xref: /linux/fs/ocfs2/alloc.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49 
50 #include "buffer_head_io.h"
51 
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 					 struct ocfs2_extent_block *eb);
55 
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64 	struct buffer_head		*bh;
65 	struct ocfs2_extent_list	*el;
66 };
67 
68 #define OCFS2_MAX_PATH_DEPTH	5
69 
70 struct ocfs2_path {
71 	int			p_tree_depth;
72 	struct ocfs2_path_item	p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74 
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80 
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88 	int i, start = 0, depth = 0;
89 	struct ocfs2_path_item *node;
90 
91 	if (keep_root)
92 		start = 1;
93 
94 	for(i = start; i < path_num_items(path); i++) {
95 		node = &path->p_node[i];
96 
97 		brelse(node->bh);
98 		node->bh = NULL;
99 		node->el = NULL;
100 	}
101 
102 	/*
103 	 * Tree depth may change during truncate, or insert. If we're
104 	 * keeping the root extent list, then make sure that our path
105 	 * structure reflects the proper depth.
106 	 */
107 	if (keep_root)
108 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109 
110 	path->p_tree_depth = depth;
111 }
112 
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115 	if (path) {
116 		ocfs2_reinit_path(path, 0);
117 		kfree(path);
118 	}
119 }
120 
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130 	int i;
131 
132 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 	BUG_ON(path_root_el(dest) != path_root_el(src));
134 
135 	ocfs2_reinit_path(dest, 1);
136 
137 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 		dest->p_node[i].bh = src->p_node[i].bh;
139 		dest->p_node[i].el = src->p_node[i].el;
140 
141 		if (dest->p_node[i].bh)
142 			get_bh(dest->p_node[i].bh);
143 	}
144 }
145 
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152 	int i;
153 
154 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
155 
156 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 		brelse(dest->p_node[i].bh);
158 
159 		dest->p_node[i].bh = src->p_node[i].bh;
160 		dest->p_node[i].el = src->p_node[i].el;
161 
162 		src->p_node[i].bh = NULL;
163 		src->p_node[i].el = NULL;
164 	}
165 }
166 
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 					struct buffer_head *eb_bh)
174 {
175 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176 
177 	/*
178 	 * Right now, no root bh is an extent block, so this helps
179 	 * catch code errors with dinode trees. The assertion can be
180 	 * safely removed if we ever need to insert extent block
181 	 * structures at the root.
182 	 */
183 	BUG_ON(index == 0);
184 
185 	path->p_node[index].bh = eb_bh;
186 	path->p_node[index].el = &eb->h_list;
187 }
188 
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 					 struct ocfs2_extent_list *root_el)
191 {
192 	struct ocfs2_path *path;
193 
194 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195 
196 	path = kzalloc(sizeof(*path), GFP_NOFS);
197 	if (path) {
198 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 		get_bh(root_bh);
200 		path_root_bh(path) = root_bh;
201 		path_root_el(path) = root_el;
202 	}
203 
204 	return path;
205 }
206 
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 	struct ocfs2_extent_list *el = &di->id2.i_list;
214 
215 	return ocfs2_new_path(di_bh, el);
216 }
217 
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 				     struct ocfs2_path *path)
223 {
224 	int i, ret = 0;
225 
226 	if (!path)
227 		goto out;
228 
229 	for(i = 0; i < path_num_items(path); i++) {
230 		ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 					   OCFS2_JOURNAL_ACCESS_WRITE);
232 		if (ret < 0) {
233 			mlog_errno(ret);
234 			goto out;
235 		}
236 	}
237 
238 out:
239 	return ret;
240 }
241 
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250 	int ret = -1;
251 	int i;
252 	struct ocfs2_extent_rec *rec;
253 	u32 rec_end, rec_start, clusters;
254 
255 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 		rec = &el->l_recs[i];
257 
258 		rec_start = le32_to_cpu(rec->e_cpos);
259 		clusters = ocfs2_rec_clusters(el, rec);
260 
261 		rec_end = rec_start + clusters;
262 
263 		if (v_cluster >= rec_start && v_cluster < rec_end) {
264 			ret = i;
265 			break;
266 		}
267 	}
268 
269 	return ret;
270 }
271 
272 enum ocfs2_contig_type {
273 	CONTIG_NONE = 0,
274 	CONTIG_LEFT,
275 	CONTIG_RIGHT,
276 	CONTIG_LEFTRIGHT,
277 };
278 
279 
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 				     struct ocfs2_extent_rec *ext,
286 				     u64 blkno)
287 {
288 	u64 blk_end = le64_to_cpu(ext->e_blkno);
289 
290 	blk_end += ocfs2_clusters_to_blocks(sb,
291 				    le16_to_cpu(ext->e_leaf_clusters));
292 
293 	return blkno == blk_end;
294 }
295 
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 				  struct ocfs2_extent_rec *right)
298 {
299 	u32 left_range;
300 
301 	left_range = le32_to_cpu(left->e_cpos) +
302 		le16_to_cpu(left->e_leaf_clusters);
303 
304 	return (left_range == le32_to_cpu(right->e_cpos));
305 }
306 
307 static enum ocfs2_contig_type
308 	ocfs2_extent_contig(struct inode *inode,
309 			    struct ocfs2_extent_rec *ext,
310 			    struct ocfs2_extent_rec *insert_rec)
311 {
312 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313 
314 	/*
315 	 * Refuse to coalesce extent records with different flag
316 	 * fields - we don't want to mix unwritten extents with user
317 	 * data.
318 	 */
319 	if (ext->e_flags != insert_rec->e_flags)
320 		return CONTIG_NONE;
321 
322 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 			return CONTIG_RIGHT;
325 
326 	blkno = le64_to_cpu(ext->e_blkno);
327 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 		return CONTIG_LEFT;
330 
331 	return CONTIG_NONE;
332 }
333 
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342 	APPEND_NONE = 0,
343 	APPEND_TAIL,
344 };
345 
346 enum ocfs2_split_type {
347 	SPLIT_NONE = 0,
348 	SPLIT_LEFT,
349 	SPLIT_RIGHT,
350 };
351 
352 struct ocfs2_insert_type {
353 	enum ocfs2_split_type	ins_split;
354 	enum ocfs2_append_type	ins_appending;
355 	enum ocfs2_contig_type	ins_contig;
356 	int			ins_contig_index;
357 	int			ins_tree_depth;
358 };
359 
360 struct ocfs2_merge_ctxt {
361 	enum ocfs2_contig_type	c_contig_type;
362 	int			c_has_empty_extent;
363 	int			c_split_covers_rec;
364 };
365 
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370 			   struct inode *inode,
371 			   struct ocfs2_dinode *fe)
372 {
373 	int retval;
374 	struct ocfs2_extent_list *el;
375 	struct ocfs2_extent_block *eb;
376 	struct buffer_head *eb_bh = NULL;
377 
378 	mlog_entry_void();
379 
380 	if (!OCFS2_IS_VALID_DINODE(fe)) {
381 		OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382 		retval = -EIO;
383 		goto bail;
384 	}
385 
386 	if (fe->i_last_eb_blk) {
387 		retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388 					  &eb_bh, OCFS2_BH_CACHED, inode);
389 		if (retval < 0) {
390 			mlog_errno(retval);
391 			goto bail;
392 		}
393 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394 		el = &eb->h_list;
395 	} else
396 		el = &fe->id2.i_list;
397 
398 	BUG_ON(el->l_tree_depth != 0);
399 
400 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402 	if (eb_bh)
403 		brelse(eb_bh);
404 
405 	mlog_exit(retval);
406 	return retval;
407 }
408 
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415 				     handle_t *handle,
416 				     struct inode *inode,
417 				     int wanted,
418 				     struct ocfs2_alloc_context *meta_ac,
419 				     struct buffer_head *bhs[])
420 {
421 	int count, status, i;
422 	u16 suballoc_bit_start;
423 	u32 num_got;
424 	u64 first_blkno;
425 	struct ocfs2_extent_block *eb;
426 
427 	mlog_entry_void();
428 
429 	count = 0;
430 	while (count < wanted) {
431 		status = ocfs2_claim_metadata(osb,
432 					      handle,
433 					      meta_ac,
434 					      wanted - count,
435 					      &suballoc_bit_start,
436 					      &num_got,
437 					      &first_blkno);
438 		if (status < 0) {
439 			mlog_errno(status);
440 			goto bail;
441 		}
442 
443 		for(i = count;  i < (num_got + count); i++) {
444 			bhs[i] = sb_getblk(osb->sb, first_blkno);
445 			if (bhs[i] == NULL) {
446 				status = -EIO;
447 				mlog_errno(status);
448 				goto bail;
449 			}
450 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451 
452 			status = ocfs2_journal_access(handle, inode, bhs[i],
453 						      OCFS2_JOURNAL_ACCESS_CREATE);
454 			if (status < 0) {
455 				mlog_errno(status);
456 				goto bail;
457 			}
458 
459 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461 			/* Ok, setup the minimal stuff here. */
462 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463 			eb->h_blkno = cpu_to_le64(first_blkno);
464 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467 			eb->h_list.l_count =
468 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469 
470 			suballoc_bit_start++;
471 			first_blkno++;
472 
473 			/* We'll also be dirtied by the caller, so
474 			 * this isn't absolutely necessary. */
475 			status = ocfs2_journal_dirty(handle, bhs[i]);
476 			if (status < 0) {
477 				mlog_errno(status);
478 				goto bail;
479 			}
480 		}
481 
482 		count += num_got;
483 	}
484 
485 	status = 0;
486 bail:
487 	if (status < 0) {
488 		for(i = 0; i < wanted; i++) {
489 			if (bhs[i])
490 				brelse(bhs[i]);
491 			bhs[i] = NULL;
492 		}
493 	}
494 	mlog_exit(status);
495 	return status;
496 }
497 
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512 	int i;
513 
514 	i = le16_to_cpu(el->l_next_free_rec) - 1;
515 
516 	return le32_to_cpu(el->l_recs[i].e_cpos) +
517 		ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519 
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532 			    handle_t *handle,
533 			    struct inode *inode,
534 			    struct buffer_head *fe_bh,
535 			    struct buffer_head *eb_bh,
536 			    struct buffer_head **last_eb_bh,
537 			    struct ocfs2_alloc_context *meta_ac)
538 {
539 	int status, new_blocks, i;
540 	u64 next_blkno, new_last_eb_blk;
541 	struct buffer_head *bh;
542 	struct buffer_head **new_eb_bhs = NULL;
543 	struct ocfs2_dinode *fe;
544 	struct ocfs2_extent_block *eb;
545 	struct ocfs2_extent_list  *eb_el;
546 	struct ocfs2_extent_list  *el;
547 	u32 new_cpos;
548 
549 	mlog_entry_void();
550 
551 	BUG_ON(!last_eb_bh || !*last_eb_bh);
552 
553 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
554 
555 	if (eb_bh) {
556 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557 		el = &eb->h_list;
558 	} else
559 		el = &fe->id2.i_list;
560 
561 	/* we never add a branch to a leaf. */
562 	BUG_ON(!el->l_tree_depth);
563 
564 	new_blocks = le16_to_cpu(el->l_tree_depth);
565 
566 	/* allocate the number of new eb blocks we need */
567 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568 			     GFP_KERNEL);
569 	if (!new_eb_bhs) {
570 		status = -ENOMEM;
571 		mlog_errno(status);
572 		goto bail;
573 	}
574 
575 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576 					   meta_ac, new_eb_bhs);
577 	if (status < 0) {
578 		mlog_errno(status);
579 		goto bail;
580 	}
581 
582 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584 
585 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 	 * linked with the rest of the tree.
587 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
588 	 *
589 	 * when we leave the loop, new_last_eb_blk will point to the
590 	 * newest leaf, and next_blkno will point to the topmost extent
591 	 * block. */
592 	next_blkno = new_last_eb_blk = 0;
593 	for(i = 0; i < new_blocks; i++) {
594 		bh = new_eb_bhs[i];
595 		eb = (struct ocfs2_extent_block *) bh->b_data;
596 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598 			status = -EIO;
599 			goto bail;
600 		}
601 		eb_el = &eb->h_list;
602 
603 		status = ocfs2_journal_access(handle, inode, bh,
604 					      OCFS2_JOURNAL_ACCESS_CREATE);
605 		if (status < 0) {
606 			mlog_errno(status);
607 			goto bail;
608 		}
609 
610 		eb->h_next_leaf_blk = 0;
611 		eb_el->l_tree_depth = cpu_to_le16(i);
612 		eb_el->l_next_free_rec = cpu_to_le16(1);
613 		/*
614 		 * This actually counts as an empty extent as
615 		 * c_clusters == 0
616 		 */
617 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619 		/*
620 		 * eb_el isn't always an interior node, but even leaf
621 		 * nodes want a zero'd flags and reserved field so
622 		 * this gets the whole 32 bits regardless of use.
623 		 */
624 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625 		if (!eb_el->l_tree_depth)
626 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627 
628 		status = ocfs2_journal_dirty(handle, bh);
629 		if (status < 0) {
630 			mlog_errno(status);
631 			goto bail;
632 		}
633 
634 		next_blkno = le64_to_cpu(eb->h_blkno);
635 	}
636 
637 	/* This is a bit hairy. We want to update up to three blocks
638 	 * here without leaving any of them in an inconsistent state
639 	 * in case of error. We don't have to worry about
640 	 * journal_dirty erroring as it won't unless we've aborted the
641 	 * handle (in which case we would never be here) so reserving
642 	 * the write with journal_access is all we need to do. */
643 	status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644 				      OCFS2_JOURNAL_ACCESS_WRITE);
645 	if (status < 0) {
646 		mlog_errno(status);
647 		goto bail;
648 	}
649 	status = ocfs2_journal_access(handle, inode, fe_bh,
650 				      OCFS2_JOURNAL_ACCESS_WRITE);
651 	if (status < 0) {
652 		mlog_errno(status);
653 		goto bail;
654 	}
655 	if (eb_bh) {
656 		status = ocfs2_journal_access(handle, inode, eb_bh,
657 					      OCFS2_JOURNAL_ACCESS_WRITE);
658 		if (status < 0) {
659 			mlog_errno(status);
660 			goto bail;
661 		}
662 	}
663 
664 	/* Link the new branch into the rest of the tree (el will
665 	 * either be on the fe, or the extent block passed in. */
666 	i = le16_to_cpu(el->l_next_free_rec);
667 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669 	el->l_recs[i].e_int_clusters = 0;
670 	le16_add_cpu(&el->l_next_free_rec, 1);
671 
672 	/* fe needs a new last extent block pointer, as does the
673 	 * next_leaf on the previously last-extent-block. */
674 	fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675 
676 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678 
679 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
680 	if (status < 0)
681 		mlog_errno(status);
682 	status = ocfs2_journal_dirty(handle, fe_bh);
683 	if (status < 0)
684 		mlog_errno(status);
685 	if (eb_bh) {
686 		status = ocfs2_journal_dirty(handle, eb_bh);
687 		if (status < 0)
688 			mlog_errno(status);
689 	}
690 
691 	/*
692 	 * Some callers want to track the rightmost leaf so pass it
693 	 * back here.
694 	 */
695 	brelse(*last_eb_bh);
696 	get_bh(new_eb_bhs[0]);
697 	*last_eb_bh = new_eb_bhs[0];
698 
699 	status = 0;
700 bail:
701 	if (new_eb_bhs) {
702 		for (i = 0; i < new_blocks; i++)
703 			if (new_eb_bhs[i])
704 				brelse(new_eb_bhs[i]);
705 		kfree(new_eb_bhs);
706 	}
707 
708 	mlog_exit(status);
709 	return status;
710 }
711 
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718 				  handle_t *handle,
719 				  struct inode *inode,
720 				  struct buffer_head *fe_bh,
721 				  struct ocfs2_alloc_context *meta_ac,
722 				  struct buffer_head **ret_new_eb_bh)
723 {
724 	int status, i;
725 	u32 new_clusters;
726 	struct buffer_head *new_eb_bh = NULL;
727 	struct ocfs2_dinode *fe;
728 	struct ocfs2_extent_block *eb;
729 	struct ocfs2_extent_list  *fe_el;
730 	struct ocfs2_extent_list  *eb_el;
731 
732 	mlog_entry_void();
733 
734 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735 					   &new_eb_bh);
736 	if (status < 0) {
737 		mlog_errno(status);
738 		goto bail;
739 	}
740 
741 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744 		status = -EIO;
745 		goto bail;
746 	}
747 
748 	eb_el = &eb->h_list;
749 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
750 	fe_el = &fe->id2.i_list;
751 
752 	status = ocfs2_journal_access(handle, inode, new_eb_bh,
753 				      OCFS2_JOURNAL_ACCESS_CREATE);
754 	if (status < 0) {
755 		mlog_errno(status);
756 		goto bail;
757 	}
758 
759 	/* copy the fe data into the new extent block */
760 	eb_el->l_tree_depth = fe_el->l_tree_depth;
761 	eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762 	for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763 		eb_el->l_recs[i] = fe_el->l_recs[i];
764 
765 	status = ocfs2_journal_dirty(handle, new_eb_bh);
766 	if (status < 0) {
767 		mlog_errno(status);
768 		goto bail;
769 	}
770 
771 	status = ocfs2_journal_access(handle, inode, fe_bh,
772 				      OCFS2_JOURNAL_ACCESS_WRITE);
773 	if (status < 0) {
774 		mlog_errno(status);
775 		goto bail;
776 	}
777 
778 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779 
780 	/* update fe now */
781 	le16_add_cpu(&fe_el->l_tree_depth, 1);
782 	fe_el->l_recs[0].e_cpos = 0;
783 	fe_el->l_recs[0].e_blkno = eb->h_blkno;
784 	fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785 	for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786 		memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787 	fe_el->l_next_free_rec = cpu_to_le16(1);
788 
789 	/* If this is our 1st tree depth shift, then last_eb_blk
790 	 * becomes the allocated extent block */
791 	if (fe_el->l_tree_depth == cpu_to_le16(1))
792 		fe->i_last_eb_blk = eb->h_blkno;
793 
794 	status = ocfs2_journal_dirty(handle, fe_bh);
795 	if (status < 0) {
796 		mlog_errno(status);
797 		goto bail;
798 	}
799 
800 	*ret_new_eb_bh = new_eb_bh;
801 	new_eb_bh = NULL;
802 	status = 0;
803 bail:
804 	if (new_eb_bh)
805 		brelse(new_eb_bh);
806 
807 	mlog_exit(status);
808 	return status;
809 }
810 
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829 				    struct inode *inode,
830 				    struct buffer_head *fe_bh,
831 				    struct buffer_head **target_bh)
832 {
833 	int status = 0, i;
834 	u64 blkno;
835 	struct ocfs2_dinode *fe;
836 	struct ocfs2_extent_block *eb;
837 	struct ocfs2_extent_list  *el;
838 	struct buffer_head *bh = NULL;
839 	struct buffer_head *lowest_bh = NULL;
840 
841 	mlog_entry_void();
842 
843 	*target_bh = NULL;
844 
845 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
846 	el = &fe->id2.i_list;
847 
848 	while(le16_to_cpu(el->l_tree_depth) > 1) {
849 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
850 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851 				    "extent list (next_free_rec == 0)",
852 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
853 			status = -EIO;
854 			goto bail;
855 		}
856 		i = le16_to_cpu(el->l_next_free_rec) - 1;
857 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858 		if (!blkno) {
859 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860 				    "list where extent # %d has no physical "
861 				    "block start",
862 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863 			status = -EIO;
864 			goto bail;
865 		}
866 
867 		if (bh) {
868 			brelse(bh);
869 			bh = NULL;
870 		}
871 
872 		status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873 					  inode);
874 		if (status < 0) {
875 			mlog_errno(status);
876 			goto bail;
877 		}
878 
879 		eb = (struct ocfs2_extent_block *) bh->b_data;
880 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882 			status = -EIO;
883 			goto bail;
884 		}
885 		el = &eb->h_list;
886 
887 		if (le16_to_cpu(el->l_next_free_rec) <
888 		    le16_to_cpu(el->l_count)) {
889 			if (lowest_bh)
890 				brelse(lowest_bh);
891 			lowest_bh = bh;
892 			get_bh(lowest_bh);
893 		}
894 	}
895 
896 	/* If we didn't find one and the fe doesn't have any room,
897 	 * then return '1' */
898 	if (!lowest_bh
899 	    && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900 		status = 1;
901 
902 	*target_bh = lowest_bh;
903 bail:
904 	if (bh)
905 		brelse(bh);
906 
907 	mlog_exit(status);
908 	return status;
909 }
910 
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922 			   struct buffer_head *di_bh, int *final_depth,
923 			   struct buffer_head **last_eb_bh,
924 			   struct ocfs2_alloc_context *meta_ac)
925 {
926 	int ret, shift;
927 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928 	int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930 	struct buffer_head *bh = NULL;
931 
932 	BUG_ON(meta_ac == NULL);
933 
934 	shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935 	if (shift < 0) {
936 		ret = shift;
937 		mlog_errno(ret);
938 		goto out;
939 	}
940 
941 	/* We traveled all the way to the bottom of the allocation tree
942 	 * and didn't find room for any more extents - we need to add
943 	 * another tree level */
944 	if (shift) {
945 		BUG_ON(bh);
946 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
947 
948 		/* ocfs2_shift_tree_depth will return us a buffer with
949 		 * the new extent block (so we can pass that to
950 		 * ocfs2_add_branch). */
951 		ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952 					     meta_ac, &bh);
953 		if (ret < 0) {
954 			mlog_errno(ret);
955 			goto out;
956 		}
957 		depth++;
958 		if (depth == 1) {
959 			/*
960 			 * Special case: we have room now if we shifted from
961 			 * tree_depth 0, so no more work needs to be done.
962 			 *
963 			 * We won't be calling add_branch, so pass
964 			 * back *last_eb_bh as the new leaf. At depth
965 			 * zero, it should always be null so there's
966 			 * no reason to brelse.
967 			 */
968 			BUG_ON(*last_eb_bh);
969 			get_bh(bh);
970 			*last_eb_bh = bh;
971 			goto out;
972 		}
973 	}
974 
975 	/* call ocfs2_add_branch to add the final part of the tree with
976 	 * the new data. */
977 	mlog(0, "add branch. bh = %p\n", bh);
978 	ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979 			       meta_ac);
980 	if (ret < 0) {
981 		mlog_errno(ret);
982 		goto out;
983 	}
984 
985 out:
986 	if (final_depth)
987 		*final_depth = depth;
988 	brelse(bh);
989 	return ret;
990 }
991 
992 /*
993  * This is only valid for leaf nodes, which are the only ones that can
994  * have empty extents anyway.
995  */
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
997 {
998 	return !rec->e_leaf_clusters;
999 }
1000 
1001 /*
1002  * This function will discard the rightmost extent record.
