1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "localalloc.h" 44 #include "suballoc.h" 45 #include "sysfile.h" 46 #include "file.h" 47 #include "super.h" 48 #include "uptodate.h" 49 50 #include "buffer_head_io.h" 51 52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 54 struct ocfs2_extent_block *eb); 55 56 /* 57 * Structures which describe a path through a btree, and functions to 58 * manipulate them. 59 * 60 * The idea here is to be as generic as possible with the tree 61 * manipulation code. 62 */ 63 struct ocfs2_path_item { 64 struct buffer_head *bh; 65 struct ocfs2_extent_list *el; 66 }; 67 68 #define OCFS2_MAX_PATH_DEPTH 5 69 70 struct ocfs2_path { 71 int p_tree_depth; 72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 73 }; 74 75 #define path_root_bh(_path) ((_path)->p_node[0].bh) 76 #define path_root_el(_path) ((_path)->p_node[0].el) 77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 79 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 80 81 /* 82 * Reset the actual path elements so that we can re-use the structure 83 * to build another path. Generally, this involves freeing the buffer 84 * heads. 85 */ 86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 87 { 88 int i, start = 0, depth = 0; 89 struct ocfs2_path_item *node; 90 91 if (keep_root) 92 start = 1; 93 94 for(i = start; i < path_num_items(path); i++) { 95 node = &path->p_node[i]; 96 97 brelse(node->bh); 98 node->bh = NULL; 99 node->el = NULL; 100 } 101 102 /* 103 * Tree depth may change during truncate, or insert. If we're 104 * keeping the root extent list, then make sure that our path 105 * structure reflects the proper depth. 106 */ 107 if (keep_root) 108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 109 110 path->p_tree_depth = depth; 111 } 112 113 static void ocfs2_free_path(struct ocfs2_path *path) 114 { 115 if (path) { 116 ocfs2_reinit_path(path, 0); 117 kfree(path); 118 } 119 } 120 121 /* 122 * All the elements of src into dest. After this call, src could be freed 123 * without affecting dest. 124 * 125 * Both paths should have the same root. Any non-root elements of dest 126 * will be freed. 127 */ 128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 129 { 130 int i; 131 132 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 133 BUG_ON(path_root_el(dest) != path_root_el(src)); 134 135 ocfs2_reinit_path(dest, 1); 136 137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 138 dest->p_node[i].bh = src->p_node[i].bh; 139 dest->p_node[i].el = src->p_node[i].el; 140 141 if (dest->p_node[i].bh) 142 get_bh(dest->p_node[i].bh); 143 } 144 } 145 146 /* 147 * Make the *dest path the same as src and re-initialize src path to 148 * have a root only. 149 */ 150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 151 { 152 int i; 153 154 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 155 156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 157 brelse(dest->p_node[i].bh); 158 159 dest->p_node[i].bh = src->p_node[i].bh; 160 dest->p_node[i].el = src->p_node[i].el; 161 162 src->p_node[i].bh = NULL; 163 src->p_node[i].el = NULL; 164 } 165 } 166 167 /* 168 * Insert an extent block at given index. 169 * 170 * This will not take an additional reference on eb_bh. 171 */ 172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 173 struct buffer_head *eb_bh) 174 { 175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 176 177 /* 178 * Right now, no root bh is an extent block, so this helps 179 * catch code errors with dinode trees. The assertion can be 180 * safely removed if we ever need to insert extent block 181 * structures at the root. 182 */ 183 BUG_ON(index == 0); 184 185 path->p_node[index].bh = eb_bh; 186 path->p_node[index].el = &eb->h_list; 187 } 188 189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 190 struct ocfs2_extent_list *root_el) 191 { 192 struct ocfs2_path *path; 193 194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 195 196 path = kzalloc(sizeof(*path), GFP_NOFS); 197 if (path) { 198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 199 get_bh(root_bh); 200 path_root_bh(path) = root_bh; 201 path_root_el(path) = root_el; 202 } 203 204 return path; 205 } 206 207 /* 208 * Allocate and initialize a new path based on a disk inode tree. 209 */ 210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) 211 { 212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 213 struct ocfs2_extent_list *el = &di->id2.i_list; 214 215 return ocfs2_new_path(di_bh, el); 216 } 217 218 /* 219 * Convenience function to journal all components in a path. 220 */ 221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 222 struct ocfs2_path *path) 223 { 224 int i, ret = 0; 225 226 if (!path) 227 goto out; 228 229 for(i = 0; i < path_num_items(path); i++) { 230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, 231 OCFS2_JOURNAL_ACCESS_WRITE); 232 if (ret < 0) { 233 mlog_errno(ret); 234 goto out; 235 } 236 } 237 238 out: 239 return ret; 240 } 241 242 /* 243 * Return the index of the extent record which contains cluster #v_cluster. 244 * -1 is returned if it was not found. 245 * 246 * Should work fine on interior and exterior nodes. 247 */ 248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 249 { 250 int ret = -1; 251 int i; 252 struct ocfs2_extent_rec *rec; 253 u32 rec_end, rec_start, clusters; 254 255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 256 rec = &el->l_recs[i]; 257 258 rec_start = le32_to_cpu(rec->e_cpos); 259 clusters = ocfs2_rec_clusters(el, rec); 260 261 rec_end = rec_start + clusters; 262 263 if (v_cluster >= rec_start && v_cluster < rec_end) { 264 ret = i; 265 break; 266 } 267 } 268 269 return ret; 270 } 271 272 enum ocfs2_contig_type { 273 CONTIG_NONE = 0, 274 CONTIG_LEFT, 275 CONTIG_RIGHT, 276 CONTIG_LEFTRIGHT, 277 }; 278 279 280 /* 281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 282 * ocfs2_extent_contig only work properly against leaf nodes! 283 */ 284 static int ocfs2_block_extent_contig(struct super_block *sb, 285 struct ocfs2_extent_rec *ext, 286 u64 blkno) 287 { 288 u64 blk_end = le64_to_cpu(ext->e_blkno); 289 290 blk_end += ocfs2_clusters_to_blocks(sb, 291 le16_to_cpu(ext->e_leaf_clusters)); 292 293 return blkno == blk_end; 294 } 295 296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 297 struct ocfs2_extent_rec *right) 298 { 299 u32 left_range; 300 301 left_range = le32_to_cpu(left->e_cpos) + 302 le16_to_cpu(left->e_leaf_clusters); 303 304 return (left_range == le32_to_cpu(right->e_cpos)); 305 } 306 307 static enum ocfs2_contig_type 308 ocfs2_extent_contig(struct inode *inode, 309 struct ocfs2_extent_rec *ext, 310 struct ocfs2_extent_rec *insert_rec) 311 { 312 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 313 314 /* 315 * Refuse to coalesce extent records with different flag 316 * fields - we don't want to mix unwritten extents with user 317 * data. 318 */ 319 if (ext->e_flags != insert_rec->e_flags) 320 return CONTIG_NONE; 321 322 if (ocfs2_extents_adjacent(ext, insert_rec) && 323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 324 return CONTIG_RIGHT; 325 326 blkno = le64_to_cpu(ext->e_blkno); 327 if (ocfs2_extents_adjacent(insert_rec, ext) && 328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 329 return CONTIG_LEFT; 330 331 return CONTIG_NONE; 332 } 333 334 /* 335 * NOTE: We can have pretty much any combination of contiguousness and 336 * appending. 337 * 338 * The usefulness of APPEND_TAIL is more in that it lets us know that 339 * we'll have to update the path to that leaf. 340 */ 341 enum ocfs2_append_type { 342 APPEND_NONE = 0, 343 APPEND_TAIL, 344 }; 345 346 enum ocfs2_split_type { 347 SPLIT_NONE = 0, 348 SPLIT_LEFT, 349 SPLIT_RIGHT, 350 }; 351 352 struct ocfs2_insert_type { 353 enum ocfs2_split_type ins_split; 354 enum ocfs2_append_type ins_appending; 355 enum ocfs2_contig_type ins_contig; 356 int ins_contig_index; 357 int ins_tree_depth; 358 }; 359 360 struct ocfs2_merge_ctxt { 361 enum ocfs2_contig_type c_contig_type; 362 int c_has_empty_extent; 363 int c_split_covers_rec; 364 }; 365 366 /* 367 * How many free extents have we got before we need more meta data? 368 */ 369 int ocfs2_num_free_extents(struct ocfs2_super *osb, 370 struct inode *inode, 371 struct ocfs2_dinode *fe) 372 { 373 int retval; 374 struct ocfs2_extent_list *el; 375 struct ocfs2_extent_block *eb; 376 struct buffer_head *eb_bh = NULL; 377 378 mlog_entry_void(); 379 380 if (!OCFS2_IS_VALID_DINODE(fe)) { 381 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); 382 retval = -EIO; 383 goto bail; 384 } 385 386 if (fe->i_last_eb_blk) { 387 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 388 &eb_bh, OCFS2_BH_CACHED, inode); 389 if (retval < 0) { 390 mlog_errno(retval); 391 goto bail; 392 } 393 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 394 el = &eb->h_list; 395 } else 396 el = &fe->id2.i_list; 397 398 BUG_ON(el->l_tree_depth != 0); 399 400 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 401 bail: 402 if (eb_bh) 403 brelse(eb_bh); 404 405 mlog_exit(retval); 406 return retval; 407 } 408 409 /* expects array to already be allocated 410 * 411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 412 * l_count for you 413 */ 414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 415 handle_t *handle, 416 struct inode *inode, 417 int wanted, 418 struct ocfs2_alloc_context *meta_ac, 419 struct buffer_head *bhs[]) 420 { 421 int count, status, i; 422 u16 suballoc_bit_start; 423 u32 num_got; 424 u64 first_blkno; 425 struct ocfs2_extent_block *eb; 426 427 mlog_entry_void(); 428 429 count = 0; 430 while (count < wanted) { 431 status = ocfs2_claim_metadata(osb, 432 handle, 433 meta_ac, 434 wanted - count, 435 &suballoc_bit_start, 436 &num_got, 437 &first_blkno); 438 if (status < 0) { 439 mlog_errno(status); 440 goto bail; 441 } 442 443 for(i = count; i < (num_got + count); i++) { 444 bhs[i] = sb_getblk(osb->sb, first_blkno); 445 if (bhs[i] == NULL) { 446 status = -EIO; 447 mlog_errno(status); 448 goto bail; 449 } 450 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 451 452 status = ocfs2_journal_access(handle, inode, bhs[i], 453 OCFS2_JOURNAL_ACCESS_CREATE); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 459 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 460 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 461 /* Ok, setup the minimal stuff here. */ 462 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 463 eb->h_blkno = cpu_to_le64(first_blkno); 464 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 465 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 466 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 467 eb->h_list.l_count = 468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 469 470 suballoc_bit_start++; 471 first_blkno++; 472 473 /* We'll also be dirtied by the caller, so 474 * this isn't absolutely necessary. */ 475 status = ocfs2_journal_dirty(handle, bhs[i]); 476 if (status < 0) { 477 mlog_errno(status); 478 goto bail; 479 } 480 } 481 482 count += num_got; 483 } 484 485 status = 0; 486 bail: 487 if (status < 0) { 488 for(i = 0; i < wanted; i++) { 489 if (bhs[i]) 490 brelse(bhs[i]); 491 bhs[i] = NULL; 492 } 493 } 494 mlog_exit(status); 495 return status; 496 } 497 498 /* 499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 500 * 501 * Returns the sum of the rightmost extent rec logical offset and 502 * cluster count. 503 * 504 * ocfs2_add_branch() uses this to determine what logical cluster 505 * value should be populated into the leftmost new branch records. 506 * 507 * ocfs2_shift_tree_depth() uses this to determine the # clusters 508 * value for the new topmost tree record. 509 */ 510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 511 { 512 int i; 513 514 i = le16_to_cpu(el->l_next_free_rec) - 1; 515 516 return le32_to_cpu(el->l_recs[i].e_cpos) + 517 ocfs2_rec_clusters(el, &el->l_recs[i]); 518 } 519 520 /* 521 * Add an entire tree branch to our inode. eb_bh is the extent block 522 * to start at, if we don't want to start the branch at the dinode 523 * structure. 524 * 525 * last_eb_bh is required as we have to update it's next_leaf pointer 526 * for the new last extent block. 527 * 528 * the new branch will be 'empty' in the sense that every block will 529 * contain a single record with cluster count == 0. 530 */ 531 static int ocfs2_add_branch(struct ocfs2_super *osb, 532 handle_t *handle, 533 struct inode *inode, 534 struct buffer_head *fe_bh, 535 struct buffer_head *eb_bh, 536 struct buffer_head **last_eb_bh, 537 struct ocfs2_alloc_context *meta_ac) 538 { 539 int status, new_blocks, i; 540 u64 next_blkno, new_last_eb_blk; 541 struct buffer_head *bh; 542 struct buffer_head **new_eb_bhs = NULL; 543 struct ocfs2_dinode *fe; 544 struct ocfs2_extent_block *eb; 545 struct ocfs2_extent_list *eb_el; 546 struct ocfs2_extent_list *el; 547 u32 new_cpos; 548 549 mlog_entry_void(); 550 551 BUG_ON(!last_eb_bh || !