { 3232 mlog_errno(ret); 3233 goto out; 3234 } 3235 3236 while (ret == -EAGAIN) { 3237 tmp_path = restart_path; 3238 restart_path = NULL; 3239 3240 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3241 tmp_path, dealloc, 3242 &restart_path); 3243 if (ret && ret != -EAGAIN) { 3244 mlog_errno(ret); 3245 goto out; 3246 } 3247 3248 ocfs2_free_path(tmp_path); 3249 tmp_path = NULL; 3250 3251 if (ret == 0) 3252 goto try_rotate; 3253 } 3254 3255 out: 3256 ocfs2_free_path(tmp_path); 3257 ocfs2_free_path(restart_path); 3258 return ret; 3259 } 3260 3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3262 int index) 3263 { 3264 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3265 unsigned int size; 3266 3267 if (rec->e_leaf_clusters == 0) { 3268 /* 3269 * We consumed all of the merged-from record. An empty 3270 * extent cannot exist anywhere but the 1st array 3271 * position, so move things over if the merged-from 3272 * record doesn't occupy that position. 3273 * 3274 * This creates a new empty extent so the caller 3275 * should be smart enough to have removed any existing 3276 * ones. 3277 */ 3278 if (index > 0) { 3279 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3280 size = index * sizeof(struct ocfs2_extent_rec); 3281 memmove(&el->l_recs[1], &el->l_recs[0], size); 3282 } 3283 3284 /* 3285 * Always memset - the caller doesn't check whether it 3286 * created an empty extent, so there could be junk in 3287 * the other fields. 3288 */ 3289 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3290 } 3291 } 3292 3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3294 struct ocfs2_path *left_path, 3295 struct ocfs2_path **ret_right_path) 3296 { 3297 int ret; 3298 u32 right_cpos; 3299 struct ocfs2_path *right_path = NULL; 3300 struct ocfs2_extent_list *left_el; 3301 3302 *ret_right_path = NULL; 3303 3304 /* This function shouldn't be called for non-trees. */ 3305 BUG_ON(left_path->p_tree_depth == 0); 3306 3307 left_el = path_leaf_el(left_path); 3308 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3309 3310 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3311 left_path, &right_cpos); 3312 if (ret) { 3313 mlog_errno(ret); 3314 goto out; 3315 } 3316 3317 /* This function shouldn't be called for the rightmost leaf. */ 3318 BUG_ON(right_cpos == 0); 3319 3320 right_path = ocfs2_new_path_from_path(left_path); 3321 if (!right_path) { 3322 ret = -ENOMEM; 3323 mlog_errno(ret); 3324 goto out; 3325 } 3326 3327 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3328 if (ret) { 3329 mlog_errno(ret); 3330 goto out; 3331 } 3332 3333 *ret_right_path = right_path; 3334 out: 3335 if (ret) 3336 ocfs2_free_path(right_path); 3337 return ret; 3338 } 3339 3340 /* 3341 * Remove split_rec clusters from the record at index and merge them 3342 * onto the beginning of the record "next" to it. 3343 * For index < l_count - 1, the next means the extent rec at index + 1. 3344 * For index == l_count - 1, the "next" means the 1st extent rec of the 3345 * next extent block. 3346 */ 3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3348 handle_t *handle, 3349 struct ocfs2_extent_tree *et, 3350 struct ocfs2_extent_rec *split_rec, 3351 int index) 3352 { 3353 int ret, next_free, i; 3354 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3355 struct ocfs2_extent_rec *left_rec; 3356 struct ocfs2_extent_rec *right_rec; 3357 struct ocfs2_extent_list *right_el; 3358 struct ocfs2_path *right_path = NULL; 3359 int subtree_index = 0; 3360 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3361 struct buffer_head *bh = path_leaf_bh(left_path); 3362 struct buffer_head *root_bh = NULL; 3363 3364 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3365 left_rec = &el->l_recs[index]; 3366 3367 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3368 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3369 /* we meet with a cross extent block merge. */ 3370 ret = ocfs2_get_right_path(et, left_path, &right_path); 3371 if (ret) { 3372 mlog_errno(ret); 3373 goto out; 3374 } 3375 3376 right_el = path_leaf_el(right_path); 3377 next_free = le16_to_cpu(right_el->l_next_free_rec); 3378 BUG_ON(next_free <= 0); 3379 right_rec = &right_el->l_recs[0]; 3380 if (ocfs2_is_empty_extent(right_rec)) { 3381 BUG_ON(next_free <= 1); 3382 right_rec = &right_el->l_recs[1]; 3383 } 3384 3385 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3386 le16_to_cpu(left_rec->e_leaf_clusters) != 3387 le32_to_cpu(right_rec->e_cpos)); 3388 3389 subtree_index = ocfs2_find_subtree_root(et, left_path, 3390 right_path); 3391 3392 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3393 handle->h_buffer_credits, 3394 right_path); 3395 if (ret) { 3396 mlog_errno(ret); 3397 goto out; 3398 } 3399 3400 root_bh = left_path->p_node[subtree_index].bh; 3401 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3402 3403 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3404 subtree_index); 3405 if (ret) { 3406 mlog_errno(ret); 3407 goto out; 3408 } 3409 3410 for (i = subtree_index + 1; 3411 i < path_num_items(right_path); i++) { 3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3413 right_path, i); 3414 if (ret) { 3415 mlog_errno(ret); 3416 goto out; 3417 } 3418 3419 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3420 left_path, i); 3421 if (ret) { 3422 mlog_errno(ret); 3423 goto out; 3424 } 3425 } 3426 3427 } else { 3428 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3429 right_rec = &el->l_recs[index + 1]; 3430 } 3431 3432 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3433 path_num_items(left_path) - 1); 3434 if (ret) { 3435 mlog_errno(ret); 3436 goto out; 3437 } 3438 3439 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3440 3441 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3442 le64_add_cpu(&right_rec->e_blkno, 3443 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3444 split_clusters)); 3445 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3446 3447 ocfs2_cleanup_merge(el, index); 3448 3449 ocfs2_journal_dirty(handle, bh); 3450 if (right_path) { 3451 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3452 ocfs2_complete_edge_insert(handle, left_path, right_path, 3453 subtree_index); 3454 } 3455 out: 3456 if (right_path) 3457 ocfs2_free_path(right_path); 3458 return ret; 3459 } 3460 3461 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3462 struct ocfs2_path *right_path, 3463 struct ocfs2_path **ret_left_path) 3464 { 3465 int ret; 3466 u32 left_cpos; 3467 struct ocfs2_path *left_path = NULL; 3468 3469 *ret_left_path = NULL; 3470 3471 /* This function shouldn't be called for non-trees. */ 3472 BUG_ON(right_path->p_tree_depth == 0); 3473 3474 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3475 right_path, &left_cpos); 3476 if (ret) { 3477 mlog_errno(ret); 3478 goto out; 3479 } 3480 3481 /* This function shouldn't be called for the leftmost leaf. */ 3482 BUG_ON(left_cpos == 0); 3483 3484 left_path = ocfs2_new_path_from_path(right_path); 3485 if (!left_path) { 3486 ret = -ENOMEM; 3487 mlog_errno(ret); 3488 goto out; 3489 } 3490 3491 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3492 if (ret) { 3493 mlog_errno(ret); 3494 goto out; 3495 } 3496 3497 *ret_left_path = left_path; 3498 out: 3499 if (ret) 3500 ocfs2_free_path(left_path); 3501 return ret; 3502 } 3503 3504 /* 3505 * Remove split_rec clusters from the record at index and merge them 3506 * onto the tail of the record "before" it. 3507 * For index > 0, the "before" means the extent rec at index - 1. 3508 * 3509 * For index == 0, the "before" means the last record of the previous 3510 * extent block. And there is also a situation that we may need to 3511 * remove the rightmost leaf extent block in the right_path and change 3512 * the right path to indicate the new rightmost path. 3513 */ 3514 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3515 handle_t *handle, 3516 struct ocfs2_extent_tree *et, 3517 struct ocfs2_extent_rec *split_rec, 3518 struct ocfs2_cached_dealloc_ctxt *dealloc, 3519 int index) 3520 { 3521 int ret, i, subtree_index = 0, has_empty_extent = 0; 3522 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3523 struct ocfs2_extent_rec *left_rec; 3524 struct ocfs2_extent_rec *right_rec; 3525 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3526 struct buffer_head *bh = path_leaf_bh(right_path); 3527 struct buffer_head *root_bh = NULL; 3528 struct ocfs2_path *left_path = NULL; 3529 struct ocfs2_extent_list *left_el; 3530 3531 BUG_ON(index < 0); 3532 3533 right_rec = &el->l_recs[index]; 3534 if (index == 0) { 3535 /* we meet with a cross extent block merge. */ 3536 ret = ocfs2_get_left_path(et, right_path, &left_path); 3537 if (ret) { 3538 mlog_errno(ret); 3539 goto out; 3540 } 3541 3542 left_el = path_leaf_el(left_path); 3543 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3544 le16_to_cpu(left_el->l_count)); 3545 3546 left_rec = &left_el->l_recs[ 3547 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3548 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3549 le16_to_cpu(left_rec->e_leaf_clusters) != 3550 le32_to_cpu(split_rec->e_cpos)); 3551 3552 subtree_index = ocfs2_find_subtree_root(et, left_path, 3553 right_path); 3554 3555 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3556 handle->h_buffer_credits, 3557 left_path); 3558 if (ret) { 3559 mlog_errno(ret); 3560 goto out; 3561 } 3562 3563 root_bh = left_path->p_node[subtree_index].bh; 3564 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3565 3566 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3567 subtree_index); 3568 if (ret) { 3569 mlog_errno(ret); 3570 goto out; 3571 } 3572 3573 for (i = subtree_index + 1; 3574 i < path_num_items(right_path); i++) { 3575 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3576 right_path, i); 3577 if (ret) { 3578 mlog_errno(ret); 3579 goto out; 3580 } 3581 3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3583 left_path, i); 3584 if (ret) { 3585 mlog_errno(ret); 3586 goto out; 3587 } 3588 } 3589 } else { 3590 left_rec = &el->l_recs[index - 1]; 3591 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3592 has_empty_extent = 1; 3593 } 3594 3595 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3596 path_num_items(right_path) - 1); 3597 if (ret) { 3598 mlog_errno(ret); 3599 goto out; 3600 } 3601 3602 if (has_empty_extent && index == 1) { 3603 /* 3604 * The easy case - we can just plop the record right in. 3605 */ 3606 *left_rec = *split_rec; 3607 3608 has_empty_extent = 0; 3609 } else 3610 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3611 3612 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3613 le64_add_cpu(&right_rec->e_blkno, 3614 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3615 split_clusters)); 3616 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3617 3618 ocfs2_cleanup_merge(el, index); 3619 3620 ocfs2_journal_dirty(handle, bh); 3621 if (left_path) { 3622 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3623 3624 /* 3625 * In the situation that the right_rec is empty and the extent 3626 * block is empty also, ocfs2_complete_edge_insert can't handle 3627 * it and we need to delete the right extent block. 3628 */ 3629 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3630 le16_to_cpu(el->l_next_free_rec) == 1) { 3631 3632 ret = ocfs2_remove_rightmost_path(handle, et, 3633 right_path, 3634 dealloc); 3635 if (ret) { 3636 mlog_errno(ret); 3637 goto out; 3638 } 3639 3640 /* Now the rightmost extent block has been deleted. 3641 * So we use the new rightmost path. 3642 */ 3643 ocfs2_mv_path(right_path, left_path); 3644 left_path = NULL; 3645 } else 3646 ocfs2_complete_edge_insert(handle, left_path, 3647 right_path, subtree_index); 3648 } 3649 out: 3650 if (left_path) 3651 ocfs2_free_path(left_path); 3652 return ret; 3653 } 3654 3655 static int ocfs2_try_to_merge_extent(handle_t *handle, 3656 struct ocfs2_extent_tree *et, 3657 struct ocfs2_path *path, 3658 int split_index, 3659 struct ocfs2_extent_rec *split_rec, 3660 struct ocfs2_cached_dealloc_ctxt *dealloc, 3661 struct ocfs2_merge_ctxt *ctxt) 3662 { 3663 int ret = 0; 3664 struct ocfs2_extent_list *el = path_leaf_el(path); 3665 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3666 3667 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3668 3669 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3670 /* 3671 * The merge code will need to create an empty 3672 * extent to take the place of the newly 3673 * emptied slot. Remove any pre-existing empty 3674 * extents - having more than one in a leaf is 3675 * illegal. 3676 */ 3677 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3678 if (ret) { 3679 mlog_errno(ret); 3680 goto out; 3681 } 3682 split_index--; 3683 rec = &el->l_recs[split_index]; 3684 } 3685 3686 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3687 /* 3688 * Left-right contig implies this. 3689 */ 3690 BUG_ON(!ctxt->c_split_covers_rec); 3691 3692 /* 3693 * Since the leftright insert always covers the entire 3694 * extent, this call will delete the insert record 3695 * entirely, resulting in an empty extent record added to 3696 * the extent block. 3697 * 3698 * Since the adding of an empty extent shifts 3699 * everything back to the right, there's no need to 3700 * update split_index here. 3701 * 3702 * When the split_index is zero, we need to merge it to the 3703 * prevoius extent block. It is more efficient and easier 3704 * if we do merge_right first and merge_left later. 3705 */ 3706 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3707 split_index); 3708 if (ret) { 3709 mlog_errno(ret); 3710 goto out; 3711 } 3712 3713 /* 3714 * We can only get this from logic error above. 3715 */ 3716 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3717 3718 /* The merge left us with an empty extent, remove it. */ 3719 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3720 if (ret) { 3721 mlog_errno(ret); 3722 goto out; 3723 } 3724 3725 rec = &el->l_recs[split_index]; 3726 3727 /* 3728 * Note that we don't pass split_rec here on purpose - 3729 * we've merged it into the rec already. 3730 */ 3731 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3732 dealloc, split_index); 3733 3734 if (ret) { 3735 mlog_errno(ret); 3736 goto out; 3737 } 3738 3739 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3740 /* 3741 * Error from this last rotate is not critical, so 3742 * print but don't bubble it up. 3743 */ 3744 if (ret) 3745 mlog_errno(ret); 3746 ret = 0; 3747 } else { 3748 /* 3749 * Merge a record to the left or right. 