1003  */
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1005 {
1006 	int next_free = le16_to_cpu(el->l_next_free_rec);
1007 	int count = le16_to_cpu(el->l_count);
1008 	unsigned int num_bytes;
1009 
1010 	BUG_ON(!next_free);
1011 	/* This will cause us to go off the end of our extent list. */
1012 	BUG_ON(next_free >= count);
1013 
1014 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1015 
1016 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1017 }
1018 
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1020 			      struct ocfs2_extent_rec *insert_rec)
1021 {
1022 	int i, insert_index, next_free, has_empty, num_bytes;
1023 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1024 	struct ocfs2_extent_rec *rec;
1025 
1026 	next_free = le16_to_cpu(el->l_next_free_rec);
1027 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1028 
1029 	BUG_ON(!next_free);
1030 
1031 	/* The tree code before us didn't allow enough room in the leaf. */
1032 	if (el->l_next_free_rec == el->l_count && !has_empty)
1033 		BUG();
1034 
1035 	/*
1036 	 * The easiest way to approach this is to just remove the
1037 	 * empty extent and temporarily decrement next_free.
1038 	 */
1039 	if (has_empty) {
1040 		/*
1041 		 * If next_free was 1 (only an empty extent), this
1042 		 * loop won't execute, which is fine. We still want
1043 		 * the decrement above to happen.
1044 		 */
1045 		for(i = 0; i < (next_free - 1); i++)
1046 			el->l_recs[i] = el->l_recs[i+1];
1047 
1048 		next_free--;
1049 	}
1050 
1051 	/*
1052 	 * Figure out what the new record index should be.
1053 	 */
1054 	for(i = 0; i < next_free; i++) {
1055 		rec = &el->l_recs[i];
1056 
1057 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1058 			break;
1059 	}
1060 	insert_index = i;
1061 
1062 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1063 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1064 
1065 	BUG_ON(insert_index < 0);
1066 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1067 	BUG_ON(insert_index > next_free);
1068 
1069 	/*
1070 	 * No need to memmove if we're just adding to the tail.
1071 	 */
1072 	if (insert_index != next_free) {
1073 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1074 
1075 		num_bytes = next_free - insert_index;
1076 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1077 		memmove(&el->l_recs[insert_index + 1],
1078 			&el->l_recs[insert_index],
1079 			num_bytes);
1080 	}
1081 
1082 	/*
1083 	 * Either we had an empty extent, and need to re-increment or
1084 	 * there was no empty extent on a non full rightmost leaf node,
1085 	 * in which case we still need to increment.
1086 	 */
1087 	next_free++;
1088 	el->l_next_free_rec = cpu_to_le16(next_free);
1089 	/*
1090 	 * Make sure none of the math above just messed up our tree.
1091 	 */
1092 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1093 
1094 	el->l_recs[insert_index] = *insert_rec;
1095 
1096 }
1097 
1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1099 {
1100 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1101 
1102 	BUG_ON(num_recs == 0);
1103 
1104 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1105 		num_recs--;
1106 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1107 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1108 		memset(&el->l_recs[num_recs], 0,
1109 		       sizeof(struct ocfs2_extent_rec));
1110 		el->l_next_free_rec = cpu_to_le16(num_recs);
1111 	}
1112 }
1113 
1114 /*
1115  * Create an empty extent record .
1116  *
1117  * l_next_free_rec may be updated.
1118  *
1119  * If an empty extent already exists do nothing.
1120  */
1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1122 {
1123 	int next_free = le16_to_cpu(el->l_next_free_rec);
1124 
1125 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1126 
1127 	if (next_free == 0)
1128 		goto set_and_inc;
1129 
1130 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1131 		return;
1132 
1133 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1134 			"Asked to create an empty extent in a full list:\n"
1135 			"count = %u, tree depth = %u",
1136 			le16_to_cpu(el->l_count),
1137 			le16_to_cpu(el->l_tree_depth));
1138 
1139 	ocfs2_shift_records_right(el);
1140 
1141 set_and_inc:
1142 	le16_add_cpu(&el->l_next_free_rec, 1);
1143 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1144 }
1145 
1146 /*
1147  * For a rotation which involves two leaf nodes, the "root node" is
1148  * the lowest level tree node which contains a path to both leafs. This
1149  * resulting set of information can be used to form a complete "subtree"
1150  *
1151  * This function is passed two full paths from the dinode down to a
1152  * pair of adjacent leaves. It's task is to figure out which path
1153  * index contains the subtree root - this can be the root index itself
1154  * in a worst-case rotation.
1155  *
1156  * The array index of the subtree root is passed back.
1157  */
1158 static int ocfs2_find_subtree_root(struct inode *inode,
1159 				   struct ocfs2_path *left,
1160 				   struct ocfs2_path *right)
1161 {
1162 	int i = 0;
1163 
1164 	/*
1165 	 * Check that the caller passed in two paths from the same tree.
1166 	 */
1167 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1168 
1169 	do {
1170 		i++;
1171 
1172 		/*
1173 		 * The caller didn't pass two adjacent paths.
1174 		 */
1175 		mlog_bug_on_msg(i > left->p_tree_depth,
1176 				"Inode %lu, left depth %u, right depth %u\n"
1177 				"left leaf blk %llu, right leaf blk %llu\n",
1178 				inode->i_ino, left->p_tree_depth,
1179 				right->p_tree_depth,
1180 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1181 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1182 	} while (left->p_node[i].bh->b_blocknr ==
1183 		 right->p_node[i].bh->b_blocknr);
1184 
1185 	return i - 1;
1186 }
1187 
1188 typedef void (path_insert_t)(void *, struct buffer_head *);
1189 
1190 /*
1191  * Traverse a btree path in search of cpos, starting at root_el.
1192  *
1193  * This code can be called with a cpos larger than the tree, in which
1194  * case it will return the rightmost path.
1195  */
1196 static int __ocfs2_find_path(struct inode *inode,
1197 			     struct ocfs2_extent_list *root_el, u32 cpos,
1198 			     path_insert_t *func, void *data)
1199 {
1200 	int i, ret = 0;
1201 	u32 range;
1202 	u64 blkno;
1203 	struct buffer_head *bh = NULL;
1204 	struct ocfs2_extent_block *eb;
1205 	struct ocfs2_extent_list *el;
1206 	struct ocfs2_extent_rec *rec;
1207 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1208 
1209 	el = root_el;
1210 	while (el->l_tree_depth) {
1211 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1212 			ocfs2_error(inode->i_sb,
1213 				    "Inode %llu has empty extent list at "
1214 				    "depth %u\n",
1215 				    (unsigned long long)oi->ip_blkno,
1216 				    le16_to_cpu(el->l_tree_depth));
1217 			ret = -EROFS;
1218 			goto out;
1219 
1220 		}
1221 
1222 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1223 			rec = &el->l_recs[i];
1224 
1225 			/*
1226 			 * In the case that cpos is off the allocation
1227 			 * tree, this should just wind up returning the
1228 			 * rightmost record.
1229 			 */
1230 			range = le32_to_cpu(rec->e_cpos) +
1231 				ocfs2_rec_clusters(el, rec);
1232 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1233 			    break;
1234 		}
1235 
1236 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1237 		if (blkno == 0) {
1238 			ocfs2_error(inode->i_sb,
1239 				    "Inode %llu has bad blkno in extent list "
1240 				    "at depth %u (index %d)\n",
1241 				    (unsigned long long)oi->ip_blkno,
1242 				    le16_to_cpu(el->l_tree_depth), i);
1243 			ret = -EROFS;
1244 			goto out;
1245 		}
1246 
1247 		brelse(bh);
1248 		bh = NULL;
1249 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1250 				       &bh, OCFS2_BH_CACHED, inode);
1251 		if (ret) {
1252 			mlog_errno(ret);
1253 			goto out;
1254 		}
1255 
1256 		eb = (struct ocfs2_extent_block *) bh->b_data;
1257 		el = &eb->h_list;
1258 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1259 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1260 			ret = -EIO;
1261 			goto out;
1262 		}
1263 
1264 		if (le16_to_cpu(el->l_next_free_rec) >
1265 		    le16_to_cpu(el->l_count)) {
1266 			ocfs2_error(inode->i_sb,
1267 				    "Inode %llu has bad count in extent list "
1268 				    "at block %llu (next free=%u, count=%u)\n",
1269 				    (unsigned long long)oi->ip_blkno,
1270 				    (unsigned long long)bh->b_blocknr,
1271 				    le16_to_cpu(el->l_next_free_rec),
1272 				    le16_to_cpu(el->l_count));
1273 			ret = -EROFS;
1274 			goto out;
1275 		}
1276 
1277 		if (func)
1278 			func(data, bh);
1279 	}
1280 
1281 out:
1282 	/*
1283 	 * Catch any trailing bh that the loop didn't handle.
1284 	 */
1285 	brelse(bh);
1286 
1287 	return ret;
1288 }
1289 
1290 /*
1291  * Given an initialized path (that is, it has a valid root extent
1292  * list), this function will traverse the btree in search of the path
1293  * which would contain cpos.
1294  *
1295  * The path traveled is recorded in the path structure.
1296  *
1297  * Note that this will not do any comparisons on leaf node extent
1298  * records, so it will work fine in the case that we just added a tree
1299  * branch.
1300  */
1301 struct find_path_data {
1302 	int index;
1303 	struct ocfs2_path *path;
1304 };
1305 static void find_path_ins(void *data, struct buffer_head *bh)
1306 {
1307 	struct find_path_data *fp = data;
1308 
1309 	get_bh(bh);
1310 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1311 	fp->index++;
1312 }
1313 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1314 			   u32 cpos)
1315 {
1316 	struct find_path_data data;
1317 
1318 	data.index = 1;
1319 	data.path = path;
1320 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1321 				 find_path_ins, &data);
1322 }
1323 
1324 static void find_leaf_ins(void *data, struct buffer_head *bh)
1325 {
1326 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1327 	struct ocfs2_extent_list *el = &eb->h_list;
1328 	struct buffer_head **ret = data;
1329 
1330 	/* We want to retain only the leaf block. */
1331 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1332 		get_bh(bh);
1333 		*ret = bh;
1334 	}
1335 }
1336 /*
1337  * Find the leaf block in the tree which would contain cpos. No
1338  * checking of the actual leaf is done.
1339  *
1340  * Some paths want to call this instead of allocating a path structure
1341  * and calling ocfs2_find_path().
1342  *
1343  * This function doesn't handle non btree extent lists.
1344  */
1345 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1346 		    u32 cpos, struct buffer_head **leaf_bh)
1347 {
1348 	int ret;
1349 	struct buffer_head *bh = NULL;
1350 
1351 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1352 	if (ret) {
1353 		mlog_errno(ret);
1354 		goto out;
1355 	}
1356 
1357 	*leaf_bh = bh;
1358 out:
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1364  *
1365  * Basically, we've moved stuff around at the bottom of the tree and
1366  * we need to fix up the extent records above the changes to reflect
1367  * the new changes.
1368  *
1369  * left_rec: the record on the left.
1370  * left_child_el: is the child list pointed to by left_rec
1371  * right_rec: the record to the right of left_rec
1372  * right_child_el: is the child list pointed to by right_rec
1373  *
1374  * By definition, this only works on interior nodes.
1375  */
1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1377 				  struct ocfs2_extent_list *left_child_el,
1378 				  struct ocfs2_extent_rec *right_rec,
1379 				  struct ocfs2_extent_list *right_child_el)
1380 {
1381 	u32 left_clusters, right_end;
1382 
1383 	/*
1384 	 * Interior nodes never have holes. Their cpos is the cpos of
1385 	 * the leftmost record in their child list. Their cluster
1386 	 * count covers the full theoretical range of their child list
1387 	 * - the range between their cpos and the cpos of the record
1388 	 * immediately to their right.
1389 	 */
1390 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1391 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1392 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1393 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1394 	}
1395 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1396 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1397 
1398 	/*
1399 	 * Calculate the rightmost cluster count boundary before
1400 	 * moving cpos - we will need to adjust clusters after
1401 	 * updating e_cpos to keep the same highest cluster count.
1402 	 */
1403 	right_end = le32_to_cpu(right_rec->e_cpos);
1404 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1405 
1406 	right_rec->e_cpos = left_rec->e_cpos;
1407 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1408 
1409 	right_end -= le32_to_cpu(right_rec->e_cpos);
1410 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1411 }
1412 
1413 /*
1414  * Adjust the adjacent root node records involved in a
1415  * rotation. left_el_blkno is passed in as a key so that we can easily
1416  * find it's index in the root list.
1417  */
1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1419 				      struct ocfs2_extent_list *left_el,
1420 				      struct ocfs2_extent_list *right_el,
1421 				      u64 left_el_blkno)
1422 {
1423 	int i;
1424 
1425 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1426 	       le16_to_cpu(left_el->l_tree_depth));
1427 
1428 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1429 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1430 			break;
1431 	}
1432 
1433 	/*
1434 	 * The path walking code should have never returned a root and
1435 	 * two paths which are not adjacent.
1436 	 */
1437 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1438 
1439 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1440 				      &root_el->l_recs[i + 1], right_el);
1441 }
1442 
1443 /*
1444  * We've changed a leaf block (in right_path) and need to reflect that
1445  * change back up the subtree.
1446  *
1447  * This happens in multiple places:
1448  *   - When we've moved an extent record from the left path leaf to the right
1449  *     path leaf to make room for an empty extent in the left path leaf.
1450  *   - When our insert into the right path leaf is at the leftmost edge
1451  *     and requires an update of the path immediately to it's left. This
1452  *     can occur at the end of some types of rotation and appending inserts.
1453  */
1454 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1455 				       struct ocfs2_path *left_path,
1456 				       struct ocfs2_path *right_path,
1457 				       int subtree_index)
1458 {
1459 	int ret, i, idx;
1460 	struct ocfs2_extent_list *el, *left_el, *right_el;
1461 	struct ocfs2_extent_rec *left_rec, *right_rec;
1462 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1463 
1464 	/*
1465 	 * Update the counts and position values within all the
1466 	 * interior nodes to reflect the leaf rotation we just did.
1467 	 *
1468 	 * The root node is handled below the loop.
1469 	 *
1470 	 * We begin the loop with right_el and left_el pointing to the
1471 	 * leaf lists and work our way up.
1472 	 *
1473 	 * NOTE: within this loop, left_el and right_el always refer
1474 	 * to the *child* lists.
1475 	 */
1476 	left_el = path_leaf_el(left_path);
1477 	right_el = path_leaf_el(right_path);
1478 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1479 		mlog(0, "Adjust records at index %u\n", i);
1480 
1481 		/*
1482 		 * One nice property of knowing that all of these
1483 		 * nodes are below the root is that we only deal with
1484 		 * the leftmost right node record and the rightmost
1485 		 * left node record.
1486 		 */
1487 		el = left_path->p_node[i].el;
1488 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1489 		left_rec = &el->l_recs[idx];
1490 
1491 		el = right_path->p_node[i].el;
1492 		right_rec = &el->l_recs[0];
1493 
1494 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1495 					      right_el);
1496 
1497 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1498 		if (ret)
1499 			mlog_errno(ret);
1500 
1501 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1502 		if (ret)
1503 			mlog_errno(ret);
1504 
1505 		/*
1506 		 * Setup our list pointers now so that the current
1507 		 * parents become children in the next iteration.
1508 		 */
1509 		left_el = left_path->p_node[i].el;
1510 		right_el = right_path->p_node[i].el;
1511 	}
1512 
1513 	/*
1514 	 * At the root node, adjust the two adjacent records which
1515 	 * begin our path to the leaves.
1516 	 */
1517 
1518 	el = left_path->p_node[subtree_index].el;
1519 	left_el = left_path->p_node[subtree_index + 1].el;
1520 	right_el = right_path->p_node[subtree_index + 1].el;
1521 
1522 	ocfs2_adjust_root_records(el, left_el, right_el,
1523 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1524 
1525 	root_bh = left_path->p_node[subtree_index].bh;
1526 
1527 	ret = ocfs2_journal_dirty(handle, root_bh);
1528 	if (ret)
1529 		mlog_errno(ret);
1530 }
1531 
1532 static int ocfs2_rotate_subtree_right(struct inode *inode,
1533 				      handle_t *handle,
1534 				      struct ocfs2_path *left_path,
1535 				      struct ocfs2_path *right_path,
1536 				      int subtree_index)
1537 {
1538 	int ret, i;
1539 	struct buffer_head *right_leaf_bh;
1540 	struct buffer_head *left_leaf_bh = NULL;
1541 	struct buffer_head *root_bh;
1542 	struct ocfs2_extent_list *right_el, *left_el;
1543 	struct ocfs2_extent_rec move_rec;
1544 
1545 	left_leaf_bh = path_leaf_bh(left_path);
1546 	left_el = path_leaf_el(left_path);
1547 
1548 	if (left_el->l_next_free_rec != left_el->l_count) {
1549 		ocfs2_error(inode->i_sb,
1550 			    "Inode %llu has non-full interior leaf node %llu"
1551 			    "(next free = %u)",
1552 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1553 			    (unsigned long long)left_leaf_bh->b_blocknr,
1554 			    le16_to_cpu(left_el->l_next_free_rec));
1555 		return -EROFS;
1556 	}
1557 
1558 	/*
1559 	 * This extent block may already have an empty record, so we
1560 	 * return early if so.
1561 	 */
1562 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1563 		return 0;
1564 
1565 	root_bh = left_path->p_node[subtree_index].bh;
1566 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1567 
1568 	ret = ocfs2_journal_access(handle, inode, root_bh,
1569 				   OCFS2_JOURNAL_ACCESS_WRITE);
1570 	if (ret) {
1571 		mlog_errno(ret);
1572 		goto out;
1573 	}
1574 
1575 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1576 		ret = ocfs2_journal_access(handle, inode,
1577 					   right_path->p_node[i].bh,
1578 					   OCFS2_JOURNAL_ACCESS_WRITE);
1579 		if (ret) {
1580 			mlog_errno(ret);
1581 			goto out;
1582 		}
1583 
1584 		ret = ocfs2_journal_access(handle, inode,
1585 					   left_path->p_node[i].bh,
1586 					   OCFS2_JOURNAL_ACCESS_WRITE);
1587 		if (ret) {
1588 			mlog_errno(ret);
1589 			goto out;
1590 		}
1591 	}
1592 
1593 	right_leaf_bh = path_leaf_bh(right_path);
1594 	right_el = path_leaf_el(right_path);
1595 
1596 	/* This is a code error, not a disk corruption. */
1597 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1598 			"because rightmost leaf block %llu is empty\n",
1599 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1600 			(unsigned long long)right_leaf_bh->b_blocknr);
1601 
1602 	ocfs2_create_empty_extent(right_el);
1603 
1604 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1605 	if (ret) {
1606 		mlog_errno(ret);
1607 		goto out;
1608 	}
1609 
1610 	/* Do the copy now. */
1611 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1612 	move_rec = left_el->l_recs[i];
1613 	right_el->l_recs[0] = move_rec;
1614 
1615 	/*
1616 	 * Clear out the record we just copied and shift everything
1617 	 * over, leaving an empty extent in the left leaf.
1618 	 *
1619 	 * We temporarily subtract from next_free_rec so that the
1620 	 * shift will lose the tail record (which is now defunct).
1621 	 */
1622 	le16_add_cpu(&left_el->l_next_free_rec, -1);
1623 	ocfs2_shift_records_right(left_el);
1624 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1625 	le16_add_cpu(&left_el->l_next_free_rec, 1);
1626 
1627 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1628 	if (ret) {
1629 		mlog_errno(ret);
1630 		goto out;
1631 	}
1632 
1633 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1634 				subtree_index);
1635 
1636 out:
1637 	return ret;
1638 }
1639 
1640 /*
1641  * Given a full path, determine what cpos value would return us a path
1642  * containing the leaf immediately to the left of the current one.
1643  *
1644  * Will return zero if the path passed in is already the leftmost path.
1645  */
1646 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1647 					 struct ocfs2_path *path, u32 *cpos)
1648 {
1649 	int i, j, ret = 0;
1650 	u64 blkno;
1651 	struct ocfs2_extent_list *el;
1652 
1653 	BUG_ON(path->p_tree_depth == 0);
1654 
1655 	*cpos = 0;
1656 
1657 	blkno = path_leaf_bh(path)->b_blocknr;
1658 
1659 	/* Start at the tree node just above the leaf and work our way up. */
1660 	i = path->p_tree_depth - 1;
1661 	while (i >= 0) {
1662 		el = path->p_node[i].el;
1663 
1664 		/*
1665 		 * Find the extent record just before the one in our
1666 		 * path.
1667 		 */
1668 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1669 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1670 				if (j == 0) {
1671 					if (i == 0) {
1672 						/*
1673 						 * We've determined that the
1674 						 * path specified is already
1675 						 * the leftmost one - return a
1676 						 * cpos of zero.
1677 						 */
1678 						goto out;
1679 					}
1680 					/*
1681 					 * The leftmost record points to our
1682 					 * leaf - we need to travel up the
1683 					 * tree one level.
1684 					 */
1685 					goto next_node;
1686 				}
1687 
1688 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1689 				*cpos = *cpos + ocfs2_rec_clusters(el,
1690 							   &el->l_recs[j - 1]);
1691 				*cpos = *cpos - 1;
1692 				goto out;
1693 			}
1694 		}
1695 
1696 		/*
1697 		 * If we got here, we never found a valid node where
1698 		 * the tree indicated one should be.
1699 		 */
1700 		ocfs2_error(sb,
1701 			    "Invalid extent tree at extent block %llu\n",
1702 			    (unsigned long long)blkno);
1703 		ret = -EROFS;
1704 		goto out;
1705 
1706 next_node:
1707 		blkno = path->p_node[i].bh->b_blocknr;
1708 		i--;
1709 	}
1710 
1711 out:
1712 	return ret;
1713 }
1714 
1715 /*
1716  * Extend the transaction by enough credits to complete the rotation,
1717  * and still leave at least the original number of credits allocated
1718  * to this transaction.
1719  */
1720 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1721 					   int op_credits,
1722 					   struct ocfs2_path *path)
1723 {
1724 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1725 
1726 	if (handle->h_buffer_credits < credits)
1727 		return ocfs2_extend_trans(handle, credits);
1728 
1729 	return 0;
1730 }
1731 
1732 /*
1733  * Trap the case where we're inserting into the theoretical range past
1734  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1735  * whose cpos is less than ours into the right leaf.
1736  *
1737  * It's only necessary to look at the rightmost record of the left
1738  * leaf because the logic that calls us should ensure that the
1739  * theoretical ranges in the path components above the leaves are
1740  * correct.
1741  */
1742 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1743 						 u32 insert_cpos)
1744 {
1745 	struct ocfs2_extent_list *left_el;
1746 	struct ocfs2_extent_rec *rec;
1747 	int next_free;
1748 
1749 	left_el = path_leaf_el(left_path);
1750 	next_free = le16_to_cpu(left_el->l_next_free_rec);
1751 	rec = &left_el->l_recs[next_free - 1];
1752 
1753 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
1754 		return 1;
1755 	return 0;
1756 }
1757 
1758 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1759 {
1760 	int next_free = le16_to_cpu(el->l_next_free_rec);
1761 	unsigned int range;
1762 	struct ocfs2_extent_rec *rec;
1763 
1764 	if (next_free == 0)
1765 		return 0;
1766 
1767 	rec = &el->l_recs[0];
1768 	if (ocfs2_is_empty_extent(rec)) {
1769 		/* Empty list. */
1770 		if (next_free == 1)
1771 			return 0;
1772 		rec = &el->l_recs[1];
1773 	}
1774 
1775 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1776 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1777 		return 1;
1778 	return 0;
1779 }
1780 
1781 /*
1782  * Rotate all the records in a btree right one record, starting at insert_cpos.