*last_eb_bh); 552 553 fe = (struct ocfs2_dinode *) fe_bh->b_data; 554 555 if (eb_bh) { 556 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 557 el = &eb->h_list; 558 } else 559 el = &fe->id2.i_list; 560 561 /* we never add a branch to a leaf. */ 562 BUG_ON(!el->l_tree_depth); 563 564 new_blocks = le16_to_cpu(el->l_tree_depth); 565 566 /* allocate the number of new eb blocks we need */ 567 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 568 GFP_KERNEL); 569 if (!new_eb_bhs) { 570 status = -ENOMEM; 571 mlog_errno(status); 572 goto bail; 573 } 574 575 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 576 meta_ac, new_eb_bhs); 577 if (status < 0) { 578 mlog_errno(status); 579 goto bail; 580 } 581 582 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 583 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 584 585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 586 * linked with the rest of the tree. 587 * conversly, new_eb_bhs[0] is the new bottommost leaf. 588 * 589 * when we leave the loop, new_last_eb_blk will point to the 590 * newest leaf, and next_blkno will point to the topmost extent 591 * block. */ 592 next_blkno = new_last_eb_blk = 0; 593 for(i = 0; i < new_blocks; i++) { 594 bh = new_eb_bhs[i]; 595 eb = (struct ocfs2_extent_block *) bh->b_data; 596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 598 status = -EIO; 599 goto bail; 600 } 601 eb_el = &eb->h_list; 602 603 status = ocfs2_journal_access(handle, inode, bh, 604 OCFS2_JOURNAL_ACCESS_CREATE); 605 if (status < 0) { 606 mlog_errno(status); 607 goto bail; 608 } 609 610 eb->h_next_leaf_blk = 0; 611 eb_el->l_tree_depth = cpu_to_le16(i); 612 eb_el->l_next_free_rec = cpu_to_le16(1); 613 /* 614 * This actually counts as an empty extent as 615 * c_clusters == 0 616 */ 617 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 618 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 619 /* 620 * eb_el isn't always an interior node, but even leaf 621 * nodes want a zero'd flags and reserved field so 622 * this gets the whole 32 bits regardless of use. 623 */ 624 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 625 if (!eb_el->l_tree_depth) 626 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 627 628 status = ocfs2_journal_dirty(handle, bh); 629 if (status < 0) { 630 mlog_errno(status); 631 goto bail; 632 } 633 634 next_blkno = le64_to_cpu(eb->h_blkno); 635 } 636 637 /* This is a bit hairy. We want to update up to three blocks 638 * here without leaving any of them in an inconsistent state 639 * in case of error. We don't have to worry about 640 * journal_dirty erroring as it won't unless we've aborted the 641 * handle (in which case we would never be here) so reserving 642 * the write with journal_access is all we need to do. */ 643 status = ocfs2_journal_access(handle, inode, *last_eb_bh, 644 OCFS2_JOURNAL_ACCESS_WRITE); 645 if (status < 0) { 646 mlog_errno(status); 647 goto bail; 648 } 649 status = ocfs2_journal_access(handle, inode, fe_bh, 650 OCFS2_JOURNAL_ACCESS_WRITE); 651 if (status < 0) { 652 mlog_errno(status); 653 goto bail; 654 } 655 if (eb_bh) { 656 status = ocfs2_journal_access(handle, inode, eb_bh, 657 OCFS2_JOURNAL_ACCESS_WRITE); 658 if (status < 0) { 659 mlog_errno(status); 660 goto bail; 661 } 662 } 663 664 /* Link the new branch into the rest of the tree (el will 665 * either be on the fe, or the extent block passed in. */ 666 i = le16_to_cpu(el->l_next_free_rec); 667 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 668 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 669 el->l_recs[i].e_int_clusters = 0; 670 le16_add_cpu(&el->l_next_free_rec, 1); 671 672 /* fe needs a new last extent block pointer, as does the 673 * next_leaf on the previously last-extent-block. */ 674 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); 675 676 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 677 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 678 679 status = ocfs2_journal_dirty(handle, *last_eb_bh); 680 if (status < 0) 681 mlog_errno(status); 682 status = ocfs2_journal_dirty(handle, fe_bh); 683 if (status < 0) 684 mlog_errno(status); 685 if (eb_bh) { 686 status = ocfs2_journal_dirty(handle, eb_bh); 687 if (status < 0) 688 mlog_errno(status); 689 } 690 691 /* 692 * Some callers want to track the rightmost leaf so pass it 693 * back here. 694 */ 695 brelse(*last_eb_bh); 696 get_bh(new_eb_bhs[0]); 697 *last_eb_bh = new_eb_bhs[0]; 698 699 status = 0; 700 bail: 701 if (new_eb_bhs) { 702 for (i = 0; i < new_blocks; i++) 703 if (new_eb_bhs[i]) 704 brelse(new_eb_bhs[i]); 705 kfree(new_eb_bhs); 706 } 707 708 mlog_exit(status); 709 return status; 710 } 711 712 /* 713 * adds another level to the allocation tree. 714 * returns back the new extent block so you can add a branch to it 715 * after this call. 716 */ 717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 718 handle_t *handle, 719 struct inode *inode, 720 struct buffer_head *fe_bh, 721 struct ocfs2_alloc_context *meta_ac, 722 struct buffer_head **ret_new_eb_bh) 723 { 724 int status, i; 725 u32 new_clusters; 726 struct buffer_head *new_eb_bh = NULL; 727 struct ocfs2_dinode *fe; 728 struct ocfs2_extent_block *eb; 729 struct ocfs2_extent_list *fe_el; 730 struct ocfs2_extent_list *eb_el; 731 732 mlog_entry_void(); 733 734 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 735 &new_eb_bh); 736 if (status < 0) { 737 mlog_errno(status); 738 goto bail; 739 } 740 741 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 744 status = -EIO; 745 goto bail; 746 } 747 748 eb_el = &eb->h_list; 749 fe = (struct ocfs2_dinode *) fe_bh->b_data; 750 fe_el = &fe->id2.i_list; 751 752 status = ocfs2_journal_access(handle, inode, new_eb_bh, 753 OCFS2_JOURNAL_ACCESS_CREATE); 754 if (status < 0) { 755 mlog_errno(status); 756 goto bail; 757 } 758 759 /* copy the fe data into the new extent block */ 760 eb_el->l_tree_depth = fe_el->l_tree_depth; 761 eb_el->l_next_free_rec = fe_el->l_next_free_rec; 762 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 763 eb_el->l_recs[i] = fe_el->l_recs[i]; 764 765 status = ocfs2_journal_dirty(handle, new_eb_bh); 766 if (status < 0) { 767 mlog_errno(status); 768 goto bail; 769 } 770 771 status = ocfs2_journal_access(handle, inode, fe_bh, 772 OCFS2_JOURNAL_ACCESS_WRITE); 773 if (status < 0) { 774 mlog_errno(status); 775 goto bail; 776 } 777 778 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 779 780 /* update fe now */ 781 le16_add_cpu(&fe_el->l_tree_depth, 1); 782 fe_el->l_recs[0].e_cpos = 0; 783 fe_el->l_recs[0].e_blkno = eb->h_blkno; 784 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 785 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 786 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 787 fe_el->l_next_free_rec = cpu_to_le16(1); 788 789 /* If this is our 1st tree depth shift, then last_eb_blk 790 * becomes the allocated extent block */ 791 if (fe_el->l_tree_depth == cpu_to_le16(1)) 792 fe->i_last_eb_blk = eb->h_blkno; 793 794 status = ocfs2_journal_dirty(handle, fe_bh); 795 if (status < 0) { 796 mlog_errno(status); 797 goto bail; 798 } 799 800 *ret_new_eb_bh = new_eb_bh; 801 new_eb_bh = NULL; 802 status = 0; 803 bail: 804 if (new_eb_bh) 805 brelse(new_eb_bh); 806 807 mlog_exit(status); 808 return status; 809 } 810 811 /* 812 * Should only be called when there is no space left in any of the 813 * leaf nodes. What we want to do is find the lowest tree depth 814 * non-leaf extent block with room for new records. There are three 815 * valid results of this search: 816 * 817 * 1) a lowest extent block is found, then we pass it back in 818 * *lowest_eb_bh and return '0' 819 * 820 * 2) the search fails to find anything, but the dinode has room. We 821 * pass NULL back in *lowest_eb_bh, but still return '0' 822 * 823 * 3) the search fails to find anything AND the dinode is full, in 824 * which case we return > 0 825 * 826 * return status < 0 indicates an error. 827 */ 828 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 829 struct inode *inode, 830 struct buffer_head *fe_bh, 831 struct buffer_head **target_bh) 832 { 833 int status = 0, i; 834 u64 blkno; 835 struct ocfs2_dinode *fe; 836 struct ocfs2_extent_block *eb; 837 struct ocfs2_extent_list *el; 838 struct buffer_head *bh = NULL; 839 struct buffer_head *lowest_bh = NULL; 840 841 mlog_entry_void(); 842 843 *target_bh = NULL; 844 845 fe = (struct ocfs2_dinode *) fe_bh->b_data; 846 el = &fe->id2.i_list; 847 848 while(le16_to_cpu(el->l_tree_depth) > 1) { 849 if (le16_to_cpu(el->l_next_free_rec) == 0) { 850 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 851 "extent list (next_free_rec == 0)", 852 (unsigned long long)OCFS2_I(inode)->ip_blkno); 853 status = -EIO; 854 goto bail; 855 } 856 i = le16_to_cpu(el->l_next_free_rec) - 1; 857 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 858 if (!blkno) { 859 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 860 "list where extent # %d has no physical " 861 "block start", 862 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 863 status = -EIO; 864 goto bail; 865 } 866 867 if (bh) { 868 brelse(bh); 869 bh = NULL; 870 } 871 872 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, 873 inode); 874 if (status < 0) { 875 mlog_errno(status); 876 goto bail; 877 } 878 879 eb = (struct ocfs2_extent_block *) bh->b_data; 880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 882 status = -EIO; 883 goto bail; 884 } 885 el = &eb->h_list; 886 887 if (le16_to_cpu(el->l_next_free_rec) < 888 le16_to_cpu(el->l_count)) { 889 if (lowest_bh) 890 brelse(lowest_bh); 891 lowest_bh = bh; 892 get_bh(lowest_bh); 893 } 894 } 895 896 /* If we didn't find one and the fe doesn't have any room, 897 * then return '1' */ 898 if (!lowest_bh 899 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) 900 status = 1; 901 902 *target_bh = lowest_bh; 903 bail: 904 if (bh) 905 brelse(bh); 906 907 mlog_exit(status); 908 return status; 909 } 910 911 /* 912 * Grow a b-tree so that it has more records. 913 * 914 * We might shift the tree depth in which case existing paths should 915 * be considered invalid. 916 * 917 * Tree depth after the grow is returned via *final_depth. 918 * 919 * *last_eb_bh will be updated by ocfs2_add_branch(). 920 */ 921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 922 struct buffer_head *di_bh, int *final_depth, 923 struct buffer_head **last_eb_bh, 924 struct ocfs2_alloc_context *meta_ac) 925 { 926 int ret, shift; 927 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 928 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth); 929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 930 struct buffer_head *bh = NULL; 931 932 BUG_ON(meta_ac == NULL); 933 934 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh); 935 if (shift < 0) { 936 ret = shift; 937 mlog_errno(ret); 938 goto out; 939 } 940 941 /* We traveled all the way to the bottom of the allocation tree 942 * and didn't find room for any more extents - we need to add 943 * another tree level */ 944 if (shift) { 945 BUG_ON(bh); 946 mlog(0, "need to shift tree depth (current = %d)\n", depth); 947 948 /* ocfs2_shift_tree_depth will return us a buffer with 949 * the new extent block (so we can pass that to 950 * ocfs2_add_branch). */ 951 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh, 952 meta_ac, &bh); 953 if (ret < 0) { 954 mlog_errno(ret); 955 goto out; 956 } 957 depth++; 958 if (depth == 1) { 959 /* 960 * Special case: we have room now if we shifted from 961 * tree_depth 0, so no more work needs to be done. 962 * 963 * We won't be calling add_branch, so pass 964 * back *last_eb_bh as the new leaf. At depth 965 * zero, it should always be null so there's 966 * no reason to brelse. 967 */ 968 BUG_ON(*last_eb_bh); 969 get_bh(bh); 970 *last_eb_bh = bh; 971 goto out; 972 } 973 } 974 975 /* call ocfs2_add_branch to add the final part of the tree with 976 * the new data. */ 977 mlog(0, "add branch. bh = %p\n", bh); 978 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh, 979 meta_ac); 980 if (ret < 0) { 981 mlog_errno(ret); 982 goto out; 983 } 984 985 out: 986 if (final_depth) 987 *final_depth = depth; 988 brelse(bh); 989 return ret; 990 } 991 992 /* 993 * This is only valid for leaf nodes, which are the only ones that can 994 * have empty extents anyway. 995 */ 996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) 997 { 998 return !rec->e_leaf_clusters; 999 } 1000 1001 /* 1002 * This function will discard the rightmost extent record. 1003 */ 1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1005 { 1006 int next_free = le16_to_cpu(el->l_next_free_rec); 1007 int count = le16_to_cpu(el->l_count); 1008 unsigned int num_bytes; 1009 1010 BUG_ON(!next_free); 1011 /* This will cause us to go off the end of our extent list. */ 1012 BUG_ON(next_free >= count); 1013 1014 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1015 1016 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1017 } 1018 1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1020 struct ocfs2_extent_rec *insert_rec) 1021 { 1022 int i, insert_index, next_free, has_empty, num_bytes; 1023 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1024 struct ocfs2_extent_rec *rec; 1025 1026 next_free = le16_to_cpu(el->l_next_free_rec); 1027 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1028 1029 BUG_ON(!next_free); 1030 1031 /* The tree code before us didn't allow enough room in the leaf. */ 1032 if (el->l_next_free_rec == el->l_count && !has_empty) 1033 BUG(); 1034 1035 /* 1036 * The easiest way to approach this is to just remove the 1037 * empty extent and temporarily decrement next_free. 1038 */ 1039 if (has_empty) { 1040 /* 1041 * If next_free was 1 (only an empty extent), this 1042 * loop won't execute, which is fine. We still want 1043 * the decrement above to happen. 