3750 * 3751 * 'contig_type' is relative to the existing record, 3752 * so for example, if we're "right contig", it's to 3753 * the record on the left (hence the left merge). 3754 */ 3755 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3756 ret = ocfs2_merge_rec_left(path, handle, et, 3757 split_rec, dealloc, 3758 split_index); 3759 if (ret) { 3760 mlog_errno(ret); 3761 goto out; 3762 } 3763 } else { 3764 ret = ocfs2_merge_rec_right(path, handle, 3765 et, split_rec, 3766 split_index); 3767 if (ret) { 3768 mlog_errno(ret); 3769 goto out; 3770 } 3771 } 3772 3773 if (ctxt->c_split_covers_rec) { 3774 /* 3775 * The merge may have left an empty extent in 3776 * our leaf. Try to rotate it away. 3777 */ 3778 ret = ocfs2_rotate_tree_left(handle, et, path, 3779 dealloc); 3780 if (ret) 3781 mlog_errno(ret); 3782 ret = 0; 3783 } 3784 } 3785 3786 out: 3787 return ret; 3788 } 3789 3790 static void ocfs2_subtract_from_rec(struct super_block *sb, 3791 enum ocfs2_split_type split, 3792 struct ocfs2_extent_rec *rec, 3793 struct ocfs2_extent_rec *split_rec) 3794 { 3795 u64 len_blocks; 3796 3797 len_blocks = ocfs2_clusters_to_blocks(sb, 3798 le16_to_cpu(split_rec->e_leaf_clusters)); 3799 3800 if (split == SPLIT_LEFT) { 3801 /* 3802 * Region is on the left edge of the existing 3803 * record. 3804 */ 3805 le32_add_cpu(&rec->e_cpos, 3806 le16_to_cpu(split_rec->e_leaf_clusters)); 3807 le64_add_cpu(&rec->e_blkno, len_blocks); 3808 le16_add_cpu(&rec->e_leaf_clusters, 3809 -le16_to_cpu(split_rec->e_leaf_clusters)); 3810 } else { 3811 /* 3812 * Region is on the right edge of the existing 3813 * record. 3814 */ 3815 le16_add_cpu(&rec->e_leaf_clusters, 3816 -le16_to_cpu(split_rec->e_leaf_clusters)); 3817 } 3818 } 3819 3820 /* 3821 * Do the final bits of extent record insertion at the target leaf 3822 * list. If this leaf is part of an allocation tree, it is assumed 3823 * that the tree above has been prepared. 3824 */ 3825 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3826 struct ocfs2_extent_rec *insert_rec, 3827 struct ocfs2_extent_list *el, 3828 struct ocfs2_insert_type *insert) 3829 { 3830 int i = insert->ins_contig_index; 3831 unsigned int range; 3832 struct ocfs2_extent_rec *rec; 3833 3834 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3835 3836 if (insert->ins_split != SPLIT_NONE) { 3837 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3838 BUG_ON(i == -1); 3839 rec = &el->l_recs[i]; 3840 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3841 insert->ins_split, rec, 3842 insert_rec); 3843 goto rotate; 3844 } 3845 3846 /* 3847 * Contiguous insert - either left or right. 3848 */ 3849 if (insert->ins_contig != CONTIG_NONE) { 3850 rec = &el->l_recs[i]; 3851 if (insert->ins_contig == CONTIG_LEFT) { 3852 rec->e_blkno = insert_rec->e_blkno; 3853 rec->e_cpos = insert_rec->e_cpos; 3854 } 3855 le16_add_cpu(&rec->e_leaf_clusters, 3856 le16_to_cpu(insert_rec->e_leaf_clusters)); 3857 return; 3858 } 3859 3860 /* 3861 * Handle insert into an empty leaf. 3862 */ 3863 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3864 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3865 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3866 el->l_recs[0] = *insert_rec; 3867 el->l_next_free_rec = cpu_to_le16(1); 3868 return; 3869 } 3870 3871 /* 3872 * Appending insert. 3873 */ 3874 if (insert->ins_appending == APPEND_TAIL) { 3875 i = le16_to_cpu(el->l_next_free_rec) - 1; 3876 rec = &el->l_recs[i]; 3877 range = le32_to_cpu(rec->e_cpos) 3878 + le16_to_cpu(rec->e_leaf_clusters); 3879 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3880 3881 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3882 le16_to_cpu(el->l_count), 3883 "owner %llu, depth %u, count %u, next free %u, " 3884 "rec.cpos %u, rec.clusters %u, " 3885 "insert.cpos %u, insert.clusters %u\n", 3886 ocfs2_metadata_cache_owner(et->et_ci), 3887 le16_to_cpu(el->l_tree_depth), 3888 le16_to_cpu(el->l_count), 3889 le16_to_cpu(el->l_next_free_rec), 3890 le32_to_cpu(el->l_recs[i].e_cpos), 3891 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3892 le32_to_cpu(insert_rec->e_cpos), 3893 le16_to_cpu(insert_rec->e_leaf_clusters)); 3894 i++; 3895 el->l_recs[i] = *insert_rec; 3896 le16_add_cpu(&el->l_next_free_rec, 1); 3897 return; 3898 } 3899 3900 rotate: 3901 /* 3902 * Ok, we have to rotate. 3903 * 3904 * At this point, it is safe to assume that inserting into an 3905 * empty leaf and appending to a leaf have both been handled 3906 * above. 3907 * 3908 * This leaf needs to have space, either by the empty 1st 3909 * extent record, or by virtue of an l_next_rec < l_count. 3910 */ 3911 ocfs2_rotate_leaf(el, insert_rec); 3912 } 3913 3914 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3915 struct ocfs2_extent_tree *et, 3916 struct ocfs2_path *path, 3917 struct ocfs2_extent_rec *insert_rec) 3918 { 3919 int ret, i, next_free; 3920 struct buffer_head *bh; 3921 struct ocfs2_extent_list *el; 3922 struct ocfs2_extent_rec *rec; 3923 3924 /* 3925 * Update everything except the leaf block. 3926 */ 3927 for (i = 0; i < path->p_tree_depth; i++) { 3928 bh = path->p_node[i].bh; 3929 el = path->p_node[i].el; 3930 3931 next_free = le16_to_cpu(el->l_next_free_rec); 3932 if (next_free == 0) { 3933 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3934 "Owner %llu has a bad extent list", 3935 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3936 ret = -EIO; 3937 return; 3938 } 3939 3940 rec = &el->l_recs[next_free - 1]; 3941 3942 rec->e_int_clusters = insert_rec->e_cpos; 3943 le32_add_cpu(&rec->e_int_clusters, 3944 le16_to_cpu(insert_rec->e_leaf_clusters)); 3945 le32_add_cpu(&rec->e_int_clusters, 3946 -le32_to_cpu(rec->e_cpos)); 3947 3948 ocfs2_journal_dirty(handle, bh); 3949 } 3950 } 3951 3952 static int ocfs2_append_rec_to_path(handle_t *handle, 3953 struct ocfs2_extent_tree *et, 3954 struct ocfs2_extent_rec *insert_rec, 3955 struct ocfs2_path *right_path, 3956 struct ocfs2_path **ret_left_path) 3957 { 3958 int ret, next_free; 3959 struct ocfs2_extent_list *el; 3960 struct ocfs2_path *left_path = NULL; 3961 3962 *ret_left_path = NULL; 3963 3964 /* 3965 * This shouldn't happen for non-trees. The extent rec cluster 3966 * count manipulation below only works for interior nodes. 3967 */ 3968 BUG_ON(right_path->p_tree_depth == 0); 3969 3970 /* 3971 * If our appending insert is at the leftmost edge of a leaf, 3972 * then we might need to update the rightmost records of the 3973 * neighboring path. 3974 */ 3975 el = path_leaf_el(right_path); 3976 next_free = le16_to_cpu(el->l_next_free_rec); 3977 if (next_free == 0 || 3978 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3979 u32 left_cpos; 3980 3981 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3982 right_path, &left_cpos); 3983 if (ret) { 3984 mlog_errno(ret); 3985 goto out; 3986 } 3987 3988 trace_ocfs2_append_rec_to_path( 3989 (unsigned long long) 3990 ocfs2_metadata_cache_owner(et->et_ci), 3991 le32_to_cpu(insert_rec->e_cpos), 3992 left_cpos); 3993 3994 /* 3995 * No need to worry if the append is already in the 3996 * leftmost leaf. 3997 */ 3998 if (left_cpos) { 3999 left_path = ocfs2_new_path_from_path(right_path); 4000 if (!left_path) { 4001 ret = -ENOMEM; 4002 mlog_errno(ret); 4003 goto out; 4004 } 4005 4006 ret = ocfs2_find_path(et->et_ci, left_path, 4007 left_cpos); 4008 if (ret) { 4009 mlog_errno(ret); 4010 goto out; 4011 } 4012 4013 /* 4014 * ocfs2_insert_path() will pass the left_path to the 4015 * journal for us. 4016 */ 4017 } 4018 } 4019 4020 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4021 if (ret) { 4022 mlog_errno(ret); 4023 goto out; 4024 } 4025 4026 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4027 4028 *ret_left_path = left_path; 4029 ret = 0; 4030 out: 4031 if (ret != 0) 4032 ocfs2_free_path(left_path); 4033 4034 return ret; 4035 } 4036 4037 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4038 struct ocfs2_path *left_path, 4039 struct ocfs2_path *right_path, 4040 struct ocfs2_extent_rec *split_rec, 4041 enum ocfs2_split_type split) 4042 { 4043 int index; 4044 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4045 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4046 struct ocfs2_extent_rec *rec, *tmprec; 4047 4048 right_el = path_leaf_el(right_path); 4049 if (left_path) 4050 left_el = path_leaf_el(left_path); 4051 4052 el = right_el; 4053 insert_el = right_el; 4054 index = ocfs2_search_extent_list(el, cpos); 4055 if (index != -1) { 4056 if (index == 0 && left_path) { 4057 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4058 4059 /* 4060 * This typically means that the record 4061 * started in the left path but moved to the 4062 * right as a result of rotation. We either 4063 * move the existing record to the left, or we 4064 * do the later insert there. 4065 * 4066 * In this case, the left path should always 4067 * exist as the rotate code will have passed 4068 * it back for a post-insert update. 4069 */ 4070 4071 if (split == SPLIT_LEFT) { 4072 /* 4073 * It's a left split. Since we know 4074 * that the rotate code gave us an 4075 * empty extent in the left path, we 4076 * can just do the insert there. 4077 */ 4078 insert_el = left_el; 4079 } else { 4080 /* 4081 * Right split - we have to move the 4082 * existing record over to the left 4083 * leaf. The insert will be into the 4084 * newly created empty extent in the 4085 * right leaf. 4086 */ 4087 tmprec = &right_el->l_recs[index]; 4088 ocfs2_rotate_leaf(left_el, tmprec); 4089 el = left_el; 4090 4091 memset(tmprec, 0, sizeof(*tmprec)); 4092 index = ocfs2_search_extent_list(left_el, cpos); 4093 BUG_ON(index == -1); 4094 } 4095 } 4096 } else { 4097 BUG_ON(!left_path); 4098 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4099 /* 4100 * Left path is easy - we can just allow the insert to 4101 * happen. 4102 */ 4103 el = left_el; 4104 insert_el = left_el; 4105 index = ocfs2_search_extent_list(el, cpos); 4106 BUG_ON(index == -1); 4107 } 4108 4109 rec = &el->l_recs[index]; 4110 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4111 split, rec, split_rec); 4112 ocfs2_rotate_leaf(insert_el, split_rec); 4113 } 4114 4115 /* 4116 * This function only does inserts on an allocation b-tree. For tree 4117 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4118 * 4119 * right_path is the path we want to do the actual insert 4120 * in. left_path should only be passed in if we need to update that 4121 * portion of the tree after an edge insert. 4122 */ 4123 static int ocfs2_insert_path(handle_t *handle, 4124 struct ocfs2_extent_tree *et, 4125 struct ocfs2_path *left_path, 4126 struct ocfs2_path *right_path, 4127 struct ocfs2_extent_rec *insert_rec, 4128 struct ocfs2_insert_type *insert) 4129 { 4130 int ret, subtree_index; 4131 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4132 4133 if (left_path) { 4134 /* 4135 * There's a chance that left_path got passed back to 4136 * us without being accounted for in the 4137 * journal. Extend our transaction here to be sure we 4138 * can change those blocks. 4139 */ 4140 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4141 if (ret < 0) { 4142 mlog_errno(ret); 4143 goto out; 4144 } 4145 4146 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4147 if (ret < 0) { 4148 mlog_errno(ret); 4149 goto out; 4150 } 4151 } 4152 4153 /* 4154 * Pass both paths to the journal. The majority of inserts 4155 * will be touching all components anyway. 4156 */ 4157 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4158 if (ret < 0) { 4159 mlog_errno(ret); 4160 goto out; 4161 } 4162 4163 if (insert->ins_split != SPLIT_NONE) { 4164 /* 4165 * We could call ocfs2_insert_at_leaf() for some types 4166 * of splits, but it's easier to just let one separate 4167 * function sort it all out. 4168 */ 4169 ocfs2_split_record(et, left_path, right_path, 4170 insert_rec, insert->ins_split); 4171 4172 /* 4173 * Split might have modified either leaf and we don't 4174 * have a guarantee that the later edge insert will 4175 * dirty this for us. 4176 */ 4177 if (left_path) 4178 ocfs2_journal_dirty(handle, 4179 path_leaf_bh(left_path)); 4180 } else 4181 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4182 insert); 4183 4184 ocfs2_journal_dirty(handle, leaf_bh); 4185 4186 if (left_path) { 4187 /* 4188 * The rotate code has indicated that we need to fix 4189 * up portions of the tree after the insert. 4190 * 4191 * XXX: Should we extend the transaction here? 4192 */ 4193 subtree_index = ocfs2_find_subtree_root(et, left_path, 4194 right_path); 4195 ocfs2_complete_edge_insert(handle, left_path, right_path, 4196 subtree_index); 4197 } 4198 4199 ret = 0; 4200 out: 4201 return ret; 4202 } 4203 4204 static int ocfs2_do_insert_extent(handle_t *handle, 4205 struct ocfs2_extent_tree *et, 4206 struct ocfs2_extent_rec *insert_rec, 4207 struct ocfs2_insert_type *type) 4208 { 4209 int ret, rotate = 0; 4210 u32 cpos; 4211 struct ocfs2_path *right_path = NULL; 4212 struct ocfs2_path *left_path = NULL; 4213 struct ocfs2_extent_list *el; 4214 4215 el = et->et_root_el; 4216 4217 ret = ocfs2_et_root_journal_access(handle, et, 4218 OCFS2_JOURNAL_ACCESS_WRITE); 4219 if (ret) { 4220 mlog_errno(ret); 4221 goto out; 4222 } 4223 4224 if (le16_to_cpu(el->l_tree_depth) == 0) { 4225 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4226 goto out_update_clusters; 4227 } 4228 4229 right_path = ocfs2_new_path_from_et(et); 4230 if (!right_path) { 4231 ret = -ENOMEM; 4232 mlog_errno(ret); 4233 goto out; 4234 } 4235 4236 /* 4237 * Determine the path to start with. Rotations need the 4238 * rightmost path, everything else can go directly to the 4239 * target leaf. 4240 */ 4241 cpos = le32_to_cpu(insert_rec->e_cpos); 4242 if (type->ins_appending == APPEND_NONE && 4243 type->ins_contig == CONTIG_NONE) { 4244 rotate = 1; 4245 cpos = UINT_MAX; 4246 } 4247 4248 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4249 if (ret) { 4250 mlog_errno(ret); 4251 goto out; 4252 } 4253 4254 /* 4255 * Rotations and appends need special treatment - they modify 4256 * parts of the tree's above them. 4257 * 4258 * Both might pass back a path immediate to the left of the 4259 * one being inserted to. This will be cause 4260 * ocfs2_insert_path() to modify the rightmost records of 4261 * left_path to account for an edge insert. 4262 * 4263 * XXX: When modifying this code, keep in mind that an insert 4264 * can wind up skipping both of these two special cases... 