1783  *
1784  * The path to the rightmost leaf should be passed in.
1785  *
1786  * The array is assumed to be large enough to hold an entire path (tree depth).
1787  *
1788  * Upon succesful return from this function:
1789  *
1790  * - The 'right_path' array will contain a path to the leaf block
1791  *   whose range contains e_cpos.
1792  * - That leaf block will have a single empty extent in list index 0.
1793  * - In the case that the rotation requires a post-insert update,
1794  *   *ret_left_path will contain a valid path which can be passed to
1795  *   ocfs2_insert_path().
1796  */
1797 static int ocfs2_rotate_tree_right(struct inode *inode,
1798 				   handle_t *handle,
1799 				   enum ocfs2_split_type split,
1800 				   u32 insert_cpos,
1801 				   struct ocfs2_path *right_path,
1802 				   struct ocfs2_path **ret_left_path)
1803 {
1804 	int ret, start, orig_credits = handle->h_buffer_credits;
1805 	u32 cpos;
1806 	struct ocfs2_path *left_path = NULL;
1807 
1808 	*ret_left_path = NULL;
1809 
1810 	left_path = ocfs2_new_path(path_root_bh(right_path),
1811 				   path_root_el(right_path));
1812 	if (!left_path) {
1813 		ret = -ENOMEM;
1814 		mlog_errno(ret);
1815 		goto out;
1816 	}
1817 
1818 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1819 	if (ret) {
1820 		mlog_errno(ret);
1821 		goto out;
1822 	}
1823 
1824 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1825 
1826 	/*
1827 	 * What we want to do here is:
1828 	 *
1829 	 * 1) Start with the rightmost path.
1830 	 *
1831 	 * 2) Determine a path to the leaf block directly to the left
1832 	 *    of that leaf.
1833 	 *
1834 	 * 3) Determine the 'subtree root' - the lowest level tree node
1835 	 *    which contains a path to both leaves.
1836 	 *
1837 	 * 4) Rotate the subtree.
1838 	 *
1839 	 * 5) Find the next subtree by considering the left path to be
1840 	 *    the new right path.
1841 	 *
1842 	 * The check at the top of this while loop also accepts
1843 	 * insert_cpos == cpos because cpos is only a _theoretical_
1844 	 * value to get us the left path - insert_cpos might very well
1845 	 * be filling that hole.
1846 	 *
1847 	 * Stop at a cpos of '0' because we either started at the
1848 	 * leftmost branch (i.e., a tree with one branch and a
1849 	 * rotation inside of it), or we've gone as far as we can in
1850 	 * rotating subtrees.
1851 	 */
1852 	while (cpos && insert_cpos <= cpos) {
1853 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1854 		     insert_cpos, cpos);
1855 
1856 		ret = ocfs2_find_path(inode, left_path, cpos);
1857 		if (ret) {
1858 			mlog_errno(ret);
1859 			goto out;
1860 		}
1861 
1862 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
1863 				path_leaf_bh(right_path),
1864 				"Inode %lu: error during insert of %u "
1865 				"(left path cpos %u) results in two identical "
1866 				"paths ending at %llu\n",
1867 				inode->i_ino, insert_cpos, cpos,
1868 				(unsigned long long)
1869 				path_leaf_bh(left_path)->b_blocknr);
1870 
1871 		if (split == SPLIT_NONE &&
1872 		    ocfs2_rotate_requires_path_adjustment(left_path,
1873 							  insert_cpos)) {
1874 
1875 			/*
1876 			 * We've rotated the tree as much as we
1877 			 * should. The rest is up to
1878 			 * ocfs2_insert_path() to complete, after the
1879 			 * record insertion. We indicate this
1880 			 * situation by returning the left path.
1881 			 *
1882 			 * The reason we don't adjust the records here
1883 			 * before the record insert is that an error
1884 			 * later might break the rule where a parent
1885 			 * record e_cpos will reflect the actual
1886 			 * e_cpos of the 1st nonempty record of the
1887 			 * child list.
1888 			 */
1889 			*ret_left_path = left_path;
1890 			goto out_ret_path;
1891 		}
1892 
1893 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
1894 
1895 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1896 		     start,
1897 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1898 		     right_path->p_tree_depth);
1899 
1900 		ret = ocfs2_extend_rotate_transaction(handle, start,
1901 						      orig_credits, right_path);
1902 		if (ret) {
1903 			mlog_errno(ret);
1904 			goto out;
1905 		}
1906 
1907 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1908 						 right_path, start);
1909 		if (ret) {
1910 			mlog_errno(ret);
1911 			goto out;
1912 		}
1913 
1914 		if (split != SPLIT_NONE &&
1915 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1916 						insert_cpos)) {
1917 			/*
1918 			 * A rotate moves the rightmost left leaf
1919 			 * record over to the leftmost right leaf
1920 			 * slot. If we're doing an extent split
1921 			 * instead of a real insert, then we have to
1922 			 * check that the extent to be split wasn't
1923 			 * just moved over. If it was, then we can
1924 			 * exit here, passing left_path back -
1925 			 * ocfs2_split_extent() is smart enough to
1926 			 * search both leaves.
1927 			 */
1928 			*ret_left_path = left_path;
1929 			goto out_ret_path;
1930 		}
1931 
1932 		/*
1933 		 * There is no need to re-read the next right path
1934 		 * as we know that it'll be our current left
1935 		 * path. Optimize by copying values instead.
1936 		 */
1937 		ocfs2_mv_path(right_path, left_path);
1938 
1939 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1940 						    &cpos);
1941 		if (ret) {
1942 			mlog_errno(ret);
1943 			goto out;
1944 		}
1945 	}
1946 
1947 out:
1948 	ocfs2_free_path(left_path);
1949 
1950 out_ret_path:
1951 	return ret;
1952 }
1953 
1954 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1955 				      struct ocfs2_path *path)
1956 {
1957 	int i, idx;
1958 	struct ocfs2_extent_rec *rec;
1959 	struct ocfs2_extent_list *el;
1960 	struct ocfs2_extent_block *eb;
1961 	u32 range;
1962 
1963 	/* Path should always be rightmost. */
1964 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1965 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
1966 
1967 	el = &eb->h_list;
1968 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1969 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
1970 	rec = &el->l_recs[idx];
1971 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1972 
1973 	for (i = 0; i < path->p_tree_depth; i++) {
1974 		el = path->p_node[i].el;
1975 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
1976 		rec = &el->l_recs[idx];
1977 
1978 		rec->e_int_clusters = cpu_to_le32(range);
1979 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1980 
1981 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
1982 	}
1983 }
1984 
1985 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1986 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
1987 			      struct ocfs2_path *path, int unlink_start)
1988 {
1989 	int ret, i;
1990 	struct ocfs2_extent_block *eb;
1991 	struct ocfs2_extent_list *el;
1992 	struct buffer_head *bh;
1993 
1994 	for(i = unlink_start; i < path_num_items(path); i++) {
1995 		bh = path->p_node[i].bh;
1996 
1997 		eb = (struct ocfs2_extent_block *)bh->b_data;
1998 		/*
1999 		 * Not all nodes might have had their final count
2000 		 * decremented by the caller - handle this here.
2001 		 */
2002 		el = &eb->h_list;
2003 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2004 			mlog(ML_ERROR,
2005 			     "Inode %llu, attempted to remove extent block "
2006 			     "%llu with %u records\n",
2007 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2008 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2009 			     le16_to_cpu(el->l_next_free_rec));
2010 
2011 			ocfs2_journal_dirty(handle, bh);
2012 			ocfs2_remove_from_cache(inode, bh);
2013 			continue;
2014 		}
2015 
2016 		el->l_next_free_rec = 0;
2017 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2018 
2019 		ocfs2_journal_dirty(handle, bh);
2020 
2021 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2022 		if (ret)
2023 			mlog_errno(ret);
2024 
2025 		ocfs2_remove_from_cache(inode, bh);
2026 	}
2027 }
2028 
2029 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2030 				 struct ocfs2_path *left_path,
2031 				 struct ocfs2_path *right_path,
2032 				 int subtree_index,
2033 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2034 {
2035 	int i;
2036 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2037 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2038 	struct ocfs2_extent_list *el;
2039 	struct ocfs2_extent_block *eb;
2040 
2041 	el = path_leaf_el(left_path);
2042 
2043 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2044 
2045 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2046 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2047 			break;
2048 
2049 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2050 
2051 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2052 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2053 
2054 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2055 	eb->h_next_leaf_blk = 0;
2056 
2057 	ocfs2_journal_dirty(handle, root_bh);
2058 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2059 
2060 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2061 			  subtree_index + 1);
2062 }
2063 
2064 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2065 				     struct ocfs2_path *left_path,
2066 				     struct ocfs2_path *right_path,
2067 				     int subtree_index,
2068 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2069 				     int *deleted)
2070 {
2071 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2072 	struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2073 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2074 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2075 	struct ocfs2_extent_block *eb;
2076 
2077 	*deleted = 0;
2078 
2079 	right_leaf_el = path_leaf_el(right_path);
2080 	left_leaf_el = path_leaf_el(left_path);
2081 	root_bh = left_path->p_node[subtree_index].bh;
2082 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083 
2084 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2085 		return 0;
2086 
2087 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2088 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2089 		/*
2090 		 * It's legal for us to proceed if the right leaf is
2091 		 * the rightmost one and it has an empty extent. There
2092 		 * are two cases to handle - whether the leaf will be
2093 		 * empty after removal or not. If the leaf isn't empty
2094 		 * then just remove the empty extent up front. The
2095 		 * next block will handle empty leaves by flagging
2096 		 * them for unlink.
2097 		 *
2098 		 * Non rightmost leaves will throw -EAGAIN and the
2099 		 * caller can manually move the subtree and retry.
2100 		 */
2101 
2102 		if (eb->h_next_leaf_blk != 0ULL)
2103 			return -EAGAIN;
2104 
2105 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2106 			ret = ocfs2_journal_access(handle, inode,
2107 						   path_leaf_bh(right_path),
2108 						   OCFS2_JOURNAL_ACCESS_WRITE);
2109 			if (ret) {
2110 				mlog_errno(ret);
2111 				goto out;
2112 			}
2113 
2114 			ocfs2_remove_empty_extent(right_leaf_el);
2115 		} else
2116 			right_has_empty = 1;
2117 	}
2118 
2119 	if (eb->h_next_leaf_blk == 0ULL &&
2120 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2121 		/*
2122 		 * We have to update i_last_eb_blk during the meta
2123 		 * data delete.
2124 		 */
2125 		ret = ocfs2_journal_access(handle, inode, di_bh,
2126 					   OCFS2_JOURNAL_ACCESS_WRITE);
2127 		if (ret) {
2128 			mlog_errno(ret);
2129 			goto out;
2130 		}
2131 
2132 		del_right_subtree = 1;
2133 	}
2134 
2135 	/*
2136 	 * Getting here with an empty extent in the right path implies
2137 	 * that it's the rightmost path and will be deleted.
2138 	 */
2139 	BUG_ON(right_has_empty && !del_right_subtree);
2140 
2141 	ret = ocfs2_journal_access(handle, inode, root_bh,
2142 				   OCFS2_JOURNAL_ACCESS_WRITE);
2143 	if (ret) {
2144 		mlog_errno(ret);
2145 		goto out;
2146 	}
2147 
2148 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2149 		ret = ocfs2_journal_access(handle, inode,
2150 					   right_path->p_node[i].bh,
2151 					   OCFS2_JOURNAL_ACCESS_WRITE);
2152 		if (ret) {
2153 			mlog_errno(ret);
2154 			goto out;
2155 		}
2156 
2157 		ret = ocfs2_journal_access(handle, inode,
2158 					   left_path->p_node[i].bh,
2159 					   OCFS2_JOURNAL_ACCESS_WRITE);
2160 		if (ret) {
2161 			mlog_errno(ret);
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	if (!right_has_empty) {
2167 		/*
2168 		 * Only do this if we're moving a real
2169 		 * record. Otherwise, the action is delayed until
2170 		 * after removal of the right path in which case we
2171 		 * can do a simple shift to remove the empty extent.
2172 		 */
2173 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2174 		memset(&right_leaf_el->l_recs[0], 0,
2175 		       sizeof(struct ocfs2_extent_rec));
2176 	}
2177 	if (eb->h_next_leaf_blk == 0ULL) {
2178 		/*
2179 		 * Move recs over to get rid of empty extent, decrease
2180 		 * next_free. This is allowed to remove the last
2181 		 * extent in our leaf (setting l_next_free_rec to
2182 		 * zero) - the delete code below won't care.
2183 		 */
2184 		ocfs2_remove_empty_extent(right_leaf_el);
2185 	}
2186 
2187 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2188 	if (ret)
2189 		mlog_errno(ret);
2190 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2191 	if (ret)
2192 		mlog_errno(ret);
2193 
2194 	if (del_right_subtree) {
2195 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2196 				     subtree_index, dealloc);
2197 		ocfs2_update_edge_lengths(inode, handle, left_path);
2198 
2199 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2200 		di->i_last_eb_blk = eb->h_blkno;
2201 
2202 		/*
2203 		 * Removal of the extent in the left leaf was skipped
2204 		 * above so we could delete the right path
2205 		 * 1st.
2206 		 */
2207 		if (right_has_empty)
2208 			ocfs2_remove_empty_extent(left_leaf_el);
2209 
2210 		ret = ocfs2_journal_dirty(handle, di_bh);
2211 		if (ret)
2212 			mlog_errno(ret);
2213 
2214 		*deleted = 1;
2215 	} else
2216 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2217 					   subtree_index);
2218 
2219 out:
2220 	return ret;
2221 }
2222 
2223 /*
2224  * Given a full path, determine what cpos value would return us a path
2225  * containing the leaf immediately to the right of the current one.
2226  *
2227  * Will return zero if the path passed in is already the rightmost path.
2228  *
2229  * This looks similar, but is subtly different to
2230  * ocfs2_find_cpos_for_left_leaf().
2231  */
2232 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2233 					  struct ocfs2_path *path, u32 *cpos)
2234 {
2235 	int i, j, ret = 0;
2236 	u64 blkno;
2237 	struct ocfs2_extent_list *el;
2238 
2239 	*cpos = 0;
2240 
2241 	if (path->p_tree_depth == 0)
2242 		return 0;
2243 
2244 	blkno = path_leaf_bh(path)->b_blocknr;
2245 
2246 	/* Start at the tree node just above the leaf and work our way up. */
2247 	i = path->p_tree_depth - 1;
2248 	while (i >= 0) {
2249 		int next_free;
2250 
2251 		el = path->p_node[i].el;
2252 
2253 		/*
2254 		 * Find the extent record just after the one in our
2255 		 * path.
2256 		 */
2257 		next_free = le16_to_cpu(el->l_next_free_rec);
2258 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2259 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2260 				if (j == (next_free - 1)) {
2261 					if (i == 0) {
2262 						/*
2263 						 * We've determined that the
2264 						 * path specified is already
2265 						 * the rightmost one - return a
2266 						 * cpos of zero.
2267 						 */
2268 						goto out;
2269 					}
2270 					/*
2271 					 * The rightmost record points to our
2272 					 * leaf - we need to travel up the
2273 					 * tree one level.
2274 					 */
2275 					goto next_node;
2276 				}
2277 
2278 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2279 				goto out;
2280 			}
2281 		}
2282 
2283 		/*
2284 		 * If we got here, we never found a valid node where
2285 		 * the tree indicated one should be.
2286 		 */
2287 		ocfs2_error(sb,
2288 			    "Invalid extent tree at extent block %llu\n",
2289 			    (unsigned long long)blkno);
2290 		ret = -EROFS;
2291 		goto out;
2292 
2293 next_node:
2294 		blkno = path->p_node[i].bh->b_blocknr;
2295 		i--;
2296 	}
2297 
2298 out:
2299 	return ret;
2300 }
2301 
2302 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2303 					    handle_t *handle,
2304 					    struct buffer_head *bh,
2305 					    struct ocfs2_extent_list *el)
2306 {
2307 	int ret;
2308 
2309 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2310 		return 0;
2311 
2312 	ret = ocfs2_journal_access(handle, inode, bh,
2313 				   OCFS2_JOURNAL_ACCESS_WRITE);
2314 	if (ret) {
2315 		mlog_errno(ret);
2316 		goto out;
2317 	}
2318 
2319 	ocfs2_remove_empty_extent(el);
2320 
2321 	ret = ocfs2_journal_dirty(handle, bh);
2322 	if (ret)
2323 		mlog_errno(ret);
2324 
2325 out:
2326 	return ret;
2327 }
2328 
2329 static int __ocfs2_rotate_tree_left(struct inode *inode,
2330 				    handle_t *handle, int orig_credits,
2331 				    struct ocfs2_path *path,
2332 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2333 				    struct ocfs2_path **empty_extent_path)
2334 {
2335 	int ret, subtree_root, deleted;
2336 	u32 right_cpos;
2337 	struct ocfs2_path *left_path = NULL;
2338 	struct ocfs2_path *right_path = NULL;
2339 
2340 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2341 
2342 	*empty_extent_path = NULL;
2343 
2344 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2345 					     &right_cpos);
2346 	if (ret) {
2347 		mlog_errno(ret);
2348 		goto out;
2349 	}
2350 
2351 	left_path = ocfs2_new_path(path_root_bh(path),
2352 				   path_root_el(path));
2353 	if (!left_path) {
2354 		ret = -ENOMEM;
2355 		mlog_errno(ret);
2356 		goto out;
2357 	}
2358 
2359 	ocfs2_cp_path(left_path, path);
2360 
2361 	right_path = ocfs2_new_path(path_root_bh(path),
2362 				    path_root_el(path));
2363 	if (!right_path) {
2364 		ret = -ENOMEM;
2365 		mlog_errno(ret);
2366 		goto out;
2367 	}
2368 
2369 	while (right_cpos) {
2370 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2371 		if (ret) {
2372 			mlog_errno(ret);
2373 			goto out;
2374 		}
2375 
2376 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2377 						       right_path);
2378 
2379 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2380 		     subtree_root,
2381 		     (unsigned long long)
2382 		     right_path->p_node[subtree_root].bh->b_blocknr,
2383 		     right_path->p_tree_depth);
2384 
2385 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2386 						      orig_credits, left_path);
2387 		if (ret) {
2388 			mlog_errno(ret);
2389 			goto out;
2390 		}
2391 
2392 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2393 						right_path, subtree_root,
2394 						dealloc, &deleted);
2395 		if (ret == -EAGAIN) {
2396 			/*
2397 			 * The rotation has to temporarily stop due to
2398 			 * the right subtree having an empty
2399 			 * extent. Pass it back to the caller for a
2400 			 * fixup.
2401 			 */
2402 			*empty_extent_path = right_path;
2403 			right_path = NULL;
2404 			goto out;
2405 		}
2406 		if (ret) {
2407 			mlog_errno(ret);
2408 			goto out;
2409 		}
2410 
2411 		/*
2412 		 * The subtree rotate might have removed records on
2413 		 * the rightmost edge. If so, then rotation is
2414 		 * complete.
2415 		 */
2416 		if (deleted)
2417 			break;
2418 
2419 		ocfs2_mv_path(left_path, right_path);
2420 
2421 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2422 						     &right_cpos);
2423 		if (ret) {
2424 			mlog_errno(ret);
2425 			goto out;
2426 		}
2427 	}
2428 
2429 out:
2430 	ocfs2_free_path(right_path);
2431 	ocfs2_free_path(left_path);
2432 
2433 	return ret;
2434 }
2435 
2436 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2437 				       struct ocfs2_path *path,
2438 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
2439 {
2440 	int ret, subtree_index;
2441 	u32 cpos;
2442 	struct ocfs2_path *left_path = NULL;
2443 	struct ocfs2_dinode *di;
2444 	struct ocfs2_extent_block *eb;
2445 	struct ocfs2_extent_list *el;
2446 
2447 	/*
2448 	 * XXX: This code assumes that the root is an inode, which is
2449 	 * true for now but may change as tree code gets generic.
2450 	 */
2451 	di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2452 	if (!OCFS2_IS_VALID_DINODE(di)) {
2453 		ret = -EIO;
2454 		ocfs2_error(inode->i_sb,
2455 			    "Inode %llu has invalid path root",
2456 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
2457 		goto out;
2458 	}
2459 
2460 	/*
2461 	 * There's two ways we handle this depending on
2462 	 * whether path is the only existing one.
2463 	 */
2464 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2465 					      handle->h_buffer_credits,
2466 					      path);
2467 	if (ret) {
2468 		mlog_errno(ret);
2469 		goto out;
2470 	}
2471 
2472 	ret = ocfs2_journal_access_path(inode, handle, path);
2473 	if (ret) {
2474 		mlog_errno(ret);
2475 		goto out;
2476 	}
2477 
2478 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2479 	if (ret) {
2480 		mlog_errno(ret);
2481 		goto out;
2482 	}
2483 
2484 	if (cpos) {
2485 		/*
2486 		 * We have a path to the left of this one - it needs
2487 		 * an update too.
2488 		 */
2489 		left_path = ocfs2_new_path(path_root_bh(path),
2490 					   path_root_el(path));
2491 		if (!left_path) {
2492 			ret = -ENOMEM;
2493 			mlog_errno(ret);
2494 			goto out;
2495 		}
2496 
2497 		ret = ocfs2_find_path(inode, left_path, cpos);
2498 		if (ret) {
2499 			mlog_errno(ret);
2500 			goto out;
2501 		}
2502 
2503 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2504 		if (ret) {
2505 			mlog_errno(ret);
2506 			goto out;
2507 		}
2508 
2509 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2510 
2511 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2512 				     subtree_index, dealloc);
2513 		ocfs2_update_edge_lengths(inode, handle, left_path);
2514 
2515 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2516 		di->i_last_eb_blk = eb->h_blkno;
2517 	} else {
2518 		/*
2519 		 * 'path' is also the leftmost path which
2520 		 * means it must be the only one. This gets
2521 		 * handled differently because we want to
2522 		 * revert the inode back to having extents
2523 		 * in-line.
2524 		 */
2525 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2526 
2527 		el = &di->id2.i_list;
2528 		el->l_tree_depth = 0;
2529 		el->l_next_free_rec = 0;
2530 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2531 
2532 		di->i_last_eb_blk = 0;
2533 	}
2534 
2535 	ocfs2_journal_dirty(handle, path_root_bh(path));
2536 
2537 out:
2538 	ocfs2_free_path(left_path);
2539 	return ret;
2540 }
2541 
2542 /*
2543  * Left rotation of btree records.