1044 */ 1045 for(i = 0; i < (next_free - 1); i++) 1046 el->l_recs[i] = el->l_recs[i+1]; 1047 1048 next_free--; 1049 } 1050 1051 /* 1052 * Figure out what the new record index should be. 1053 */ 1054 for(i = 0; i < next_free; i++) { 1055 rec = &el->l_recs[i]; 1056 1057 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1058 break; 1059 } 1060 insert_index = i; 1061 1062 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1063 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1064 1065 BUG_ON(insert_index < 0); 1066 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1067 BUG_ON(insert_index > next_free); 1068 1069 /* 1070 * No need to memmove if we're just adding to the tail. 1071 */ 1072 if (insert_index != next_free) { 1073 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1074 1075 num_bytes = next_free - insert_index; 1076 num_bytes *= sizeof(struct ocfs2_extent_rec); 1077 memmove(&el->l_recs[insert_index + 1], 1078 &el->l_recs[insert_index], 1079 num_bytes); 1080 } 1081 1082 /* 1083 * Either we had an empty extent, and need to re-increment or 1084 * there was no empty extent on a non full rightmost leaf node, 1085 * in which case we still need to increment. 1086 */ 1087 next_free++; 1088 el->l_next_free_rec = cpu_to_le16(next_free); 1089 /* 1090 * Make sure none of the math above just messed up our tree. 1091 */ 1092 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1093 1094 el->l_recs[insert_index] = *insert_rec; 1095 1096 } 1097 1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1099 { 1100 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1101 1102 BUG_ON(num_recs == 0); 1103 1104 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1105 num_recs--; 1106 size = num_recs * sizeof(struct ocfs2_extent_rec); 1107 memmove(&el->l_recs[0], &el->l_recs[1], size); 1108 memset(&el->l_recs[num_recs], 0, 1109 sizeof(struct ocfs2_extent_rec)); 1110 el->l_next_free_rec = cpu_to_le16(num_recs); 1111 } 1112 } 1113 1114 /* 1115 * Create an empty extent record . 1116 * 1117 * l_next_free_rec may be updated. 1118 * 1119 * If an empty extent already exists do nothing. 1120 */ 1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1122 { 1123 int next_free = le16_to_cpu(el->l_next_free_rec); 1124 1125 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1126 1127 if (next_free == 0) 1128 goto set_and_inc; 1129 1130 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1131 return; 1132 1133 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1134 "Asked to create an empty extent in a full list:\n" 1135 "count = %u, tree depth = %u", 1136 le16_to_cpu(el->l_count), 1137 le16_to_cpu(el->l_tree_depth)); 1138 1139 ocfs2_shift_records_right(el); 1140 1141 set_and_inc: 1142 le16_add_cpu(&el->l_next_free_rec, 1); 1143 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1144 } 1145 1146 /* 1147 * For a rotation which involves two leaf nodes, the "root node" is 1148 * the lowest level tree node which contains a path to both leafs. This 1149 * resulting set of information can be used to form a complete "subtree" 1150 * 1151 * This function is passed two full paths from the dinode down to a 1152 * pair of adjacent leaves. It's task is to figure out which path 1153 * index contains the subtree root - this can be the root index itself 1154 * in a worst-case rotation. 1155 * 1156 * The array index of the subtree root is passed back. 1157 */ 1158 static int ocfs2_find_subtree_root(struct inode *inode, 1159 struct ocfs2_path *left, 1160 struct ocfs2_path *right) 1161 { 1162 int i = 0; 1163 1164 /* 1165 * Check that the caller passed in two paths from the same tree. 1166 */ 1167 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1168 1169 do { 1170 i++; 1171 1172 /* 1173 * The caller didn't pass two adjacent paths. 1174 */ 1175 mlog_bug_on_msg(i > left->p_tree_depth, 1176 "Inode %lu, left depth %u, right depth %u\n" 1177 "left leaf blk %llu, right leaf blk %llu\n", 1178 inode->i_ino, left->p_tree_depth, 1179 right->p_tree_depth, 1180 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1181 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1182 } while (left->p_node[i].bh->b_blocknr == 1183 right->p_node[i].bh->b_blocknr); 1184 1185 return i - 1; 1186 } 1187 1188 typedef void (path_insert_t)(void *, struct buffer_head *); 1189 1190 /* 1191 * Traverse a btree path in search of cpos, starting at root_el. 1192 * 1193 * This code can be called with a cpos larger than the tree, in which 1194 * case it will return the rightmost path. 1195 */ 1196 static int __ocfs2_find_path(struct inode *inode, 1197 struct ocfs2_extent_list *root_el, u32 cpos, 1198 path_insert_t *func, void *data) 1199 { 1200 int i, ret = 0; 1201 u32 range; 1202 u64 blkno; 1203 struct buffer_head *bh = NULL; 1204 struct ocfs2_extent_block *eb; 1205 struct ocfs2_extent_list *el; 1206 struct ocfs2_extent_rec *rec; 1207 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1208 1209 el = root_el; 1210 while (el->l_tree_depth) { 1211 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1212 ocfs2_error(inode->i_sb, 1213 "Inode %llu has empty extent list at " 1214 "depth %u\n", 1215 (unsigned long long)oi->ip_blkno, 1216 le16_to_cpu(el->l_tree_depth)); 1217 ret = -EROFS; 1218 goto out; 1219 1220 } 1221 1222 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1223 rec = &el->l_recs[i]; 1224 1225 /* 1226 * In the case that cpos is off the allocation 1227 * tree, this should just wind up returning the 1228 * rightmost record. 1229 */ 1230 range = le32_to_cpu(rec->e_cpos) + 1231 ocfs2_rec_clusters(el, rec); 1232 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1233 break; 1234 } 1235 1236 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1237 if (blkno == 0) { 1238 ocfs2_error(inode->i_sb, 1239 "Inode %llu has bad blkno in extent list " 1240 "at depth %u (index %d)\n", 1241 (unsigned long long)oi->ip_blkno, 1242 le16_to_cpu(el->l_tree_depth), i); 1243 ret = -EROFS; 1244 goto out; 1245 } 1246 1247 brelse(bh); 1248 bh = NULL; 1249 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, 1250 &bh, OCFS2_BH_CACHED, inode); 1251 if (ret) { 1252 mlog_errno(ret); 1253 goto out; 1254 } 1255 1256 eb = (struct ocfs2_extent_block *) bh->b_data; 1257 el = &eb->h_list; 1258 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 1259 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 1260 ret = -EIO; 1261 goto out; 1262 } 1263 1264 if (le16_to_cpu(el->l_next_free_rec) > 1265 le16_to_cpu(el->l_count)) { 1266 ocfs2_error(inode->i_sb, 1267 "Inode %llu has bad count in extent list " 1268 "at block %llu (next free=%u, count=%u)\n", 1269 (unsigned long long)oi->ip_blkno, 1270 (unsigned long long)bh->b_blocknr, 1271 le16_to_cpu(el->l_next_free_rec), 1272 le16_to_cpu(el->l_count)); 1273 ret = -EROFS; 1274 goto out; 1275 } 1276 1277 if (func) 1278 func(data, bh); 1279 } 1280 1281 out: 1282 /* 1283 * Catch any trailing bh that the loop didn't handle. 1284 */ 1285 brelse(bh); 1286 1287 return ret; 1288 } 1289 1290 /* 1291 * Given an initialized path (that is, it has a valid root extent 1292 * list), this function will traverse the btree in search of the path 1293 * which would contain cpos. 1294 * 1295 * The path traveled is recorded in the path structure. 1296 * 1297 * Note that this will not do any comparisons on leaf node extent 1298 * records, so it will work fine in the case that we just added a tree 1299 * branch. 1300 */ 1301 struct find_path_data { 1302 int index; 1303 struct ocfs2_path *path; 1304 }; 1305 static void find_path_ins(void *data, struct buffer_head *bh) 1306 { 1307 struct find_path_data *fp = data; 1308 1309 get_bh(bh); 1310 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1311 fp->index++; 1312 } 1313 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1314 u32 cpos) 1315 { 1316 struct find_path_data data; 1317 1318 data.index = 1; 1319 data.path = path; 1320 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1321 find_path_ins, &data); 1322 } 1323 1324 static void find_leaf_ins(void *data, struct buffer_head *bh) 1325 { 1326 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1327 struct ocfs2_extent_list *el = &eb->h_list; 1328 struct buffer_head **ret = data; 1329 1330 /* We want to retain only the leaf block. */ 1331 if (le16_to_cpu(el->l_tree_depth) == 0) { 1332 get_bh(bh); 1333 *ret = bh; 1334 } 1335 } 1336 /* 1337 * Find the leaf block in the tree which would contain cpos. No 1338 * checking of the actual leaf is done. 1339 * 1340 * Some paths want to call this instead of allocating a path structure 1341 * and calling ocfs2_find_path(). 1342 * 1343 * This function doesn't handle non btree extent lists. 1344 */ 1345 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1346 u32 cpos, struct buffer_head **leaf_bh) 1347 { 1348 int ret; 1349 struct buffer_head *bh = NULL; 1350 1351 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1352 if (ret) { 1353 mlog_errno(ret); 1354 goto out; 1355 } 1356 1357 *leaf_bh = bh; 1358 out: 1359 return ret; 1360 } 1361 1362 /* 1363 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1364 * 1365 * Basically, we've moved stuff around at the bottom of the tree and 1366 * we need to fix up the extent records above the changes to reflect 1367 * the new changes. 1368 * 1369 * left_rec: the record on the left. 1370 * left_child_el: is the child list pointed to by left_rec 1371 * right_rec: the record to the right of left_rec 1372 * right_child_el: is the child list pointed to by right_rec 1373 * 1374 * By definition, this only works on interior nodes. 1375 */ 1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1377 struct ocfs2_extent_list *left_child_el, 1378 struct ocfs2_extent_rec *right_rec, 1379 struct ocfs2_extent_list *right_child_el) 1380 { 1381 u32 left_clusters, right_end; 1382 1383 /* 1384 * Interior nodes never have holes. Their cpos is the cpos of 1385 * the leftmost record in their child list. Their cluster 1386 * count covers the full theoretical range of their child list 1387 * - the range between their cpos and the cpos of the record 1388 * immediately to their right. 1389 */ 1390 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1391 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1392 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1393 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1394 } 1395 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1396 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1397 1398 /* 1399 * Calculate the rightmost cluster count boundary before 1400 * moving cpos - we will need to adjust clusters after 1401 * updating e_cpos to keep the same highest cluster count. 1402 */ 1403 right_end = le32_to_cpu(right_rec->e_cpos); 1404 right_end += le32_to_cpu(right_rec->e_int_clusters); 1405 1406 right_rec->e_cpos = left_rec->e_cpos; 1407 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1408 1409 right_end -= le32_to_cpu(right_rec->e_cpos); 1410 right_rec->e_int_clusters = cpu_to_le32(right_end); 1411 } 1412 1413 /* 1414 * Adjust the adjacent root node records involved in a 1415 * rotation. left_el_blkno is passed in as a key so that we can easily 1416 * find it's index in the root list. 1417 */ 1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1419 struct ocfs2_extent_list *left_el, 1420 struct ocfs2_extent_list *right_el, 1421 u64 left_el_blkno) 1422 { 1423 int i; 1424 1425 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1426 le16_to_cpu(left_el->l_tree_depth)); 1427 1428 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1429 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1430 break; 1431 } 1432 1433 /* 1434 * The path walking code should have never returned a root and 1435 * two paths which are not adjacent. 1436 */ 1437 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1438 1439 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1440 &root_el->l_recs[i + 1], right_el); 1441 } 1442 1443 /* 1444 * We've changed a leaf block (in right_path) and need to reflect that 1445 * change back up the subtree. 1446 * 1447 * This happens in multiple places: 1448 * - When we've moved an extent record from the left path leaf to the right 1449 * path leaf to make room for an empty extent in the left path leaf. 1450 * - When our insert into the right path leaf is at the leftmost edge 1451 * and requires an update of the path immediately to it's left. This 1452 * can occur at the end of some types of rotation and appending inserts. 