4265 */ 4266 if (rotate) { 4267 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4268 le32_to_cpu(insert_rec->e_cpos), 4269 right_path, &left_path); 4270 if (ret) { 4271 mlog_errno(ret); 4272 goto out; 4273 } 4274 4275 /* 4276 * ocfs2_rotate_tree_right() might have extended the 4277 * transaction without re-journaling our tree root. 4278 */ 4279 ret = ocfs2_et_root_journal_access(handle, et, 4280 OCFS2_JOURNAL_ACCESS_WRITE); 4281 if (ret) { 4282 mlog_errno(ret); 4283 goto out; 4284 } 4285 } else if (type->ins_appending == APPEND_TAIL 4286 && type->ins_contig != CONTIG_LEFT) { 4287 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4288 right_path, &left_path); 4289 if (ret) { 4290 mlog_errno(ret); 4291 goto out; 4292 } 4293 } 4294 4295 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4296 insert_rec, type); 4297 if (ret) { 4298 mlog_errno(ret); 4299 goto out; 4300 } 4301 4302 out_update_clusters: 4303 if (type->ins_split == SPLIT_NONE) 4304 ocfs2_et_update_clusters(et, 4305 le16_to_cpu(insert_rec->e_leaf_clusters)); 4306 4307 ocfs2_journal_dirty(handle, et->et_root_bh); 4308 4309 out: 4310 ocfs2_free_path(left_path); 4311 ocfs2_free_path(right_path); 4312 4313 return ret; 4314 } 4315 4316 static enum ocfs2_contig_type 4317 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4318 struct ocfs2_path *path, 4319 struct ocfs2_extent_list *el, int index, 4320 struct ocfs2_extent_rec *split_rec) 4321 { 4322 int status; 4323 enum ocfs2_contig_type ret = CONTIG_NONE; 4324 u32 left_cpos, right_cpos; 4325 struct ocfs2_extent_rec *rec = NULL; 4326 struct ocfs2_extent_list *new_el; 4327 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4328 struct buffer_head *bh; 4329 struct ocfs2_extent_block *eb; 4330 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4331 4332 if (index > 0) { 4333 rec = &el->l_recs[index - 1]; 4334 } else if (path->p_tree_depth > 0) { 4335 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4336 if (status) 4337 goto out; 4338 4339 if (left_cpos != 0) { 4340 left_path = ocfs2_new_path_from_path(path); 4341 if (!left_path) 4342 goto out; 4343 4344 status = ocfs2_find_path(et->et_ci, left_path, 4345 left_cpos); 4346 if (status) 4347 goto out; 4348 4349 new_el = path_leaf_el(left_path); 4350 4351 if (le16_to_cpu(new_el->l_next_free_rec) != 4352 le16_to_cpu(new_el->l_count)) { 4353 bh = path_leaf_bh(left_path); 4354 eb = (struct ocfs2_extent_block *)bh->b_data; 4355 ocfs2_error(sb, 4356 "Extent block #%llu has an " 4357 "invalid l_next_free_rec of " 4358 "%d. It should have " 4359 "matched the l_count of %d", 4360 (unsigned long long)le64_to_cpu(eb->h_blkno), 4361 le16_to_cpu(new_el->l_next_free_rec), 4362 le16_to_cpu(new_el->l_count)); 4363 status = -EINVAL; 4364 goto out; 4365 } 4366 rec = &new_el->l_recs[ 4367 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4368 } 4369 } 4370 4371 /* 4372 * We're careful to check for an empty extent record here - 4373 * the merge code will know what to do if it sees one. 4374 */ 4375 if (rec) { 4376 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4377 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4378 ret = CONTIG_RIGHT; 4379 } else { 4380 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4381 } 4382 } 4383 4384 rec = NULL; 4385 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4386 rec = &el->l_recs[index + 1]; 4387 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4388 path->p_tree_depth > 0) { 4389 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4390 if (status) 4391 goto out; 4392 4393 if (right_cpos == 0) 4394 goto out; 4395 4396 right_path = ocfs2_new_path_from_path(path); 4397 if (!right_path) 4398 goto out; 4399 4400 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4401 if (status) 4402 goto out; 4403 4404 new_el = path_leaf_el(right_path); 4405 rec = &new_el->l_recs[0]; 4406 if (ocfs2_is_empty_extent(rec)) { 4407 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4408 bh = path_leaf_bh(right_path); 4409 eb = (struct ocfs2_extent_block *)bh->b_data; 4410 ocfs2_error(sb, 4411 "Extent block #%llu has an " 4412 "invalid l_next_free_rec of %d", 4413 (unsigned long long)le64_to_cpu(eb->h_blkno), 4414 le16_to_cpu(new_el->l_next_free_rec)); 4415 status = -EINVAL; 4416 goto out; 4417 } 4418 rec = &new_el->l_recs[1]; 4419 } 4420 } 4421 4422 if (rec) { 4423 enum ocfs2_contig_type contig_type; 4424 4425 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4426 4427 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4428 ret = CONTIG_LEFTRIGHT; 4429 else if (ret == CONTIG_NONE) 4430 ret = contig_type; 4431 } 4432 4433 out: 4434 if (left_path) 4435 ocfs2_free_path(left_path); 4436 if (right_path) 4437 ocfs2_free_path(right_path); 4438 4439 return ret; 4440 } 4441 4442 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4443 struct ocfs2_insert_type *insert, 4444 struct ocfs2_extent_list *el, 4445 struct ocfs2_extent_rec *insert_rec) 4446 { 4447 int i; 4448 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4449 4450 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4451 4452 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4453 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4454 insert_rec); 4455 if (contig_type != CONTIG_NONE) { 4456 insert->ins_contig_index = i; 4457 break; 4458 } 4459 } 4460 insert->ins_contig = contig_type; 4461 4462 if (insert->ins_contig != CONTIG_NONE) { 4463 struct ocfs2_extent_rec *rec = 4464 &el->l_recs[insert->ins_contig_index]; 4465 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4466 le16_to_cpu(insert_rec->e_leaf_clusters); 4467 4468 /* 4469 * Caller might want us to limit the size of extents, don't 4470 * calculate contiguousness if we might exceed that limit. 4471 */ 4472 if (et->et_max_leaf_clusters && 4473 (len > et->et_max_leaf_clusters)) 4474 insert->ins_contig = CONTIG_NONE; 4475 } 4476 } 4477 4478 /* 4479 * This should only be called against the righmost leaf extent list. 4480 * 4481 * ocfs2_figure_appending_type() will figure out whether we'll have to 4482 * insert at the tail of the rightmost leaf. 4483 * 4484 * This should also work against the root extent list for tree's with 0 4485 * depth. If we consider the root extent list to be the rightmost leaf node 4486 * then the logic here makes sense. 4487 */ 4488 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4489 struct ocfs2_extent_list *el, 4490 struct ocfs2_extent_rec *insert_rec) 4491 { 4492 int i; 4493 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4494 struct ocfs2_extent_rec *rec; 4495 4496 insert->ins_appending = APPEND_NONE; 4497 4498 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4499 4500 if (!el->l_next_free_rec) 4501 goto set_tail_append; 4502 4503 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4504 /* Were all records empty? */ 4505 if (le16_to_cpu(el->l_next_free_rec) == 1) 4506 goto set_tail_append; 4507 } 4508 4509 i = le16_to_cpu(el->l_next_free_rec) - 1; 4510 rec = &el->l_recs[i]; 4511 4512 if (cpos >= 4513 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4514 goto set_tail_append; 4515 4516 return; 4517 4518 set_tail_append: 4519 insert->ins_appending = APPEND_TAIL; 4520 } 4521 4522 /* 4523 * Helper function called at the beginning of an insert. 4524 * 4525 * This computes a few things that are commonly used in the process of 4526 * inserting into the btree: 4527 * - Whether the new extent is contiguous with an existing one. 4528 * - The current tree depth. 4529 * - Whether the insert is an appending one. 4530 * - The total # of free records in the tree. 4531 * 4532 * All of the information is stored on the ocfs2_insert_type 4533 * structure. 4534 */ 4535 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4536 struct buffer_head **last_eb_bh, 4537 struct ocfs2_extent_rec *insert_rec, 4538 int *free_records, 4539 struct ocfs2_insert_type *insert) 4540 { 4541 int ret; 4542 struct ocfs2_extent_block *eb; 4543 struct ocfs2_extent_list *el; 4544 struct ocfs2_path *path = NULL; 4545 struct buffer_head *bh = NULL; 4546 4547 insert->ins_split = SPLIT_NONE; 4548 4549 el = et->et_root_el; 4550 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4551 4552 if (el->l_tree_depth) { 4553 /* 4554 * If we have tree depth, we read in the 4555 * rightmost extent block ahead of time as 4556 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4557 * may want it later. 4558 */ 4559 ret = ocfs2_read_extent_block(et->et_ci, 4560 ocfs2_et_get_last_eb_blk(et), 4561 &bh); 4562 if (ret) { 4563 mlog_errno(ret); 4564 goto out; 4565 } 4566 eb = (struct ocfs2_extent_block *) bh->b_data; 4567 el = &eb->h_list; 4568 } 4569 4570 /* 4571 * Unless we have a contiguous insert, we'll need to know if 4572 * there is room left in our allocation tree for another 4573 * extent record. 4574 * 4575 * XXX: This test is simplistic, we can search for empty 4576 * extent records too. 4577 */ 4578 *free_records = le16_to_cpu(el->l_count) - 4579 le16_to_cpu(el->l_next_free_rec); 4580 4581 if (!insert->ins_tree_depth) { 4582 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4583 ocfs2_figure_appending_type(insert, el, insert_rec); 4584 return 0; 4585 } 4586 4587 path = ocfs2_new_path_from_et(et); 4588 if (!path) { 4589 ret = -ENOMEM; 4590 mlog_errno(ret); 4591 goto out; 4592 } 4593 4594 /* 4595 * In the case that we're inserting past what the tree 4596 * currently accounts for, ocfs2_find_path() will return for 4597 * us the rightmost tree path. This is accounted for below in 4598 * the appending code. 4599 */ 4600 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4601 if (ret) { 4602 mlog_errno(ret); 4603 goto out; 4604 } 4605 4606 el = path_leaf_el(path); 4607 4608 /* 4609 * Now that we have the path, there's two things we want to determine: 4610 * 1) Contiguousness (also set contig_index if this is so) 4611 * 4612 * 2) Are we doing an append? We can trivially break this up 4613 * into two types of appends: simple record append, or a 4614 * rotate inside the tail leaf. 4615 */ 4616 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4617 4618 /* 4619 * The insert code isn't quite ready to deal with all cases of 4620 * left contiguousness. Specifically, if it's an insert into 4621 * the 1st record in a leaf, it will require the adjustment of 4622 * cluster count on the last record of the path directly to it's 4623 * left. For now, just catch that case and fool the layers 4624 * above us. This works just fine for tree_depth == 0, which 4625 * is why we allow that above. 4626 */ 4627 if (insert->ins_contig == CONTIG_LEFT && 4628 insert->ins_contig_index == 0) 4629 insert->ins_contig = CONTIG_NONE; 4630 4631 /* 4632 * Ok, so we can simply compare against last_eb to figure out 4633 * whether the path doesn't exist. This will only happen in 4634 * the case that we're doing a tail append, so maybe we can 4635 * take advantage of that information somehow. 4636 */ 4637 if (ocfs2_et_get_last_eb_blk(et) == 4638 path_leaf_bh(path)->b_blocknr) { 4639 /* 4640 * Ok, ocfs2_find_path() returned us the rightmost 4641 * tree path. This might be an appending insert. There are 4642 * two cases: 4643 * 1) We're doing a true append at the tail: 4644 * -This might even be off the end of the leaf 4645 * 2) We're "appending" by rotating in the tail 4646 */ 4647 ocfs2_figure_appending_type(insert, el, insert_rec); 4648 } 4649 4650 out: 4651 ocfs2_free_path(path); 4652 4653 if (ret == 0) 4654 *last_eb_bh = bh; 4655 else 4656 brelse(bh); 4657 return ret; 4658 } 4659 4660 /* 4661 * Insert an extent into a btree. 4662 * 4663 * The caller needs to update the owning btree's cluster count. 4664 */ 4665 int ocfs2_insert_extent(handle_t *handle, 4666 struct ocfs2_extent_tree *et, 4667 u32 cpos, 4668 u64 start_blk, 4669 u32 new_clusters, 4670 u8 flags, 4671 struct ocfs2_alloc_context *meta_ac) 4672 { 4673 int status; 4674 int uninitialized_var(free_records); 4675 struct buffer_head *last_eb_bh = NULL; 4676 struct ocfs2_insert_type insert = {0, }; 4677 struct ocfs2_extent_rec rec; 4678 4679 trace_ocfs2_insert_extent_start( 4680 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4681 cpos, new_clusters); 4682 4683 memset(&rec, 0, sizeof(rec)); 4684 rec.e_cpos = cpu_to_le32(cpos); 4685 rec.e_blkno = cpu_to_le64(start_blk); 4686 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4687 rec.e_flags = flags; 4688 status = ocfs2_et_insert_check(et, &rec); 4689 if (status) { 4690 mlog_errno(status); 4691 goto bail; 4692 } 4693 4694 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4695 &free_records, &insert); 4696 if (status < 0) { 4697 mlog_errno(status); 4698 goto bail; 4699 } 4700 4701 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4702 insert.ins_contig_index, free_records, 4703 insert.ins_tree_depth); 4704 4705 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4706 status = ocfs2_grow_tree(handle, et, 4707 &insert.ins_tree_depth, &last_eb_bh, 4708 meta_ac); 4709 if (status) { 4710 mlog_errno(status); 4711 goto bail; 4712 } 4713 } 4714 4715 /* Finally, we can add clusters. This might rotate the tree for us. */ 4716 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4717 if (status < 0) 4718 mlog_errno(status); 4719 else 4720 ocfs2_et_extent_map_insert(et, &rec); 4721 4722 bail: 4723 brelse(last_eb_bh); 4724 4725 return status; 4726 } 4727 4728 /* 4729 * Allcate and add clusters into the extent b-tree. 4730 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4731 * The extent b-tree's root is specified by et, and 4732 * it is not limited to the file storage. Any extent tree can use this 4733 * function if it implements the proper ocfs2_extent_tree. 4734 */ 4735 int ocfs2_add_clusters_in_btree(handle_t *handle, 4736 struct ocfs2_extent_tree *et, 4737 u32 *logical_offset, 4738 u32 clusters_to_add, 4739 int mark_unwritten, 4740 struct ocfs2_alloc_context *data_ac, 4741 struct ocfs2_alloc_context *meta_ac, 4742 enum ocfs2_alloc_restarted *reason_ret) 4743 { 4744 int status = 0, err = 0; 4745 int need_free = 0; 4746 int free_extents; 4747 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4748 u32 bit_off, num_bits; 4749 u64 block; 4750 u8 flags = 0; 4751 struct ocfs2_super *osb = 4752 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4753 4754 BUG_ON(!clusters_to_add); 4755 4756 if (mark_unwritten) 4757 flags = OCFS2_EXT_UNWRITTEN; 4758 4759 free_extents = ocfs2_num_free_extents(osb, et); 4760 if (free_extents < 0) { 4761 status = free_extents; 4762 mlog_errno(status); 4763 goto leave; 4764 } 4765 4766 /* there are two cases which could cause us to EAGAIN in the 4767 * we-need-more-metadata case: 4768 * 1) we haven't reserved *any* 4769 * 2) we are so fragmented, we've needed to