2544  *
2545  * In many ways, this is (unsurprisingly) the opposite of right
2546  * rotation. We start at some non-rightmost path containing an empty
2547  * extent in the leaf block. The code works its way to the rightmost
2548  * path by rotating records to the left in every subtree.
2549  *
2550  * This is used by any code which reduces the number of extent records
2551  * in a leaf. After removal, an empty record should be placed in the
2552  * leftmost list position.
2553  *
2554  * This won't handle a length update of the rightmost path records if
2555  * the rightmost tree leaf record is removed so the caller is
2556  * responsible for detecting and correcting that.
2557  */
2558 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2559 				  struct ocfs2_path *path,
2560 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
2561 {
2562 	int ret, orig_credits = handle->h_buffer_credits;
2563 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2564 	struct ocfs2_extent_block *eb;
2565 	struct ocfs2_extent_list *el;
2566 
2567 	el = path_leaf_el(path);
2568 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2569 		return 0;
2570 
2571 	if (path->p_tree_depth == 0) {
2572 rightmost_no_delete:
2573 		/*
2574 		 * In-inode extents. This is trivially handled, so do
2575 		 * it up front.
2576 		 */
2577 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2578 						       path_leaf_bh(path),
2579 						       path_leaf_el(path));
2580 		if (ret)
2581 			mlog_errno(ret);
2582 		goto out;
2583 	}
2584 
2585 	/*
2586 	 * Handle rightmost branch now. There's several cases:
2587 	 *  1) simple rotation leaving records in there. That's trivial.
2588 	 *  2) rotation requiring a branch delete - there's no more
2589 	 *     records left. Two cases of this:
2590 	 *     a) There are branches to the left.
2591 	 *     b) This is also the leftmost (the only) branch.
2592 	 *
2593 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2594 	 *  2a) we need the left branch so that we can update it with the unlink
2595 	 *  2b) we need to bring the inode back to inline extents.
2596 	 */
2597 
2598 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2599 	el = &eb->h_list;
2600 	if (eb->h_next_leaf_blk == 0) {
2601 		/*
2602 		 * This gets a bit tricky if we're going to delete the
2603 		 * rightmost path. Get the other cases out of the way
2604 		 * 1st.
2605 		 */
2606 		if (le16_to_cpu(el->l_next_free_rec) > 1)
2607 			goto rightmost_no_delete;
2608 
2609 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
2610 			ret = -EIO;
2611 			ocfs2_error(inode->i_sb,
2612 				    "Inode %llu has empty extent block at %llu",
2613 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2614 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
2615 			goto out;
2616 		}
2617 
2618 		/*
2619 		 * XXX: The caller can not trust "path" any more after
2620 		 * this as it will have been deleted. What do we do?
2621 		 *
2622 		 * In theory the rotate-for-merge code will never get
2623 		 * here because it'll always ask for a rotate in a
2624 		 * nonempty list.
2625 		 */
2626 
2627 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
2628 						  dealloc);
2629 		if (ret)
2630 			mlog_errno(ret);
2631 		goto out;
2632 	}
2633 
2634 	/*
2635 	 * Now we can loop, remembering the path we get from -EAGAIN
2636 	 * and restarting from there.
2637 	 */
2638 try_rotate:
2639 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2640 				       dealloc, &restart_path);
2641 	if (ret && ret != -EAGAIN) {
2642 		mlog_errno(ret);
2643 		goto out;
2644 	}
2645 
2646 	while (ret == -EAGAIN) {
2647 		tmp_path = restart_path;
2648 		restart_path = NULL;
2649 
2650 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2651 					       tmp_path, dealloc,
2652 					       &restart_path);
2653 		if (ret && ret != -EAGAIN) {
2654 			mlog_errno(ret);
2655 			goto out;
2656 		}
2657 
2658 		ocfs2_free_path(tmp_path);
2659 		tmp_path = NULL;
2660 
2661 		if (ret == 0)
2662 			goto try_rotate;
2663 	}
2664 
2665 out:
2666 	ocfs2_free_path(tmp_path);
2667 	ocfs2_free_path(restart_path);
2668 	return ret;
2669 }
2670 
2671 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2672 				int index)
2673 {
2674 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
2675 	unsigned int size;
2676 
2677 	if (rec->e_leaf_clusters == 0) {
2678 		/*
2679 		 * We consumed all of the merged-from record. An empty
2680 		 * extent cannot exist anywhere but the 1st array
2681 		 * position, so move things over if the merged-from
2682 		 * record doesn't occupy that position.
2683 		 *
2684 		 * This creates a new empty extent so the caller
2685 		 * should be smart enough to have removed any existing
2686 		 * ones.
2687 		 */
2688 		if (index > 0) {
2689 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2690 			size = index * sizeof(struct ocfs2_extent_rec);
2691 			memmove(&el->l_recs[1], &el->l_recs[0], size);
2692 		}
2693 
2694 		/*
2695 		 * Always memset - the caller doesn't check whether it
2696 		 * created an empty extent, so there could be junk in
2697 		 * the other fields.
2698 		 */
2699 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2700 	}
2701 }
2702 
2703 /*
2704  * Remove split_rec clusters from the record at index and merge them
2705  * onto the beginning of the record at index + 1.
2706  */
2707 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2708 				handle_t *handle,
2709 				struct ocfs2_extent_rec *split_rec,
2710 				struct ocfs2_extent_list *el, int index)
2711 {
2712 	int ret;
2713 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2714 	struct ocfs2_extent_rec *left_rec;
2715 	struct ocfs2_extent_rec *right_rec;
2716 
2717 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2718 
2719 	left_rec = &el->l_recs[index];
2720 	right_rec = &el->l_recs[index + 1];
2721 
2722 	ret = ocfs2_journal_access(handle, inode, bh,
2723 				   OCFS2_JOURNAL_ACCESS_WRITE);
2724 	if (ret) {
2725 		mlog_errno(ret);
2726 		goto out;
2727 	}
2728 
2729 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2730 
2731 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2732 	le64_add_cpu(&right_rec->e_blkno,
2733 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2734 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2735 
2736 	ocfs2_cleanup_merge(el, index);
2737 
2738 	ret = ocfs2_journal_dirty(handle, bh);
2739 	if (ret)
2740 		mlog_errno(ret);
2741 
2742 out:
2743 	return ret;
2744 }
2745 
2746 /*
2747  * Remove split_rec clusters from the record at index and merge them
2748  * onto the tail of the record at index - 1.
2749  */
2750 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2751 				handle_t *handle,
2752 				struct ocfs2_extent_rec *split_rec,
2753 				struct ocfs2_extent_list *el, int index)
2754 {
2755 	int ret, has_empty_extent = 0;
2756 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2757 	struct ocfs2_extent_rec *left_rec;
2758 	struct ocfs2_extent_rec *right_rec;
2759 
2760 	BUG_ON(index <= 0);
2761 
2762 	left_rec = &el->l_recs[index - 1];
2763 	right_rec = &el->l_recs[index];
2764 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
2765 		has_empty_extent = 1;
2766 
2767 	ret = ocfs2_journal_access(handle, inode, bh,
2768 				   OCFS2_JOURNAL_ACCESS_WRITE);
2769 	if (ret) {
2770 		mlog_errno(ret);
2771 		goto out;
2772 	}
2773 
2774 	if (has_empty_extent && index == 1) {
2775 		/*
2776 		 * The easy case - we can just plop the record right in.
2777 		 */
2778 		*left_rec = *split_rec;
2779 
2780 		has_empty_extent = 0;
2781 	} else {
2782 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2783 	}
2784 
2785 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
2786 	le64_add_cpu(&right_rec->e_blkno,
2787 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2788 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2789 
2790 	ocfs2_cleanup_merge(el, index);
2791 
2792 	ret = ocfs2_journal_dirty(handle, bh);
2793 	if (ret)
2794 		mlog_errno(ret);
2795 
2796 out:
2797 	return ret;
2798 }
2799 
2800 static int ocfs2_try_to_merge_extent(struct inode *inode,
2801 				     handle_t *handle,
2802 				     struct ocfs2_path *left_path,
2803 				     int split_index,
2804 				     struct ocfs2_extent_rec *split_rec,
2805 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2806 				     struct ocfs2_merge_ctxt *ctxt)
2807 
2808 {
2809 	int ret = 0;
2810 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
2811 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2812 
2813 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2814 
2815 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
2816 		/*
2817 		 * The merge code will need to create an empty
2818 		 * extent to take the place of the newly
2819 		 * emptied slot. Remove any pre-existing empty
2820 		 * extents - having more than one in a leaf is
2821 		 * illegal.
2822 		 */
2823 		ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2824 					     dealloc);
2825 		if (ret) {
2826 			mlog_errno(ret);
2827 			goto out;
2828 		}
2829 		split_index--;
2830 		rec = &el->l_recs[split_index];
2831 	}
2832 
2833 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2834 		/*
2835 		 * Left-right contig implies this.
2836 		 */
2837 		BUG_ON(!ctxt->c_split_covers_rec);
2838 		BUG_ON(split_index == 0);
2839 
2840 		/*
2841 		 * Since the leftright insert always covers the entire
2842 		 * extent, this call will delete the insert record
2843 		 * entirely, resulting in an empty extent record added to
2844 		 * the extent block.
2845 		 *
2846 		 * Since the adding of an empty extent shifts
2847 		 * everything back to the right, there's no need to
2848 		 * update split_index here.
2849 		 */
2850 		ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2851 					   handle, split_rec, el, split_index);
2852 		if (ret) {
2853 			mlog_errno(ret);
2854 			goto out;
2855 		}
2856 
2857 		/*
2858 		 * We can only get this from logic error above.
2859 		 */
2860 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2861 
2862 		/*
2863 		 * The left merge left us with an empty extent, remove
2864 		 * it.
2865 		 */
2866 		ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2867 		if (ret) {
2868 			mlog_errno(ret);
2869 			goto out;
2870 		}
2871 		split_index--;
2872 		rec = &el->l_recs[split_index];
2873 
2874 		/*
2875 		 * Note that we don't pass split_rec here on purpose -
2876 		 * we've merged it into the left side.
2877 		 */
2878 		ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2879 					    handle, rec, el, split_index);
2880 		if (ret) {
2881 			mlog_errno(ret);
2882 			goto out;
2883 		}
2884 
2885 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2886 
2887 		ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2888 					     dealloc);
2889 		/*
2890 		 * Error from this last rotate is not critical, so
2891 		 * print but don't bubble it up.
2892 		 */
2893 		if (ret)
2894 			mlog_errno(ret);
2895 		ret = 0;
2896 	} else {
2897 		/*
2898 		 * Merge a record to the left or right.
2899 		 *
2900 		 * 'contig_type' is relative to the existing record,
2901 		 * so for example, if we're "right contig", it's to
2902 		 * the record on the left (hence the left merge).
2903 		 */
2904 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
2905 			ret = ocfs2_merge_rec_left(inode,
2906 						   path_leaf_bh(left_path),
2907 						   handle, split_rec, el,
2908 						   split_index);
2909 			if (ret) {
2910 				mlog_errno(ret);
2911 				goto out;
2912 			}
2913 		} else {
2914 			ret = ocfs2_merge_rec_right(inode,
2915 						    path_leaf_bh(left_path),
2916 						    handle, split_rec, el,
2917 						    split_index);
2918 			if (ret) {
2919 				mlog_errno(ret);
2920 				goto out;
2921 			}
2922 		}
2923 
2924 		if (ctxt->c_split_covers_rec) {
2925 			/*
2926 			 * The merge may have left an empty extent in
2927 			 * our leaf. Try to rotate it away.
2928 			 */
2929 			ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2930 						     dealloc);
2931 			if (ret)
2932 				mlog_errno(ret);
2933 			ret = 0;
2934 		}
2935 	}
2936 
2937 out:
2938 	return ret;
2939 }
2940 
2941 static void ocfs2_subtract_from_rec(struct super_block *sb,
2942 				    enum ocfs2_split_type split,
2943 				    struct ocfs2_extent_rec *rec,
2944 				    struct ocfs2_extent_rec *split_rec)
2945 {
2946 	u64 len_blocks;
2947 
2948 	len_blocks = ocfs2_clusters_to_blocks(sb,
2949 				le16_to_cpu(split_rec->e_leaf_clusters));
2950 
2951 	if (split == SPLIT_LEFT) {
2952 		/*
2953 		 * Region is on the left edge of the existing
2954 		 * record.
2955 		 */
2956 		le32_add_cpu(&rec->e_cpos,
2957 			     le16_to_cpu(split_rec->e_leaf_clusters));
2958 		le64_add_cpu(&rec->e_blkno, len_blocks);
2959 		le16_add_cpu(&rec->e_leaf_clusters,
2960 			     -le16_to_cpu(split_rec->e_leaf_clusters));
2961 	} else {
2962 		/*
2963 		 * Region is on the right edge of the existing
2964 		 * record.
2965 		 */
2966 		le16_add_cpu(&rec->e_leaf_clusters,
2967 			     -le16_to_cpu(split_rec->e_leaf_clusters));
2968 	}
2969 }
2970 
2971 /*
2972  * Do the final bits of extent record insertion at the target leaf
2973  * list. If this leaf is part of an allocation tree, it is assumed
2974  * that the tree above has been prepared.
2975  */
2976 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2977 				 struct ocfs2_extent_list *el,
2978 				 struct ocfs2_insert_type *insert,
2979 				 struct inode *inode)
2980 {
2981 	int i = insert->ins_contig_index;
2982 	unsigned int range;
2983 	struct ocfs2_extent_rec *rec;
2984 
2985 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2986 
2987 	if (insert->ins_split != SPLIT_NONE) {
2988 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
2989 		BUG_ON(i == -1);
2990 		rec = &el->l_recs[i];
2991 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
2992 					insert_rec);
2993 		goto rotate;
2994 	}
2995 
2996 	/*
2997 	 * Contiguous insert - either left or right.
2998 	 */
2999 	if (insert->ins_contig != CONTIG_NONE) {
3000 		rec = &el->l_recs[i];
3001 		if (insert->ins_contig == CONTIG_LEFT) {
3002 			rec->e_blkno = insert_rec->e_blkno;
3003 			rec->e_cpos = insert_rec->e_cpos;
3004 		}
3005 		le16_add_cpu(&rec->e_leaf_clusters,
3006 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3007 		return;
3008 	}
3009 
3010 	/*
3011 	 * Handle insert into an empty leaf.
3012 	 */
3013 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3014 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3015 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3016 		el->l_recs[0] = *insert_rec;
3017 		el->l_next_free_rec = cpu_to_le16(1);
3018 		return;
3019 	}
3020 
3021 	/*
3022 	 * Appending insert.
3023 	 */
3024 	if (insert->ins_appending == APPEND_TAIL) {
3025 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3026 		rec = &el->l_recs[i];
3027 		range = le32_to_cpu(rec->e_cpos)
3028 			+ le16_to_cpu(rec->e_leaf_clusters);
3029 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3030 
3031 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3032 				le16_to_cpu(el->l_count),
3033 				"inode %lu, depth %u, count %u, next free %u, "
3034 				"rec.cpos %u, rec.clusters %u, "
3035 				"insert.cpos %u, insert.clusters %u\n",
3036 				inode->i_ino,
3037 				le16_to_cpu(el->l_tree_depth),
3038 				le16_to_cpu(el->l_count),
3039 				le16_to_cpu(el->l_next_free_rec),
3040 				le32_to_cpu(el->l_recs[i].e_cpos),
3041 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3042 				le32_to_cpu(insert_rec->e_cpos),
3043 				le16_to_cpu(insert_rec->e_leaf_clusters));
3044 		i++;
3045 		el->l_recs[i] = *insert_rec;
3046 		le16_add_cpu(&el->l_next_free_rec, 1);
3047 		return;
3048 	}
3049 
3050 rotate:
3051 	/*
3052 	 * Ok, we have to rotate.
3053 	 *
3054 	 * At this point, it is safe to assume that inserting into an
3055 	 * empty leaf and appending to a leaf have both been handled
3056 	 * above.
3057 	 *
3058 	 * This leaf needs to have space, either by the empty 1st
3059 	 * extent record, or by virtue of an l_next_rec < l_count.
3060 	 */
3061 	ocfs2_rotate_leaf(el, insert_rec);
3062 }
3063 
3064 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3065 						struct ocfs2_dinode *di,
3066 						u32 clusters)
3067 {
3068 	le32_add_cpu(&di->i_clusters, clusters);
3069 	spin_lock(&OCFS2_I(inode)->ip_lock);
3070 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3071 	spin_unlock(&OCFS2_I(inode)->ip_lock);
3072 }
3073 
3074 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3075 					   handle_t *handle,
3076 					   struct ocfs2_path *path,
3077 					   struct ocfs2_extent_rec *insert_rec)
3078 {
3079 	int ret, i, next_free;
3080 	struct buffer_head *bh;
3081 	struct ocfs2_extent_list *el;
3082 	struct ocfs2_extent_rec *rec;
3083 
3084 	/*
3085 	 * Update everything except the leaf block.
3086 	 */
3087 	for (i = 0; i < path->p_tree_depth; i++) {
3088 		bh = path->p_node[i].bh;
3089 		el = path->p_node[i].el;
3090 
3091 		next_free = le16_to_cpu(el->l_next_free_rec);
3092 		if (next_free == 0) {
3093 			ocfs2_error(inode->i_sb,
3094 				    "Dinode %llu has a bad extent list",
3095 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3096 			ret = -EIO;
3097 			return;
3098 		}
3099 
3100 		rec = &el->l_recs[next_free - 1];
3101 
3102 		rec->e_int_clusters = insert_rec->e_cpos;
3103 		le32_add_cpu(&rec->e_int_clusters,
3104 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3105 		le32_add_cpu(&rec->e_int_clusters,
3106 			     -le32_to_cpu(rec->e_cpos));
3107 
3108 		ret = ocfs2_journal_dirty(handle, bh);
3109 		if (ret)
3110 			mlog_errno(ret);
3111 
3112 	}
3113 }
3114 
3115 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3116 				    struct ocfs2_extent_rec *insert_rec,
3117 				    struct ocfs2_path *right_path,
3118 				    struct ocfs2_path **ret_left_path)
3119 {
3120 	int ret, next_free;
3121 	struct ocfs2_extent_list *el;
3122 	struct ocfs2_path *left_path = NULL;
3123 
3124 	*ret_left_path = NULL;
3125 
3126 	/*
3127 	 * This shouldn't happen for non-trees. The extent rec cluster
3128 	 * count manipulation below only works for interior nodes.
3129 	 */
3130 	BUG_ON(right_path->p_tree_depth == 0);
3131 
3132 	/*
3133 	 * If our appending insert is at the leftmost edge of a leaf,
3134 	 * then we might need to update the rightmost records of the
3135 	 * neighboring path.
3136 	 */
3137 	el = path_leaf_el(right_path);
3138 	next_free = le16_to_cpu(el->l_next_free_rec);
3139 	if (next_free == 0 ||
3140 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3141 		u32 left_cpos;
3142 
3143 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3144 						    &left_cpos);
3145 		if (ret) {
3146 			mlog_errno(ret);
3147 			goto out;
3148 		}
3149 
3150 		mlog(0, "Append may need a left path update. cpos: %u, "
3151 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3152 		     left_cpos);
3153 
3154 		/*
3155 		 * No need to worry if the append is already in the
3156 		 * leftmost leaf.
3157 		 */
3158 		if (left_cpos) {
3159 			left_path = ocfs2_new_path(path_root_bh(right_path),
3160 						   path_root_el(right_path));
3161 			if (!left_path) {
3162 				ret = -ENOMEM;
3163 				mlog_errno(ret);
3164 				goto out;
3165 			}
3166 
3167 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3168 			if (ret) {
3169 				mlog_errno(ret);
3170 				goto out;
3171 			}
3172 
3173 			/*
3174 			 * ocfs2_insert_path() will pass the left_path to the
3175 			 * journal for us.
3176 			 */
3177 		}
3178 	}
3179 
3180 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3181 	if (ret) {
3182 		mlog_errno(ret);
3183 		goto out;
3184 	}
3185 
3186 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3187 
3188 	*ret_left_path = left_path;
3189 	ret = 0;
3190 out:
3191 	if (ret != 0)
3192 		ocfs2_free_path(left_path);
3193 
3194 	return ret;
3195 }
3196 
3197 static void ocfs2_split_record(struct inode *inode,
3198 			       struct ocfs2_path *left_path,
3199 			       struct ocfs2_path *right_path,
3200 			       struct ocfs2_extent_rec *split_rec,
3201 			       enum ocfs2_split_type split)
3202 {
3203 	int index;
3204 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3205 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3206 	struct ocfs2_extent_rec *rec, *tmprec;
3207 
3208 	right_el = path_leaf_el(right_path);;
3209 	if (left_path)
3210 		left_el = path_leaf_el(left_path);
3211 
3212 	el = right_el;
3213 	insert_el = right_el;
3214 	index = ocfs2_search_extent_list(el, cpos);
3215 	if (index != -1) {
3216 		if (index == 0 && left_path) {
3217 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3218 
3219 			/*
3220 			 * This typically means that the record
3221 			 * started in the left path but moved to the
3222 			 * right as a result of rotation. We either
3223 			 * move the existing record to the left, or we
3224 			 * do the later insert there.
3225 			 *
3226 			 * In this case, the left path should always
3227 			 * exist as the rotate code will have passed
3228 			 * it back for a post-insert update.
3229 			 */
3230 
3231 			if (split == SPLIT_LEFT) {
3232 				/*
3233 				 * It's a left split. Since we know
3234 				 * that the rotate code gave us an
3235 				 * empty extent in the left path, we
3236 				 * can just do the insert there.
3237 				 */
3238 				insert_el = left_el;
3239 			} else {
3240 				/*
3241 				 * Right split - we have to move the
3242 				 * existing record over to the left
3243 				 * leaf. The insert will be into the
3244 				 * newly created empty extent in the
3245 				 * right leaf.
3246 				 */
3247 				tmprec = &right_el->l_recs[index];
3248 				ocfs2_rotate_leaf(left_el, tmprec);
3249 				el = left_el;
3250 
3251 				memset(tmprec, 0, sizeof(*tmprec));
3252 				index = ocfs2_search_extent_list(left_el, cpos);
3253 				BUG_ON(index == -1);
3254 			}
3255 		}
3256 	} else {
3257 		BUG_ON(!left_path);
3258 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3259 		/*
3260 		 * Left path is easy - we can just allow the insert to
3261 		 * happen.
3262 		 */
3263 		el = left_el;
3264 		insert_el = left_el;
3265 		index = ocfs2_search_extent_list(el, cpos);
3266 		BUG_ON(index == -1);
3267 	}
3268 
3269 	rec = &el->l_recs[index];
3270 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3271 	ocfs2_rotate_leaf(insert_el, split_rec);
3272 }
3273 
3274 /*
3275  * This function only does inserts on an allocation b-tree. For dinode
3276  * lists, ocfs2_insert_at_leaf() is called directly.
3277  *
3278  * right_path is the path we want to do the actual insert
3279  * in. left_path should only be passed in if we need to update that
3280  * portion of the tree after an edge insert.