1453 */ 1454 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1455 struct ocfs2_path *left_path, 1456 struct ocfs2_path *right_path, 1457 int subtree_index) 1458 { 1459 int ret, i, idx; 1460 struct ocfs2_extent_list *el, *left_el, *right_el; 1461 struct ocfs2_extent_rec *left_rec, *right_rec; 1462 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1463 1464 /* 1465 * Update the counts and position values within all the 1466 * interior nodes to reflect the leaf rotation we just did. 1467 * 1468 * The root node is handled below the loop. 1469 * 1470 * We begin the loop with right_el and left_el pointing to the 1471 * leaf lists and work our way up. 1472 * 1473 * NOTE: within this loop, left_el and right_el always refer 1474 * to the *child* lists. 1475 */ 1476 left_el = path_leaf_el(left_path); 1477 right_el = path_leaf_el(right_path); 1478 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1479 mlog(0, "Adjust records at index %u\n", i); 1480 1481 /* 1482 * One nice property of knowing that all of these 1483 * nodes are below the root is that we only deal with 1484 * the leftmost right node record and the rightmost 1485 * left node record. 1486 */ 1487 el = left_path->p_node[i].el; 1488 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1489 left_rec = &el->l_recs[idx]; 1490 1491 el = right_path->p_node[i].el; 1492 right_rec = &el->l_recs[0]; 1493 1494 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1495 right_el); 1496 1497 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1498 if (ret) 1499 mlog_errno(ret); 1500 1501 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1502 if (ret) 1503 mlog_errno(ret); 1504 1505 /* 1506 * Setup our list pointers now so that the current 1507 * parents become children in the next iteration. 1508 */ 1509 left_el = left_path->p_node[i].el; 1510 right_el = right_path->p_node[i].el; 1511 } 1512 1513 /* 1514 * At the root node, adjust the two adjacent records which 1515 * begin our path to the leaves. 1516 */ 1517 1518 el = left_path->p_node[subtree_index].el; 1519 left_el = left_path->p_node[subtree_index + 1].el; 1520 right_el = right_path->p_node[subtree_index + 1].el; 1521 1522 ocfs2_adjust_root_records(el, left_el, right_el, 1523 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1524 1525 root_bh = left_path->p_node[subtree_index].bh; 1526 1527 ret = ocfs2_journal_dirty(handle, root_bh); 1528 if (ret) 1529 mlog_errno(ret); 1530 } 1531 1532 static int ocfs2_rotate_subtree_right(struct inode *inode, 1533 handle_t *handle, 1534 struct ocfs2_path *left_path, 1535 struct ocfs2_path *right_path, 1536 int subtree_index) 1537 { 1538 int ret, i; 1539 struct buffer_head *right_leaf_bh; 1540 struct buffer_head *left_leaf_bh = NULL; 1541 struct buffer_head *root_bh; 1542 struct ocfs2_extent_list *right_el, *left_el; 1543 struct ocfs2_extent_rec move_rec; 1544 1545 left_leaf_bh = path_leaf_bh(left_path); 1546 left_el = path_leaf_el(left_path); 1547 1548 if (left_el->l_next_free_rec != left_el->l_count) { 1549 ocfs2_error(inode->i_sb, 1550 "Inode %llu has non-full interior leaf node %llu" 1551 "(next free = %u)", 1552 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1553 (unsigned long long)left_leaf_bh->b_blocknr, 1554 le16_to_cpu(left_el->l_next_free_rec)); 1555 return -EROFS; 1556 } 1557 1558 /* 1559 * This extent block may already have an empty record, so we 1560 * return early if so. 1561 */ 1562 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1563 return 0; 1564 1565 root_bh = left_path->p_node[subtree_index].bh; 1566 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1567 1568 ret = ocfs2_journal_access(handle, inode, root_bh, 1569 OCFS2_JOURNAL_ACCESS_WRITE); 1570 if (ret) { 1571 mlog_errno(ret); 1572 goto out; 1573 } 1574 1575 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1576 ret = ocfs2_journal_access(handle, inode, 1577 right_path->p_node[i].bh, 1578 OCFS2_JOURNAL_ACCESS_WRITE); 1579 if (ret) { 1580 mlog_errno(ret); 1581 goto out; 1582 } 1583 1584 ret = ocfs2_journal_access(handle, inode, 1585 left_path->p_node[i].bh, 1586 OCFS2_JOURNAL_ACCESS_WRITE); 1587 if (ret) { 1588 mlog_errno(ret); 1589 goto out; 1590 } 1591 } 1592 1593 right_leaf_bh = path_leaf_bh(right_path); 1594 right_el = path_leaf_el(right_path); 1595 1596 /* This is a code error, not a disk corruption. */ 1597 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1598 "because rightmost leaf block %llu is empty\n", 1599 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1600 (unsigned long long)right_leaf_bh->b_blocknr); 1601 1602 ocfs2_create_empty_extent(right_el); 1603 1604 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 1605 if (ret) { 1606 mlog_errno(ret); 1607 goto out; 1608 } 1609 1610 /* Do the copy now. */ 1611 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 1612 move_rec = left_el->l_recs[i]; 1613 right_el->l_recs[0] = move_rec; 1614 1615 /* 1616 * Clear out the record we just copied and shift everything 1617 * over, leaving an empty extent in the left leaf. 1618 * 1619 * We temporarily subtract from next_free_rec so that the 1620 * shift will lose the tail record (which is now defunct). 1621 */ 1622 le16_add_cpu(&left_el->l_next_free_rec, -1); 1623 ocfs2_shift_records_right(left_el); 1624 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1625 le16_add_cpu(&left_el->l_next_free_rec, 1); 1626 1627 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 1628 if (ret) { 1629 mlog_errno(ret); 1630 goto out; 1631 } 1632 1633 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 1634 subtree_index); 1635 1636 out: 1637 return ret; 1638 } 1639 1640 /* 1641 * Given a full path, determine what cpos value would return us a path 1642 * containing the leaf immediately to the left of the current one. 1643 * 1644 * Will return zero if the path passed in is already the leftmost path. 1645 */ 1646 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 1647 struct ocfs2_path *path, u32 *cpos) 1648 { 1649 int i, j, ret = 0; 1650 u64 blkno; 1651 struct ocfs2_extent_list *el; 1652 1653 BUG_ON(path->p_tree_depth == 0); 1654 1655 *cpos = 0; 1656 1657 blkno = path_leaf_bh(path)->b_blocknr; 1658 1659 /* Start at the tree node just above the leaf and work our way up. */ 1660 i = path->p_tree_depth - 1; 1661 while (i >= 0) { 1662 el = path->p_node[i].el; 1663 1664 /* 1665 * Find the extent record just before the one in our 1666 * path. 1667 */ 1668 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 1669 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 1670 if (j == 0) { 1671 if (i == 0) { 1672 /* 1673 * We've determined that the 1674 * path specified is already 1675 * the leftmost one - return a 1676 * cpos of zero. 1677 */ 1678 goto out; 1679 } 1680 /* 1681 * The leftmost record points to our 1682 * leaf - we need to travel up the 1683 * tree one level. 1684 */ 1685 goto next_node; 1686 } 1687 1688 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 1689 *cpos = *cpos + ocfs2_rec_clusters(el, 1690 &el->l_recs[j - 1]); 1691 *cpos = *cpos - 1; 1692 goto out; 1693 } 1694 } 1695 1696 /* 1697 * If we got here, we never found a valid node where 1698 * the tree indicated one should be. 1699 */ 1700 ocfs2_error(sb, 1701 "Invalid extent tree at extent block %llu\n", 1702 (unsigned long long)blkno); 1703 ret = -EROFS; 1704 goto out; 1705 1706 next_node: 1707 blkno = path->p_node[i].bh->b_blocknr; 1708 i--; 1709 } 1710 1711 out: 1712 return ret; 1713 } 1714 1715 /* 1716 * Extend the transaction by enough credits to complete the rotation, 1717 * and still leave at least the original number of credits allocated 1718 * to this transaction. 1719 */ 1720 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 1721 int op_credits, 1722 struct ocfs2_path *path) 1723 { 1724 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 1725 1726 if (handle->h_buffer_credits < credits) 1727 return ocfs2_extend_trans(handle, credits); 1728 1729 return 0; 1730 } 1731 1732 /* 1733 * Trap the case where we're inserting into the theoretical range past 1734 * the _actual_ left leaf range. Otherwise, we'll rotate a record 1735 * whose cpos is less than ours into the right leaf. 1736 * 1737 * It's only necessary to look at the rightmost record of the left 1738 * leaf because the logic that calls us should ensure that the 1739 * theoretical ranges in the path components above the leaves are 1740 * correct. 1741 */ 1742 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 1743 u32 insert_cpos) 1744 { 1745 struct ocfs2_extent_list *left_el; 1746 struct ocfs2_extent_rec *rec; 1747 int next_free; 1748 1749 left_el = path_leaf_el(left_path); 1750 next_free = le16_to_cpu(left_el->l_next_free_rec); 1751 rec = &left_el->l_recs[next_free - 1]; 1752 1753 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 1754 return 1; 1755 return 0; 1756 } 1757 1758 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 1759 { 1760 int next_free = le16_to_cpu(el->l_next_free_rec); 1761 unsigned int range; 1762 struct ocfs2_extent_rec *rec; 1763 1764 if (next_free == 0) 1765 return 0; 1766 1767 rec = &el->l_recs[0]; 1768 if (ocfs2_is_empty_extent(rec)) { 1769 /* Empty list. */ 1770 if (next_free == 1) 1771 return 0; 1772 rec = &el->l_recs[1]; 1773 } 1774 1775 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1776 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1777 return 1; 1778 return 0; 1779 } 1780 1781 /* 1782 * Rotate all the records in a btree right one record, starting at insert_cpos. 1783 * 1784 * The path to the rightmost leaf should be passed in. 1785 * 1786 * The array is assumed to be large enough to hold an entire path (tree depth). 1787 * 1788 * Upon succesful return from this function: 1789 * 1790 * - The 'right_path' array will contain a path to the leaf block 1791 * whose range contains e_cpos. 1792 * - That leaf block will have a single empty extent in list index 0. 1793 * - In the case that the rotation requires a post-insert update, 1794 * *ret_left_path will contain a valid path which can be passed to 1795 * ocfs2_insert_path(). 1796 */ 1797 static int ocfs2_rotate_tree_right(struct inode *inode, 1798 handle_t *handle, 1799 enum ocfs2_split_type split, 1800 u32 insert_cpos, 1801 struct ocfs2_path *right_path, 1802 struct ocfs2_path **ret_left_path) 1803 { 1804 int ret, start, orig_credits = handle->h_buffer_credits; 1805 u32 cpos; 1806 struct ocfs2_path *left_path = NULL; 1807 1808 *ret_left_path = NULL; 1809 1810 left_path = ocfs2_new_path(path_root_bh(right_path), 1811 path_root_el(right_path)); 1812 if (!left_path) { 1813 ret = -ENOMEM; 1814 mlog_errno(ret); 1815 goto out; 1816 } 1817 1818 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 1819 if (ret) { 1820 mlog_errno(ret); 1821 goto out; 1822 } 1823 1824 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 1825 1826 /* 1827 * What we want to do here is: 1828 * 1829 * 1) Start with the rightmost path. 1830 * 1831 * 2) Determine a path to the leaf block directly to the left 1832 * of that leaf. 1833 * 1834 * 3) Determine the 'subtree root' - the lowest level tree node 1835 * which contains a path to both leaves. 1836 * 1837 * 4) Rotate the subtree. 1838 * 1839 * 5) Find the next subtree by considering the left path to be 1840 * the new right path. 1841 * 1842 * The check at the top of this while loop also accepts 1843 * insert_cpos == cpos because cpos is only a _theoretical_ 1844 * value to get us the left path - insert_cpos might very well 1845 * be filling that hole. 1846 * 1847 * Stop at a cpos of '0' because we either started at the 1848 * leftmost branch (i.e., a tree with one branch and a 1849 * rotation inside of it), or we've gone as far as we can in 1850 * rotating subtrees. 1851 */ 1852 while (cpos && insert_cpos <= cpos) { 1853 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 1854 insert_cpos, cpos); 1855 1856 ret = ocfs2_find_path(inode, left_path, cpos); 1857 if (ret) { 1858 mlog_errno(ret); 1859 goto out; 1860 } 1861 1862 mlog_bug_on_msg(path_leaf_bh(left_path) == 1863 path_leaf_bh(right_path), 1864 "Inode %lu: error during insert of %u " 1865 "(left path cpos %u) results in two identical " 1866 "paths ending at %llu\n", 1867 inode->i_ino, insert_cpos, cpos, 1868 (unsigned long long) 1869 path_leaf_bh(left_path)->b_blocknr); 1870 1871 if (split == SPLIT_NONE && 1872 ocfs2_rotate_requires_path_adjustment(left_path, 1873 insert_cpos)) { 1874 1875 /* 1876 * We've rotated the tree as much as we 1877 * should. The rest is up to 1878 * ocfs2_insert_path() to complete, after the 1879 * record insertion. We indicate this 1880 * situation by returning the left path. 1881 * 1882 * The reason we don't adjust the records here 1883 * before the record insert is that an error 1884 * later might break the rule where a parent 1885 * record e_cpos will reflect the actual 1886 * e_cpos of the 1st nonempty record of the 1887 * child list. 1888 */ 1889 *ret_left_path = left_path; 1890 goto out_ret_path; 1891 } 1892 1893 start = ocfs2_find_subtree_root(inode, left_path, right_path); 1894 1895 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 1896 start, 1897 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 1898 right_path->p_tree_depth); 1899 1900 ret = ocfs2_extend_rotate_transaction(handle, start, 1901 orig_credits, right_path); 1902 if (ret) { 1903 mlog_errno(ret); 1904 goto out; 1905 } 1906 1907 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 1908 right_path, start); 1909 if (ret) { 1910 mlog_errno(ret); 1911 goto out; 1912 } 1913 1914 if (split != SPLIT_NONE && 1915 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 1916 insert_cpos)) { 1917 /* 1918 * A rotate moves the rightmost left leaf 1919 * record over to the leftmost right leaf 1920 * slot. If we're doing an extent split 1921 * instead of a real insert, then we have to 1922 * check that the extent to be split wasn't 1923 * just moved over. If it was, then we can 1924 * exit here, passing left_path back - 1925 * ocfs2_split_extent() is smart enough to 1926 * search both leaves. 