add metadata too 4770 * many times. */ 4771 if (!free_extents && !meta_ac) { 4772 err = -1; 4773 status = -EAGAIN; 4774 reason = RESTART_META; 4775 goto leave; 4776 } else if ((!free_extents) 4777 && (ocfs2_alloc_context_bits_left(meta_ac) 4778 < ocfs2_extend_meta_needed(et->et_root_el))) { 4779 err = -2; 4780 status = -EAGAIN; 4781 reason = RESTART_META; 4782 goto leave; 4783 } 4784 4785 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4786 clusters_to_add, &bit_off, &num_bits); 4787 if (status < 0) { 4788 if (status != -ENOSPC) 4789 mlog_errno(status); 4790 goto leave; 4791 } 4792 4793 BUG_ON(num_bits > clusters_to_add); 4794 4795 /* reserve our write early -- insert_extent may update the tree root */ 4796 status = ocfs2_et_root_journal_access(handle, et, 4797 OCFS2_JOURNAL_ACCESS_WRITE); 4798 if (status < 0) { 4799 mlog_errno(status); 4800 need_free = 1; 4801 goto bail; 4802 } 4803 4804 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4805 trace_ocfs2_add_clusters_in_btree( 4806 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4807 bit_off, num_bits); 4808 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4809 num_bits, flags, meta_ac); 4810 if (status < 0) { 4811 mlog_errno(status); 4812 need_free = 1; 4813 goto bail; 4814 } 4815 4816 ocfs2_journal_dirty(handle, et->et_root_bh); 4817 4818 clusters_to_add -= num_bits; 4819 *logical_offset += num_bits; 4820 4821 if (clusters_to_add) { 4822 err = clusters_to_add; 4823 status = -EAGAIN; 4824 reason = RESTART_TRANS; 4825 } 4826 4827 bail: 4828 if (need_free) { 4829 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4830 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4831 bit_off, num_bits); 4832 else 4833 ocfs2_free_clusters(handle, 4834 data_ac->ac_inode, 4835 data_ac->ac_bh, 4836 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4837 num_bits); 4838 } 4839 4840 leave: 4841 if (reason_ret) 4842 *reason_ret = reason; 4843 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4844 return status; 4845 } 4846 4847 static void ocfs2_make_right_split_rec(struct super_block *sb, 4848 struct ocfs2_extent_rec *split_rec, 4849 u32 cpos, 4850 struct ocfs2_extent_rec *rec) 4851 { 4852 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4853 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4854 4855 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4856 4857 split_rec->e_cpos = cpu_to_le32(cpos); 4858 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4859 4860 split_rec->e_blkno = rec->e_blkno; 4861 le64_add_cpu(&split_rec->e_blkno, 4862 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4863 4864 split_rec->e_flags = rec->e_flags; 4865 } 4866 4867 static int ocfs2_split_and_insert(handle_t *handle, 4868 struct ocfs2_extent_tree *et, 4869 struct ocfs2_path *path, 4870 struct buffer_head **last_eb_bh, 4871 int split_index, 4872 struct ocfs2_extent_rec *orig_split_rec, 4873 struct ocfs2_alloc_context *meta_ac) 4874 { 4875 int ret = 0, depth; 4876 unsigned int insert_range, rec_range, do_leftright = 0; 4877 struct ocfs2_extent_rec tmprec; 4878 struct ocfs2_extent_list *rightmost_el; 4879 struct ocfs2_extent_rec rec; 4880 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4881 struct ocfs2_insert_type insert; 4882 struct ocfs2_extent_block *eb; 4883 4884 leftright: 4885 /* 4886 * Store a copy of the record on the stack - it might move 4887 * around as the tree is manipulated below. 4888 */ 4889 rec = path_leaf_el(path)->l_recs[split_index]; 4890 4891 rightmost_el = et->et_root_el; 4892 4893 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4894 if (depth) { 4895 BUG_ON(!(*last_eb_bh)); 4896 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4897 rightmost_el = &eb->h_list; 4898 } 4899 4900 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4901 le16_to_cpu(rightmost_el->l_count)) { 4902 ret = ocfs2_grow_tree(handle, et, 4903 &depth, last_eb_bh, meta_ac); 4904 if (ret) { 4905 mlog_errno(ret); 4906 goto out; 4907 } 4908 } 4909 4910 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4911 insert.ins_appending = APPEND_NONE; 4912 insert.ins_contig = CONTIG_NONE; 4913 insert.ins_tree_depth = depth; 4914 4915 insert_range = le32_to_cpu(split_rec.e_cpos) + 4916 le16_to_cpu(split_rec.e_leaf_clusters); 4917 rec_range = le32_to_cpu(rec.e_cpos) + 4918 le16_to_cpu(rec.e_leaf_clusters); 4919 4920 if (split_rec.e_cpos == rec.e_cpos) { 4921 insert.ins_split = SPLIT_LEFT; 4922 } else if (insert_range == rec_range) { 4923 insert.ins_split = SPLIT_RIGHT; 4924 } else { 4925 /* 4926 * Left/right split. We fake this as a right split 4927 * first and then make a second pass as a left split. 4928 */ 4929 insert.ins_split = SPLIT_RIGHT; 4930 4931 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4932 &tmprec, insert_range, &rec); 4933 4934 split_rec = tmprec; 4935 4936 BUG_ON(do_leftright); 4937 do_leftright = 1; 4938 } 4939 4940 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4941 if (ret) { 4942 mlog_errno(ret); 4943 goto out; 4944 } 4945 4946 if (do_leftright == 1) { 4947 u32 cpos; 4948 struct ocfs2_extent_list *el; 4949 4950 do_leftright++; 4951 split_rec = *orig_split_rec; 4952 4953 ocfs2_reinit_path(path, 1); 4954 4955 cpos = le32_to_cpu(split_rec.e_cpos); 4956 ret = ocfs2_find_path(et->et_ci, path, cpos); 4957 if (ret) { 4958 mlog_errno(ret); 4959 goto out; 4960 } 4961 4962 el = path_leaf_el(path); 4963 split_index = ocfs2_search_extent_list(el, cpos); 4964 if (split_index == -1) { 4965 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 4966 "Owner %llu has an extent at cpos %u " 4967 "which can no longer be found.\n", 4968 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4969 cpos); 4970 ret = -EROFS; 4971 goto out; 4972 } 4973 goto leftright; 4974 } 4975 out: 4976 4977 return ret; 4978 } 4979 4980 static int ocfs2_replace_extent_rec(handle_t *handle, 4981 struct ocfs2_extent_tree *et, 4982 struct ocfs2_path *path, 4983 struct ocfs2_extent_list *el, 4984 int split_index, 4985 struct ocfs2_extent_rec *split_rec) 4986 { 4987 int ret; 4988 4989 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 4990 path_num_items(path) - 1); 4991 if (ret) { 4992 mlog_errno(ret); 4993 goto out; 4994 } 4995 4996 el->l_recs[split_index] = *split_rec; 4997 4998 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4999 out: 5000 return ret; 5001 } 5002 5003 /* 5004 * Split part or all of the extent record at split_index in the leaf 5005 * pointed to by path. Merge with the contiguous extent record if needed. 5006 * 5007 * Care is taken to handle contiguousness so as to not grow the tree. 5008 * 5009 * meta_ac is not strictly necessary - we only truly need it if growth 5010 * of the tree is required. All other cases will degrade into a less 5011 * optimal tree layout. 5012 * 5013 * last_eb_bh should be the rightmost leaf block for any extent 5014 * btree. Since a split may grow the tree or a merge might shrink it, 5015 * the caller cannot trust the contents of that buffer after this call. 5016 * 5017 * This code is optimized for readability - several passes might be 5018 * made over certain portions of the tree. All of those blocks will 5019 * have been brought into cache (and pinned via the journal), so the 5020 * extra overhead is not expressed in terms of disk reads. 5021 */ 5022 int ocfs2_split_extent(handle_t *handle, 5023 struct ocfs2_extent_tree *et, 5024 struct ocfs2_path *path, 5025 int split_index, 5026 struct ocfs2_extent_rec *split_rec, 5027 struct ocfs2_alloc_context *meta_ac, 5028 struct ocfs2_cached_dealloc_ctxt *dealloc) 5029 { 5030 int ret = 0; 5031 struct ocfs2_extent_list *el = path_leaf_el(path); 5032 struct buffer_head *last_eb_bh = NULL; 5033 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5034 struct ocfs2_merge_ctxt ctxt; 5035 struct ocfs2_extent_list *rightmost_el; 5036 5037 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5038 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5039 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5040 ret = -EIO; 5041 mlog_errno(ret); 5042 goto out; 5043 } 5044 5045 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el, 5046 split_index, 5047 split_rec); 5048 5049 /* 5050 * The core merge / split code wants to know how much room is 5051 * left in this allocation tree, so we pass the 5052 * rightmost extent list. 5053 */ 5054 if (path->p_tree_depth) { 5055 struct ocfs2_extent_block *eb; 5056 5057 ret = ocfs2_read_extent_block(et->et_ci, 5058 ocfs2_et_get_last_eb_blk(et), 5059 &last_eb_bh); 5060 if (ret) { 5061 mlog_errno(ret); 5062 goto out; 5063 } 5064 5065 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5066 rightmost_el = &eb->h_list; 5067 } else 5068 rightmost_el = path_root_el(path); 5069 5070 if (rec->e_cpos == split_rec->e_cpos && 5071 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5072 ctxt.c_split_covers_rec = 1; 5073 else 5074 ctxt.c_split_covers_rec = 0; 5075 5076 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5077 5078 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5079 ctxt.c_has_empty_extent, 5080 ctxt.c_split_covers_rec); 5081 5082 if (ctxt.c_contig_type == CONTIG_NONE) { 5083 if (ctxt.c_split_covers_rec) 5084 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5085 split_index, split_rec); 5086 else 5087 ret = ocfs2_split_and_insert(handle, et, path, 5088 &last_eb_bh, split_index, 5089 split_rec, meta_ac); 5090 if (ret) 5091 mlog_errno(ret); 5092 } else { 5093 ret = ocfs2_try_to_merge_extent(handle, et, path, 5094 split_index, split_rec, 5095 dealloc, &ctxt); 5096 if (ret) 5097 mlog_errno(ret); 5098 } 5099 5100 out: 5101 brelse(last_eb_bh); 5102 return ret; 5103 } 5104 5105 /* 5106 * Change the flags of the already-existing extent at cpos for len clusters. 5107 * 5108 * new_flags: the flags we want to set. 5109 * clear_flags: the flags we want to clear. 5110 * phys: the new physical offset we want this new extent starts from. 5111 * 5112 * If the existing extent is larger than the request, initiate a 5113 * split. An attempt will be made at merging with adjacent extents. 5114 * 5115 * The caller is responsible for passing down meta_ac if we'll need it. 5116 */ 5117 int ocfs2_change_extent_flag(handle_t *handle, 5118 struct ocfs2_extent_tree *et, 5119 u32 cpos, u32 len, u32 phys, 5120 struct ocfs2_alloc_context *meta_ac, 5121 struct ocfs2_cached_dealloc_ctxt *dealloc, 5122 int new_flags, int clear_flags) 5123 { 5124 int ret, index; 5125 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5126 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5127 struct ocfs2_extent_rec split_rec; 5128 struct ocfs2_path *left_path = NULL; 5129 struct ocfs2_extent_list *el; 5130 struct ocfs2_extent_rec *rec; 5131 5132 left_path = ocfs2_new_path_from_et(et); 5133 if (!left_path) { 5134 ret = -ENOMEM; 5135 mlog_errno(ret); 5136 goto out; 5137 } 5138 5139 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5140 if (ret) { 5141 mlog_errno(ret); 5142 goto out; 5143 } 5144 el = path_leaf_el(left_path); 5145 5146 index = ocfs2_search_extent_list(el, cpos); 5147 if (index == -1) { 5148 ocfs2_error(sb, 5149 "Owner %llu has an extent at cpos %u which can no " 5150 "longer be found.\n", 5151 (unsigned long long) 5152 ocfs2_metadata_cache_owner(et->et_ci), cpos); 5153 ret = -EROFS; 5154 goto out; 5155 } 5156 5157 ret = -EIO; 5158 rec = &el->l_recs[index]; 5159 if (new_flags && (rec->e_flags & new_flags)) { 5160 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5161 "extent that already had them", 5162 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5163 new_flags); 5164 goto out; 5165 } 5166 5167 if (clear_flags && !(rec->e_flags & clear_flags)) { 5168 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5169 "extent that didn't have them", 5170 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5171 clear_flags); 5172 goto out; 5173 } 5174 5175 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5176 split_rec.e_cpos = cpu_to_le32(cpos); 5177 split_rec.e_leaf_clusters = cpu_to_le16(len); 5178 split_rec.e_blkno = cpu_to_le64(start_blkno); 5179 split_rec.e_flags = rec->e_flags; 5180 if (new_flags) 5181 split_rec.e_flags |= new_flags; 5182 if (clear_flags) 5183 split_rec.e_flags &= ~clear_flags; 5184 5185 ret = ocfs2_split_extent(handle, et, left_path, 5186 index, &split_rec, meta_ac, 5187 dealloc); 5188 if (ret) 5189 mlog_errno(ret); 5190 5191 out: 5192 ocfs2_free_path(left_path); 5193 return ret; 5194 5195 } 5196 5197 /* 5198 * Mark the already-existing extent at cpos as written for len clusters. 5199 * This removes the unwritten extent flag. 5200 * 5201 * If the existing extent is larger than the request, initiate a 5202 * split. An attempt will be made at merging with adjacent extents. 5203 * 5204 * The caller is responsible for passing down meta_ac if we'll need it. 5205 */ 5206 int ocfs2_mark_extent_written(struct inode *inode, 5207 struct ocfs2_extent_tree *et, 5208 handle_t *handle, u32 cpos, u32 len, u32 phys, 5209 struct ocfs2_alloc_context *meta_ac, 5210 struct ocfs2_cached_dealloc_ctxt *dealloc) 5211 { 5212 int ret; 5213 5214 trace_ocfs2_mark_extent_written( 5215 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5216 cpos, len, phys); 5217 5218 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5219 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5220 "that are being written to, but the feature bit " 5221 "is not set in the super block.", 5222 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5223 ret = -EROFS; 5224 goto out; 5225 } 5226 5227 /* 5228 * XXX: This should be fixed up so that we just re-insert the 5229 * next extent records. 