3281  */
3282 static int ocfs2_insert_path(struct inode *inode,
3283 			     handle_t *handle,
3284 			     struct ocfs2_path *left_path,
3285 			     struct ocfs2_path *right_path,
3286 			     struct ocfs2_extent_rec *insert_rec,
3287 			     struct ocfs2_insert_type *insert)
3288 {
3289 	int ret, subtree_index;
3290 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3291 
3292 	/*
3293 	 * Pass both paths to the journal. The majority of inserts
3294 	 * will be touching all components anyway.
3295 	 */
3296 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3297 	if (ret < 0) {
3298 		mlog_errno(ret);
3299 		goto out;
3300 	}
3301 
3302 	if (left_path) {
3303 		int credits = handle->h_buffer_credits;
3304 
3305 		/*
3306 		 * There's a chance that left_path got passed back to
3307 		 * us without being accounted for in the
3308 		 * journal. Extend our transaction here to be sure we
3309 		 * can change those blocks.
3310 		 */
3311 		credits += left_path->p_tree_depth;
3312 
3313 		ret = ocfs2_extend_trans(handle, credits);
3314 		if (ret < 0) {
3315 			mlog_errno(ret);
3316 			goto out;
3317 		}
3318 
3319 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3320 		if (ret < 0) {
3321 			mlog_errno(ret);
3322 			goto out;
3323 		}
3324 	}
3325 
3326 	if (insert->ins_split != SPLIT_NONE) {
3327 		/*
3328 		 * We could call ocfs2_insert_at_leaf() for some types
3329 		 * of splits, but it's easier to just let one seperate
3330 		 * function sort it all out.
3331 		 */
3332 		ocfs2_split_record(inode, left_path, right_path,
3333 				   insert_rec, insert->ins_split);
3334 	} else
3335 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3336 				     insert, inode);
3337 
3338 	ret = ocfs2_journal_dirty(handle, leaf_bh);
3339 	if (ret)
3340 		mlog_errno(ret);
3341 
3342 	if (left_path) {
3343 		/*
3344 		 * The rotate code has indicated that we need to fix
3345 		 * up portions of the tree after the insert.
3346 		 *
3347 		 * XXX: Should we extend the transaction here?
3348 		 */
3349 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
3350 							right_path);
3351 		ocfs2_complete_edge_insert(inode, handle, left_path,
3352 					   right_path, subtree_index);
3353 	}
3354 
3355 	ret = 0;
3356 out:
3357 	return ret;
3358 }
3359 
3360 static int ocfs2_do_insert_extent(struct inode *inode,
3361 				  handle_t *handle,
3362 				  struct buffer_head *di_bh,
3363 				  struct ocfs2_extent_rec *insert_rec,
3364 				  struct ocfs2_insert_type *type)
3365 {
3366 	int ret, rotate = 0;
3367 	u32 cpos;
3368 	struct ocfs2_path *right_path = NULL;
3369 	struct ocfs2_path *left_path = NULL;
3370 	struct ocfs2_dinode *di;
3371 	struct ocfs2_extent_list *el;
3372 
3373 	di = (struct ocfs2_dinode *) di_bh->b_data;
3374 	el = &di->id2.i_list;
3375 
3376 	ret = ocfs2_journal_access(handle, inode, di_bh,
3377 				   OCFS2_JOURNAL_ACCESS_WRITE);
3378 	if (ret) {
3379 		mlog_errno(ret);
3380 		goto out;
3381 	}
3382 
3383 	if (le16_to_cpu(el->l_tree_depth) == 0) {
3384 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3385 		goto out_update_clusters;
3386 	}
3387 
3388 	right_path = ocfs2_new_inode_path(di_bh);
3389 	if (!right_path) {
3390 		ret = -ENOMEM;
3391 		mlog_errno(ret);
3392 		goto out;
3393 	}
3394 
3395 	/*
3396 	 * Determine the path to start with. Rotations need the
3397 	 * rightmost path, everything else can go directly to the
3398 	 * target leaf.
3399 	 */
3400 	cpos = le32_to_cpu(insert_rec->e_cpos);
3401 	if (type->ins_appending == APPEND_NONE &&
3402 	    type->ins_contig == CONTIG_NONE) {
3403 		rotate = 1;
3404 		cpos = UINT_MAX;
3405 	}
3406 
3407 	ret = ocfs2_find_path(inode, right_path, cpos);
3408 	if (ret) {
3409 		mlog_errno(ret);
3410 		goto out;
3411 	}
3412 
3413 	/*
3414 	 * Rotations and appends need special treatment - they modify
3415 	 * parts of the tree's above them.
3416 	 *
3417 	 * Both might pass back a path immediate to the left of the
3418 	 * one being inserted to. This will be cause
3419 	 * ocfs2_insert_path() to modify the rightmost records of
3420 	 * left_path to account for an edge insert.
3421 	 *
3422 	 * XXX: When modifying this code, keep in mind that an insert
3423 	 * can wind up skipping both of these two special cases...
3424 	 */
3425 	if (rotate) {
3426 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3427 					      le32_to_cpu(insert_rec->e_cpos),
3428 					      right_path, &left_path);
3429 		if (ret) {
3430 			mlog_errno(ret);
3431 			goto out;
3432 		}
3433 	} else if (type->ins_appending == APPEND_TAIL
3434 		   && type->ins_contig != CONTIG_LEFT) {
3435 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3436 					       right_path, &left_path);
3437 		if (ret) {
3438 			mlog_errno(ret);
3439 			goto out;
3440 		}
3441 	}
3442 
3443 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3444 				insert_rec, type);
3445 	if (ret) {
3446 		mlog_errno(ret);
3447 		goto out;
3448 	}
3449 
3450 out_update_clusters:
3451 	if (type->ins_split == SPLIT_NONE)
3452 		ocfs2_update_dinode_clusters(inode, di,
3453 					     le16_to_cpu(insert_rec->e_leaf_clusters));
3454 
3455 	ret = ocfs2_journal_dirty(handle, di_bh);
3456 	if (ret)
3457 		mlog_errno(ret);
3458 
3459 out:
3460 	ocfs2_free_path(left_path);
3461 	ocfs2_free_path(right_path);
3462 
3463 	return ret;
3464 }
3465 
3466 static enum ocfs2_contig_type
3467 ocfs2_figure_merge_contig_type(struct inode *inode,
3468 			       struct ocfs2_extent_list *el, int index,
3469 			       struct ocfs2_extent_rec *split_rec)
3470 {
3471 	struct ocfs2_extent_rec *rec;
3472 	enum ocfs2_contig_type ret = CONTIG_NONE;
3473 
3474 	/*
3475 	 * We're careful to check for an empty extent record here -
3476 	 * the merge code will know what to do if it sees one.
3477 	 */
3478 
3479 	if (index > 0) {
3480 		rec = &el->l_recs[index - 1];
3481 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
3482 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3483 				ret = CONTIG_RIGHT;
3484 		} else {
3485 			ret = ocfs2_extent_contig(inode, rec, split_rec);
3486 		}
3487 	}
3488 
3489 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3490 		enum ocfs2_contig_type contig_type;
3491 
3492 		rec = &el->l_recs[index + 1];
3493 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3494 
3495 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3496 			ret = CONTIG_LEFTRIGHT;
3497 		else if (ret == CONTIG_NONE)
3498 			ret = contig_type;
3499 	}
3500 
3501 	return ret;
3502 }
3503 
3504 static void ocfs2_figure_contig_type(struct inode *inode,
3505 				     struct ocfs2_insert_type *insert,
3506 				     struct ocfs2_extent_list *el,
3507 				     struct ocfs2_extent_rec *insert_rec)
3508 {
3509 	int i;
3510 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
3511 
3512 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3513 
3514 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3515 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3516 						  insert_rec);
3517 		if (contig_type != CONTIG_NONE) {
3518 			insert->ins_contig_index = i;
3519 			break;
3520 		}
3521 	}
3522 	insert->ins_contig = contig_type;
3523 }
3524 
3525 /*
3526  * This should only be called against the righmost leaf extent list.
3527  *
3528  * ocfs2_figure_appending_type() will figure out whether we'll have to
3529  * insert at the tail of the rightmost leaf.
3530  *
3531  * This should also work against the dinode list for tree's with 0
3532  * depth. If we consider the dinode list to be the rightmost leaf node
3533  * then the logic here makes sense.
3534  */
3535 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3536 					struct ocfs2_extent_list *el,
3537 					struct ocfs2_extent_rec *insert_rec)
3538 {
3539 	int i;
3540 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3541 	struct ocfs2_extent_rec *rec;
3542 
3543 	insert->ins_appending = APPEND_NONE;
3544 
3545 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3546 
3547 	if (!el->l_next_free_rec)
3548 		goto set_tail_append;
3549 
3550 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3551 		/* Were all records empty? */
3552 		if (le16_to_cpu(el->l_next_free_rec) == 1)
3553 			goto set_tail_append;
3554 	}
3555 
3556 	i = le16_to_cpu(el->l_next_free_rec) - 1;
3557 	rec = &el->l_recs[i];
3558 
3559 	if (cpos >=
3560 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3561 		goto set_tail_append;
3562 
3563 	return;
3564 
3565 set_tail_append:
3566 	insert->ins_appending = APPEND_TAIL;
3567 }
3568 
3569 /*
3570  * Helper function called at the begining of an insert.
3571  *
3572  * This computes a few things that are commonly used in the process of
3573  * inserting into the btree:
3574  *   - Whether the new extent is contiguous with an existing one.
3575  *   - The current tree depth.
3576  *   - Whether the insert is an appending one.
3577  *   - The total # of free records in the tree.
3578  *
3579  * All of the information is stored on the ocfs2_insert_type
3580  * structure.
3581  */
3582 static int ocfs2_figure_insert_type(struct inode *inode,
3583 				    struct buffer_head *di_bh,
3584 				    struct buffer_head **last_eb_bh,
3585 				    struct ocfs2_extent_rec *insert_rec,
3586 				    int *free_records,
3587 				    struct ocfs2_insert_type *insert)
3588 {
3589 	int ret;
3590 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3591 	struct ocfs2_extent_block *eb;
3592 	struct ocfs2_extent_list *el;
3593 	struct ocfs2_path *path = NULL;
3594 	struct buffer_head *bh = NULL;
3595 
3596 	insert->ins_split = SPLIT_NONE;
3597 
3598 	el = &di->id2.i_list;
3599 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3600 
3601 	if (el->l_tree_depth) {
3602 		/*
3603 		 * If we have tree depth, we read in the
3604 		 * rightmost extent block ahead of time as
3605 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3606 		 * may want it later.
3607 		 */
3608 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3609 				       le64_to_cpu(di->i_last_eb_blk), &bh,
3610 				       OCFS2_BH_CACHED, inode);
3611 		if (ret) {
3612 			mlog_exit(ret);
3613 			goto out;
3614 		}
3615 		eb = (struct ocfs2_extent_block *) bh->b_data;
3616 		el = &eb->h_list;
3617 	}
3618 
3619 	/*
3620 	 * Unless we have a contiguous insert, we'll need to know if
3621 	 * there is room left in our allocation tree for another
3622 	 * extent record.
3623 	 *
3624 	 * XXX: This test is simplistic, we can search for empty
3625 	 * extent records too.
3626 	 */
3627 	*free_records = le16_to_cpu(el->l_count) -
3628 		le16_to_cpu(el->l_next_free_rec);
3629 
3630 	if (!insert->ins_tree_depth) {
3631 		ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3632 		ocfs2_figure_appending_type(insert, el, insert_rec);
3633 		return 0;
3634 	}
3635 
3636 	path = ocfs2_new_inode_path(di_bh);
3637 	if (!path) {
3638 		ret = -ENOMEM;
3639 		mlog_errno(ret);
3640 		goto out;
3641 	}
3642 
3643 	/*
3644 	 * In the case that we're inserting past what the tree
3645 	 * currently accounts for, ocfs2_find_path() will return for
3646 	 * us the rightmost tree path. This is accounted for below in
3647 	 * the appending code.
3648 	 */
3649 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3650 	if (ret) {
3651 		mlog_errno(ret);
3652 		goto out;
3653 	}
3654 
3655 	el = path_leaf_el(path);
3656 
3657 	/*
3658 	 * Now that we have the path, there's two things we want to determine:
3659 	 * 1) Contiguousness (also set contig_index if this is so)
3660 	 *
3661 	 * 2) Are we doing an append? We can trivially break this up
3662          *     into two types of appends: simple record append, or a
3663          *     rotate inside the tail leaf.
3664 	 */
3665 	ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3666 
3667 	/*
3668 	 * The insert code isn't quite ready to deal with all cases of
3669 	 * left contiguousness. Specifically, if it's an insert into
3670 	 * the 1st record in a leaf, it will require the adjustment of
3671 	 * cluster count on the last record of the path directly to it's
3672 	 * left. For now, just catch that case and fool the layers
3673 	 * above us. This works just fine for tree_depth == 0, which
3674 	 * is why we allow that above.
3675 	 */
3676 	if (insert->ins_contig == CONTIG_LEFT &&
3677 	    insert->ins_contig_index == 0)
3678 		insert->ins_contig = CONTIG_NONE;
3679 
3680 	/*
3681 	 * Ok, so we can simply compare against last_eb to figure out
3682 	 * whether the path doesn't exist. This will only happen in
3683 	 * the case that we're doing a tail append, so maybe we can
3684 	 * take advantage of that information somehow.
3685 	 */
3686 	if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3687 		/*
3688 		 * Ok, ocfs2_find_path() returned us the rightmost
3689 		 * tree path. This might be an appending insert. There are
3690 		 * two cases:
3691 		 *    1) We're doing a true append at the tail:
3692 		 *	-This might even be off the end of the leaf
3693 		 *    2) We're "appending" by rotating in the tail
3694 		 */
3695 		ocfs2_figure_appending_type(insert, el, insert_rec);
3696 	}
3697 
3698 out:
3699 	ocfs2_free_path(path);
3700 
3701 	if (ret == 0)
3702 		*last_eb_bh = bh;
3703 	else
3704 		brelse(bh);
3705 	return ret;
3706 }
3707 
3708 /*
3709  * Insert an extent into an inode btree.
3710  *
3711  * The caller needs to update fe->i_clusters
3712  */
3713 int ocfs2_insert_extent(struct ocfs2_super *osb,
3714 			handle_t *handle,
3715 			struct inode *inode,
3716 			struct buffer_head *fe_bh,
3717 			u32 cpos,
3718 			u64 start_blk,
3719 			u32 new_clusters,
3720 			u8 flags,
3721 			struct ocfs2_alloc_context *meta_ac)
3722 {
3723 	int status;
3724 	int uninitialized_var(free_records);
3725 	struct buffer_head *last_eb_bh = NULL;
3726 	struct ocfs2_insert_type insert = {0, };
3727 	struct ocfs2_extent_rec rec;
3728 
3729 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
3730 
3731 	mlog(0, "add %u clusters at position %u to inode %llu\n",
3732 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3733 
3734 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3735 			(OCFS2_I(inode)->ip_clusters != cpos),
3736 			"Device %s, asking for sparse allocation: inode %llu, "
3737 			"cpos %u, clusters %u\n",
3738 			osb->dev_str,
3739 			(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3740 			OCFS2_I(inode)->ip_clusters);
3741 
3742 	memset(&rec, 0, sizeof(rec));
3743 	rec.e_cpos = cpu_to_le32(cpos);
3744 	rec.e_blkno = cpu_to_le64(start_blk);
3745 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
3746 	rec.e_flags = flags;
3747 
3748 	status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3749 					  &free_records, &insert);
3750 	if (status < 0) {
3751 		mlog_errno(status);
3752 		goto bail;
3753 	}
3754 
3755 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3756 	     "Insert.contig_index: %d, Insert.free_records: %d, "
3757 	     "Insert.tree_depth: %d\n",
3758 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3759 	     free_records, insert.ins_tree_depth);
3760 
3761 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
3762 		status = ocfs2_grow_tree(inode, handle, fe_bh,
3763 					 &insert.ins_tree_depth, &last_eb_bh,
3764 					 meta_ac);
3765 		if (status) {
3766 			mlog_errno(status);
3767 			goto bail;
3768 		}
3769 	}
3770 
3771 	/* Finally, we can add clusters. This might rotate the tree for us. */
3772 	status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
3773 	if (status < 0)
3774 		mlog_errno(status);
3775 	else
3776 		ocfs2_extent_map_insert_rec(inode, &rec);
3777 
3778 bail:
3779 	if (last_eb_bh)
3780 		brelse(last_eb_bh);
3781 
3782 	mlog_exit(status);
3783 	return status;
3784 }
3785 
3786 static void ocfs2_make_right_split_rec(struct super_block *sb,
3787 				       struct ocfs2_extent_rec *split_rec,
3788 				       u32 cpos,
3789 				       struct ocfs2_extent_rec *rec)
3790 {
3791 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3792 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3793 
3794 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3795 
3796 	split_rec->e_cpos = cpu_to_le32(cpos);
3797 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3798 
3799 	split_rec->e_blkno = rec->e_blkno;
3800 	le64_add_cpu(&split_rec->e_blkno,
3801 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3802 
3803 	split_rec->e_flags = rec->e_flags;
3804 }
3805 
3806 static int ocfs2_split_and_insert(struct inode *inode,
3807 				  handle_t *handle,
3808 				  struct ocfs2_path *path,
3809 				  struct buffer_head *di_bh,
3810 				  struct buffer_head **last_eb_bh,
3811 				  int split_index,
3812 				  struct ocfs2_extent_rec *orig_split_rec,
3813 				  struct ocfs2_alloc_context *meta_ac)
3814 {
3815 	int ret = 0, depth;
3816 	unsigned int insert_range, rec_range, do_leftright = 0;
3817 	struct ocfs2_extent_rec tmprec;
3818 	struct ocfs2_extent_list *rightmost_el;
3819 	struct ocfs2_extent_rec rec;
3820 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
3821 	struct ocfs2_insert_type insert;
3822 	struct ocfs2_extent_block *eb;
3823 	struct ocfs2_dinode *di;
3824 
3825 leftright:
3826 	/*
3827 	 * Store a copy of the record on the stack - it might move
3828 	 * around as the tree is manipulated below.
3829 	 */
3830 	rec = path_leaf_el(path)->l_recs[split_index];
3831 
3832 	di = (struct ocfs2_dinode *)di_bh->b_data;
3833 	rightmost_el = &di->id2.i_list;
3834 
3835 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
3836 	if (depth) {
3837 		BUG_ON(!(*last_eb_bh));
3838 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3839 		rightmost_el = &eb->h_list;
3840 	}
3841 
3842 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3843 	    le16_to_cpu(rightmost_el->l_count)) {
3844 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3845 				      meta_ac);
3846 		if (ret) {
3847 			mlog_errno(ret);
3848 			goto out;
3849 		}
3850 	}
3851 
3852 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3853 	insert.ins_appending = APPEND_NONE;
3854 	insert.ins_contig = CONTIG_NONE;
3855 	insert.ins_tree_depth = depth;
3856 
3857 	insert_range = le32_to_cpu(split_rec.e_cpos) +
3858 		le16_to_cpu(split_rec.e_leaf_clusters);
3859 	rec_range = le32_to_cpu(rec.e_cpos) +
3860 		le16_to_cpu(rec.e_leaf_clusters);
3861 
3862 	if (split_rec.e_cpos == rec.e_cpos) {
3863 		insert.ins_split = SPLIT_LEFT;
3864 	} else if (insert_range == rec_range) {
3865 		insert.ins_split = SPLIT_RIGHT;
3866 	} else {
3867 		/*
3868 		 * Left/right split. We fake this as a right split
3869 		 * first and then make a second pass as a left split.
3870 		 */
3871 		insert.ins_split = SPLIT_RIGHT;
3872 
3873 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3874 					   &rec);
3875 
3876 		split_rec = tmprec;
3877 
3878 		BUG_ON(do_leftright);
3879 		do_leftright = 1;
3880 	}
3881 
3882 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3883 				     &insert);
3884 	if (ret) {
3885 		mlog_errno(ret);
3886 		goto out;
3887 	}
3888 
3889 	if (do_leftright == 1) {
3890 		u32 cpos;
3891 		struct ocfs2_extent_list *el;
3892 
3893 		do_leftright++;
3894 		split_rec = *orig_split_rec;
3895 
3896 		ocfs2_reinit_path(path, 1);
3897 
3898 		cpos = le32_to_cpu(split_rec.e_cpos);
3899 		ret = ocfs2_find_path(inode, path, cpos);
3900 		if (ret) {
3901 			mlog_errno(ret);
3902 			goto out;
3903 		}
3904 
3905 		el = path_leaf_el(path);
3906 		split_index = ocfs2_search_extent_list(el, cpos);
3907 		goto leftright;
3908 	}
3909 out:
3910 
3911 	return ret;
3912 }
3913 
3914 /*
3915  * Mark part or all of the extent record at split_index in the leaf
3916  * pointed to by path as written. This removes the unwritten
3917  * extent flag.
3918  *
3919  * Care is taken to handle contiguousness so as to not grow the tree.
3920  *
3921  * meta_ac is not strictly necessary - we only truly need it if growth
3922  * of the tree is required. All other cases will degrade into a less
3923  * optimal tree layout.
3924  *
3925  * last_eb_bh should be the rightmost leaf block for any inode with a
3926  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3927  *
3928  * This code is optimized for readability - several passes might be
3929  * made over certain portions of the tree. All of those blocks will
3930  * have been brought into cache (and pinned via the journal), so the
3931  * extra overhead is not expressed in terms of disk reads.
3932  */
3933 static int __ocfs2_mark_extent_written(struct inode *inode,
3934 				       struct buffer_head *di_bh,
3935 				       handle_t *handle,
3936 				       struct ocfs2_path *path,
3937 				       int split_index,
3938 				       struct ocfs2_extent_rec *split_rec,
3939 				       struct ocfs2_alloc_context *meta_ac,
3940 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
3941 {
3942 	int ret = 0;
3943 	struct ocfs2_extent_list *el = path_leaf_el(path);
3944 	struct buffer_head *eb_bh, *last_eb_bh = NULL;
3945 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3946 	struct ocfs2_merge_ctxt ctxt;
3947 	struct ocfs2_extent_list *rightmost_el;
3948 
3949 	if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
3950 		ret = -EIO;
3951 		mlog_errno(ret);
3952 		goto out;
3953 	}
3954 
3955 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3956 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3957 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3958 		ret = -EIO;
3959 		mlog_errno(ret);
3960 		goto out;
3961 	}
3962 
3963 	eb_bh = path_leaf_bh(path);
3964 	ret = ocfs2_journal_access(handle, inode, eb_bh,
3965 				   OCFS2_JOURNAL_ACCESS_WRITE);
3966 	if (ret) {
3967 		mlog_errno(ret);
3968 		goto out;
3969 	}
3970 
3971 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3972 							    split_index,
3973 							    split_rec);
3974 
3975 	/*
3976 	 * The core merge / split code wants to know how much room is
3977 	 * left in this inodes allocation tree, so we pass the
3978 	 * rightmost extent list.