1927 */ 1928 *ret_left_path = left_path; 1929 goto out_ret_path; 1930 } 1931 1932 /* 1933 * There is no need to re-read the next right path 1934 * as we know that it'll be our current left 1935 * path. Optimize by copying values instead. 1936 */ 1937 ocfs2_mv_path(right_path, left_path); 1938 1939 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 1940 &cpos); 1941 if (ret) { 1942 mlog_errno(ret); 1943 goto out; 1944 } 1945 } 1946 1947 out: 1948 ocfs2_free_path(left_path); 1949 1950 out_ret_path: 1951 return ret; 1952 } 1953 1954 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 1955 struct ocfs2_path *path) 1956 { 1957 int i, idx; 1958 struct ocfs2_extent_rec *rec; 1959 struct ocfs2_extent_list *el; 1960 struct ocfs2_extent_block *eb; 1961 u32 range; 1962 1963 /* Path should always be rightmost. */ 1964 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 1965 BUG_ON(eb->h_next_leaf_blk != 0ULL); 1966 1967 el = &eb->h_list; 1968 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 1969 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1970 rec = &el->l_recs[idx]; 1971 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1972 1973 for (i = 0; i < path->p_tree_depth; i++) { 1974 el = path->p_node[i].el; 1975 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1976 rec = &el->l_recs[idx]; 1977 1978 rec->e_int_clusters = cpu_to_le32(range); 1979 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 1980 1981 ocfs2_journal_dirty(handle, path->p_node[i].bh); 1982 } 1983 } 1984 1985 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 1986 struct ocfs2_cached_dealloc_ctxt *dealloc, 1987 struct ocfs2_path *path, int unlink_start) 1988 { 1989 int ret, i; 1990 struct ocfs2_extent_block *eb; 1991 struct ocfs2_extent_list *el; 1992 struct buffer_head *bh; 1993 1994 for(i = unlink_start; i < path_num_items(path); i++) { 1995 bh = path->p_node[i].bh; 1996 1997 eb = (struct ocfs2_extent_block *)bh->b_data; 1998 /* 1999 * Not all nodes might have had their final count 2000 * decremented by the caller - handle this here. 2001 */ 2002 el = &eb->h_list; 2003 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2004 mlog(ML_ERROR, 2005 "Inode %llu, attempted to remove extent block " 2006 "%llu with %u records\n", 2007 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2008 (unsigned long long)le64_to_cpu(eb->h_blkno), 2009 le16_to_cpu(el->l_next_free_rec)); 2010 2011 ocfs2_journal_dirty(handle, bh); 2012 ocfs2_remove_from_cache(inode, bh); 2013 continue; 2014 } 2015 2016 el->l_next_free_rec = 0; 2017 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2018 2019 ocfs2_journal_dirty(handle, bh); 2020 2021 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2022 if (ret) 2023 mlog_errno(ret); 2024 2025 ocfs2_remove_from_cache(inode, bh); 2026 } 2027 } 2028 2029 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2030 struct ocfs2_path *left_path, 2031 struct ocfs2_path *right_path, 2032 int subtree_index, 2033 struct ocfs2_cached_dealloc_ctxt *dealloc) 2034 { 2035 int i; 2036 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2037 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2038 struct ocfs2_extent_list *el; 2039 struct ocfs2_extent_block *eb; 2040 2041 el = path_leaf_el(left_path); 2042 2043 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2044 2045 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2046 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2047 break; 2048 2049 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2050 2051 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2052 le16_add_cpu(&root_el->l_next_free_rec, -1); 2053 2054 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2055 eb->h_next_leaf_blk = 0; 2056 2057 ocfs2_journal_dirty(handle, root_bh); 2058 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2059 2060 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2061 subtree_index + 1); 2062 } 2063 2064 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2065 struct ocfs2_path *left_path, 2066 struct ocfs2_path *right_path, 2067 int subtree_index, 2068 struct ocfs2_cached_dealloc_ctxt *dealloc, 2069 int *deleted) 2070 { 2071 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2072 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path); 2073 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 2074 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2075 struct ocfs2_extent_block *eb; 2076 2077 *deleted = 0; 2078 2079 right_leaf_el = path_leaf_el(right_path); 2080 left_leaf_el = path_leaf_el(left_path); 2081 root_bh = left_path->p_node[subtree_index].bh; 2082 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2083 2084 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2085 return 0; 2086 2087 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2088 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2089 /* 2090 * It's legal for us to proceed if the right leaf is 2091 * the rightmost one and it has an empty extent. There 2092 * are two cases to handle - whether the leaf will be 2093 * empty after removal or not. If the leaf isn't empty 2094 * then just remove the empty extent up front. The 2095 * next block will handle empty leaves by flagging 2096 * them for unlink. 2097 * 2098 * Non rightmost leaves will throw -EAGAIN and the 2099 * caller can manually move the subtree and retry. 2100 */ 2101 2102 if (eb->h_next_leaf_blk != 0ULL) 2103 return -EAGAIN; 2104 2105 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2106 ret = ocfs2_journal_access(handle, inode, 2107 path_leaf_bh(right_path), 2108 OCFS2_JOURNAL_ACCESS_WRITE); 2109 if (ret) { 2110 mlog_errno(ret); 2111 goto out; 2112 } 2113 2114 ocfs2_remove_empty_extent(right_leaf_el); 2115 } else 2116 right_has_empty = 1; 2117 } 2118 2119 if (eb->h_next_leaf_blk == 0ULL && 2120 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2121 /* 2122 * We have to update i_last_eb_blk during the meta 2123 * data delete. 2124 */ 2125 ret = ocfs2_journal_access(handle, inode, di_bh, 2126 OCFS2_JOURNAL_ACCESS_WRITE); 2127 if (ret) { 2128 mlog_errno(ret); 2129 goto out; 2130 } 2131 2132 del_right_subtree = 1; 2133 } 2134 2135 /* 2136 * Getting here with an empty extent in the right path implies 2137 * that it's the rightmost path and will be deleted. 2138 */ 2139 BUG_ON(right_has_empty && !del_right_subtree); 2140 2141 ret = ocfs2_journal_access(handle, inode, root_bh, 2142 OCFS2_JOURNAL_ACCESS_WRITE); 2143 if (ret) { 2144 mlog_errno(ret); 2145 goto out; 2146 } 2147 2148 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2149 ret = ocfs2_journal_access(handle, inode, 2150 right_path->p_node[i].bh, 2151 OCFS2_JOURNAL_ACCESS_WRITE); 2152 if (ret) { 2153 mlog_errno(ret); 2154 goto out; 2155 } 2156 2157 ret = ocfs2_journal_access(handle, inode, 2158 left_path->p_node[i].bh, 2159 OCFS2_JOURNAL_ACCESS_WRITE); 2160 if (ret) { 2161 mlog_errno(ret); 2162 goto out; 2163 } 2164 } 2165 2166 if (!right_has_empty) { 2167 /* 2168 * Only do this if we're moving a real 2169 * record. Otherwise, the action is delayed until 2170 * after removal of the right path in which case we 2171 * can do a simple shift to remove the empty extent. 2172 */ 2173 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2174 memset(&right_leaf_el->l_recs[0], 0, 2175 sizeof(struct ocfs2_extent_rec)); 2176 } 2177 if (eb->h_next_leaf_blk == 0ULL) { 2178 /* 2179 * Move recs over to get rid of empty extent, decrease 2180 * next_free. This is allowed to remove the last 2181 * extent in our leaf (setting l_next_free_rec to 2182 * zero) - the delete code below won't care. 2183 */ 2184 ocfs2_remove_empty_extent(right_leaf_el); 2185 } 2186 2187 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2188 if (ret) 2189 mlog_errno(ret); 2190 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2191 if (ret) 2192 mlog_errno(ret); 2193 2194 if (del_right_subtree) { 2195 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2196 subtree_index, dealloc); 2197 ocfs2_update_edge_lengths(inode, handle, left_path); 2198 2199 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2200 di->i_last_eb_blk = eb->h_blkno; 2201 2202 /* 2203 * Removal of the extent in the left leaf was skipped 2204 * above so we could delete the right path 2205 * 1st. 2206 */ 2207 if (right_has_empty) 2208 ocfs2_remove_empty_extent(left_leaf_el); 2209 2210 ret = ocfs2_journal_dirty(handle, di_bh); 2211 if (ret) 2212 mlog_errno(ret); 2213 2214 *deleted = 1; 2215 } else 2216 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2217 subtree_index); 2218 2219 out: 2220 return ret; 2221 } 2222 2223 /* 2224 * Given a full path, determine what cpos value would return us a path 2225 * containing the leaf immediately to the right of the current one. 2226 * 2227 * Will return zero if the path passed in is already the rightmost path. 2228 * 2229 * This looks similar, but is subtly different to 2230 * ocfs2_find_cpos_for_left_leaf(). 2231 */ 2232 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2233 struct ocfs2_path *path, u32 *cpos) 2234 { 2235 int i, j, ret = 0; 2236 u64 blkno; 2237 struct ocfs2_extent_list *el; 2238 2239 *cpos = 0; 2240 2241 if (path->p_tree_depth == 0) 2242 return 0; 2243 2244 blkno = path_leaf_bh(path)->b_blocknr; 2245 2246 /* Start at the tree node just above the leaf and work our way up. */ 2247 i = path->p_tree_depth - 1; 2248 while (i >= 0) { 2249 int next_free; 2250 2251 el = path->p_node[i].el; 2252 2253 /* 2254 * Find the extent record just after the one in our 2255 * path. 2256 */ 2257 next_free = le16_to_cpu(el->l_next_free_rec); 2258 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2259 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2260 if (j == (next_free - 1)) { 2261 if (i == 0) { 2262 /* 2263 * We've determined that the 2264 * path specified is already 2265 * the rightmost one - return a 2266 * cpos of zero. 2267 */ 2268 goto out; 2269 } 2270 /* 2271 * The rightmost record points to our 2272 * leaf - we need to travel up the 2273 * tree one level. 2274 */ 2275 goto next_node; 2276 } 2277 2278 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2279 goto out; 2280 } 2281 } 2282 2283 /* 2284 * If we got here, we never found a valid node where 2285 * the tree indicated one should be. 2286 */ 2287 ocfs2_error(sb, 2288 "Invalid extent tree at extent block %llu\n", 2289 (unsigned long long)blkno); 2290 ret = -EROFS; 2291 goto out; 2292 2293 next_node: 2294 blkno = path->p_node[i].bh->b_blocknr; 2295 i--; 2296 } 2297 2298 out: 2299 return ret; 2300 } 2301 2302 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2303 handle_t *handle, 2304 struct buffer_head *bh, 2305 struct ocfs2_extent_list *el) 2306 { 2307 int ret; 2308 2309 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2310 return 0; 2311 2312 ret = ocfs2_journal_access(handle, inode, bh, 2313 OCFS2_JOURNAL_ACCESS_WRITE); 2314 if (ret) { 2315 mlog_errno(ret); 2316 goto out; 2317 } 2318 2319 ocfs2_remove_empty_extent(el); 2320 2321 ret = ocfs2_journal_dirty(handle, bh); 2322 if (ret) 2323 mlog_errno(ret); 2324 2325 out: 2326 return ret; 2327 } 2328 2329 static int __ocfs2_rotate_tree_left(struct inode *inode, 2330 handle_t *handle, int orig_credits, 2331 struct ocfs2_path *path, 2332 struct ocfs2_cached_dealloc_ctxt *dealloc, 2333 struct ocfs2_path **empty_extent_path) 2334 { 2335 int ret, subtree_root, deleted; 2336 u32 right_cpos; 2337 struct ocfs2_path *left_path = NULL; 2338 struct ocfs2_path *right_path = NULL; 2339 2340 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2341 2342 *empty_extent_path = NULL; 2343 2344 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2345 &right_cpos); 2346 if (ret) { 2347 mlog_errno(ret); 2348 goto out; 2349 } 2350 2351 left_path = ocfs2_new_path(path_root_bh(path), 2352 path_root_el(path)); 2353 if (!left_path) { 2354 ret = -ENOMEM; 2355 mlog_errno(ret); 2356 goto out; 2357 } 2358 2359 ocfs2_cp_path(left_path, path); 2360 2361 right_path = ocfs2_new_path(path_root_bh(path), 2362 path_root_el(path)); 2363 if (!right_path) { 2364 ret = -ENOMEM; 2365 mlog_errno(ret); 2366 goto out; 2367 } 2368 2369 while (right_cpos) { 2370 ret = ocfs2_find_path(inode, right_path, right_cpos); 2371 if (ret) { 2372 mlog_errno(ret); 2373 goto out; 2374 } 2375 2376 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2377 right_path); 2378 2379 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2380 subtree_root, 2381 (unsigned long long) 2382 right_path->p_node[subtree_root].bh->b_blocknr, 2383 right_path->p_tree_depth); 2384 2385 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2386 orig_credits, left_path); 2387 if (ret) { 2388 mlog_errno(ret); 2389 goto out; 2390 } 2391 2392 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2393 right_path, subtree_root, 2394 dealloc, &deleted); 2395 if (ret == -EAGAIN) { 2396 /* 2397 * The rotation has to temporarily stop due to 2398 * the right subtree having an empty 2399 * extent. Pass it back to the caller for a 2400 * fixup. 