5230 */ 5231 ocfs2_et_extent_map_truncate(et, 0); 5232 5233 ret = ocfs2_change_extent_flag(handle, et, cpos, 5234 len, phys, meta_ac, dealloc, 5235 0, OCFS2_EXT_UNWRITTEN); 5236 if (ret) 5237 mlog_errno(ret); 5238 5239 out: 5240 return ret; 5241 } 5242 5243 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5244 struct ocfs2_path *path, 5245 int index, u32 new_range, 5246 struct ocfs2_alloc_context *meta_ac) 5247 { 5248 int ret, depth, credits; 5249 struct buffer_head *last_eb_bh = NULL; 5250 struct ocfs2_extent_block *eb; 5251 struct ocfs2_extent_list *rightmost_el, *el; 5252 struct ocfs2_extent_rec split_rec; 5253 struct ocfs2_extent_rec *rec; 5254 struct ocfs2_insert_type insert; 5255 5256 /* 5257 * Setup the record to split before we grow the tree. 5258 */ 5259 el = path_leaf_el(path); 5260 rec = &el->l_recs[index]; 5261 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5262 &split_rec, new_range, rec); 5263 5264 depth = path->p_tree_depth; 5265 if (depth > 0) { 5266 ret = ocfs2_read_extent_block(et->et_ci, 5267 ocfs2_et_get_last_eb_blk(et), 5268 &last_eb_bh); 5269 if (ret < 0) { 5270 mlog_errno(ret); 5271 goto out; 5272 } 5273 5274 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5275 rightmost_el = &eb->h_list; 5276 } else 5277 rightmost_el = path_leaf_el(path); 5278 5279 credits = path->p_tree_depth + 5280 ocfs2_extend_meta_needed(et->et_root_el); 5281 ret = ocfs2_extend_trans(handle, credits); 5282 if (ret) { 5283 mlog_errno(ret); 5284 goto out; 5285 } 5286 5287 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5288 le16_to_cpu(rightmost_el->l_count)) { 5289 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5290 meta_ac); 5291 if (ret) { 5292 mlog_errno(ret); 5293 goto out; 5294 } 5295 } 5296 5297 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5298 insert.ins_appending = APPEND_NONE; 5299 insert.ins_contig = CONTIG_NONE; 5300 insert.ins_split = SPLIT_RIGHT; 5301 insert.ins_tree_depth = depth; 5302 5303 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5304 if (ret) 5305 mlog_errno(ret); 5306 5307 out: 5308 brelse(last_eb_bh); 5309 return ret; 5310 } 5311 5312 static int ocfs2_truncate_rec(handle_t *handle, 5313 struct ocfs2_extent_tree *et, 5314 struct ocfs2_path *path, int index, 5315 struct ocfs2_cached_dealloc_ctxt *dealloc, 5316 u32 cpos, u32 len) 5317 { 5318 int ret; 5319 u32 left_cpos, rec_range, trunc_range; 5320 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5321 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5322 struct ocfs2_path *left_path = NULL; 5323 struct ocfs2_extent_list *el = path_leaf_el(path); 5324 struct ocfs2_extent_rec *rec; 5325 struct ocfs2_extent_block *eb; 5326 5327 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5328 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5329 if (ret) { 5330 mlog_errno(ret); 5331 goto out; 5332 } 5333 5334 index--; 5335 } 5336 5337 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5338 path->p_tree_depth) { 5339 /* 5340 * Check whether this is the rightmost tree record. If 5341 * we remove all of this record or part of its right 5342 * edge then an update of the record lengths above it 5343 * will be required. 5344 */ 5345 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5346 if (eb->h_next_leaf_blk == 0) 5347 is_rightmost_tree_rec = 1; 5348 } 5349 5350 rec = &el->l_recs[index]; 5351 if (index == 0 && path->p_tree_depth && 5352 le32_to_cpu(rec->e_cpos) == cpos) { 5353 /* 5354 * Changing the leftmost offset (via partial or whole 5355 * record truncate) of an interior (or rightmost) path 5356 * means we have to update the subtree that is formed 5357 * by this leaf and the one to it's left. 5358 * 5359 * There are two cases we can skip: 5360 * 1) Path is the leftmost one in our btree. 5361 * 2) The leaf is rightmost and will be empty after 5362 * we remove the extent record - the rotate code 5363 * knows how to update the newly formed edge. 5364 */ 5365 5366 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5367 if (ret) { 5368 mlog_errno(ret); 5369 goto out; 5370 } 5371 5372 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5373 left_path = ocfs2_new_path_from_path(path); 5374 if (!left_path) { 5375 ret = -ENOMEM; 5376 mlog_errno(ret); 5377 goto out; 5378 } 5379 5380 ret = ocfs2_find_path(et->et_ci, left_path, 5381 left_cpos); 5382 if (ret) { 5383 mlog_errno(ret); 5384 goto out; 5385 } 5386 } 5387 } 5388 5389 ret = ocfs2_extend_rotate_transaction(handle, 0, 5390 handle->h_buffer_credits, 5391 path); 5392 if (ret) { 5393 mlog_errno(ret); 5394 goto out; 5395 } 5396 5397 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5398 if (ret) { 5399 mlog_errno(ret); 5400 goto out; 5401 } 5402 5403 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5404 if (ret) { 5405 mlog_errno(ret); 5406 goto out; 5407 } 5408 5409 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5410 trunc_range = cpos + len; 5411 5412 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5413 int next_free; 5414 5415 memset(rec, 0, sizeof(*rec)); 5416 ocfs2_cleanup_merge(el, index); 5417 wants_rotate = 1; 5418 5419 next_free = le16_to_cpu(el->l_next_free_rec); 5420 if (is_rightmost_tree_rec && next_free > 1) { 5421 /* 5422 * We skip the edge update if this path will 5423 * be deleted by the rotate code. 5424 */ 5425 rec = &el->l_recs[next_free - 1]; 5426 ocfs2_adjust_rightmost_records(handle, et, path, 5427 rec); 5428 } 5429 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5430 /* Remove leftmost portion of the record. */ 5431 le32_add_cpu(&rec->e_cpos, len); 5432 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5433 le16_add_cpu(&rec->e_leaf_clusters, -len); 5434 } else if (rec_range == trunc_range) { 5435 /* Remove rightmost portion of the record */ 5436 le16_add_cpu(&rec->e_leaf_clusters, -len); 5437 if (is_rightmost_tree_rec) 5438 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5439 } else { 5440 /* Caller should have trapped this. */ 5441 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5442 "(%u, %u)\n", 5443 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5444 le32_to_cpu(rec->e_cpos), 5445 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5446 BUG(); 5447 } 5448 5449 if (left_path) { 5450 int subtree_index; 5451 5452 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5453 ocfs2_complete_edge_insert(handle, left_path, path, 5454 subtree_index); 5455 } 5456 5457 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5458 5459 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5460 if (ret) { 5461 mlog_errno(ret); 5462 goto out; 5463 } 5464 5465 out: 5466 ocfs2_free_path(left_path); 5467 return ret; 5468 } 5469 5470 int ocfs2_remove_extent(handle_t *handle, 5471 struct ocfs2_extent_tree *et, 5472 u32 cpos, u32 len, 5473 struct ocfs2_alloc_context *meta_ac, 5474 struct ocfs2_cached_dealloc_ctxt *dealloc) 5475 { 5476 int ret, index; 5477 u32 rec_range, trunc_range; 5478 struct ocfs2_extent_rec *rec; 5479 struct ocfs2_extent_list *el; 5480 struct ocfs2_path *path = NULL; 5481 5482 /* 5483 * XXX: Why are we truncating to 0 instead of wherever this 5484 * affects us? 5485 */ 5486 ocfs2_et_extent_map_truncate(et, 0); 5487 5488 path = ocfs2_new_path_from_et(et); 5489 if (!path) { 5490 ret = -ENOMEM; 5491 mlog_errno(ret); 5492 goto out; 5493 } 5494 5495 ret = ocfs2_find_path(et->et_ci, path, cpos); 5496 if (ret) { 5497 mlog_errno(ret); 5498 goto out; 5499 } 5500 5501 el = path_leaf_el(path); 5502 index = ocfs2_search_extent_list(el, cpos); 5503 if (index == -1) { 5504 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5505 "Owner %llu has an extent at cpos %u which can no " 5506 "longer be found.\n", 5507 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5508 cpos); 5509 ret = -EROFS; 5510 goto out; 5511 } 5512 5513 /* 5514 * We have 3 cases of extent removal: 5515 * 1) Range covers the entire extent rec 5516 * 2) Range begins or ends on one edge of the extent rec 5517 * 3) Range is in the middle of the extent rec (no shared edges) 5518 * 5519 * For case 1 we remove the extent rec and left rotate to 5520 * fill the hole. 5521 * 5522 * For case 2 we just shrink the existing extent rec, with a 5523 * tree update if the shrinking edge is also the edge of an 5524 * extent block. 5525 * 5526 * For case 3 we do a right split to turn the extent rec into 5527 * something case 2 can handle. 5528 */ 5529 rec = &el->l_recs[index]; 5530 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5531 trunc_range = cpos + len; 5532 5533 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5534 5535 trace_ocfs2_remove_extent( 5536 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5537 cpos, len, index, le32_to_cpu(rec->e_cpos), 5538 ocfs2_rec_clusters(el, rec)); 5539 5540 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5541 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5542 cpos, len); 5543 if (ret) { 5544 mlog_errno(ret); 5545 goto out; 5546 } 5547 } else { 5548 ret = ocfs2_split_tree(handle, et, path, index, 5549 trunc_range, meta_ac); 5550 if (ret) { 5551 mlog_errno(ret); 5552 goto out; 5553 } 5554 5555 /* 5556 * The split could have manipulated the tree enough to 5557 * move the record location, so we have to look for it again. 5558 */ 5559 ocfs2_reinit_path(path, 1); 5560 5561 ret = ocfs2_find_path(et->et_ci, path, cpos); 5562 if (ret) { 5563 mlog_errno(ret); 5564 goto out; 5565 } 5566 5567 el = path_leaf_el(path); 5568 index = ocfs2_search_extent_list(el, cpos); 5569 if (index == -1) { 5570 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5571 "Owner %llu: split at cpos %u lost record.", 5572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5573 cpos); 5574 ret = -EROFS; 5575 goto out; 5576 } 5577 5578 /* 5579 * Double check our values here. If anything is fishy, 5580 * it's easier to catch it at the top level. 5581 */ 5582 rec = &el->l_recs[index]; 5583 rec_range = le32_to_cpu(rec->e_cpos) + 5584 ocfs2_rec_clusters(el, rec); 5585 if (rec_range != trunc_range) { 5586 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5587 "Owner %llu: error after split at cpos %u" 5588 "trunc len %u, existing record is (%u,%u)", 5589 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5590 cpos, len, le32_to_cpu(rec->e_cpos), 5591 ocfs2_rec_clusters(el, rec)); 5592 ret = -EROFS; 5593 goto out; 5594 } 5595 5596 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5597 cpos, len); 5598 if (ret) { 5599 mlog_errno(ret); 5600 goto out; 5601 } 5602 } 5603 5604 out: 5605 ocfs2_free_path(path); 5606 return ret; 5607 } 5608 5609 /* 5610 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5611 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5612 * number to reserve some extra blocks, and it only handles meta 5613 * data allocations. 5614 * 5615 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5616 * and punching holes. 5617 */ 5618 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5619 struct ocfs2_extent_tree *et, 5620 u32 extents_to_split, 5621 struct ocfs2_alloc_context **ac, 5622 int extra_blocks) 5623 { 5624 int ret = 0, num_free_extents; 5625 unsigned int max_recs_needed = 2 * extents_to_split; 5626 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5627 5628 *ac = NULL; 5629 5630 num_free_extents = ocfs2_num_free_extents(osb, et); 5631 if (num_free_extents < 0) { 5632 ret = num_free_extents; 5633 mlog_errno(ret); 5634 goto out; 5635 } 5636 5637 if (!num_free_extents || 5638 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5639 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5640 5641 if (extra_blocks) { 5642 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5643 if (ret < 0) { 5644 if (ret != -ENOSPC) 5645 mlog_errno(ret); 5646 goto out; 5647 } 5648 } 5649 5650 out: 5651 if (ret) { 5652 if (*ac) { 5653 ocfs2_free_alloc_context(*ac); 5654 *ac = NULL; 5655 } 5656 } 5657 5658 return ret; 5659 } 5660 5661 int ocfs2_remove_btree_range(struct inode *inode, 5662 struct ocfs2_extent_tree *et, 5663 u32 cpos, u32 phys_cpos, u32 len, int flags, 5664 struct ocfs2_cached_dealloc_ctxt *dealloc, 5665 u64 refcount_loc, bool refcount_tree_locked) 5666 { 5667 int ret, credits = 0, extra_blocks = 0; 5668 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5669 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5670 struct inode *tl_inode = osb->osb_tl_inode; 5671 handle_t *handle; 5672 struct ocfs2_alloc_context *meta_ac = NULL; 5673 struct ocfs2_refcount_tree *ref_tree = NULL; 5674 5675 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5676 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 5677 OCFS2_HAS_REFCOUNT_FL)); 5678 5679 if (!refcount_tree_locked) { 5680 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5681 &ref_tree, NULL); 5682 if (ret) { 5683 mlog_errno(ret); 5684 goto bail; 5685 } 5686 } 5687 5688 ret = ocfs2_prepare_refcount_change_for_del(inode, 5689 refcount_loc, 5690 phys_blkno, 5691 len, 5692 &credits, 5693 &extra_blocks); 5694 if (ret < 0) { 5695 mlog_errno(ret); 5696 goto bail; 5697 } 5698 } 5699 5700 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5701 extra_blocks); 5702 if (ret) { 5703 mlog_errno(ret); 5704 goto bail; 5705 } 5706 5707 mutex_lock(&tl_inode->i_mutex); 5708 5709 if (ocfs2_truncate_log_needs_flush(osb)) { 5710 ret = __ocfs2_flush_truncate_log(osb); 5711 if (ret < 0) { 5712 mlog_errno(ret); 5713 goto out; 5714 } 5715 } 5716 5717 handle = ocfs2_start_trans(osb, 5718 ocfs2_remove_extent_credits(osb->sb) + credits); 5719 if (IS_ERR(handle)) { 5720 ret = PTR_ERR(handle); 5721 mlog_errno(ret); 5722 goto out; 5723 } 5724 5725 ret = ocfs2_et_root_journal_access(handle, et, 5726 OCFS2_JOURNAL_ACCESS_WRITE); 5727 if (ret) { 5728 mlog_errno(ret); 5729 goto out_commit; 5730 } 5731 5732 dquot_free_space_nodirty(inode, 5733 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5734 5735 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5736 if (ret) { 5737 mlog_errno(ret); 5738 goto out_commit; 5739 } 5740 5741 ocfs2_et_update_clusters(et, -len); 5742 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5743 5744 ocfs2_journal_dirty(handle, et->et_root_bh); 5745 5746 if (phys_blkno) { 5747 if (flags & OCFS2_EXT_REFCOUNTED) 5748 ret = ocfs2_decrease_refcount(inode, handle, 5749 ocfs2_blocks_to_clusters(osb->sb, 5750 phys_blkno), 5751 len, meta_ac, 5752 dealloc, 1); 5753 else 5754 ret = ocfs2_truncate_log_append(osb, handle, 5755 phys_blkno, len); 5756 if (ret) 5757 mlog_errno(ret); 5758 5759 } 5760 5761 out_commit: 5762 ocfs2_commit_trans(osb, handle); 5763 out: 5764 mutex_unlock(&tl_inode->i_mutex); 5765 bail: 5766 if (meta_ac) 5767 ocfs2_free_alloc_context(meta_ac); 5768 5769 if (ref_tree) 5770 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5771 5772 return ret; 5773 } 5774 5775 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5776 { 5777 struct buffer_head *tl_bh = osb->osb_tl_bh; 5778 struct ocfs2_dinode *di; 5779 struct ocfs2_truncate_log *tl; 5780 5781 di = (struct ocfs2_dinode *) tl_bh->b_data; 5782 tl = &di->id2.i_dealloc; 5783 5784 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5785 "slot %d, invalid truncate log parameters: used = " 5786 "%u, count = %u\n", osb->slot_num, 5787 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5788 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5789 } 5790 5791 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5792 unsigned int new_start) 5793 { 5794 unsigned int tail_index; 5795 unsigned int current_tail; 5796 5797 /* No