3979 	 */
3980 	if (path->p_tree_depth) {
3981 		struct ocfs2_extent_block *eb;
3982 		struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3983 
3984 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3985 				       le64_to_cpu(di->i_last_eb_blk),
3986 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
3987 		if (ret) {
3988 			mlog_exit(ret);
3989 			goto out;
3990 		}
3991 
3992 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
3993 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
3994 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
3995 			ret = -EROFS;
3996 			goto out;
3997 		}
3998 
3999 		rightmost_el = &eb->h_list;
4000 	} else
4001 		rightmost_el = path_root_el(path);
4002 
4003 	if (rec->e_cpos == split_rec->e_cpos &&
4004 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4005 		ctxt.c_split_covers_rec = 1;
4006 	else
4007 		ctxt.c_split_covers_rec = 0;
4008 
4009 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4010 
4011 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4012 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4013 	     ctxt.c_split_covers_rec);
4014 
4015 	if (ctxt.c_contig_type == CONTIG_NONE) {
4016 		if (ctxt.c_split_covers_rec)
4017 			el->l_recs[split_index] = *split_rec;
4018 		else
4019 			ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4020 						     &last_eb_bh, split_index,
4021 						     split_rec, meta_ac);
4022 		if (ret)
4023 			mlog_errno(ret);
4024 	} else {
4025 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4026 						split_index, split_rec,
4027 						dealloc, &ctxt);
4028 		if (ret)
4029 			mlog_errno(ret);
4030 	}
4031 
4032 	ocfs2_journal_dirty(handle, eb_bh);
4033 
4034 out:
4035 	brelse(last_eb_bh);
4036 	return ret;
4037 }
4038 
4039 /*
4040  * Mark the already-existing extent at cpos as written for len clusters.
4041  *
4042  * If the existing extent is larger than the request, initiate a
4043  * split. An attempt will be made at merging with adjacent extents.
4044  *
4045  * The caller is responsible for passing down meta_ac if we'll need it.
4046  */
4047 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4048 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4049 			      struct ocfs2_alloc_context *meta_ac,
4050 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4051 {
4052 	int ret, index;
4053 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4054 	struct ocfs2_extent_rec split_rec;
4055 	struct ocfs2_path *left_path = NULL;
4056 	struct ocfs2_extent_list *el;
4057 
4058 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4059 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4060 
4061 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4062 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4063 			    "that are being written to, but the feature bit "
4064 			    "is not set in the super block.",
4065 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4066 		ret = -EROFS;
4067 		goto out;
4068 	}
4069 
4070 	/*
4071 	 * XXX: This should be fixed up so that we just re-insert the
4072 	 * next extent records.
4073 	 */
4074 	ocfs2_extent_map_trunc(inode, 0);
4075 
4076 	left_path = ocfs2_new_inode_path(di_bh);
4077 	if (!left_path) {
4078 		ret = -ENOMEM;
4079 		mlog_errno(ret);
4080 		goto out;
4081 	}
4082 
4083 	ret = ocfs2_find_path(inode, left_path, cpos);
4084 	if (ret) {
4085 		mlog_errno(ret);
4086 		goto out;
4087 	}
4088 	el = path_leaf_el(left_path);
4089 
4090 	index = ocfs2_search_extent_list(el, cpos);
4091 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4092 		ocfs2_error(inode->i_sb,
4093 			    "Inode %llu has an extent at cpos %u which can no "
4094 			    "longer be found.\n",
4095 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4096 		ret = -EROFS;
4097 		goto out;
4098 	}
4099 
4100 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4101 	split_rec.e_cpos = cpu_to_le32(cpos);
4102 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4103 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4104 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4105 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4106 
4107 	ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4108 					  index, &split_rec, meta_ac, dealloc);
4109 	if (ret)
4110 		mlog_errno(ret);
4111 
4112 out:
4113 	ocfs2_free_path(left_path);
4114 	return ret;
4115 }
4116 
4117 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4118 			    handle_t *handle, struct ocfs2_path *path,
4119 			    int index, u32 new_range,
4120 			    struct ocfs2_alloc_context *meta_ac)
4121 {
4122 	int ret, depth, credits = handle->h_buffer_credits;
4123 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4124 	struct buffer_head *last_eb_bh = NULL;
4125 	struct ocfs2_extent_block *eb;
4126 	struct ocfs2_extent_list *rightmost_el, *el;
4127 	struct ocfs2_extent_rec split_rec;
4128 	struct ocfs2_extent_rec *rec;
4129 	struct ocfs2_insert_type insert;
4130 
4131 	/*
4132 	 * Setup the record to split before we grow the tree.
4133 	 */
4134 	el = path_leaf_el(path);
4135 	rec = &el->l_recs[index];
4136 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4137 
4138 	depth = path->p_tree_depth;
4139 	if (depth > 0) {
4140 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4141 				       le64_to_cpu(di->i_last_eb_blk),
4142 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4143 		if (ret < 0) {
4144 			mlog_errno(ret);
4145 			goto out;
4146 		}
4147 
4148 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4149 		rightmost_el = &eb->h_list;
4150 	} else
4151 		rightmost_el = path_leaf_el(path);
4152 
4153 	credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4154 	ret = ocfs2_extend_trans(handle, credits);
4155 	if (ret) {
4156 		mlog_errno(ret);
4157 		goto out;
4158 	}
4159 
4160 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4161 	    le16_to_cpu(rightmost_el->l_count)) {
4162 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4163 				      meta_ac);
4164 		if (ret) {
4165 			mlog_errno(ret);
4166 			goto out;
4167 		}
4168 	}
4169 
4170 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4171 	insert.ins_appending = APPEND_NONE;
4172 	insert.ins_contig = CONTIG_NONE;
4173 	insert.ins_split = SPLIT_RIGHT;
4174 	insert.ins_tree_depth = depth;
4175 
4176 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4177 	if (ret)
4178 		mlog_errno(ret);
4179 
4180 out:
4181 	brelse(last_eb_bh);
4182 	return ret;
4183 }
4184 
4185 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4186 			      struct ocfs2_path *path, int index,
4187 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
4188 			      u32 cpos, u32 len)
4189 {
4190 	int ret;
4191 	u32 left_cpos, rec_range, trunc_range;
4192 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
4193 	struct super_block *sb = inode->i_sb;
4194 	struct ocfs2_path *left_path = NULL;
4195 	struct ocfs2_extent_list *el = path_leaf_el(path);
4196 	struct ocfs2_extent_rec *rec;
4197 	struct ocfs2_extent_block *eb;
4198 
4199 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4200 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4201 		if (ret) {
4202 			mlog_errno(ret);
4203 			goto out;
4204 		}
4205 
4206 		index--;
4207 	}
4208 
4209 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4210 	    path->p_tree_depth) {
4211 		/*
4212 		 * Check whether this is the rightmost tree record. If
4213 		 * we remove all of this record or part of its right
4214 		 * edge then an update of the record lengths above it
4215 		 * will be required.
4216 		 */
4217 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4218 		if (eb->h_next_leaf_blk == 0)
4219 			is_rightmost_tree_rec = 1;
4220 	}
4221 
4222 	rec = &el->l_recs[index];
4223 	if (index == 0 && path->p_tree_depth &&
4224 	    le32_to_cpu(rec->e_cpos) == cpos) {
4225 		/*
4226 		 * Changing the leftmost offset (via partial or whole
4227 		 * record truncate) of an interior (or rightmost) path
4228 		 * means we have to update the subtree that is formed
4229 		 * by this leaf and the one to it's left.
4230 		 *
4231 		 * There are two cases we can skip:
4232 		 *   1) Path is the leftmost one in our inode tree.
4233 		 *   2) The leaf is rightmost and will be empty after
4234 		 *      we remove the extent record - the rotate code
4235 		 *      knows how to update the newly formed edge.
4236 		 */
4237 
4238 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4239 						    &left_cpos);
4240 		if (ret) {
4241 			mlog_errno(ret);
4242 			goto out;
4243 		}
4244 
4245 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4246 			left_path = ocfs2_new_path(path_root_bh(path),
4247 						   path_root_el(path));
4248 			if (!left_path) {
4249 				ret = -ENOMEM;
4250 				mlog_errno(ret);
4251 				goto out;
4252 			}
4253 
4254 			ret = ocfs2_find_path(inode, left_path, left_cpos);
4255 			if (ret) {
4256 				mlog_errno(ret);
4257 				goto out;
4258 			}
4259 		}
4260 	}
4261 
4262 	ret = ocfs2_extend_rotate_transaction(handle, 0,
4263 					      handle->h_buffer_credits,
4264 					      path);
4265 	if (ret) {
4266 		mlog_errno(ret);
4267 		goto out;
4268 	}
4269 
4270 	ret = ocfs2_journal_access_path(inode, handle, path);
4271 	if (ret) {
4272 		mlog_errno(ret);
4273 		goto out;
4274 	}
4275 
4276 	ret = ocfs2_journal_access_path(inode, handle, left_path);
4277 	if (ret) {
4278 		mlog_errno(ret);
4279 		goto out;
4280 	}
4281 
4282 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4283 	trunc_range = cpos + len;
4284 
4285 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4286 		int next_free;
4287 
4288 		memset(rec, 0, sizeof(*rec));
4289 		ocfs2_cleanup_merge(el, index);
4290 		wants_rotate = 1;
4291 
4292 		next_free = le16_to_cpu(el->l_next_free_rec);
4293 		if (is_rightmost_tree_rec && next_free > 1) {
4294 			/*
4295 			 * We skip the edge update if this path will
4296 			 * be deleted by the rotate code.
4297 			 */
4298 			rec = &el->l_recs[next_free - 1];
4299 			ocfs2_adjust_rightmost_records(inode, handle, path,
4300 						       rec);
4301 		}
4302 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
4303 		/* Remove leftmost portion of the record. */
4304 		le32_add_cpu(&rec->e_cpos, len);
4305 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4306 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4307 	} else if (rec_range == trunc_range) {
4308 		/* Remove rightmost portion of the record */
4309 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4310 		if (is_rightmost_tree_rec)
4311 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4312 	} else {
4313 		/* Caller should have trapped this. */
4314 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4315 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4316 		     le32_to_cpu(rec->e_cpos),
4317 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4318 		BUG();
4319 	}
4320 
4321 	if (left_path) {
4322 		int subtree_index;
4323 
4324 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4325 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
4326 					   subtree_index);
4327 	}
4328 
4329 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4330 
4331 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4332 	if (ret) {
4333 		mlog_errno(ret);
4334 		goto out;
4335 	}
4336 
4337 out:
4338 	ocfs2_free_path(left_path);
4339 	return ret;
4340 }
4341 
4342 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4343 			u32 cpos, u32 len, handle_t *handle,
4344 			struct ocfs2_alloc_context *meta_ac,
4345 			struct ocfs2_cached_dealloc_ctxt *dealloc)
4346 {
4347 	int ret, index;
4348 	u32 rec_range, trunc_range;
4349 	struct ocfs2_extent_rec *rec;
4350 	struct ocfs2_extent_list *el;
4351 	struct ocfs2_path *path;
4352 
4353 	ocfs2_extent_map_trunc(inode, 0);
4354 
4355 	path = ocfs2_new_inode_path(di_bh);
4356 	if (!path) {
4357 		ret = -ENOMEM;
4358 		mlog_errno(ret);
4359 		goto out;
4360 	}
4361 
4362 	ret = ocfs2_find_path(inode, path, cpos);
4363 	if (ret) {
4364 		mlog_errno(ret);
4365 		goto out;
4366 	}
4367 
4368 	el = path_leaf_el(path);
4369 	index = ocfs2_search_extent_list(el, cpos);
4370 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4371 		ocfs2_error(inode->i_sb,
4372 			    "Inode %llu has an extent at cpos %u which can no "
4373 			    "longer be found.\n",
4374 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4375 		ret = -EROFS;
4376 		goto out;
4377 	}
4378 
4379 	/*
4380 	 * We have 3 cases of extent removal:
4381 	 *   1) Range covers the entire extent rec
4382 	 *   2) Range begins or ends on one edge of the extent rec
4383 	 *   3) Range is in the middle of the extent rec (no shared edges)
4384 	 *
4385 	 * For case 1 we remove the extent rec and left rotate to
4386 	 * fill the hole.
4387 	 *
4388 	 * For case 2 we just shrink the existing extent rec, with a
4389 	 * tree update if the shrinking edge is also the edge of an
4390 	 * extent block.
4391 	 *
4392 	 * For case 3 we do a right split to turn the extent rec into
4393 	 * something case 2 can handle.
4394 	 */
4395 	rec = &el->l_recs[index];
4396 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4397 	trunc_range = cpos + len;
4398 
4399 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4400 
4401 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4402 	     "(cpos %u, len %u)\n",
4403 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4404 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4405 
4406 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4407 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4408 					 cpos, len);
4409 		if (ret) {
4410 			mlog_errno(ret);
4411 			goto out;
4412 		}
4413 	} else {
4414 		ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4415 				       trunc_range, meta_ac);
4416 		if (ret) {
4417 			mlog_errno(ret);
4418 			goto out;
4419 		}
4420 
4421 		/*
4422 		 * The split could have manipulated the tree enough to
4423 		 * move the record location, so we have to look for it again.
4424 		 */
4425 		ocfs2_reinit_path(path, 1);
4426 
4427 		ret = ocfs2_find_path(inode, path, cpos);
4428 		if (ret) {
4429 			mlog_errno(ret);
4430 			goto out;
4431 		}
4432 
4433 		el = path_leaf_el(path);
4434 		index = ocfs2_search_extent_list(el, cpos);
4435 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4436 			ocfs2_error(inode->i_sb,
4437 				    "Inode %llu: split at cpos %u lost record.",
4438 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4439 				    cpos);
4440 			ret = -EROFS;
4441 			goto out;
4442 		}
4443 
4444 		/*
4445 		 * Double check our values here. If anything is fishy,
4446 		 * it's easier to catch it at the top level.
4447 		 */
4448 		rec = &el->l_recs[index];
4449 		rec_range = le32_to_cpu(rec->e_cpos) +
4450 			ocfs2_rec_clusters(el, rec);
4451 		if (rec_range != trunc_range) {
4452 			ocfs2_error(inode->i_sb,
4453 				    "Inode %llu: error after split at cpos %u"
4454 				    "trunc len %u, existing record is (%u,%u)",
4455 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4456 				    cpos, len, le32_to_cpu(rec->e_cpos),
4457 				    ocfs2_rec_clusters(el, rec));
4458 			ret = -EROFS;
4459 			goto out;
4460 		}
4461 
4462 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4463 					 cpos, len);
4464 		if (ret) {
4465 			mlog_errno(ret);
4466 			goto out;
4467 		}
4468 	}
4469 
4470 out:
4471 	ocfs2_free_path(path);
4472 	return ret;
4473 }
4474 
4475 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4476 {
4477 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4478 	struct ocfs2_dinode *di;
4479 	struct ocfs2_truncate_log *tl;
4480 
4481 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4482 	tl = &di->id2.i_dealloc;
4483 
4484 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4485 			"slot %d, invalid truncate log parameters: used = "
4486 			"%u, count = %u\n", osb->slot_num,
4487 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4488 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4489 }
4490 
4491 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4492 					   unsigned int new_start)
4493 {
4494 	unsigned int tail_index;
4495 	unsigned int current_tail;
4496 
4497 	/* No records, nothing to coalesce */
4498 	if (!le16_to_cpu(tl->tl_used))
4499 		return 0;
4500 
4501 	tail_index = le16_to_cpu(tl->tl_used) - 1;
4502 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4503 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4504 
4505 	return current_tail == new_start;
4506 }
4507 
4508 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4509 			      handle_t *handle,
4510 			      u64 start_blk,
4511 			      unsigned int num_clusters)
4512 {
4513 	int status, index;
4514 	unsigned int start_cluster, tl_count;
4515 	struct inode *tl_inode = osb->osb_tl_inode;
4516 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4517 	struct ocfs2_dinode *di;
4518 	struct ocfs2_truncate_log *tl;
4519 
4520 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
4521 		   (unsigned long long)start_blk, num_clusters);
4522 
4523 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4524 
4525 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4526 
4527 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4528 	tl = &di->id2.i_dealloc;
4529 	if (!OCFS2_IS_VALID_DINODE(di)) {
4530 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4531 		status = -EIO;
4532 		goto bail;
4533 	}
4534 
4535 	tl_count = le16_to_cpu(tl->tl_count);
4536 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4537 			tl_count == 0,
4538 			"Truncate record count on #%llu invalid "
4539 			"wanted %u, actual %u\n",
4540 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4541 			ocfs2_truncate_recs_per_inode(osb->sb),
4542 			le16_to_cpu(tl->tl_count));
4543 
4544 	/* Caller should have known to flush before calling us. */
4545 	index = le16_to_cpu(tl->tl_used);
4546 	if (index >= tl_count) {
4547 		status = -ENOSPC;
4548 		mlog_errno(status);
4549 		goto bail;
4550 	}
4551 
4552 	status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4553 				      OCFS2_JOURNAL_ACCESS_WRITE);
4554 	if (status < 0) {
4555 		mlog_errno(status);
4556 		goto bail;
4557 	}
4558 
4559 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4560 	     "%llu (index = %d)\n", num_clusters, start_cluster,
4561 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4562 
4563 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4564 		/*
4565 		 * Move index back to the record we are coalescing with.