2401 */ 2402 *empty_extent_path = right_path; 2403 right_path = NULL; 2404 goto out; 2405 } 2406 if (ret) { 2407 mlog_errno(ret); 2408 goto out; 2409 } 2410 2411 /* 2412 * The subtree rotate might have removed records on 2413 * the rightmost edge. If so, then rotation is 2414 * complete. 2415 */ 2416 if (deleted) 2417 break; 2418 2419 ocfs2_mv_path(left_path, right_path); 2420 2421 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2422 &right_cpos); 2423 if (ret) { 2424 mlog_errno(ret); 2425 goto out; 2426 } 2427 } 2428 2429 out: 2430 ocfs2_free_path(right_path); 2431 ocfs2_free_path(left_path); 2432 2433 return ret; 2434 } 2435 2436 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2437 struct ocfs2_path *path, 2438 struct ocfs2_cached_dealloc_ctxt *dealloc) 2439 { 2440 int ret, subtree_index; 2441 u32 cpos; 2442 struct ocfs2_path *left_path = NULL; 2443 struct ocfs2_dinode *di; 2444 struct ocfs2_extent_block *eb; 2445 struct ocfs2_extent_list *el; 2446 2447 /* 2448 * XXX: This code assumes that the root is an inode, which is 2449 * true for now but may change as tree code gets generic. 2450 */ 2451 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data; 2452 if (!OCFS2_IS_VALID_DINODE(di)) { 2453 ret = -EIO; 2454 ocfs2_error(inode->i_sb, 2455 "Inode %llu has invalid path root", 2456 (unsigned long long)OCFS2_I(inode)->ip_blkno); 2457 goto out; 2458 } 2459 2460 /* 2461 * There's two ways we handle this depending on 2462 * whether path is the only existing one. 2463 */ 2464 ret = ocfs2_extend_rotate_transaction(handle, 0, 2465 handle->h_buffer_credits, 2466 path); 2467 if (ret) { 2468 mlog_errno(ret); 2469 goto out; 2470 } 2471 2472 ret = ocfs2_journal_access_path(inode, handle, path); 2473 if (ret) { 2474 mlog_errno(ret); 2475 goto out; 2476 } 2477 2478 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2479 if (ret) { 2480 mlog_errno(ret); 2481 goto out; 2482 } 2483 2484 if (cpos) { 2485 /* 2486 * We have a path to the left of this one - it needs 2487 * an update too. 2488 */ 2489 left_path = ocfs2_new_path(path_root_bh(path), 2490 path_root_el(path)); 2491 if (!left_path) { 2492 ret = -ENOMEM; 2493 mlog_errno(ret); 2494 goto out; 2495 } 2496 2497 ret = ocfs2_find_path(inode, left_path, cpos); 2498 if (ret) { 2499 mlog_errno(ret); 2500 goto out; 2501 } 2502 2503 ret = ocfs2_journal_access_path(inode, handle, left_path); 2504 if (ret) { 2505 mlog_errno(ret); 2506 goto out; 2507 } 2508 2509 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2510 2511 ocfs2_unlink_subtree(inode, handle, left_path, path, 2512 subtree_index, dealloc); 2513 ocfs2_update_edge_lengths(inode, handle, left_path); 2514 2515 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2516 di->i_last_eb_blk = eb->h_blkno; 2517 } else { 2518 /* 2519 * 'path' is also the leftmost path which 2520 * means it must be the only one. This gets 2521 * handled differently because we want to 2522 * revert the inode back to having extents 2523 * in-line. 2524 */ 2525 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2526 2527 el = &di->id2.i_list; 2528 el->l_tree_depth = 0; 2529 el->l_next_free_rec = 0; 2530 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2531 2532 di->i_last_eb_blk = 0; 2533 } 2534 2535 ocfs2_journal_dirty(handle, path_root_bh(path)); 2536 2537 out: 2538 ocfs2_free_path(left_path); 2539 return ret; 2540 } 2541 2542 /* 2543 * Left rotation of btree records. 2544 * 2545 * In many ways, this is (unsurprisingly) the opposite of right 2546 * rotation. We start at some non-rightmost path containing an empty 2547 * extent in the leaf block. The code works its way to the rightmost 2548 * path by rotating records to the left in every subtree. 2549 * 2550 * This is used by any code which reduces the number of extent records 2551 * in a leaf. After removal, an empty record should be placed in the 2552 * leftmost list position. 2553 * 2554 * This won't handle a length update of the rightmost path records if 2555 * the rightmost tree leaf record is removed so the caller is 2556 * responsible for detecting and correcting that. 2557 */ 2558 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2559 struct ocfs2_path *path, 2560 struct ocfs2_cached_dealloc_ctxt *dealloc) 2561 { 2562 int ret, orig_credits = handle->h_buffer_credits; 2563 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2564 struct ocfs2_extent_block *eb; 2565 struct ocfs2_extent_list *el; 2566 2567 el = path_leaf_el(path); 2568 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2569 return 0; 2570 2571 if (path->p_tree_depth == 0) { 2572 rightmost_no_delete: 2573 /* 2574 * In-inode extents. This is trivially handled, so do 2575 * it up front. 2576 */ 2577 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2578 path_leaf_bh(path), 2579 path_leaf_el(path)); 2580 if (ret) 2581 mlog_errno(ret); 2582 goto out; 2583 } 2584 2585 /* 2586 * Handle rightmost branch now. There's several cases: 2587 * 1) simple rotation leaving records in there. That's trivial. 2588 * 2) rotation requiring a branch delete - there's no more 2589 * records left. Two cases of this: 2590 * a) There are branches to the left. 2591 * b) This is also the leftmost (the only) branch. 2592 * 2593 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2594 * 2a) we need the left branch so that we can update it with the unlink 2595 * 2b) we need to bring the inode back to inline extents. 2596 */ 2597 2598 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2599 el = &eb->h_list; 2600 if (eb->h_next_leaf_blk == 0) { 2601 /* 2602 * This gets a bit tricky if we're going to delete the 2603 * rightmost path. Get the other cases out of the way 2604 * 1st. 2605 */ 2606 if (le16_to_cpu(el->l_next_free_rec) > 1) 2607 goto rightmost_no_delete; 2608 2609 if (le16_to_cpu(el->l_next_free_rec) == 0) { 2610 ret = -EIO; 2611 ocfs2_error(inode->i_sb, 2612 "Inode %llu has empty extent block at %llu", 2613 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2614 (unsigned long long)le64_to_cpu(eb->h_blkno)); 2615 goto out; 2616 } 2617 2618 /* 2619 * XXX: The caller can not trust "path" any more after 2620 * this as it will have been deleted. What do we do? 2621 * 2622 * In theory the rotate-for-merge code will never get 2623 * here because it'll always ask for a rotate in a 2624 * nonempty list. 2625 */ 2626 2627 ret = ocfs2_remove_rightmost_path(inode, handle, path, 2628 dealloc); 2629 if (ret) 2630 mlog_errno(ret); 2631 goto out; 2632 } 2633 2634 /* 2635 * Now we can loop, remembering the path we get from -EAGAIN 2636 * and restarting from there. 2637 */ 2638 try_rotate: 2639 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 2640 dealloc, &restart_path); 2641 if (ret && ret != -EAGAIN) { 2642 mlog_errno(ret); 2643 goto out; 2644 } 2645 2646 while (ret == -EAGAIN) { 2647 tmp_path = restart_path; 2648 restart_path = NULL; 2649 2650 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 2651 tmp_path, dealloc, 2652 &restart_path); 2653 if (ret && ret != -EAGAIN) { 2654 mlog_errno(ret); 2655 goto out; 2656 } 2657 2658 ocfs2_free_path(tmp_path); 2659 tmp_path = NULL; 2660 2661 if (ret == 0) 2662 goto try_rotate; 2663 } 2664 2665 out: 2666 ocfs2_free_path(tmp_path); 2667 ocfs2_free_path(restart_path); 2668 return ret; 2669 } 2670 2671 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 2672 int index) 2673 { 2674 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 2675 unsigned int size; 2676 2677 if (rec->e_leaf_clusters == 0) { 2678 /* 2679 * We consumed all of the merged-from record. An empty 2680 * extent cannot exist anywhere but the 1st array 2681 * position, so move things over if the merged-from 2682 * record doesn't occupy that position. 2683 * 2684 * This creates a new empty extent so the caller 2685 * should be smart enough to have removed any existing 2686 * ones. 2687 */ 2688 if (index > 0) { 2689 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 2690 size = index * sizeof(struct ocfs2_extent_rec); 2691 memmove(&el->l_recs[1], &el->l_recs[0], size); 2692 } 2693 2694 /* 2695 * Always memset - the caller doesn't check whether it 2696 * created an empty extent, so there could be junk in 2697 * the other fields. 2698 */ 2699 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2700 } 2701 } 2702 2703 /* 2704 * Remove split_rec clusters from the record at index and merge them 2705 * onto the beginning of the record at index + 1. 2706 */ 2707 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh, 2708 handle_t *handle, 2709 struct ocfs2_extent_rec *split_rec, 2710 struct ocfs2_extent_list *el, int index) 2711 { 2712 int ret; 2713 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2714 struct ocfs2_extent_rec *left_rec; 2715 struct ocfs2_extent_rec *right_rec; 2716 2717 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 2718 2719 left_rec = &el->l_recs[index]; 2720 right_rec = &el->l_recs[index + 1]; 2721 2722 ret = ocfs2_journal_access(handle, inode, bh, 2723 OCFS2_JOURNAL_ACCESS_WRITE); 2724 if (ret) { 2725 mlog_errno(ret); 2726 goto out; 2727 } 2728 2729 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 2730 2731 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 2732 le64_add_cpu(&right_rec->e_blkno, 2733 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2734 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 2735 2736 ocfs2_cleanup_merge(el, index); 2737 2738 ret = ocfs2_journal_dirty(handle, bh); 2739 if (ret) 2740 mlog_errno(ret); 2741 2742 out: 2743 return ret; 2744 } 2745 2746 /* 2747 * Remove split_rec clusters from the record at index and merge them 2748 * onto the tail of the record at index - 1. 2749 */ 2750 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh, 2751 handle_t *handle, 2752 struct ocfs2_extent_rec *split_rec, 2753 struct ocfs2_extent_list *el, int index) 2754 { 2755 int ret, has_empty_extent = 0; 2756 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2757 struct ocfs2_extent_rec *left_rec; 2758 struct ocfs2_extent_rec *right_rec; 2759 2760 BUG_ON(index <= 0); 2761 2762 left_rec = &el->l_recs[index - 1]; 2763 right_rec = &el->l_recs[index]; 2764 if (ocfs2_is_empty_extent(&el->l_recs[0])) 2765 has_empty_extent = 1; 2766 2767 ret = ocfs2_journal_access(handle, inode, bh, 2768 OCFS2_JOURNAL_ACCESS_WRITE); 2769 if (ret) { 2770 mlog_errno(ret); 2771 goto out; 2772 } 2773 2774 if (has_empty_extent && index == 1) { 2775 /* 2776 * The easy case - we can just plop the record right in. 2777 */ 2778 *left_rec = *split_rec; 2779 2780 has_empty_extent = 0; 2781 } else { 2782 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 2783 } 2784 2785 le32_add_cpu(&right_rec->e_cpos, split_clusters); 2786 le64_add_cpu(&right_rec->e_blkno, 2787 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2788 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 2789 2790 ocfs2_cleanup_merge(el, index); 2791 2792 ret = ocfs2_journal_dirty(handle, bh); 2793 if (ret) 2794 mlog_errno(ret); 2795 2796 out: 2797 return ret; 2798 } 2799 2800 static int ocfs2_try_to_merge_extent(struct inode *inode, 2801 handle_t *handle, 2802 struct ocfs2_path *left_path, 2803 int split_index, 2804 struct ocfs2_extent_rec *split_rec, 2805 struct ocfs2_cached_dealloc_ctxt *dealloc, 2806 struct ocfs2_merge_ctxt *ctxt) 2807 2808 { 2809 int ret = 0; 2810 struct ocfs2_extent_list *el = path_leaf_el(left_path); 2811 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 2812 2813 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 2814 2815 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 2816 /* 2817 * The merge code will need to create an empty 2818 * extent to take the place of the newly 2819 * emptied slot. Remove any pre-existing empty 2820 * extents - having more than one in a leaf is 2821 * illegal. 2822 */ 2823 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2824 dealloc); 2825 if (ret) { 2826 mlog_errno(ret); 2827 goto out; 2828 } 2829 split_index--; 2830 rec = &el->l_recs[split_index]; 2831 } 2832 2833 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 2834 /* 2835 * Left-right contig implies this. 2836 */ 2837 BUG_ON(!ctxt->c_split_covers_rec); 2838 BUG_ON(split_index == 0); 2839 2840 /* 2841 * Since the leftright insert always covers the entire 2842 * extent, this call will delete the insert record 2843 * entirely, resulting in an empty extent record added to 2844 * the extent block. 2845 * 2846 * Since the adding of an empty extent shifts 2847 * everything back to the right, there's no need to 2848 * update split_index here. 2849 */ 2850 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path), 2851 handle, split_rec, el, split_index); 2852 if (ret) { 2853 mlog_errno(ret); 2854 goto out; 2855 } 2856 2857 /* 2858 * We can only get this from logic error above. 