records, nothing to coalesce */ 5798 if (!le16_to_cpu(tl->tl_used)) 5799 return 0; 5800 5801 tail_index = le16_to_cpu(tl->tl_used) - 1; 5802 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5803 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5804 5805 return current_tail == new_start; 5806 } 5807 5808 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5809 handle_t *handle, 5810 u64 start_blk, 5811 unsigned int num_clusters) 5812 { 5813 int status, index; 5814 unsigned int start_cluster, tl_count; 5815 struct inode *tl_inode = osb->osb_tl_inode; 5816 struct buffer_head *tl_bh = osb->osb_tl_bh; 5817 struct ocfs2_dinode *di; 5818 struct ocfs2_truncate_log *tl; 5819 5820 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5821 5822 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5823 5824 di = (struct ocfs2_dinode *) tl_bh->b_data; 5825 5826 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5827 * by the underlying call to ocfs2_read_inode_block(), so any 5828 * corruption is a code bug */ 5829 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5830 5831 tl = &di->id2.i_dealloc; 5832 tl_count = le16_to_cpu(tl->tl_count); 5833 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5834 tl_count == 0, 5835 "Truncate record count on #%llu invalid " 5836 "wanted %u, actual %u\n", 5837 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5838 ocfs2_truncate_recs_per_inode(osb->sb), 5839 le16_to_cpu(tl->tl_count)); 5840 5841 /* Caller should have known to flush before calling us. */ 5842 index = le16_to_cpu(tl->tl_used); 5843 if (index >= tl_count) { 5844 status = -ENOSPC; 5845 mlog_errno(status); 5846 goto bail; 5847 } 5848 5849 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5850 OCFS2_JOURNAL_ACCESS_WRITE); 5851 if (status < 0) { 5852 mlog_errno(status); 5853 goto bail; 5854 } 5855 5856 trace_ocfs2_truncate_log_append( 5857 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5858 start_cluster, num_clusters); 5859 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5860 /* 5861 * Move index back to the record we are coalescing with. 5862 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5863 */ 5864 index--; 5865 5866 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5867 trace_ocfs2_truncate_log_append( 5868 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5869 index, le32_to_cpu(tl->tl_recs[index].t_start), 5870 num_clusters); 5871 } else { 5872 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5873 tl->tl_used = cpu_to_le16(index + 1); 5874 } 5875 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5876 5877 ocfs2_journal_dirty(handle, tl_bh); 5878 5879 osb->truncated_clusters += num_clusters; 5880 bail: 5881 return status; 5882 } 5883 5884 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5885 handle_t *handle, 5886 struct inode *data_alloc_inode, 5887 struct buffer_head *data_alloc_bh) 5888 { 5889 int status = 0; 5890 int i; 5891 unsigned int num_clusters; 5892 u64 start_blk; 5893 struct ocfs2_truncate_rec rec; 5894 struct ocfs2_dinode *di; 5895 struct ocfs2_truncate_log *tl; 5896 struct inode *tl_inode = osb->osb_tl_inode; 5897 struct buffer_head *tl_bh = osb->osb_tl_bh; 5898 5899 di = (struct ocfs2_dinode *) tl_bh->b_data; 5900 tl = &di->id2.i_dealloc; 5901 i = le16_to_cpu(tl->tl_used) - 1; 5902 while (i >= 0) { 5903 /* Caller has given us at least enough credits to 5904 * update the truncate log dinode */ 5905 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5906 OCFS2_JOURNAL_ACCESS_WRITE); 5907 if (status < 0) { 5908 mlog_errno(status); 5909 goto bail; 5910 } 5911 5912 tl->tl_used = cpu_to_le16(i); 5913 5914 ocfs2_journal_dirty(handle, tl_bh); 5915 5916 /* TODO: Perhaps we can calculate the bulk of the 5917 * credits up front rather than extending like 5918 * this. */ 5919 status = ocfs2_extend_trans(handle, 5920 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5921 if (status < 0) { 5922 mlog_errno(status); 5923 goto bail; 5924 } 5925 5926 rec = tl->tl_recs[i]; 5927 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5928 le32_to_cpu(rec.t_start)); 5929 num_clusters = le32_to_cpu(rec.t_clusters); 5930 5931 /* if start_blk is not set, we ignore the record as 5932 * invalid. */ 5933 if (start_blk) { 5934 trace_ocfs2_replay_truncate_records( 5935 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5936 i, le32_to_cpu(rec.t_start), num_clusters); 5937 5938 status = ocfs2_free_clusters(handle, data_alloc_inode, 5939 data_alloc_bh, start_blk, 5940 num_clusters); 5941 if (status < 0) { 5942 mlog_errno(status); 5943 goto bail; 5944 } 5945 } 5946 i--; 5947 } 5948 5949 osb->truncated_clusters = 0; 5950 5951 bail: 5952 return status; 5953 } 5954 5955 /* Expects you to already be holding tl_inode->i_mutex */ 5956 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5957 { 5958 int status; 5959 unsigned int num_to_flush; 5960 handle_t *handle; 5961 struct inode *tl_inode = osb->osb_tl_inode; 5962 struct inode *data_alloc_inode = NULL; 5963 struct buffer_head *tl_bh = osb->osb_tl_bh; 5964 struct buffer_head *data_alloc_bh = NULL; 5965 struct ocfs2_dinode *di; 5966 struct ocfs2_truncate_log *tl; 5967 5968 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5969 5970 di = (struct ocfs2_dinode *) tl_bh->b_data; 5971 5972 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5973 * by the underlying call to ocfs2_read_inode_block(), so any 5974 * corruption is a code bug */ 5975 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5976 5977 tl = &di->id2.i_dealloc; 5978 num_to_flush = le16_to_cpu(tl->tl_used); 5979 trace_ocfs2_flush_truncate_log( 5980 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5981 num_to_flush); 5982 if (!num_to_flush) { 5983 status = 0; 5984 goto out; 5985 } 5986 5987 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5988 GLOBAL_BITMAP_SYSTEM_INODE, 5989 OCFS2_INVALID_SLOT); 5990 if (!data_alloc_inode) { 5991 status = -EINVAL; 5992 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5993 goto out; 5994 } 5995 5996 mutex_lock(&data_alloc_inode->i_mutex); 5997 5998 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5999 if (status < 0) { 6000 mlog_errno(status); 6001 goto out_mutex; 6002 } 6003 6004 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6005 if (IS_ERR(handle)) { 6006 status = PTR_ERR(handle); 6007 mlog_errno(status); 6008 goto out_unlock; 6009 } 6010 6011 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 6012 data_alloc_bh); 6013 if (status < 0) 6014 mlog_errno(status); 6015 6016 ocfs2_commit_trans(osb, handle); 6017 6018 out_unlock: 6019 brelse(data_alloc_bh); 6020 ocfs2_inode_unlock(data_alloc_inode, 1); 6021 6022 out_mutex: 6023 mutex_unlock(&data_alloc_inode->i_mutex); 6024 iput(data_alloc_inode); 6025 6026 out: 6027 return status; 6028 } 6029 6030 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6031 { 6032 int status; 6033 struct inode *tl_inode = osb->osb_tl_inode; 6034 6035 mutex_lock(&tl_inode->i_mutex); 6036 status = __ocfs2_flush_truncate_log(osb); 6037 mutex_unlock(&tl_inode->i_mutex); 6038 6039 return status; 6040 } 6041 6042 static void ocfs2_truncate_log_worker(struct work_struct *work) 6043 { 6044 int status; 6045 struct ocfs2_super *osb = 6046 container_of(work, struct ocfs2_super, 6047 osb_truncate_log_wq.work); 6048 6049 status = ocfs2_flush_truncate_log(osb); 6050 if (status < 0) 6051 mlog_errno(status); 6052 else 6053 ocfs2_init_steal_slots(osb); 6054 } 6055 6056 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6057 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6058 int cancel) 6059 { 6060 if (osb->osb_tl_inode && 6061 atomic_read(&osb->osb_tl_disable) == 0) { 6062 /* We want to push off log flushes while truncates are 6063 * still running. */ 6064 if (cancel) 6065 cancel_delayed_work(&osb->osb_truncate_log_wq); 6066 6067 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 6068 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6069 } 6070 } 6071 6072 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6073 int slot_num, 6074 struct inode **tl_inode, 6075 struct buffer_head **tl_bh) 6076 { 6077 int status; 6078 struct inode *inode = NULL; 6079 struct buffer_head *bh = NULL; 6080 6081 inode = ocfs2_get_system_file_inode(osb, 6082 TRUNCATE_LOG_SYSTEM_INODE, 6083 slot_num); 6084 if (!inode) { 6085 status = -EINVAL; 6086 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6087 goto bail; 6088 } 6089 6090 status = ocfs2_read_inode_block(inode, &bh); 6091 if (status < 0) { 6092 iput(inode); 6093 mlog_errno(status); 6094 goto bail; 6095 } 6096 6097 *tl_inode = inode; 6098 *tl_bh = bh; 6099 bail: 6100 return status; 6101 } 6102 6103 /* called during the 1st stage of node recovery. we stamp a clean 6104 * truncate log and pass back a copy for processing later. if the 6105 * truncate log does not require processing, a *tl_copy is set to 6106 * NULL. */ 6107 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6108 int slot_num, 6109 struct ocfs2_dinode **tl_copy) 6110 { 6111 int status; 6112 struct inode *tl_inode = NULL; 6113 struct buffer_head *tl_bh = NULL; 6114 struct ocfs2_dinode *di; 6115 struct ocfs2_truncate_log *tl; 6116 6117 *tl_copy = NULL; 6118 6119 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6120 6121 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6122 if (status < 0) { 6123 mlog_errno(status); 6124 goto bail; 6125 } 6126 6127 di = (struct ocfs2_dinode *) tl_bh->b_data; 6128 6129 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6130 * validated by the underlying call to ocfs2_read_inode_block(), 6131 * so any corruption is a code bug */ 6132 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6133 6134 tl = &di->id2.i_dealloc; 6135 if (le16_to_cpu(tl->tl_used)) { 6136 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6137 6138 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6139 if (!(*tl_copy)) { 6140 status = -ENOMEM; 6141 mlog_errno(status); 6142 goto bail; 6143 } 6144 6145 /* Assuming the write-out below goes well, this copy 6146 * will be passed back to recovery for processing. */ 6147 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6148 6149 /* All we need to do to clear the truncate log is set 6150 * tl_used. */ 6151 tl->tl_used = 0; 6152 6153 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6154 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6155 if (status < 0) { 6156 mlog_errno(status); 6157 goto bail; 6158 } 6159 } 6160 6161 bail: 6162 if (tl_inode) 6163 iput(tl_inode); 6164 brelse(tl_bh); 6165 6166 if (status < 0 && (*tl_copy)) { 6167 kfree(*tl_copy); 6168 *tl_copy = NULL; 6169 mlog_errno(status); 6170 } 6171 6172 return status; 6173 } 6174 6175 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6176 struct ocfs2_dinode *tl_copy) 6177 { 6178 int status = 0; 6179 int i; 6180 unsigned int clusters, num_recs, start_cluster; 6181 u64 start_blk; 6182 handle_t *handle; 6183 struct inode *tl_inode = osb->osb_tl_inode; 6184 struct ocfs2_truncate_log *tl; 6185 6186 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6187 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6188 return -EINVAL; 6189 } 6190 6191 tl = &tl_copy->id2.i_dealloc; 6192 num_recs = le16_to_cpu(tl->tl_used); 6193 trace_ocfs2_complete_truncate_log_recovery( 6194 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6195 num_recs); 6196 6197 mutex_lock(&tl_inode->i_mutex); 6198 for(i = 0; i < num_recs; i++) { 6199 if (ocfs2_truncate_log_needs_flush(osb)) { 6200 status = __ocfs2_flush_truncate_log(osb); 6201 if (status < 0) { 6202 mlog_errno(status); 6203 goto bail_up; 6204 } 6205 } 6206 6207 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6208 if (IS_ERR(handle)) { 6209 status = PTR_ERR(handle); 6210 mlog_errno(status); 6211 goto bail_up; 6212 } 6213 6214 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6215 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6216 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6217 6218 status = ocfs2_truncate_log_append(osb, handle, 6219 start_blk, clusters); 6220 ocfs2_commit_trans(osb, handle); 6221 if (status < 0) { 6222 mlog_errno(status); 6223 goto bail_up; 6224 } 6225 } 6226 6227 bail_up: 6228 mutex_unlock(&tl_inode->i_mutex); 6229 6230 return status; 6231 } 6232 6233 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6234 { 6235 int status; 6236 struct inode *tl_inode = osb->osb_tl_inode; 6237 6238 atomic_set(&osb->osb_tl_disable, 1); 6239 6240 if (tl_inode) { 6241 cancel_delayed_work(&osb->osb_truncate_log_wq); 6242 flush_workqueue(ocfs2_wq); 6243 6244 status = ocfs2_flush_truncate_log(osb); 6245 if (status < 0) 6246 mlog_errno(status); 6247 6248 brelse(osb->osb_tl_bh); 6249 iput(osb->osb_tl_inode); 6250 } 6251 } 6252 6253 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6254 { 6255 int status; 6256 struct inode *tl_inode = NULL; 6257 struct buffer_head *tl_bh = NULL; 6258 6259 status = ocfs2_get_truncate_log_info(osb, 6260 osb->slot_num, 6261 &tl_inode, 6262 &tl_bh); 6263 if (status < 0) 6264 mlog_errno(status); 6265 6266 /* ocfs2_truncate_log_shutdown keys on the existence of 6267 * osb->osb_tl_inode so we don't set any of the osb variables 6268 * until we're sure all is well. */ 6269 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6270 ocfs2_truncate_log_worker); 6271 atomic_set(&osb->osb_tl_disable, 0); 6272 osb->osb_tl_bh = tl_bh; 6273 osb->osb_tl_inode = tl_inode; 6274 6275 return status; 6276 } 6277 6278 /* 6279 * Delayed de-allocation of suballocator blocks. 6280 * 6281 * Some sets of block de-allocations might involve multiple suballocator inodes. 6282 * 6283 * The locking for this can get extremely complicated, especially when 6284 * the suballocator inodes to delete from aren't known until deep 6285 * within an unrelated codepath. 6286 * 6287 * ocfs2_extent_block structures are a good example of this - an inode 6288 * btree could have been grown by any number of nodes each allocating 6289 * out of their own suballoc inode. 6290 * 6291 * These structures allow the delay of block de-allocation until a 6292 * later time, when locking of multiple cluster inodes won't cause 6293 * deadlock. 6294 */ 6295 6296 /* 6297 * Describe a single bit freed from a suballocator. For the block 6298 * suballocators, it represents one block. For the global cluster 6299 * allocator, it represents some clusters and free_bit indicates 6300 * clusters number. 