4566 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4567 		 */
4568 		index--;
4569 
4570 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4571 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4572 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
4573 		     num_clusters);
4574 	} else {
4575 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4576 		tl->tl_used = cpu_to_le16(index + 1);
4577 	}
4578 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4579 
4580 	status = ocfs2_journal_dirty(handle, tl_bh);
4581 	if (status < 0) {
4582 		mlog_errno(status);
4583 		goto bail;
4584 	}
4585 
4586 bail:
4587 	mlog_exit(status);
4588 	return status;
4589 }
4590 
4591 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4592 					 handle_t *handle,
4593 					 struct inode *data_alloc_inode,
4594 					 struct buffer_head *data_alloc_bh)
4595 {
4596 	int status = 0;
4597 	int i;
4598 	unsigned int num_clusters;
4599 	u64 start_blk;
4600 	struct ocfs2_truncate_rec rec;
4601 	struct ocfs2_dinode *di;
4602 	struct ocfs2_truncate_log *tl;
4603 	struct inode *tl_inode = osb->osb_tl_inode;
4604 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4605 
4606 	mlog_entry_void();
4607 
4608 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4609 	tl = &di->id2.i_dealloc;
4610 	i = le16_to_cpu(tl->tl_used) - 1;
4611 	while (i >= 0) {
4612 		/* Caller has given us at least enough credits to
4613 		 * update the truncate log dinode */
4614 		status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4615 					      OCFS2_JOURNAL_ACCESS_WRITE);
4616 		if (status < 0) {
4617 			mlog_errno(status);
4618 			goto bail;
4619 		}
4620 
4621 		tl->tl_used = cpu_to_le16(i);
4622 
4623 		status = ocfs2_journal_dirty(handle, tl_bh);
4624 		if (status < 0) {
4625 			mlog_errno(status);
4626 			goto bail;
4627 		}
4628 
4629 		/* TODO: Perhaps we can calculate the bulk of the
4630 		 * credits up front rather than extending like
4631 		 * this. */
4632 		status = ocfs2_extend_trans(handle,
4633 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4634 		if (status < 0) {
4635 			mlog_errno(status);
4636 			goto bail;
4637 		}
4638 
4639 		rec = tl->tl_recs[i];
4640 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4641 						    le32_to_cpu(rec.t_start));
4642 		num_clusters = le32_to_cpu(rec.t_clusters);
4643 
4644 		/* if start_blk is not set, we ignore the record as
4645 		 * invalid. */
4646 		if (start_blk) {
4647 			mlog(0, "free record %d, start = %u, clusters = %u\n",
4648 			     i, le32_to_cpu(rec.t_start), num_clusters);
4649 
4650 			status = ocfs2_free_clusters(handle, data_alloc_inode,
4651 						     data_alloc_bh, start_blk,
4652 						     num_clusters);
4653 			if (status < 0) {
4654 				mlog_errno(status);
4655 				goto bail;
4656 			}
4657 		}
4658 		i--;
4659 	}
4660 
4661 bail:
4662 	mlog_exit(status);
4663 	return status;
4664 }
4665 
4666 /* Expects you to already be holding tl_inode->i_mutex */
4667 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4668 {
4669 	int status;
4670 	unsigned int num_to_flush;
4671 	handle_t *handle;
4672 	struct inode *tl_inode = osb->osb_tl_inode;
4673 	struct inode *data_alloc_inode = NULL;
4674 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4675 	struct buffer_head *data_alloc_bh = NULL;
4676 	struct ocfs2_dinode *di;
4677 	struct ocfs2_truncate_log *tl;
4678 
4679 	mlog_entry_void();
4680 
4681 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4682 
4683 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4684 	tl = &di->id2.i_dealloc;
4685 	if (!OCFS2_IS_VALID_DINODE(di)) {
4686 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4687 		status = -EIO;
4688 		goto out;
4689 	}
4690 
4691 	num_to_flush = le16_to_cpu(tl->tl_used);
4692 	mlog(0, "Flush %u records from truncate log #%llu\n",
4693 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
4694 	if (!num_to_flush) {
4695 		status = 0;
4696 		goto out;
4697 	}
4698 
4699 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
4700 						       GLOBAL_BITMAP_SYSTEM_INODE,
4701 						       OCFS2_INVALID_SLOT);
4702 	if (!data_alloc_inode) {
4703 		status = -EINVAL;
4704 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
4705 		goto out;
4706 	}
4707 
4708 	mutex_lock(&data_alloc_inode->i_mutex);
4709 
4710 	status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
4711 	if (status < 0) {
4712 		mlog_errno(status);
4713 		goto out_mutex;
4714 	}
4715 
4716 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4717 	if (IS_ERR(handle)) {
4718 		status = PTR_ERR(handle);
4719 		mlog_errno(status);
4720 		goto out_unlock;
4721 	}
4722 
4723 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4724 					       data_alloc_bh);
4725 	if (status < 0)
4726 		mlog_errno(status);
4727 
4728 	ocfs2_commit_trans(osb, handle);
4729 
4730 out_unlock:
4731 	brelse(data_alloc_bh);
4732 	ocfs2_meta_unlock(data_alloc_inode, 1);
4733 
4734 out_mutex:
4735 	mutex_unlock(&data_alloc_inode->i_mutex);
4736 	iput(data_alloc_inode);
4737 
4738 out:
4739 	mlog_exit(status);
4740 	return status;
4741 }
4742 
4743 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4744 {
4745 	int status;
4746 	struct inode *tl_inode = osb->osb_tl_inode;
4747 
4748 	mutex_lock(&tl_inode->i_mutex);
4749 	status = __ocfs2_flush_truncate_log(osb);
4750 	mutex_unlock(&tl_inode->i_mutex);
4751 
4752 	return status;
4753 }
4754 
4755 static void ocfs2_truncate_log_worker(struct work_struct *work)
4756 {
4757 	int status;
4758 	struct ocfs2_super *osb =
4759 		container_of(work, struct ocfs2_super,
4760 			     osb_truncate_log_wq.work);
4761 
4762 	mlog_entry_void();
4763 
4764 	status = ocfs2_flush_truncate_log(osb);
4765 	if (status < 0)
4766 		mlog_errno(status);
4767 
4768 	mlog_exit(status);
4769 }
4770 
4771 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4772 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4773 				       int cancel)
4774 {
4775 	if (osb->osb_tl_inode) {
4776 		/* We want to push off log flushes while truncates are
4777 		 * still running. */
4778 		if (cancel)
4779 			cancel_delayed_work(&osb->osb_truncate_log_wq);
4780 
4781 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4782 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4783 	}
4784 }
4785 
4786 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4787 				       int slot_num,
4788 				       struct inode **tl_inode,
4789 				       struct buffer_head **tl_bh)
4790 {
4791 	int status;
4792 	struct inode *inode = NULL;
4793 	struct buffer_head *bh = NULL;
4794 
4795 	inode = ocfs2_get_system_file_inode(osb,
4796 					   TRUNCATE_LOG_SYSTEM_INODE,
4797 					   slot_num);
4798 	if (!inode) {
4799 		status = -EINVAL;
4800 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4801 		goto bail;
4802 	}
4803 
4804 	status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4805 				  OCFS2_BH_CACHED, inode);
4806 	if (status < 0) {
4807 		iput(inode);
4808 		mlog_errno(status);
4809 		goto bail;
4810 	}
4811 
4812 	*tl_inode = inode;
4813 	*tl_bh    = bh;
4814 bail:
4815 	mlog_exit(status);
4816 	return status;
4817 }
4818 
4819 /* called during the 1st stage of node recovery. we stamp a clean
4820  * truncate log and pass back a copy for processing later. if the
4821  * truncate log does not require processing, a *tl_copy is set to
4822  * NULL. */
4823 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4824 				      int slot_num,
4825 				      struct ocfs2_dinode **tl_copy)
4826 {
4827 	int status;
4828 	struct inode *tl_inode = NULL;
4829 	struct buffer_head *tl_bh = NULL;
4830 	struct ocfs2_dinode *di;
4831 	struct ocfs2_truncate_log *tl;
4832 
4833 	*tl_copy = NULL;
4834 
4835 	mlog(0, "recover truncate log from slot %d\n", slot_num);
4836 
4837 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4838 	if (status < 0) {
4839 		mlog_errno(status);
4840 		goto bail;
4841 	}
4842 
4843 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4844 	tl = &di->id2.i_dealloc;
4845 	if (!OCFS2_IS_VALID_DINODE(di)) {
4846 		OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4847 		status = -EIO;
4848 		goto bail;
4849 	}
4850 
4851 	if (le16_to_cpu(tl->tl_used)) {
4852 		mlog(0, "We'll have %u logs to recover\n",
4853 		     le16_to_cpu(tl->tl_used));
4854 
4855 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4856 		if (!(*tl_copy)) {
4857 			status = -ENOMEM;
4858 			mlog_errno(status);
4859 			goto bail;
4860 		}
4861 
4862 		/* Assuming the write-out below goes well, this copy
4863 		 * will be passed back to recovery for processing. */
4864 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4865 
4866 		/* All we need to do to clear the truncate log is set
4867 		 * tl_used. */
4868 		tl->tl_used = 0;
4869 
4870 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
4871 		if (status < 0) {
4872 			mlog_errno(status);
4873 			goto bail;
4874 		}
4875 	}
4876 
4877 bail:
4878 	if (tl_inode)
4879 		iput(tl_inode);
4880 	if (tl_bh)
4881 		brelse(tl_bh);
4882 
4883 	if (status < 0 && (*tl_copy)) {
4884 		kfree(*tl_copy);
4885 		*tl_copy = NULL;
4886 	}
4887 
4888 	mlog_exit(status);
4889 	return status;
4890 }
4891 
4892 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4893 					 struct ocfs2_dinode *tl_copy)
4894 {
4895 	int status = 0;
4896 	int i;
4897 	unsigned int clusters, num_recs, start_cluster;
4898 	u64 start_blk;
4899 	handle_t *handle;
4900 	struct inode *tl_inode = osb->osb_tl_inode;
4901 	struct ocfs2_truncate_log *tl;
4902 
4903 	mlog_entry_void();
4904 
4905 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4906 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4907 		return -EINVAL;
4908 	}
4909 
4910 	tl = &tl_copy->id2.i_dealloc;
4911 	num_recs = le16_to_cpu(tl->tl_used);
4912 	mlog(0, "cleanup %u records from %llu\n", num_recs,
4913 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
4914 
4915 	mutex_lock(&tl_inode->i_mutex);
4916 	for(i = 0; i < num_recs; i++) {
4917 		if (ocfs2_truncate_log_needs_flush(osb)) {
4918 			status = __ocfs2_flush_truncate_log(osb);
4919 			if (status < 0) {
4920 				mlog_errno(status);
4921 				goto bail_up;
4922 			}
4923 		}
4924 
4925 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4926 		if (IS_ERR(handle)) {
4927 			status = PTR_ERR(handle);
4928 			mlog_errno(status);
4929 			goto bail_up;
4930 		}
4931 
4932 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4933 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4934 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4935 
4936 		status = ocfs2_truncate_log_append(osb, handle,
4937 						   start_blk, clusters);
4938 		ocfs2_commit_trans(osb, handle);
4939 		if (status < 0) {
4940 			mlog_errno(status);
4941 			goto bail_up;
4942 		}
4943 	}
4944 
4945 bail_up:
4946 	mutex_unlock(&tl_inode->i_mutex);
4947 
4948 	mlog_exit(status);
4949 	return status;
4950 }
4951 
4952 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4953 {
4954 	int status;
4955 	struct inode *tl_inode = osb->osb_tl_inode;
4956 
4957 	mlog_entry_void();
4958 
4959 	if (tl_inode) {
4960 		cancel_delayed_work(&osb->osb_truncate_log_wq);
4961 		flush_workqueue(ocfs2_wq);
4962 
4963 		status = ocfs2_flush_truncate_log(osb);
4964 		if (status < 0)
4965 			mlog_errno(status);
4966 
4967 		brelse(osb->osb_tl_bh);
4968 		iput(osb->osb_tl_inode);
4969 	}
4970 
4971 	mlog_exit_void();
4972 }
4973 
4974 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
4975 {
4976 	int status;
4977 	struct inode *tl_inode = NULL;
4978 	struct buffer_head *tl_bh = NULL;
4979 
4980 	mlog_entry_void();
4981 
4982 	status = ocfs2_get_truncate_log_info(osb,
4983 					     osb->slot_num,
4984 					     &tl_inode,
4985 					     &tl_bh);
4986 	if (status < 0)
4987 		mlog_errno(status);
4988 
4989 	/* ocfs2_truncate_log_shutdown keys on the existence of
4990 	 * osb->osb_tl_inode so we don't set any of the osb variables
4991 	 * until we're sure all is well. */
4992 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
4993 			  ocfs2_truncate_log_worker);
4994 	osb->osb_tl_bh    = tl_bh;
4995 	osb->osb_tl_inode = tl_inode;
4996 
4997 	mlog_exit(status);
4998 	return status;
4999 }
5000 
5001 /*
5002  * Delayed de-allocation of suballocator blocks.
5003  *
5004  * Some sets of block de-allocations might involve multiple suballocator inodes.
5005  *
5006  * The locking for this can get extremely complicated, especially when
5007  * the suballocator inodes to delete from aren't known until deep
5008  * within an unrelated codepath.
5009  *
5010  * ocfs2_extent_block structures are a good example of this - an inode
5011  * btree could have been grown by any number of nodes each allocating
5012  * out of their own suballoc inode.
5013  *
5014  * These structures allow the delay of block de-allocation until a
5015  * later time, when locking of multiple cluster inodes won't cause
5016  * deadlock.
5017  */
5018 
5019 /*
5020  * Describes a single block free from a suballocator
5021  */
5022 struct ocfs2_cached_block_free {
5023 	struct ocfs2_cached_block_free		*free_next;
5024 	u64					free_blk;
5025 	unsigned int				free_bit;
5026 };
5027 
5028 struct ocfs2_per_slot_free_list {
5029 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5030 	int					f_inode_type;
5031 	int					f_slot;
5032 	struct ocfs2_cached_block_free		*f_first;
5033 };
5034 
5035 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5036 				   int sysfile_type,
5037 				   int slot,
5038 				   struct ocfs2_cached_block_free *head)
5039 {
5040 	int ret;
5041 	u64 bg_blkno;
5042 	handle_t *handle;
5043 	struct inode *inode;
5044 	struct buffer_head *di_bh = NULL;
5045 	struct ocfs2_cached_block_free *tmp;
5046 
5047 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5048 	if (!inode) {
5049 		ret = -EINVAL;
5050 		mlog_errno(ret);
5051 		goto out;
5052 	}
5053 
5054 	mutex_lock(&inode->i_mutex);
5055 
5056 	ret = ocfs2_meta_lock(inode, &di_bh, 1);
5057 	if (ret) {
5058 		mlog_errno(ret);
5059 		goto out_mutex;
5060 	}
5061 
5062 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5063 	if (IS_ERR(handle)) {
5064 		ret = PTR_ERR(handle);
5065 		mlog_errno(ret);
5066 		goto out_unlock;
5067 	}
5068 
5069 	while (head) {
5070 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5071 						      head->free_bit);
5072 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5073 		     head->free_bit, (unsigned long long)head->free_blk);
5074 
5075 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5076 					       head->free_bit, bg_blkno, 1);
5077 		if (ret) {
5078 			mlog_errno(ret);
5079 			goto out_journal;
5080 		}
5081 
5082 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5083 		if (ret) {
5084 			mlog_errno(ret);
5085 			goto out_journal;
5086 		}
5087 
5088 		tmp = head;
5089 		head = head->free_next;
5090 		kfree(tmp);
5091 	}
5092 
5093 out_journal:
5094 	ocfs2_commit_trans(osb, handle);
5095 
5096 out_unlock:
5097 	ocfs2_meta_unlock(inode, 1);
5098 	brelse(di_bh);
5099 out_mutex:
5100 	mutex_unlock(&inode->i_mutex);
5101 	iput(inode);
5102 out:
5103 	while(head) {
5104 		/* Premature exit may have left some dangling items. */
5105 		tmp = head;
5106 		head = head->free_next;
5107 		kfree(tmp);
5108 	}
5109 
5110 	return ret;
5111 }
5112 
5113 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5114 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
5115 {
5116 	int ret = 0, ret2;
5117 	struct ocfs2_per_slot_free_list *fl;
5118 
5119 	if (!ctxt)
5120 		return 0;
5121 
5122 	while (ctxt->c_first_suballocator) {
5123 		fl = ctxt->c_first_suballocator;
5124 
5125 		if (fl->f_first) {
5126 			mlog(0, "Free items: (type %u, slot %d)\n",
5127 			     fl->f_inode_type, fl->f_slot);
5128 			ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5129 						       fl->f_slot, fl->f_first);
5130 			if (ret2)
5131 				mlog_errno(ret2);
5132 			if (!ret)
5133 				ret = ret2;
5134 		}
5135 
5136 		ctxt->c_first_suballocator = fl->f_next_suballocator;
5137 		kfree(fl);
5138 	}
5139 
5140 	return ret;
5141 }
5142 
5143 static struct ocfs2_per_slot_free_list *
5144 ocfs2_find_per_slot_free_list(int type,
5145 			      int slot,
5146 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
5147 {
5148 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5149 
5150 	while (fl) {
5151 		if (fl->f_inode_type == type && fl->f_slot == slot)
5152 			return fl;
5153 
5154 		fl = fl->f_next_suballocator;
5155 	}
5156 
5157 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
5158 	if (fl) {
5159 		fl->f_inode_type = type;
5160 		fl->f_slot = slot;
5161 		fl->f_first = NULL;
5162 		fl->f_next_suballocator = ctxt->c_first_suballocator;
5163 
5164 		ctxt->c_first_suballocator = fl;
5165 	}
5166 	return fl;
5167 }
5168 
5169 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5170 				     int type, int slot, u64 blkno,
5171 				     unsigned int bit)
5172 {
5173 	int ret;
5174 	struct ocfs2_per_slot_free_list *fl;
5175 	struct ocfs2_cached_block_free *item;
5176 
5177 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5178 	if (fl == NULL) {
5179 		ret = -ENOMEM;
5180 		mlog_errno(ret);
5181 		goto out;
5182 	}
5183 
5184 	item = kmalloc(sizeof(*item), GFP_NOFS);
5185 	if (item == NULL) {
5186 		ret = -ENOMEM;
5187 		mlog_errno(ret);
5188 		goto out;
5189 	}
5190 
5191 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5192 	     type, slot, bit, (unsigned long long)blkno);
5193 
5194 	item->free_blk = blkno;
5195 	item->free_bit = bit;
5196 	item->free_next = fl->f_first;
5197 
5198 	fl->f_first = item;
5199 
5200 	ret = 0;
5201 out:
5202 	return ret;
5203 }
5204 
5205 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5206 					 struct ocfs2_extent_block *eb)
5207 {
5208 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5209 					 le16_to_cpu(eb->h_suballoc_slot),
5210 					 le64_to_cpu(eb->h_blkno),
5211 					 le16_to_cpu(eb->h_suballoc_bit));
5212 }
5213 
5214 /* This function will figure out whether the currently last extent
5215  * block will be deleted, and if it will, what the new last extent
5216  * block will be so we can update his h_next_leaf_blk field, as well
5217  * as the dinodes i_last_eb_blk */
5218 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5219 				       unsigned int clusters_to_del,
5220 				       struct ocfs2_path *path,
5221 				       struct buffer_head **new_last_eb)
5222 {
5223 	int next_free, ret = 0;
5224 	u32 cpos;
5225 	struct ocfs2_extent_rec *rec;
5226 	struct ocfs2_extent_block *eb;
5227 	struct ocfs2_extent_list *el;
5228 	struct buffer_head *bh = NULL;
5229 
5230 	*new_last_eb = NULL;
5231 
5232 	/* we have no tree, so of course, no last_eb. */
5233 	if (!path->p_tree_depth)
5234 		goto out;
5235 
5236 	/* trunc to zero special case - this makes tree_depth = 0
5237 	 * regardless of what it is.  */
5238 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5239 		goto out;
5240 
5241 	el = path_leaf_el(path);
5242 	BUG_ON(!el->l_next_free_rec);
5243 
5244 	/*
5245 	 * Make sure that this extent list will actually be empty
5246 	 * after we clear away the data. We can shortcut out if
5247 	 * there's more than one non-empty extent in the
5248 	 * list. Otherwise, a check of the remaining extent is
5249 	 * necessary.
5250 	 */
5251 	next_free = le16_to_cpu(el->l_next_free_rec);
5252 	rec = NULL;
5253 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5254 		if (next_free > 2)
5255 			goto out;
5256 
5257 		/* We may have a valid extent in index 1, check it. */
5258 		if (next_free == 2)
5259 			rec = &el->l_recs[1];
5260 
5261 		/*
5262 		 * Fall through - no more nonempty extents, so we want
5263 		 * to delete this leaf.
5264 		 */
5265 	} else {
5266 		if (next_free > 1)
5267 			goto out;
5268 
5269 		rec = &el->l_recs[0];
5270 	}
5271 
5272 	if (rec) {
5273 		/*
5274 		 * Check it we'll only be trimming off the end of this
5275 		 * cluster.
5276 		 */
5277 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5278 			goto out;
5279 	}
5280 
5281 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5282 	if (ret) {
5283 		mlog_errno(ret);
5284 		goto out;
5285 	}
5286 
5287 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5288 	if (ret) {
5289 		mlog_errno(ret);
5290 		goto out;
5291 	}
5292 
5293 	eb = (struct ocfs2_extent_block *) bh->b_data;
5294 	el = &eb->h_list;
5295 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5296 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5297 		ret = -EROFS;
5298 		goto out;
5299 	}
5300 
5301 	*new_last_eb = bh;
5302 	get_bh(*new_last_eb);
5303 	mlog(0, "returning block %llu, (cpos: %u)\n",
5304 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5305 out:
5306 	brelse(bh);
5307 
5308 	return ret;
5309 }
5310 
5311 /*
5312  * Trim some clusters off the rightmost edge of a tree. Only called
5313  * during truncate.
5314  *
5315  * The caller needs to:
5316  *   - start journaling of each path component.
5317  *   - compute and fully set up any new last ext block
5318  */
5319 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5320 			   handle_t *handle, struct ocfs2_truncate_context *tc,
5321 			   u32 clusters_to_del, u64 *delete_start)
5322 {
5323 	int ret, i, index = path->p_tree_depth;
5324 	u32 new_edge = 0;
5325 	u64 deleted_eb = 0;
5326 	struct buffer_head *bh;
5327 	struct ocfs2_extent_list *el;
5328 	struct ocfs2_extent_rec *rec;
5329 
5330 	*delete_start = 0;
5331 
5332 	while (index >= 0) {
5333 		bh = path->p_node[index].bh;
5334 		el = path->p_node[index].el;
5335 
5336 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
5337 		     index,  (unsigned long long)bh->b_blocknr);
5338 
5339 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5340 
5341 		if (index !=
5342 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5343 			ocfs2_error(inode->i_sb,
5344 				    "Inode %lu has invalid ext. block %llu",
5345 				    inode->i_ino,
5346 				    (unsigned long long)bh->b_blocknr);
5347 			ret = -EROFS;
5348 			goto out;
5349 		}
5350 
5351 find_tail_record:
5352 		i = le16_to_cpu(el->l_next_free_rec) - 1;
5353 		rec = &el->l_recs[i];
5354 
5355 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5356 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5357 		     ocfs2_rec_clusters(el, rec),
5358 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5359 		     le16_to_cpu(el->l_next_free_rec));
5360 
5361 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5362 
5363 		if (le16_to_cpu(el->l_tree_depth) == 0) {
5364 			/*
5365 			 * If the leaf block contains a single empty
5366 			 * extent and no records, we can just remove
5367 			 * the block.
5368 			 */
5369 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
5370 				memset(rec, 0,
5371 				       sizeof(struct ocfs2_extent_rec));
5372 				el->l_next_free_rec = cpu_to_le16(0);
5373 
5374 				goto delete;
5375 			}
5376 
5377 			/*
5378 			 * Remove any empty extents by shifting things
5379 			 * left. That should make life much easier on
5380 			 * the code below. This condition is rare
5381 			 * enough that we shouldn't see a performance
5382 			 * hit.
5383 			 */
5384 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5385 				le16_add_cpu(&el->l_next_free_rec, -1);
5386 
5387 				for(i = 0;
5388 				    i < le16_to_cpu(el->l_next_free_rec); i++)
5389 					el->l_recs[i] = el->l_recs[i + 1];
5390 
5391 				memset(&el->l_recs[i], 0,
5392 				       sizeof(struct ocfs2_extent_rec));
5393 
5394 				/*
5395 				 * We've modified our extent list. The
5396 				 * simplest way to handle this change
5397 				 * is to being the search from the
5398 				 * start again.
5399 				 */
5400 				goto find_tail_record;
5401 			}
5402 
5403 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5404 
5405 			/*
5406 			 * We'll use "new_edge" on our way back up the
5407 			 * tree to know what our rightmost cpos is.
5408 			 */
5409 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
5410 			new_edge += le32_to_cpu(rec->e_cpos);
5411 
5412 			/*
5413 			 * The caller will use this to delete data blocks.
5414 			 */
5415 			*delete_start = le64_to_cpu(rec->e_blkno)
5416 				+ ocfs2_clusters_to_blocks(inode->i_sb,
5417 					le16_to_cpu(rec->e_leaf_clusters));
5418 
5419 			/*
5420 			 * If it's now empty, remove this record.
5421 			 */
5422 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5423 				memset(rec, 0,
5424 				       sizeof(struct ocfs2_extent_rec));
5425 				le16_add_cpu(&el->l_next_free_rec, -1);
5426 			}
5427 		} else {
5428 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5429 				memset(rec, 0,
5430 				       sizeof(struct ocfs2_extent_rec));
5431 				le16_add_cpu(&el->l_next_free_rec, -1);
5432 
5433 				goto delete;
5434 			}
5435 
5436 			/* Can this actually happen? */
5437 			if (le16_to_cpu(el->l_next_free_rec) == 0)
5438 				goto delete;
5439 
5440 			/*
5441 			 * We never actually deleted any clusters
5442 			 * because our leaf was empty. There's no
5443 			 * reason to adjust the rightmost edge then.
5444 			 */
5445 			if (new_edge == 0)
5446 				goto delete;
5447 
5448 			rec->e_int_clusters = cpu_to_le32(new_edge);
5449 			le32_add_cpu(&rec->e_int_clusters,
5450 				     -le32_to_cpu(rec->e_cpos));
5451 
5452 			 /*
5453 			  * A deleted child record should have been
5454 			  * caught above.
5455 			  */
5456 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5457 		}
5458 
5459 delete:
5460 		ret = ocfs2_journal_dirty(handle, bh);
5461 		if (ret) {
5462 			mlog_errno(ret);
5463 			goto out;
5464 		}
5465 
5466 		mlog(0, "extent list container %llu, after: record %d: "
5467 		     "(%u, %u, %llu), next = %u.\n",
5468 		     (unsigned long long)bh->b_blocknr, i,
5469 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5470 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5471 		     le16_to_cpu(el->l_next_free_rec));
5472 
5473 		/*
5474 		 * We must be careful to only attempt delete of an
5475 		 * extent block (and not the root inode block).
5476 		 */
5477 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5478 			struct ocfs2_extent_block *eb =
5479 				(struct ocfs2_extent_block *)bh->b_data;
5480 
5481 			/*
5482 			 * Save this for use when processing the
5483 			 * parent block.
5484 			 */
5485 			deleted_eb = le64_to_cpu(eb->h_blkno);
5486 
5487 			mlog(0, "deleting this extent block.\n");
5488 
5489 			ocfs2_remove_from_cache(inode, bh);
5490 
5491 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5492 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5493 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5494 
5495 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5496 			/* An error here is not fatal. */
5497 			if (ret < 0)
5498 				mlog_errno(ret);
5499 		} else {
5500 			deleted_eb = 0;
5501 		}
5502 
5503 		index--;
5504 	}
5505 
5506 	ret = 0;
5507 out:
5508 	return ret;
5509 }
5510 
5511 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5512 			     unsigned int clusters_to_del,
5513 			     struct inode *inode,
5514 			     struct buffer_head *fe_bh,
5515 			     handle_t *handle,
5516 			     struct ocfs2_truncate_context *tc,
5517 			     struct ocfs2_path *path)
5518 {
5519 	int status;
5520 	struct ocfs2_dinode *fe;
5521 	struct ocfs2_extent_block *last_eb = NULL;
5522 	struct ocfs2_extent_list *el;
5523 	struct buffer_head *last_eb_bh = NULL;
5524 	u64 delete_blk = 0;
5525 
5526 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
5527 
5528 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5529 					     path, &last_eb_bh);
5530 	if (status < 0) {
5531 		mlog_errno(status);
5532 		goto bail;
5533 	}
5534 
5535 	/*
5536 	 * Each component will be touched, so we might as well journal
5537 	 * here to avoid having to handle errors later.