2859 */ 2860 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 2861 2862 /* 2863 * The left merge left us with an empty extent, remove 2864 * it. 2865 */ 2866 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc); 2867 if (ret) { 2868 mlog_errno(ret); 2869 goto out; 2870 } 2871 split_index--; 2872 rec = &el->l_recs[split_index]; 2873 2874 /* 2875 * Note that we don't pass split_rec here on purpose - 2876 * we've merged it into the left side. 2877 */ 2878 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path), 2879 handle, rec, el, split_index); 2880 if (ret) { 2881 mlog_errno(ret); 2882 goto out; 2883 } 2884 2885 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 2886 2887 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2888 dealloc); 2889 /* 2890 * Error from this last rotate is not critical, so 2891 * print but don't bubble it up. 2892 */ 2893 if (ret) 2894 mlog_errno(ret); 2895 ret = 0; 2896 } else { 2897 /* 2898 * Merge a record to the left or right. 2899 * 2900 * 'contig_type' is relative to the existing record, 2901 * so for example, if we're "right contig", it's to 2902 * the record on the left (hence the left merge). 2903 */ 2904 if (ctxt->c_contig_type == CONTIG_RIGHT) { 2905 ret = ocfs2_merge_rec_left(inode, 2906 path_leaf_bh(left_path), 2907 handle, split_rec, el, 2908 split_index); 2909 if (ret) { 2910 mlog_errno(ret); 2911 goto out; 2912 } 2913 } else { 2914 ret = ocfs2_merge_rec_right(inode, 2915 path_leaf_bh(left_path), 2916 handle, split_rec, el, 2917 split_index); 2918 if (ret) { 2919 mlog_errno(ret); 2920 goto out; 2921 } 2922 } 2923 2924 if (ctxt->c_split_covers_rec) { 2925 /* 2926 * The merge may have left an empty extent in 2927 * our leaf. Try to rotate it away. 2928 */ 2929 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2930 dealloc); 2931 if (ret) 2932 mlog_errno(ret); 2933 ret = 0; 2934 } 2935 } 2936 2937 out: 2938 return ret; 2939 } 2940 2941 static void ocfs2_subtract_from_rec(struct super_block *sb, 2942 enum ocfs2_split_type split, 2943 struct ocfs2_extent_rec *rec, 2944 struct ocfs2_extent_rec *split_rec) 2945 { 2946 u64 len_blocks; 2947 2948 len_blocks = ocfs2_clusters_to_blocks(sb, 2949 le16_to_cpu(split_rec->e_leaf_clusters)); 2950 2951 if (split == SPLIT_LEFT) { 2952 /* 2953 * Region is on the left edge of the existing 2954 * record. 2955 */ 2956 le32_add_cpu(&rec->e_cpos, 2957 le16_to_cpu(split_rec->e_leaf_clusters)); 2958 le64_add_cpu(&rec->e_blkno, len_blocks); 2959 le16_add_cpu(&rec->e_leaf_clusters, 2960 -le16_to_cpu(split_rec->e_leaf_clusters)); 2961 } else { 2962 /* 2963 * Region is on the right edge of the existing 2964 * record. 2965 */ 2966 le16_add_cpu(&rec->e_leaf_clusters, 2967 -le16_to_cpu(split_rec->e_leaf_clusters)); 2968 } 2969 } 2970 2971 /* 2972 * Do the final bits of extent record insertion at the target leaf 2973 * list. If this leaf is part of an allocation tree, it is assumed 2974 * that the tree above has been prepared. 2975 */ 2976 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 2977 struct ocfs2_extent_list *el, 2978 struct ocfs2_insert_type *insert, 2979 struct inode *inode) 2980 { 2981 int i = insert->ins_contig_index; 2982 unsigned int range; 2983 struct ocfs2_extent_rec *rec; 2984 2985 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 2986 2987 if (insert->ins_split != SPLIT_NONE) { 2988 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 2989 BUG_ON(i == -1); 2990 rec = &el->l_recs[i]; 2991 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 2992 insert_rec); 2993 goto rotate; 2994 } 2995 2996 /* 2997 * Contiguous insert - either left or right. 2998 */ 2999 if (insert->ins_contig != CONTIG_NONE) { 3000 rec = &el->l_recs[i]; 3001 if (insert->ins_contig == CONTIG_LEFT) { 3002 rec->e_blkno = insert_rec->e_blkno; 3003 rec->e_cpos = insert_rec->e_cpos; 3004 } 3005 le16_add_cpu(&rec->e_leaf_clusters, 3006 le16_to_cpu(insert_rec->e_leaf_clusters)); 3007 return; 3008 } 3009 3010 /* 3011 * Handle insert into an empty leaf. 3012 */ 3013 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3014 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3015 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3016 el->l_recs[0] = *insert_rec; 3017 el->l_next_free_rec = cpu_to_le16(1); 3018 return; 3019 } 3020 3021 /* 3022 * Appending insert. 3023 */ 3024 if (insert->ins_appending == APPEND_TAIL) { 3025 i = le16_to_cpu(el->l_next_free_rec) - 1; 3026 rec = &el->l_recs[i]; 3027 range = le32_to_cpu(rec->e_cpos) 3028 + le16_to_cpu(rec->e_leaf_clusters); 3029 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3030 3031 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3032 le16_to_cpu(el->l_count), 3033 "inode %lu, depth %u, count %u, next free %u, " 3034 "rec.cpos %u, rec.clusters %u, " 3035 "insert.cpos %u, insert.clusters %u\n", 3036 inode->i_ino, 3037 le16_to_cpu(el->l_tree_depth), 3038 le16_to_cpu(el->l_count), 3039 le16_to_cpu(el->l_next_free_rec), 3040 le32_to_cpu(el->l_recs[i].e_cpos), 3041 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3042 le32_to_cpu(insert_rec->e_cpos), 3043 le16_to_cpu(insert_rec->e_leaf_clusters)); 3044 i++; 3045 el->l_recs[i] = *insert_rec; 3046 le16_add_cpu(&el->l_next_free_rec, 1); 3047 return; 3048 } 3049 3050 rotate: 3051 /* 3052 * Ok, we have to rotate. 3053 * 3054 * At this point, it is safe to assume that inserting into an 3055 * empty leaf and appending to a leaf have both been handled 3056 * above. 3057 * 3058 * This leaf needs to have space, either by the empty 1st 3059 * extent record, or by virtue of an l_next_rec < l_count. 3060 */ 3061 ocfs2_rotate_leaf(el, insert_rec); 3062 } 3063 3064 static inline void ocfs2_update_dinode_clusters(struct inode *inode, 3065 struct ocfs2_dinode *di, 3066 u32 clusters) 3067 { 3068 le32_add_cpu(&di->i_clusters, clusters); 3069 spin_lock(&OCFS2_I(inode)->ip_lock); 3070 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 3071 spin_unlock(&OCFS2_I(inode)->ip_lock); 3072 } 3073 3074 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3075 handle_t *handle, 3076 struct ocfs2_path *path, 3077 struct ocfs2_extent_rec *insert_rec) 3078 { 3079 int ret, i, next_free; 3080 struct buffer_head *bh; 3081 struct ocfs2_extent_list *el; 3082 struct ocfs2_extent_rec *rec; 3083 3084 /* 3085 * Update everything except the leaf block. 3086 */ 3087 for (i = 0; i < path->p_tree_depth; i++) { 3088 bh = path->p_node[i].bh; 3089 el = path->p_node[i].el; 3090 3091 next_free = le16_to_cpu(el->l_next_free_rec); 3092 if (next_free == 0) { 3093 ocfs2_error(inode->i_sb, 3094 "Dinode %llu has a bad extent list", 3095 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3096 ret = -EIO; 3097 return; 3098 } 3099 3100 rec = &el->l_recs[next_free - 1]; 3101 3102 rec->e_int_clusters = insert_rec->e_cpos; 3103 le32_add_cpu(&rec->e_int_clusters, 3104 le16_to_cpu(insert_rec->e_leaf_clusters)); 3105 le32_add_cpu(&rec->e_int_clusters, 3106 -le32_to_cpu(rec->e_cpos)); 3107 3108 ret = ocfs2_journal_dirty(handle, bh); 3109 if (ret) 3110 mlog_errno(ret); 3111 3112 } 3113 } 3114 3115 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3116 struct ocfs2_extent_rec *insert_rec, 3117 struct ocfs2_path *right_path, 3118 struct ocfs2_path **ret_left_path) 3119 { 3120 int ret, next_free; 3121 struct ocfs2_extent_list *el; 3122 struct ocfs2_path *left_path = NULL; 3123 3124 *ret_left_path = NULL; 3125 3126 /* 3127 * This shouldn't happen for non-trees. The extent rec cluster 3128 * count manipulation below only works for interior nodes. 3129 */ 3130 BUG_ON(right_path->p_tree_depth == 0); 3131 3132 /* 3133 * If our appending insert is at the leftmost edge of a leaf, 3134 * then we might need to update the rightmost records of the 3135 * neighboring path. 3136 */ 3137 el = path_leaf_el(right_path); 3138 next_free = le16_to_cpu(el->l_next_free_rec); 3139 if (next_free == 0 || 3140 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3141 u32 left_cpos; 3142 3143 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3144 &left_cpos); 3145 if (ret) { 3146 mlog_errno(ret); 3147 goto out; 3148 } 3149 3150 mlog(0, "Append may need a left path update. cpos: %u, " 3151 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3152 left_cpos); 3153 3154 /* 3155 * No need to worry if the append is already in the 3156 * leftmost leaf. 3157 */ 3158 if (left_cpos) { 3159 left_path = ocfs2_new_path(path_root_bh(right_path), 3160 path_root_el(right_path)); 3161 if (!left_path) { 3162 ret = -ENOMEM; 3163 mlog_errno(ret); 3164 goto out; 3165 } 3166 3167 ret = ocfs2_find_path(inode, left_path, left_cpos); 3168 if (ret) { 3169 mlog_errno(ret); 3170 goto out; 3171 } 3172 3173 /* 3174 * ocfs2_insert_path() will pass the left_path to the 3175 * journal for us. 3176 */ 3177 } 3178 } 3179 3180 ret = ocfs2_journal_access_path(inode, handle, right_path); 3181 if (ret) { 3182 mlog_errno(ret); 3183 goto out; 3184 } 3185 3186 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3187 3188 *ret_left_path = left_path; 3189 ret = 0; 3190 out: 3191 if (ret != 0) 3192 ocfs2_free_path(left_path); 3193 3194 return ret; 3195 } 3196 3197 static void ocfs2_split_record(struct inode *inode, 3198 struct ocfs2_path *left_path, 3199 struct ocfs2_path *right_path, 3200 struct ocfs2_extent_rec *split_rec, 3201 enum ocfs2_split_type split) 3202 { 3203 int index; 3204 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3205 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3206 struct ocfs2_extent_rec *rec, *tmprec; 3207 3208 right_el = path_leaf_el(right_path);; 3209 if (left_path) 3210 left_el = path_leaf_el(left_path); 3211 3212 el = right_el; 3213 insert_el = right_el; 3214 index = ocfs2_search_extent_list(el, cpos); 3215 if (index != -1) { 3216 if (index == 0 && left_path) { 3217 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3218 3219 /* 3220 * This typically means that the record 3221 * started in the left path but moved to the 3222 * right as a result of rotation. We either 3223 * move the existing record to the left, or we 3224 * do the later insert there. 3225 * 3226 * In this case, the left path should always 3227 * exist as the rotate code will have passed 3228 * it back for a post-insert update. 3229 */ 3230 3231 if (split == SPLIT_LEFT) { 3232 /* 3233 * It's a left split. Since we know 3234 * that the rotate code gave us an 3235 * empty extent in the left path, we 3236 * can just do the insert there. 3237 */ 3238 insert_el = left_el; 3239 } else { 3240 /* 3241 * Right split - we have to move the 3242 * existing record over to the left 3243 * leaf. The insert will be into the 3244 * newly created empty extent in the 3245 * right leaf. 3246 */ 3247 tmprec = &right_el->l_recs[index]; 3248 ocfs2_rotate_leaf(left_el, tmprec); 3249 el = left_el; 3250 3251 memset(tmprec, 0, sizeof(*tmprec)); 3252 index = ocfs2_search_extent_list(left_el, cpos); 3253 BUG_ON(index == -1); 3254 } 3255 } 3256 } else { 3257 BUG_ON(!left_path); 3258 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3259 /* 3260 * Left path is easy - we can just allow the insert to 3261 * happen. 3262 */ 3263 el = left_el; 3264 insert_el = left_el; 3265 index = ocfs2_search_extent_list(el, cpos); 3266 BUG_ON(index == -1); 3267 } 3268 3269 rec = &el->l_recs[index]; 3270 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3271 ocfs2_rotate_leaf(insert_el, split_rec); 3272 } 3273 3274 /* 3275 * This function only does inserts on an allocation b-tree. For dinode 3276 * lists, ocfs2_insert_at_leaf() is called directly. 3277 * 3278 * right_path is the path we want to do the actual insert 3279 * in. left_path should only be passed in if we need to update that 3280 * portion of the tree after an edge insert. 3281 */ 3282 static int ocfs2_insert_path(struct inode *inode, 3283 handle_t *handle, 3284 struct ocfs2_path *left_path, 3285 struct ocfs2_path *right_path, 3286 struct ocfs2_extent_rec *insert_rec, 3287 struct ocfs2_insert_type *insert) 3288 { 3289 int ret, subtree_index; 3290 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3291 3292 /* 3293 * Pass both paths to the journal. The majority of inserts 3294 * will be touching all components anyway. 3295 */ 3296 ret = ocfs2_journal_access_path(inode, handle, right_path); 3297 if (ret < 0) { 3298 mlog_errno(ret); 3299 goto out; 3300 } 3301 3302 if (left_path) { 3303 int credits = handle->h_buffer_credits; 3304 3305 /* 3306 * There's a chance that left_path got passed back to 3307 * us without being accounted for in the 3308 * journal. Extend our transaction here to be sure we 3309 * can change those blocks. 3310 */ 3311 credits += left_path->p_tree_depth; 3312 3313 ret = ocfs2_extend_trans(handle, credits); 3314 if (ret < 0) { 3315 mlog_errno(ret); 3316 goto out; 3317 } 3318 3319 ret = ocfs2_journal_access_path(inode, handle, left_path); 3320 if (ret < 0) { 3321 mlog_errno(ret); 3322 goto out; 3323 } 3324 } 3325 3326 if (insert->ins_split != SPLIT_NONE) { 3327 /* 3328 * We could call ocfs2_insert_at_leaf() for some types 3329 * of splits, but it's easier to just let one seperate 3330 * function sort it all out. 3331 */ 3332 ocfs2_split_record(inode, left_path, right_path, 3333 insert_rec, insert->ins_split); 3334 } else 3335 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 3336 insert, inode); 3337 3338 ret = ocfs2_journal_dirty(handle, leaf_bh); 3339 if (ret) 3340 mlog_errno(ret); 3341 3342 if (left_path) { 3343 /* 3344 * The rotate code has indicated that we need to fix 3345 * up portions of the tree after the insert. 