6301 */ 6302 struct ocfs2_cached_block_free { 6303 struct ocfs2_cached_block_free *free_next; 6304 u64 free_bg; 6305 u64 free_blk; 6306 unsigned int free_bit; 6307 }; 6308 6309 struct ocfs2_per_slot_free_list { 6310 struct ocfs2_per_slot_free_list *f_next_suballocator; 6311 int f_inode_type; 6312 int f_slot; 6313 struct ocfs2_cached_block_free *f_first; 6314 }; 6315 6316 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6317 int sysfile_type, 6318 int slot, 6319 struct ocfs2_cached_block_free *head) 6320 { 6321 int ret; 6322 u64 bg_blkno; 6323 handle_t *handle; 6324 struct inode *inode; 6325 struct buffer_head *di_bh = NULL; 6326 struct ocfs2_cached_block_free *tmp; 6327 6328 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6329 if (!inode) { 6330 ret = -EINVAL; 6331 mlog_errno(ret); 6332 goto out; 6333 } 6334 6335 mutex_lock(&inode->i_mutex); 6336 6337 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6338 if (ret) { 6339 mlog_errno(ret); 6340 goto out_mutex; 6341 } 6342 6343 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6344 if (IS_ERR(handle)) { 6345 ret = PTR_ERR(handle); 6346 mlog_errno(ret); 6347 goto out_unlock; 6348 } 6349 6350 while (head) { 6351 if (head->free_bg) 6352 bg_blkno = head->free_bg; 6353 else 6354 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6355 head->free_bit); 6356 trace_ocfs2_free_cached_blocks( 6357 (unsigned long long)head->free_blk, head->free_bit); 6358 6359 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6360 head->free_bit, bg_blkno, 1); 6361 if (ret) { 6362 mlog_errno(ret); 6363 goto out_journal; 6364 } 6365 6366 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6367 if (ret) { 6368 mlog_errno(ret); 6369 goto out_journal; 6370 } 6371 6372 tmp = head; 6373 head = head->free_next; 6374 kfree(tmp); 6375 } 6376 6377 out_journal: 6378 ocfs2_commit_trans(osb, handle); 6379 6380 out_unlock: 6381 ocfs2_inode_unlock(inode, 1); 6382 brelse(di_bh); 6383 out_mutex: 6384 mutex_unlock(&inode->i_mutex); 6385 iput(inode); 6386 out: 6387 while(head) { 6388 /* Premature exit may have left some dangling items. */ 6389 tmp = head; 6390 head = head->free_next; 6391 kfree(tmp); 6392 } 6393 6394 return ret; 6395 } 6396 6397 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6398 u64 blkno, unsigned int bit) 6399 { 6400 int ret = 0; 6401 struct ocfs2_cached_block_free *item; 6402 6403 item = kzalloc(sizeof(*item), GFP_NOFS); 6404 if (item == NULL) { 6405 ret = -ENOMEM; 6406 mlog_errno(ret); 6407 return ret; 6408 } 6409 6410 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6411 6412 item->free_blk = blkno; 6413 item->free_bit = bit; 6414 item->free_next = ctxt->c_global_allocator; 6415 6416 ctxt->c_global_allocator = item; 6417 return ret; 6418 } 6419 6420 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6421 struct ocfs2_cached_block_free *head) 6422 { 6423 struct ocfs2_cached_block_free *tmp; 6424 struct inode *tl_inode = osb->osb_tl_inode; 6425 handle_t *handle; 6426 int ret = 0; 6427 6428 mutex_lock(&tl_inode->i_mutex); 6429 6430 while (head) { 6431 if (ocfs2_truncate_log_needs_flush(osb)) { 6432 ret = __ocfs2_flush_truncate_log(osb); 6433 if (ret < 0) { 6434 mlog_errno(ret); 6435 break; 6436 } 6437 } 6438 6439 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6440 if (IS_ERR(handle)) { 6441 ret = PTR_ERR(handle); 6442 mlog_errno(ret); 6443 break; 6444 } 6445 6446 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6447 head->free_bit); 6448 6449 ocfs2_commit_trans(osb, handle); 6450 tmp = head; 6451 head = head->free_next; 6452 kfree(tmp); 6453 6454 if (ret < 0) { 6455 mlog_errno(ret); 6456 break; 6457 } 6458 } 6459 6460 mutex_unlock(&tl_inode->i_mutex); 6461 6462 while (head) { 6463 /* Premature exit may have left some dangling items. */ 6464 tmp = head; 6465 head = head->free_next; 6466 kfree(tmp); 6467 } 6468 6469 return ret; 6470 } 6471 6472 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6473 struct ocfs2_cached_dealloc_ctxt *ctxt) 6474 { 6475 int ret = 0, ret2; 6476 struct ocfs2_per_slot_free_list *fl; 6477 6478 if (!ctxt) 6479 return 0; 6480 6481 while (ctxt->c_first_suballocator) { 6482 fl = ctxt->c_first_suballocator; 6483 6484 if (fl->f_first) { 6485 trace_ocfs2_run_deallocs(fl->f_inode_type, 6486 fl->f_slot); 6487 ret2 = ocfs2_free_cached_blocks(osb, 6488 fl->f_inode_type, 6489 fl->f_slot, 6490 fl->f_first); 6491 if (ret2) 6492 mlog_errno(ret2); 6493 if (!ret) 6494 ret = ret2; 6495 } 6496 6497 ctxt->c_first_suballocator = fl->f_next_suballocator; 6498 kfree(fl); 6499 } 6500 6501 if (ctxt->c_global_allocator) { 6502 ret2 = ocfs2_free_cached_clusters(osb, 6503 ctxt->c_global_allocator); 6504 if (ret2) 6505 mlog_errno(ret2); 6506 if (!ret) 6507 ret = ret2; 6508 6509 ctxt->c_global_allocator = NULL; 6510 } 6511 6512 return ret; 6513 } 6514 6515 static struct ocfs2_per_slot_free_list * 6516 ocfs2_find_per_slot_free_list(int type, 6517 int slot, 6518 struct ocfs2_cached_dealloc_ctxt *ctxt) 6519 { 6520 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6521 6522 while (fl) { 6523 if (fl->f_inode_type == type && fl->f_slot == slot) 6524 return fl; 6525 6526 fl = fl->f_next_suballocator; 6527 } 6528 6529 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6530 if (fl) { 6531 fl->f_inode_type = type; 6532 fl->f_slot = slot; 6533 fl->f_first = NULL; 6534 fl->f_next_suballocator = ctxt->c_first_suballocator; 6535 6536 ctxt->c_first_suballocator = fl; 6537 } 6538 return fl; 6539 } 6540 6541 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6542 int type, int slot, u64 suballoc, 6543 u64 blkno, unsigned int bit) 6544 { 6545 int ret; 6546 struct ocfs2_per_slot_free_list *fl; 6547 struct ocfs2_cached_block_free *item; 6548 6549 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6550 if (fl == NULL) { 6551 ret = -ENOMEM; 6552 mlog_errno(ret); 6553 goto out; 6554 } 6555 6556 item = kzalloc(sizeof(*item), GFP_NOFS); 6557 if (item == NULL) { 6558 ret = -ENOMEM; 6559 mlog_errno(ret); 6560 goto out; 6561 } 6562 6563 trace_ocfs2_cache_block_dealloc(type, slot, 6564 (unsigned long long)suballoc, 6565 (unsigned long long)blkno, bit); 6566 6567 item->free_bg = suballoc; 6568 item->free_blk = blkno; 6569 item->free_bit = bit; 6570 item->free_next = fl->f_first; 6571 6572 fl->f_first = item; 6573 6574 ret = 0; 6575 out: 6576 return ret; 6577 } 6578 6579 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6580 struct ocfs2_extent_block *eb) 6581 { 6582 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6583 le16_to_cpu(eb->h_suballoc_slot), 6584 le64_to_cpu(eb->h_suballoc_loc), 6585 le64_to_cpu(eb->h_blkno), 6586 le16_to_cpu(eb->h_suballoc_bit)); 6587 } 6588 6589 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6590 { 6591 set_buffer_uptodate(bh); 6592 mark_buffer_dirty(bh); 6593 return 0; 6594 } 6595 6596 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6597 unsigned int from, unsigned int to, 6598 struct page *page, int zero, u64 *phys) 6599 { 6600 int ret, partial = 0; 6601 6602 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6603 if (ret) 6604 mlog_errno(ret); 6605 6606 if (zero) 6607 zero_user_segment(page, from, to); 6608 6609 /* 6610 * Need to set the buffers we zero'd into uptodate 6611 * here if they aren't - ocfs2_map_page_blocks() 6612 * might've skipped some 6613 */ 6614 ret = walk_page_buffers(handle, page_buffers(page), 6615 from, to, &partial, 6616 ocfs2_zero_func); 6617 if (ret < 0) 6618 mlog_errno(ret); 6619 else if (ocfs2_should_order_data(inode)) { 6620 ret = ocfs2_jbd2_file_inode(handle, inode); 6621 if (ret < 0) 6622 mlog_errno(ret); 6623 } 6624 6625 if (!partial) 6626 SetPageUptodate(page); 6627 6628 flush_dcache_page(page); 6629 } 6630 6631 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6632 loff_t end, struct page **pages, 6633 int numpages, u64 phys, handle_t *handle) 6634 { 6635 int i; 6636 struct page *page; 6637 unsigned int from, to = PAGE_CACHE_SIZE; 6638 struct super_block *sb = inode->i_sb; 6639 6640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6641 6642 if (numpages == 0) 6643 goto out; 6644 6645 to = PAGE_CACHE_SIZE; 6646 for(i = 0; i < numpages; i++) { 6647 page = pages[i]; 6648 6649 from = start & (PAGE_CACHE_SIZE - 1); 6650 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6651 to = end & (PAGE_CACHE_SIZE - 1); 6652 6653 BUG_ON(from > PAGE_CACHE_SIZE); 6654 BUG_ON(to > PAGE_CACHE_SIZE); 6655 6656 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6657 &phys); 6658 6659 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6660 } 6661 out: 6662 if (pages) 6663 ocfs2_unlock_and_free_pages(pages, numpages); 6664 } 6665 6666 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6667 struct page **pages, int *num) 6668 { 6669 int numpages, ret = 0; 6670 struct address_space *mapping = inode->i_mapping; 6671 unsigned long index; 6672 loff_t last_page_bytes; 6673 6674 BUG_ON(start > end); 6675 6676 numpages = 0; 6677 last_page_bytes = PAGE_ALIGN(end); 6678 index = start >> PAGE_CACHE_SHIFT; 6679 do { 6680 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6681 if (!pages[numpages]) { 6682 ret = -ENOMEM; 6683 mlog_errno(ret); 6684 goto out; 6685 } 6686 6687 numpages++; 6688 index++; 6689 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6690 6691 out: 6692 if (ret != 0) { 6693 if (pages) 6694 ocfs2_unlock_and_free_pages(pages, numpages); 6695 numpages = 0; 6696 } 6697 6698 *num = numpages; 6699 6700 return ret; 6701 } 6702 6703 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6704 struct page **pages, int *num) 6705 { 6706 struct super_block *sb = inode->i_sb; 6707 6708 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6709 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6710 6711 return ocfs2_grab_pages(inode, start, end, pages, num); 6712 } 6713 6714 /* 6715 * Zero the area past i_size but still within an allocated 6716 * cluster. This avoids exposing nonzero data on subsequent file 6717 * extends. 6718 * 6719 * We need to call this before i_size is updated on the inode because 6720 * otherwise block_write_full_page() will skip writeout of pages past 6721 * i_size. The new_i_size parameter is passed for this reason. 6722 */ 6723 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6724 u64 range_start, u64 range_end) 6725 { 6726 int ret = 0, numpages; 6727 struct page **pages = NULL; 6728 u64 phys; 6729 unsigned int ext_flags; 6730 struct super_block *sb = inode->i_sb; 6731 6732 /* 6733 * File systems which don't support sparse files zero on every 6734 * extend. 6735 */ 6736 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6737 return 0; 6738 6739 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6740 sizeof(struct page *), GFP_NOFS); 6741 if (pages == NULL) { 6742 ret = -ENOMEM; 6743 mlog_errno(ret); 6744 goto out; 6745 } 6746 6747 if (range_start == range_end) 6748 goto out; 6749 6750 ret = ocfs2_extent_map_get_blocks(inode, 6751 range_start >> sb->s_blocksize_bits, 6752 &phys, NULL, &ext_flags); 6753 if (ret) { 6754 mlog_errno(ret); 6755 goto out; 6756 } 6757 6758 /* 6759 * Tail is a hole, or is marked unwritten. In either case, we 6760 * can count on read and write to return/push zero's. 6761 */ 6762 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6763 goto out; 6764 6765 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6766 &numpages); 6767 if (ret) { 6768 mlog_errno(ret); 6769 goto out; 6770 } 6771 6772 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6773 numpages, phys, handle); 6774 6775 /* 6776 * Initiate writeout of the pages we zero'd here. We don't 6777 * wait on them - the truncate_inode_pages() call later will 6778 * do that for us. 6779 */ 6780 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6781 range_end - 1); 6782 if (ret) 6783 mlog_errno(ret); 6784 6785 out: 6786 kfree(pages); 6787 6788 return ret; 6789 } 6790 6791 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6792 struct ocfs2_dinode *di) 6793 { 6794 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6795 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6796 6797 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6798 memset(&di->id2, 0, blocksize - 6799 offsetof(struct ocfs2_dinode, id2) - 6800 xattrsize); 6801 else 6802 memset(&di->id2, 0, blocksize - 6803 offsetof(struct ocfs2_dinode, id2)); 6804 } 6805 6806 void ocfs2_dinode_new_extent_list(struct inode *inode, 6807 struct ocfs2_dinode *di) 6808 { 6809 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6810 di->id2.i_list.l_tree_depth = 0; 6811 di->id2.i_list.l_next_free_rec = 0; 6812 di->id2.i_list.l_count = cpu_to_le16( 6813 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6814 } 6815 6816 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6817 { 6818 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6819 struct ocfs2_inline_data *idata = &di->id2.i_data; 6820 6821 spin_lock(&oi->ip_lock); 6822 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6823 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6824 spin_unlock(&oi->ip_lock); 6825 6826 /* 6827 * We clear the entire i_data structure here so that all 6828 * fields can be properly initialized. 6829 */ 6830 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6831 6832 idata->id_count = cpu_to_le16( 6833 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6834 } 6835 6836 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6837 struct buffer_head *di_bh) 6838 { 6839 int ret, i, has_data, num_pages = 0; 6840 int need_free = 0; 6841 u32 bit_off, num; 6842 handle_t *handle; 6843 u64 uninitialized_var(block); 6844 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6845 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6846 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6847 struct ocfs2_alloc_context *data_ac = NULL; 6848 struct page **pages = NULL; 6849 loff_t end = osb->s_clustersize; 6850 struct ocfs2_extent_tree et; 6851 int did_quota = 0; 6852 6853 has_data = i_size_read(inode) ? 1 : 0; 6854 6855 if (has_data) { 6856 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6857 sizeof(struct page *), GFP_NOFS); 6858 if (pages == NULL) { 6859 ret = -ENOMEM; 6860 mlog_errno(ret); 6861 goto out; 6862 } 6863 6864 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6865 if (ret) { 6866 mlog_errno(ret); 6867 goto out; 6868 } 6869 } 6870 6871 handle = ocfs2_start_trans(osb, 6872 ocfs2_inline_to_extents_credits(osb->sb)); 6873 if (IS_ERR(handle)) { 6874 ret = PTR_ERR(handle); 6875 mlog_errno(ret); 6876 goto out; 6877 } 6878 6879 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6880 OCFS2_JOURNAL_ACCESS_WRITE); 6881 if (ret) { 6882 mlog_errno(ret); 6883 goto out_commit; 6884 } 6885 6886 if (has_data) { 6887 unsigned int page_end; 6888 u64 phys; 6889 6890 ret = dquot_alloc_space_nodirty(inode, 6891 ocfs2_clusters_to_bytes(osb->sb, 1)); 6892 if (ret) 6893 goto out_commit; 6894 did_quota = 1; 6895 6896 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6897 6898 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6899 &num); 6900 if (ret) { 6901 mlog_errno(ret); 6902 goto out_commit; 6903 } 6904 6905 /* 6906 * Save two copies, one for insert, and one that can 6907 * be changed by ocfs2_map_and_dirty_page() below. 