5538 	 */
5539 	status = ocfs2_journal_access_path(inode, handle, path);
5540 	if (status < 0) {
5541 		mlog_errno(status);
5542 		goto bail;
5543 	}
5544 
5545 	if (last_eb_bh) {
5546 		status = ocfs2_journal_access(handle, inode, last_eb_bh,
5547 					      OCFS2_JOURNAL_ACCESS_WRITE);
5548 		if (status < 0) {
5549 			mlog_errno(status);
5550 			goto bail;
5551 		}
5552 
5553 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5554 	}
5555 
5556 	el = &(fe->id2.i_list);
5557 
5558 	/*
5559 	 * Lower levels depend on this never happening, but it's best
5560 	 * to check it up here before changing the tree.
5561 	 */
5562 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5563 		ocfs2_error(inode->i_sb,
5564 			    "Inode %lu has an empty extent record, depth %u\n",
5565 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
5566 		status = -EROFS;
5567 		goto bail;
5568 	}
5569 
5570 	spin_lock(&OCFS2_I(inode)->ip_lock);
5571 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5572 				      clusters_to_del;
5573 	spin_unlock(&OCFS2_I(inode)->ip_lock);
5574 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5575 	inode->i_blocks = ocfs2_inode_sector_count(inode);
5576 
5577 	status = ocfs2_trim_tree(inode, path, handle, tc,
5578 				 clusters_to_del, &delete_blk);
5579 	if (status) {
5580 		mlog_errno(status);
5581 		goto bail;
5582 	}
5583 
5584 	if (le32_to_cpu(fe->i_clusters) == 0) {
5585 		/* trunc to zero is a special case. */
5586 		el->l_tree_depth = 0;
5587 		fe->i_last_eb_blk = 0;
5588 	} else if (last_eb)
5589 		fe->i_last_eb_blk = last_eb->h_blkno;
5590 
5591 	status = ocfs2_journal_dirty(handle, fe_bh);
5592 	if (status < 0) {
5593 		mlog_errno(status);
5594 		goto bail;
5595 	}
5596 
5597 	if (last_eb) {
5598 		/* If there will be a new last extent block, then by
5599 		 * definition, there cannot be any leaves to the right of
5600 		 * him. */
5601 		last_eb->h_next_leaf_blk = 0;
5602 		status = ocfs2_journal_dirty(handle, last_eb_bh);
5603 		if (status < 0) {
5604 			mlog_errno(status);
5605 			goto bail;
5606 		}
5607 	}
5608 
5609 	if (delete_blk) {
5610 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5611 						   clusters_to_del);
5612 		if (status < 0) {
5613 			mlog_errno(status);
5614 			goto bail;
5615 		}
5616 	}
5617 	status = 0;
5618 bail:
5619 
5620 	mlog_exit(status);
5621 	return status;
5622 }
5623 
5624 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5625 {
5626 	set_buffer_uptodate(bh);
5627 	mark_buffer_dirty(bh);
5628 	return 0;
5629 }
5630 
5631 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5632 {
5633 	set_buffer_uptodate(bh);
5634 	mark_buffer_dirty(bh);
5635 	return ocfs2_journal_dirty_data(handle, bh);
5636 }
5637 
5638 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
5639 				     unsigned int from, unsigned int to,
5640 				     struct page *page, int zero, u64 *phys)
5641 {
5642 	int ret, partial = 0;
5643 
5644 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
5645 	if (ret)
5646 		mlog_errno(ret);
5647 
5648 	if (zero)
5649 		zero_user_page(page, from, to - from, KM_USER0);
5650 
5651 	/*
5652 	 * Need to set the buffers we zero'd into uptodate
5653 	 * here if they aren't - ocfs2_map_page_blocks()
5654 	 * might've skipped some
5655 	 */
5656 	if (ocfs2_should_order_data(inode)) {
5657 		ret = walk_page_buffers(handle,
5658 					page_buffers(page),
5659 					from, to, &partial,
5660 					ocfs2_ordered_zero_func);
5661 		if (ret < 0)
5662 			mlog_errno(ret);
5663 	} else {
5664 		ret = walk_page_buffers(handle, page_buffers(page),
5665 					from, to, &partial,
5666 					ocfs2_writeback_zero_func);
5667 		if (ret < 0)
5668 			mlog_errno(ret);
5669 	}
5670 
5671 	if (!partial)
5672 		SetPageUptodate(page);
5673 
5674 	flush_dcache_page(page);
5675 }
5676 
5677 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5678 				     loff_t end, struct page **pages,
5679 				     int numpages, u64 phys, handle_t *handle)
5680 {
5681 	int i;
5682 	struct page *page;
5683 	unsigned int from, to = PAGE_CACHE_SIZE;
5684 	struct super_block *sb = inode->i_sb;
5685 
5686 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5687 
5688 	if (numpages == 0)
5689 		goto out;
5690 
5691 	to = PAGE_CACHE_SIZE;
5692 	for(i = 0; i < numpages; i++) {
5693 		page = pages[i];
5694 
5695 		from = start & (PAGE_CACHE_SIZE - 1);
5696 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
5697 			to = end & (PAGE_CACHE_SIZE - 1);
5698 
5699 		BUG_ON(from > PAGE_CACHE_SIZE);
5700 		BUG_ON(to > PAGE_CACHE_SIZE);
5701 
5702 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
5703 					 &phys);
5704 
5705 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
5706 	}
5707 out:
5708 	if (pages)
5709 		ocfs2_unlock_and_free_pages(pages, numpages);
5710 }
5711 
5712 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
5713 				struct page **pages, int *num)
5714 {
5715 	int numpages, ret = 0;
5716 	struct super_block *sb = inode->i_sb;
5717 	struct address_space *mapping = inode->i_mapping;
5718 	unsigned long index;
5719 	loff_t last_page_bytes;
5720 
5721 	BUG_ON(start > end);
5722 
5723 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
5724 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
5725 
5726 	numpages = 0;
5727 	last_page_bytes = PAGE_ALIGN(end);
5728 	index = start >> PAGE_CACHE_SHIFT;
5729 	do {
5730 		pages[numpages] = grab_cache_page(mapping, index);
5731 		if (!pages[numpages]) {
5732 			ret = -ENOMEM;
5733 			mlog_errno(ret);
5734 			goto out;
5735 		}
5736 
5737 		numpages++;
5738 		index++;
5739 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
5740 
5741 out:
5742 	if (ret != 0) {
5743 		if (pages)
5744 			ocfs2_unlock_and_free_pages(pages, numpages);
5745 		numpages = 0;
5746 	}
5747 
5748 	*num = numpages;
5749 
5750 	return ret;
5751 }
5752 
5753 /*
5754  * Zero the area past i_size but still within an allocated
5755  * cluster. This avoids exposing nonzero data on subsequent file
5756  * extends.
5757  *
5758  * We need to call this before i_size is updated on the inode because
5759  * otherwise block_write_full_page() will skip writeout of pages past
5760  * i_size. The new_i_size parameter is passed for this reason.
5761  */
5762 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
5763 				  u64 range_start, u64 range_end)
5764 {
5765 	int ret = 0, numpages;
5766 	struct page **pages = NULL;
5767 	u64 phys;
5768 	unsigned int ext_flags;
5769 	struct super_block *sb = inode->i_sb;
5770 
5771 	/*
5772 	 * File systems which don't support sparse files zero on every
5773 	 * extend.
5774 	 */
5775 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
5776 		return 0;
5777 
5778 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
5779 			sizeof(struct page *), GFP_NOFS);
5780 	if (pages == NULL) {
5781 		ret = -ENOMEM;
5782 		mlog_errno(ret);
5783 		goto out;
5784 	}
5785 
5786 	if (range_start == range_end)
5787 		goto out;
5788 
5789 	ret = ocfs2_extent_map_get_blocks(inode,
5790 					  range_start >> sb->s_blocksize_bits,
5791 					  &phys, NULL, &ext_flags);
5792 	if (ret) {
5793 		mlog_errno(ret);
5794 		goto out;
5795 	}
5796 
5797 	/*
5798 	 * Tail is a hole, or is marked unwritten. In either case, we
5799 	 * can count on read and write to return/push zero's.
5800 	 */
5801 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
5802 		goto out;
5803 
5804 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
5805 				   &numpages);
5806 	if (ret) {
5807 		mlog_errno(ret);
5808 		goto out;
5809 	}
5810 
5811 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
5812 				 numpages, phys, handle);
5813 
5814 	/*
5815 	 * Initiate writeout of the pages we zero'd here. We don't
5816 	 * wait on them - the truncate_inode_pages() call later will
5817 	 * do that for us.
5818 	 */
5819 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
5820 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
5821 	if (ret)
5822 		mlog_errno(ret);
5823 
5824 out:
5825 	if (pages)
5826 		kfree(pages);
5827 
5828 	return ret;
5829 }
5830 
5831 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
5832 {
5833 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
5834 
5835 	memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
5836 }
5837 
5838 void ocfs2_dinode_new_extent_list(struct inode *inode,
5839 				  struct ocfs2_dinode *di)
5840 {
5841 	ocfs2_zero_dinode_id2(inode, di);
5842 	di->id2.i_list.l_tree_depth = 0;
5843 	di->id2.i_list.l_next_free_rec = 0;
5844 	di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
5845 }
5846 
5847 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
5848 {
5849 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
5850 	struct ocfs2_inline_data *idata = &di->id2.i_data;
5851 
5852 	spin_lock(&oi->ip_lock);
5853 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
5854 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
5855 	spin_unlock(&oi->ip_lock);
5856 
5857 	/*
5858 	 * We clear the entire i_data structure here so that all
5859 	 * fields can be properly initialized.
5860 	 */
5861 	ocfs2_zero_dinode_id2(inode, di);
5862 
5863 	idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
5864 }
5865 
5866 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
5867 					 struct buffer_head *di_bh)
5868 {
5869 	int ret, i, has_data, num_pages = 0;
5870 	handle_t *handle;
5871 	u64 uninitialized_var(block);
5872 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
5873 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5874 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
5875 	struct ocfs2_alloc_context *data_ac = NULL;
5876 	struct page **pages = NULL;
5877 	loff_t end = osb->s_clustersize;
5878 
5879 	has_data = i_size_read(inode) ? 1 : 0;
5880 
5881 	if (has_data) {
5882 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
5883 				sizeof(struct page *), GFP_NOFS);
5884 		if (pages == NULL) {
5885 			ret = -ENOMEM;
5886 			mlog_errno(ret);
5887 			goto out;
5888 		}
5889 
5890 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
5891 		if (ret) {
5892 			mlog_errno(ret);
5893 			goto out;
5894 		}
5895 	}
5896 
5897 	handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
5898 	if (IS_ERR(handle)) {
5899 		ret = PTR_ERR(handle);
5900 		mlog_errno(ret);
5901 		goto out_unlock;
5902 	}
5903 
5904 	ret = ocfs2_journal_access(handle, inode, di_bh,
5905 				   OCFS2_JOURNAL_ACCESS_WRITE);
5906 	if (ret) {
5907 		mlog_errno(ret);
5908 		goto out_commit;
5909 	}
5910 
5911 	if (has_data) {
5912 		u32 bit_off, num;
5913 		unsigned int page_end;
5914 		u64 phys;
5915 
5916 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
5917 					   &num);
5918 		if (ret) {
5919 			mlog_errno(ret);
5920 			goto out_commit;
5921 		}
5922 
5923 		/*
5924 		 * Save two copies, one for insert, and one that can
5925 		 * be changed by ocfs2_map_and_dirty_page() below.
5926 		 */
5927 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
5928 
5929 		/*
5930 		 * Non sparse file systems zero on extend, so no need
5931 		 * to do that now.
5932 		 */
5933 		if (!ocfs2_sparse_alloc(osb) &&
5934 		    PAGE_CACHE_SIZE < osb->s_clustersize)
5935 			end = PAGE_CACHE_SIZE;
5936 
5937 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
5938 		if (ret) {
5939 			mlog_errno(ret);
5940 			goto out_commit;
5941 		}
5942 
5943 		/*
5944 		 * This should populate the 1st page for us and mark
5945 		 * it up to date.
5946 		 */
5947 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
5948 		if (ret) {
5949 			mlog_errno(ret);
5950 			goto out_commit;
5951 		}
5952 
5953 		page_end = PAGE_CACHE_SIZE;
5954 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
5955 			page_end = osb->s_clustersize;
5956 
5957 		for (i = 0; i < num_pages; i++)
5958 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
5959 						 pages[i], i > 0, &phys);
5960 	}
5961 
5962 	spin_lock(&oi->ip_lock);
5963 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
5964 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
5965 	spin_unlock(&oi->ip_lock);
5966 
5967 	ocfs2_dinode_new_extent_list(inode, di);
5968 
5969 	ocfs2_journal_dirty(handle, di_bh);
5970 
5971 	if (has_data) {
5972 		/*
5973 		 * An error at this point should be extremely rare. If
5974 		 * this proves to be false, we could always re-build
5975 		 * the in-inode data from our pages.
5976 		 */
5977 		ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
5978 					  0, block, 1, 0, NULL);
5979 		if (ret) {
5980 			mlog_errno(ret);
5981 			goto out_commit;
5982 		}
5983 
5984 		inode->i_blocks = ocfs2_inode_sector_count(inode);
5985 	}
5986 
5987 out_commit:
5988 	ocfs2_commit_trans(osb, handle);
5989 
5990 out_unlock:
5991 	if (data_ac)
5992 		ocfs2_free_alloc_context(data_ac);
5993 
5994 out:
5995 	if (pages) {
5996 		ocfs2_unlock_and_free_pages(pages, num_pages);
5997 		kfree(pages);
5998 	}
5999 
6000 	return ret;
6001 }
6002 
6003 /*
6004  * It is expected, that by the time you call this function,
6005  * inode->i_size and fe->i_size have been adjusted.
6006  *
6007  * WARNING: This will kfree the truncate context
6008  */
6009 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6010 			  struct inode *inode,
6011 			  struct buffer_head *fe_bh,
6012 			  struct ocfs2_truncate_context *tc)
6013 {
6014 	int status, i, credits, tl_sem = 0;
6015 	u32 clusters_to_del, new_highest_cpos, range;
6016 	struct ocfs2_extent_list *el;
6017 	handle_t *handle = NULL;
6018 	struct inode *tl_inode = osb->osb_tl_inode;
6019 	struct ocfs2_path *path = NULL;
6020 
6021 	mlog_entry_void();
6022 
6023 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6024 						     i_size_read(inode));
6025 
6026 	path = ocfs2_new_inode_path(fe_bh);
6027 	if (!path) {
6028 		status = -ENOMEM;
6029 		mlog_errno(status);
6030 		goto bail;
6031 	}
6032 
6033 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
6034 
6035 start:
6036 	/*
6037 	 * Check that we still have allocation to delete.
6038 	 */
6039 	if (OCFS2_I(inode)->ip_clusters == 0) {
6040 		status = 0;
6041 		goto bail;
6042 	}
6043 
6044 	/*
6045 	 * Truncate always works against the rightmost tree branch.
6046 	 */
6047 	status = ocfs2_find_path(inode, path, UINT_MAX);
6048 	if (status) {
6049 		mlog_errno(status);
6050 		goto bail;
6051 	}
6052 
6053 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6054 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6055 
6056 	/*
6057 	 * By now, el will point to the extent list on the bottom most
6058 	 * portion of this tree. Only the tail record is considered in
6059 	 * each pass.
6060 	 *
6061 	 * We handle the following cases, in order:
6062 	 * - empty extent: delete the remaining branch
6063 	 * - remove the entire record
6064 	 * - remove a partial record
6065 	 * - no record needs to be removed (truncate has completed)
6066 	 */
6067 	el = path_leaf_el(path);
6068 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
6069 		ocfs2_error(inode->i_sb,
6070 			    "Inode %llu has empty extent block at %llu\n",
6071 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6072 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
6073 		status = -EROFS;
6074 		goto bail;
6075 	}
6076 
6077 	i = le16_to_cpu(el->l_next_free_rec) - 1;
6078 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
6079 		ocfs2_rec_clusters(el, &el->l_recs[i]);
6080 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6081 		clusters_to_del = 0;
6082 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6083 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6084 	} else if (range > new_highest_cpos) {
6085 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6086 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
6087 				  new_highest_cpos;
6088 	} else {
6089 		status = 0;
6090 		goto bail;
6091 	}
6092 
6093 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6094 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6095 
6096 	BUG_ON(clusters_to_del == 0);
6097 
6098 	mutex_lock(&tl_inode->i_mutex);
6099 	tl_sem = 1;
6100 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
6101 	 * record is free for use. If there isn't any, we flush to get
6102 	 * an empty truncate log.  */
6103 	if (ocfs2_truncate_log_needs_flush(osb)) {
6104 		status = __ocfs2_flush_truncate_log(osb);
6105 		if (status < 0) {
6106 			mlog_errno(status);
6107 			goto bail;
6108 		}
6109 	}
6110 
6111 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6112 						(struct ocfs2_dinode *)fe_bh->b_data,
6113 						el);
6114 	handle = ocfs2_start_trans(osb, credits);
6115 	if (IS_ERR(handle)) {
6116 		status = PTR_ERR(handle);
6117 		handle = NULL;
6118 		mlog_errno(status);
6119 		goto bail;
6120 	}
6121 
6122 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6123 				   tc, path);
6124 	if (status < 0) {
6125 		mlog_errno(status);
6126 		goto bail;
6127 	}
6128 
6129 	mutex_unlock(&tl_inode->i_mutex);
6130 	tl_sem = 0;
6131 
6132 	ocfs2_commit_trans(osb, handle);
6133 	handle = NULL;
6134 
6135 	ocfs2_reinit_path(path, 1);
6136 
6137 	/*
6138 	 * The check above will catch the case where we've truncated
6139 	 * away all allocation.
6140 	 */
6141 	goto start;
6142 
6143 bail:
6144 
6145 	ocfs2_schedule_truncate_log_flush(osb, 1);
6146 
6147 	if (tl_sem)
6148 		mutex_unlock(&tl_inode->i_mutex);
6149 
6150 	if (handle)
6151 		ocfs2_commit_trans(osb, handle);
6152 
6153 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6154 
6155 	ocfs2_free_path(path);
6156 
6157 	/* This will drop the ext_alloc cluster lock for us */
6158 	ocfs2_free_truncate_context(tc);
6159 
6160 	mlog_exit(status);
6161 	return status;
6162 }
6163 
6164 /*
6165  * Expects the inode to already be locked.
6166  */
6167 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6168 			   struct inode *inode,
6169 			   struct buffer_head *fe_bh,
6170 			   struct ocfs2_truncate_context **tc)
6171 {
6172 	int status;
6173 	unsigned int new_i_clusters;
6174 	struct ocfs2_dinode *fe;
6175 	struct ocfs2_extent_block *eb;
6176 	struct buffer_head *last_eb_bh = NULL;
6177 
6178 	mlog_entry_void();
6179 
6180 	*tc = NULL;
6181 
6182 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6183 						  i_size_read(inode));
6184 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6185 
6186 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6187 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6188 	     (unsigned long long)le64_to_cpu(fe->i_size));
6189 
6190 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6191 	if (!(*tc)) {
6192 		status = -ENOMEM;
6193 		mlog_errno(status);
6194 		goto bail;
6195 	}
6196 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6197 
6198 	if (fe->id2.i_list.l_tree_depth) {
6199 		status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6200 					  &last_eb_bh, OCFS2_BH_CACHED, inode);
6201 		if (status < 0) {
6202 			mlog_errno(status);
6203 			goto bail;
6204 		}
6205 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6206 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6207 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6208 
6209 			brelse(last_eb_bh);
6210 			status = -EIO;
6211 			goto bail;
6212 		}
6213 	}
6214 
6215 	(*tc)->tc_last_eb_bh = last_eb_bh;
6216 
6217 	status = 0;
6218 bail:
6219 	if (status < 0) {
6220 		if (*tc)
6221 			ocfs2_free_truncate_context(*tc);
6222 		*tc = NULL;
6223 	}
6224 	mlog_exit_void();
6225 	return status;
6226 }
6227 
6228 /*
6229  * 'start' is inclusive, 'end' is not.
6230  */
6231 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6232 			  unsigned int start, unsigned int end, int trunc)
6233 {
6234 	int ret;
6235 	unsigned int numbytes;
6236 	handle_t *handle;
6237 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6238 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6239 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6240 
6241 	if (end > i_size_read(inode))
6242 		end = i_size_read(inode);
6243 
6244 	BUG_ON(start >= end);
6245 
6246 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6247 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6248 	    !ocfs2_supports_inline_data(osb)) {
6249 		ocfs2_error(inode->i_sb,
6250 			    "Inline data flags for inode %llu don't agree! "
6251 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6252 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6253 			    le16_to_cpu(di->i_dyn_features),
6254 			    OCFS2_I(inode)->ip_dyn_features,
6255 			    osb->s_feature_incompat);
6256 		ret = -EROFS;
6257 		goto out;
6258 	}
6259 
6260 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6261 	if (IS_ERR(handle)) {
6262 		ret = PTR_ERR(handle);
6263 		mlog_errno(ret);
6264 		goto out;
6265 	}
6266 
6267 	ret = ocfs2_journal_access(handle, inode, di_bh,
6268 				   OCFS2_JOURNAL_ACCESS_WRITE);
6269 	if (ret) {
6270 		mlog_errno(ret);
6271 		goto out_commit;
6272 	}
6273 
6274 	numbytes = end - start;
6275 	memset(idata->id_data + start, 0, numbytes);
6276 
6277 	/*
6278 	 * No need to worry about the data page here - it's been
6279 	 * truncated already and inline data doesn't need it for
6280 	 * pushing zero's to disk, so we'll let readpage pick it up
6281 	 * later.
6282 	 */
6283 	if (trunc) {
6284 		i_size_write(inode, start);
6285 		di->i_size = cpu_to_le64(start);
6286 	}
6287 
6288 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6289 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6290 
6291 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6292 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6293 
6294 	ocfs2_journal_dirty(handle, di_bh);
6295 
6296 out_commit:
6297 	ocfs2_commit_trans(osb, handle);
6298 
6299 out:
6300 	return ret;
6301 }
6302 
6303 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6304 {
6305 	/*
6306 	 * The caller is responsible for completing deallocation
6307 	 * before freeing the context.
6308 	 */
6309 	if (tc->tc_dealloc.c_first_suballocator != NULL)
6310 		mlog(ML_NOTICE,
6311 		     "Truncate completion has non-empty dealloc context\n");
6312 
6313 	if (tc->tc_last_eb_bh)
6314 		brelse(tc->tc_last_eb_bh);
6315 
6316 	kfree(tc);
6317 }
6318