6908 */ 6909 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6910 6911 /* 6912 * Non sparse file systems zero on extend, so no need 6913 * to do that now. 6914 */ 6915 if (!ocfs2_sparse_alloc(osb) && 6916 PAGE_CACHE_SIZE < osb->s_clustersize) 6917 end = PAGE_CACHE_SIZE; 6918 6919 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6920 if (ret) { 6921 mlog_errno(ret); 6922 need_free = 1; 6923 goto out_commit; 6924 } 6925 6926 /* 6927 * This should populate the 1st page for us and mark 6928 * it up to date. 6929 */ 6930 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6931 if (ret) { 6932 mlog_errno(ret); 6933 need_free = 1; 6934 goto out_unlock; 6935 } 6936 6937 page_end = PAGE_CACHE_SIZE; 6938 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6939 page_end = osb->s_clustersize; 6940 6941 for (i = 0; i < num_pages; i++) 6942 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6943 pages[i], i > 0, &phys); 6944 } 6945 6946 spin_lock(&oi->ip_lock); 6947 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6948 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6949 spin_unlock(&oi->ip_lock); 6950 6951 ocfs2_update_inode_fsync_trans(handle, inode, 1); 6952 ocfs2_dinode_new_extent_list(inode, di); 6953 6954 ocfs2_journal_dirty(handle, di_bh); 6955 6956 if (has_data) { 6957 /* 6958 * An error at this point should be extremely rare. If 6959 * this proves to be false, we could always re-build 6960 * the in-inode data from our pages. 6961 */ 6962 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 6963 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 6964 if (ret) { 6965 mlog_errno(ret); 6966 need_free = 1; 6967 goto out_unlock; 6968 } 6969 6970 inode->i_blocks = ocfs2_inode_sector_count(inode); 6971 } 6972 6973 out_unlock: 6974 if (pages) 6975 ocfs2_unlock_and_free_pages(pages, num_pages); 6976 6977 out_commit: 6978 if (ret < 0 && did_quota) 6979 dquot_free_space_nodirty(inode, 6980 ocfs2_clusters_to_bytes(osb->sb, 1)); 6981 6982 if (need_free) { 6983 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 6984 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 6985 bit_off, num); 6986 else 6987 ocfs2_free_clusters(handle, 6988 data_ac->ac_inode, 6989 data_ac->ac_bh, 6990 ocfs2_clusters_to_blocks(osb->sb, bit_off), 6991 num); 6992 } 6993 6994 ocfs2_commit_trans(osb, handle); 6995 6996 out: 6997 if (data_ac) 6998 ocfs2_free_alloc_context(data_ac); 6999 if (pages) 7000 kfree(pages); 7001 7002 return ret; 7003 } 7004 7005 /* 7006 * It is expected, that by the time you call this function, 7007 * inode->i_size and fe->i_size have been adjusted. 7008 * 7009 * WARNING: This will kfree the truncate context 7010 */ 7011 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7012 struct inode *inode, 7013 struct buffer_head *di_bh) 7014 { 7015 int status = 0, i, flags = 0; 7016 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7017 u64 blkno = 0; 7018 struct ocfs2_extent_list *el; 7019 struct ocfs2_extent_rec *rec; 7020 struct ocfs2_path *path = NULL; 7021 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7022 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7023 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7024 struct ocfs2_extent_tree et; 7025 struct ocfs2_cached_dealloc_ctxt dealloc; 7026 struct ocfs2_refcount_tree *ref_tree = NULL; 7027 7028 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7029 ocfs2_init_dealloc_ctxt(&dealloc); 7030 7031 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7032 i_size_read(inode)); 7033 7034 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7035 ocfs2_journal_access_di); 7036 if (!path) { 7037 status = -ENOMEM; 7038 mlog_errno(status); 7039 goto bail; 7040 } 7041 7042 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7043 7044 start: 7045 /* 7046 * Check that we still have allocation to delete. 7047 */ 7048 if (OCFS2_I(inode)->ip_clusters == 0) { 7049 status = 0; 7050 goto bail; 7051 } 7052 7053 /* 7054 * Truncate always works against the rightmost tree branch. 7055 */ 7056 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7057 if (status) { 7058 mlog_errno(status); 7059 goto bail; 7060 } 7061 7062 trace_ocfs2_commit_truncate( 7063 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7064 new_highest_cpos, 7065 OCFS2_I(inode)->ip_clusters, 7066 path->p_tree_depth); 7067 7068 /* 7069 * By now, el will point to the extent list on the bottom most 7070 * portion of this tree. Only the tail record is considered in 7071 * each pass. 7072 * 7073 * We handle the following cases, in order: 7074 * - empty extent: delete the remaining branch 7075 * - remove the entire record 7076 * - remove a partial record 7077 * - no record needs to be removed (truncate has completed) 7078 */ 7079 el = path_leaf_el(path); 7080 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7081 ocfs2_error(inode->i_sb, 7082 "Inode %llu has empty extent block at %llu\n", 7083 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7084 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7085 status = -EROFS; 7086 goto bail; 7087 } 7088 7089 i = le16_to_cpu(el->l_next_free_rec) - 1; 7090 rec = &el->l_recs[i]; 7091 flags = rec->e_flags; 7092 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7093 7094 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7095 /* 7096 * Lower levels depend on this never happening, but it's best 7097 * to check it up here before changing the tree. 7098 */ 7099 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7100 ocfs2_error(inode->i_sb, "Inode %lu has an empty " 7101 "extent record, depth %u\n", inode->i_ino, 7102 le16_to_cpu(root_el->l_tree_depth)); 7103 status = -EROFS; 7104 goto bail; 7105 } 7106 trunc_cpos = le32_to_cpu(rec->e_cpos); 7107 trunc_len = 0; 7108 blkno = 0; 7109 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7110 /* 7111 * Truncate entire record. 7112 */ 7113 trunc_cpos = le32_to_cpu(rec->e_cpos); 7114 trunc_len = ocfs2_rec_clusters(el, rec); 7115 blkno = le64_to_cpu(rec->e_blkno); 7116 } else if (range > new_highest_cpos) { 7117 /* 7118 * Partial truncate. it also should be 7119 * the last truncate we're doing. 7120 */ 7121 trunc_cpos = new_highest_cpos; 7122 trunc_len = range - new_highest_cpos; 7123 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7124 blkno = le64_to_cpu(rec->e_blkno) + 7125 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7126 } else { 7127 /* 7128 * Truncate completed, leave happily. 7129 */ 7130 status = 0; 7131 goto bail; 7132 } 7133 7134 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7135 7136 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7137 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7138 &ref_tree, NULL); 7139 if (status) { 7140 mlog_errno(status); 7141 goto bail; 7142 } 7143 } 7144 7145 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7146 phys_cpos, trunc_len, flags, &dealloc, 7147 refcount_loc, true); 7148 if (status < 0) { 7149 mlog_errno(status); 7150 goto bail; 7151 } 7152 7153 ocfs2_reinit_path(path, 1); 7154 7155 /* 7156 * The check above will catch the case where we've truncated 7157 * away all allocation. 7158 */ 7159 goto start; 7160 7161 bail: 7162 if (ref_tree) 7163 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7164 7165 ocfs2_schedule_truncate_log_flush(osb, 1); 7166 7167 ocfs2_run_deallocs(osb, &dealloc); 7168 7169 ocfs2_free_path(path); 7170 7171 return status; 7172 } 7173 7174 /* 7175 * 'start' is inclusive, 'end' is not. 7176 */ 7177 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7178 unsigned int start, unsigned int end, int trunc) 7179 { 7180 int ret; 7181 unsigned int numbytes; 7182 handle_t *handle; 7183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7184 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7185 struct ocfs2_inline_data *idata = &di->id2.i_data; 7186 7187 if (end > i_size_read(inode)) 7188 end = i_size_read(inode); 7189 7190 BUG_ON(start > end); 7191 7192 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7193 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7194 !ocfs2_supports_inline_data(osb)) { 7195 ocfs2_error(inode->i_sb, 7196 "Inline data flags for inode %llu don't agree! " 7197 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7198 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7199 le16_to_cpu(di->i_dyn_features), 7200 OCFS2_I(inode)->ip_dyn_features, 7201 osb->s_feature_incompat); 7202 ret = -EROFS; 7203 goto out; 7204 } 7205 7206 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7207 if (IS_ERR(handle)) { 7208 ret = PTR_ERR(handle); 7209 mlog_errno(ret); 7210 goto out; 7211 } 7212 7213 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7214 OCFS2_JOURNAL_ACCESS_WRITE); 7215 if (ret) { 7216 mlog_errno(ret); 7217 goto out_commit; 7218 } 7219 7220 numbytes = end - start; 7221 memset(idata->id_data + start, 0, numbytes); 7222 7223 /* 7224 * No need to worry about the data page here - it's been 7225 * truncated already and inline data doesn't need it for 7226 * pushing zero's to disk, so we'll let readpage pick it up 7227 * later. 7228 */ 7229 if (trunc) { 7230 i_size_write(inode, start); 7231 di->i_size = cpu_to_le64(start); 7232 } 7233 7234 inode->i_blocks = ocfs2_inode_sector_count(inode); 7235 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7236 7237 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7238 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7239 7240 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7241 ocfs2_journal_dirty(handle, di_bh); 7242 7243 out_commit: 7244 ocfs2_commit_trans(osb, handle); 7245 7246 out: 7247 return ret; 7248 } 7249 7250 static int ocfs2_trim_extent(struct super_block *sb, 7251 struct ocfs2_group_desc *gd, 7252 u32 start, u32 count) 7253 { 7254 u64 discard, bcount; 7255 7256 bcount = ocfs2_clusters_to_blocks(sb, count); 7257 discard = le64_to_cpu(gd->bg_blkno) + 7258 ocfs2_clusters_to_blocks(sb, start); 7259 7260 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7261 7262 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7263 } 7264 7265 static int ocfs2_trim_group(struct super_block *sb, 7266 struct ocfs2_group_desc *gd, 7267 u32 start, u32 max, u32 minbits) 7268 { 7269 int ret = 0, count = 0, next; 7270 void *bitmap = gd->bg_bitmap; 7271 7272 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7273 return 0; 7274 7275 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7276 start, max, minbits); 7277 7278 while (start < max) { 7279 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7280 if (start >= max) 7281 break; 7282 next = ocfs2_find_next_bit(bitmap, max, start); 7283 7284 if ((next - start) >= minbits) { 7285 ret = ocfs2_trim_extent(sb, gd, 7286 start, next - start); 7287 if (ret < 0) { 7288 mlog_errno(ret); 7289 break; 7290 } 7291 count += next - start; 7292 } 7293 start = next + 1; 7294 7295 if (fatal_signal_pending(current)) { 7296 count = -ERESTARTSYS; 7297 break; 7298 } 7299 7300 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7301 break; 7302 } 7303 7304 if (ret < 0) 7305 count = ret; 7306 7307 return count; 7308 } 7309 7310 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7311 { 7312 struct ocfs2_super *osb = OCFS2_SB(sb); 7313 u64 start, len, trimmed, first_group, last_group, group; 7314 int ret, cnt; 7315 u32 first_bit, last_bit, minlen; 7316 struct buffer_head *main_bm_bh = NULL; 7317 struct inode *main_bm_inode = NULL; 7318 struct buffer_head *gd_bh = NULL; 7319 struct ocfs2_dinode *main_bm; 7320 struct ocfs2_group_desc *gd = NULL; 7321 7322 start = range->start >> osb->s_clustersize_bits; 7323 len = range->len >> osb->s_clustersize_bits; 7324 minlen = range->minlen >> osb->s_clustersize_bits; 7325 7326 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7327 return -EINVAL; 7328 7329 main_bm_inode = ocfs2_get_system_file_inode(osb, 7330 GLOBAL_BITMAP_SYSTEM_INODE, 7331 OCFS2_INVALID_SLOT); 7332 if (!main_bm_inode) { 7333 ret = -EIO; 7334 mlog_errno(ret); 7335 goto out; 7336 } 7337 7338 mutex_lock(&main_bm_inode->i_mutex); 7339 7340 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7341 if (ret < 0) { 7342 mlog_errno(ret); 7343 goto out_mutex; 7344 } 7345 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7346 7347 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7348 ret = -EINVAL; 7349 goto out_unlock; 7350 } 7351 7352 len = range->len >> osb->s_clustersize_bits; 7353 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7354 len = le32_to_cpu(main_bm->i_clusters) - start; 7355 7356 trace_ocfs2_trim_fs(start, len, minlen); 7357 7358 /* Determine first and last group to examine based on start and len */ 7359 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7360 if (first_group == osb->first_cluster_group_blkno) 7361 first_bit = start; 7362 else 7363 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7364 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7365 last_bit = osb->bitmap_cpg; 7366 7367 trimmed = 0; 7368 for (group = first_group; group <= last_group;) { 7369 if (first_bit + len >= osb->bitmap_cpg) 7370 last_bit = osb->bitmap_cpg; 7371 else 7372 last_bit = first_bit + len; 7373 7374 ret = ocfs2_read_group_descriptor(main_bm_inode, 7375 main_bm, group, 7376 &gd_bh); 7377 if (ret < 0) { 7378 mlog_errno(ret); 7379 break; 7380 } 7381 7382 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7383 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen); 7384 brelse(gd_bh); 7385 gd_bh = NULL; 7386 if (cnt < 0) { 7387 ret = cnt; 7388 mlog_errno(ret); 7389 break; 7390 } 7391 7392 trimmed += cnt; 7393 len -= osb->bitmap_cpg - first_bit; 7394 first_bit = 0; 7395 if (group == osb->first_cluster_group_blkno) 7396 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7397 else 7398 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7399 } 7400 range->len = trimmed * sb->s_blocksize; 7401 out_unlock: 7402 ocfs2_inode_unlock(main_bm_inode, 0); 7403 brelse(main_bm_bh); 7404 out_mutex: 7405 mutex_unlock(&main_bm_inode->i_mutex); 7406 iput(main_bm_inode); 7407 out: 7408 return ret; 7409 } 7410