3346 * 3347 * XXX: Should we extend the transaction here? 3348 */ 3349 subtree_index = ocfs2_find_subtree_root(inode, left_path, 3350 right_path); 3351 ocfs2_complete_edge_insert(inode, handle, left_path, 3352 right_path, subtree_index); 3353 } 3354 3355 ret = 0; 3356 out: 3357 return ret; 3358 } 3359 3360 static int ocfs2_do_insert_extent(struct inode *inode, 3361 handle_t *handle, 3362 struct buffer_head *di_bh, 3363 struct ocfs2_extent_rec *insert_rec, 3364 struct ocfs2_insert_type *type) 3365 { 3366 int ret, rotate = 0; 3367 u32 cpos; 3368 struct ocfs2_path *right_path = NULL; 3369 struct ocfs2_path *left_path = NULL; 3370 struct ocfs2_dinode *di; 3371 struct ocfs2_extent_list *el; 3372 3373 di = (struct ocfs2_dinode *) di_bh->b_data; 3374 el = &di->id2.i_list; 3375 3376 ret = ocfs2_journal_access(handle, inode, di_bh, 3377 OCFS2_JOURNAL_ACCESS_WRITE); 3378 if (ret) { 3379 mlog_errno(ret); 3380 goto out; 3381 } 3382 3383 if (le16_to_cpu(el->l_tree_depth) == 0) { 3384 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 3385 goto out_update_clusters; 3386 } 3387 3388 right_path = ocfs2_new_inode_path(di_bh); 3389 if (!right_path) { 3390 ret = -ENOMEM; 3391 mlog_errno(ret); 3392 goto out; 3393 } 3394 3395 /* 3396 * Determine the path to start with. Rotations need the 3397 * rightmost path, everything else can go directly to the 3398 * target leaf. 3399 */ 3400 cpos = le32_to_cpu(insert_rec->e_cpos); 3401 if (type->ins_appending == APPEND_NONE && 3402 type->ins_contig == CONTIG_NONE) { 3403 rotate = 1; 3404 cpos = UINT_MAX; 3405 } 3406 3407 ret = ocfs2_find_path(inode, right_path, cpos); 3408 if (ret) { 3409 mlog_errno(ret); 3410 goto out; 3411 } 3412 3413 /* 3414 * Rotations and appends need special treatment - they modify 3415 * parts of the tree's above them. 3416 * 3417 * Both might pass back a path immediate to the left of the 3418 * one being inserted to. This will be cause 3419 * ocfs2_insert_path() to modify the rightmost records of 3420 * left_path to account for an edge insert. 3421 * 3422 * XXX: When modifying this code, keep in mind that an insert 3423 * can wind up skipping both of these two special cases... 3424 */ 3425 if (rotate) { 3426 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 3427 le32_to_cpu(insert_rec->e_cpos), 3428 right_path, &left_path); 3429 if (ret) { 3430 mlog_errno(ret); 3431 goto out; 3432 } 3433 } else if (type->ins_appending == APPEND_TAIL 3434 && type->ins_contig != CONTIG_LEFT) { 3435 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 3436 right_path, &left_path); 3437 if (ret) { 3438 mlog_errno(ret); 3439 goto out; 3440 } 3441 } 3442 3443 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 3444 insert_rec, type); 3445 if (ret) { 3446 mlog_errno(ret); 3447 goto out; 3448 } 3449 3450 out_update_clusters: 3451 if (type->ins_split == SPLIT_NONE) 3452 ocfs2_update_dinode_clusters(inode, di, 3453 le16_to_cpu(insert_rec->e_leaf_clusters)); 3454 3455 ret = ocfs2_journal_dirty(handle, di_bh); 3456 if (ret) 3457 mlog_errno(ret); 3458 3459 out: 3460 ocfs2_free_path(left_path); 3461 ocfs2_free_path(right_path); 3462 3463 return ret; 3464 } 3465 3466 static enum ocfs2_contig_type 3467 ocfs2_figure_merge_contig_type(struct inode *inode, 3468 struct ocfs2_extent_list *el, int index, 3469 struct ocfs2_extent_rec *split_rec) 3470 { 3471 struct ocfs2_extent_rec *rec; 3472 enum ocfs2_contig_type ret = CONTIG_NONE; 3473 3474 /* 3475 * We're careful to check for an empty extent record here - 3476 * the merge code will know what to do if it sees one. 3477 */ 3478 3479 if (index > 0) { 3480 rec = &el->l_recs[index - 1]; 3481 if (index == 1 && ocfs2_is_empty_extent(rec)) { 3482 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 3483 ret = CONTIG_RIGHT; 3484 } else { 3485 ret = ocfs2_extent_contig(inode, rec, split_rec); 3486 } 3487 } 3488 3489 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) { 3490 enum ocfs2_contig_type contig_type; 3491 3492 rec = &el->l_recs[index + 1]; 3493 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 3494 3495 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 3496 ret = CONTIG_LEFTRIGHT; 3497 else if (ret == CONTIG_NONE) 3498 ret = contig_type; 3499 } 3500 3501 return ret; 3502 } 3503 3504 static void ocfs2_figure_contig_type(struct inode *inode, 3505 struct ocfs2_insert_type *insert, 3506 struct ocfs2_extent_list *el, 3507 struct ocfs2_extent_rec *insert_rec) 3508 { 3509 int i; 3510 enum ocfs2_contig_type contig_type = CONTIG_NONE; 3511 3512 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3513 3514 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 3515 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 3516 insert_rec); 3517 if (contig_type != CONTIG_NONE) { 3518 insert->ins_contig_index = i; 3519 break; 3520 } 3521 } 3522 insert->ins_contig = contig_type; 3523 } 3524 3525 /* 3526 * This should only be called against the righmost leaf extent list. 3527 * 3528 * ocfs2_figure_appending_type() will figure out whether we'll have to 3529 * insert at the tail of the rightmost leaf. 3530 * 3531 * This should also work against the dinode list for tree's with 0 3532 * depth. If we consider the dinode list to be the rightmost leaf node 3533 * then the logic here makes sense. 3534 */ 3535 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 3536 struct ocfs2_extent_list *el, 3537 struct ocfs2_extent_rec *insert_rec) 3538 { 3539 int i; 3540 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 3541 struct ocfs2_extent_rec *rec; 3542 3543 insert->ins_appending = APPEND_NONE; 3544 3545 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3546 3547 if (!el->l_next_free_rec) 3548 goto set_tail_append; 3549 3550 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 3551 /* Were all records empty? */ 3552 if (le16_to_cpu(el->l_next_free_rec) == 1) 3553 goto set_tail_append; 3554 } 3555 3556 i = le16_to_cpu(el->l_next_free_rec) - 1; 3557 rec = &el->l_recs[i]; 3558 3559 if (cpos >= 3560 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 3561 goto set_tail_append; 3562 3563 return; 3564 3565 set_tail_append: 3566 insert->ins_appending = APPEND_TAIL; 3567 } 3568 3569 /* 3570 * Helper function called at the begining of an insert. 3571 * 3572 * This computes a few things that are commonly used in the process of 3573 * inserting into the btree: 3574 * - Whether the new extent is contiguous with an existing one. 3575 * - The current tree depth. 3576 * - Whether the insert is an appending one. 3577 * - The total # of free records in the tree. 3578 * 3579 * All of the information is stored on the ocfs2_insert_type 3580 * structure. 3581 */ 3582 static int ocfs2_figure_insert_type(struct inode *inode, 3583 struct buffer_head *di_bh, 3584 struct buffer_head **last_eb_bh, 3585 struct ocfs2_extent_rec *insert_rec, 3586 int *free_records, 3587 struct ocfs2_insert_type *insert) 3588 { 3589 int ret; 3590 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 3591 struct ocfs2_extent_block *eb; 3592 struct ocfs2_extent_list *el; 3593 struct ocfs2_path *path = NULL; 3594 struct buffer_head *bh = NULL; 3595 3596 insert->ins_split = SPLIT_NONE; 3597 3598 el = &di->id2.i_list; 3599 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 3600 3601 if (el->l_tree_depth) { 3602 /* 3603 * If we have tree depth, we read in the 3604 * rightmost extent block ahead of time as 3605 * ocfs2_figure_insert_type() and ocfs2_add_branch() 3606 * may want it later. 3607 */ 3608 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 3609 le64_to_cpu(di->i_last_eb_blk), &bh, 3610 OCFS2_BH_CACHED, inode); 3611 if (ret) { 3612 mlog_exit(ret); 3613 goto out; 3614 } 3615 eb = (struct ocfs2_extent_block *) bh->b_data; 3616 el = &eb->h_list; 3617 } 3618 3619 /* 3620 * Unless we have a contiguous insert, we'll need to know if 3621 * there is room left in our allocation tree for another 3622 * extent record. 3623 * 3624 * XXX: This test is simplistic, we can search for empty 3625 * extent records too. 3626 */ 3627 *free_records = le16_to_cpu(el->l_count) - 3628 le16_to_cpu(el->l_next_free_rec); 3629 3630 if (!insert->ins_tree_depth) { 3631 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 3632 ocfs2_figure_appending_type(insert, el, insert_rec); 3633 return 0; 3634 } 3635 3636 path = ocfs2_new_inode_path(di_bh); 3637 if (!path) { 3638 ret = -ENOMEM; 3639 mlog_errno(ret); 3640 goto out; 3641 } 3642 3643 /* 3644 * In the case that we're inserting past what the tree 3645 * currently accounts for, ocfs2_find_path() will return for 3646 * us the rightmost tree path. This is accounted for below in 3647 * the appending code. 3648 */ 3649 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 3650 if (ret) { 3651 mlog_errno(ret); 3652 goto out; 3653 } 3654 3655 el = path_leaf_el(path); 3656 3657 /* 3658 * Now that we have the path, there's two things we want to determine: 3659 * 1) Contiguousness (also set contig_index if this is so) 3660 * 3661 * 2) Are we doing an append? We can trivially break this up 3662 * into two types of appends: simple record append, or a 3663 * rotate inside the tail leaf. 3664 */ 3665 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 3666 3667 /* 3668 * The insert code isn't quite ready to deal with all cases of 3669 * left contiguousness. Specifically, if it's an insert into 3670 * the 1st record in a leaf, it will require the adjustment of 3671 * cluster count on the last record of the path directly to it's 3672 * left. For now, just catch that case and fool the layers 3673 * above us. This works just fine for tree_depth == 0, which 3674 * is why we allow that above. 3675 */ 3676 if (insert->ins_contig == CONTIG_LEFT && 3677 insert->ins_contig_index == 0) 3678 insert->ins_contig = CONTIG_NONE; 3679 3680 /* 3681 * Ok, so we can simply compare against last_eb to figure out 3682 * whether the path doesn't exist. This will only happen in 3683 * the case that we're doing a tail append, so maybe we can 3684 * take advantage of that information somehow. 3685 */ 3686 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { 3687 /* 3688 * Ok, ocfs2_find_path() returned us the rightmost 3689 * tree path. This might be an appending insert. There are 3690 * two cases: 3691 * 1) We're doing a true append at the tail: 3692 * -This might even be off the end of the leaf 3693 * 2) We're "appending" by rotating in the tail 3694 */ 3695 ocfs2_figure_appending_type(insert, el, insert_rec); 3696 } 3697 3698 out: 3699 ocfs2_free_path(path); 3700 3701 if (ret == 0) 3702 *last_eb_bh = bh; 3703 else 3704 brelse(bh); 3705 return ret; 3706 } 3707 3708 /* 3709 * Insert an extent into an inode btree. 3710 * 3711 * The caller needs to update fe->i_clusters 3712 */ 3713 int ocfs2_insert_extent(struct ocfs2_super *osb, 3714 handle_t *handle, 3715 struct inode *inode, 3716 struct buffer_head *fe_bh, 3717 u32 cpos, 3718 u64 start_blk, 3719 u32 new_clusters, 3720 u8 flags, 3721 struct ocfs2_alloc_context *meta_ac) 3722 { 3723 int status; 3724 int uninitialized_var(free_records); 3725 struct buffer_head *last_eb_bh = NULL; 3726 struct ocfs2_insert_type insert = {0, }; 3727 struct ocfs2_extent_rec rec; 3728 3729 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 3730 3731 mlog(0, "add %u clusters at position %u to inode %llu\n", 3732 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 3733 3734 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 3735 (OCFS2_I(inode)->ip_clusters != cpos), 3736 "Device %s, asking for sparse allocation: inode %llu, " 3737 "cpos %u, clusters %u\n", 3738 osb->dev_str, 3739 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, 3740 OCFS2_I(inode)->ip_clusters); 3741 3742 memset(&rec, 0, sizeof(rec)); 3743 rec.e_cpos = cpu_to_le32(cpos); 3744 rec.e_blkno = cpu_to_le64(start_blk); 3745 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 3746 rec.e_flags = flags; 3747 3748 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, 3749 &free_records, &insert); 3750 if (status < 0) { 3751 mlog_errno(status); 3752 goto bail; 3753 } 3754 3755 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 3756 "Insert.contig_index: %d, Insert.free_records: %d, " 3757 "Insert.tree_depth: %d\n", 3758 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 3759 free_records, insert.ins_tree_depth); 3760 3761 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 3762 status = ocfs2_grow_tree(inode, handle, fe_bh, 3763 &insert.ins_tree_depth, &last_eb_bh, 3764 meta_ac); 3765 if (status) { 3766 mlog_errno(status); 3767 goto bail; 3768 } 3769 } 3770 3771 /* Finally, we can add clusters. This might rotate the tree for us. */ 3772 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); 3773 if (status < 0) 3774 mlog_errno(status); 3775 else 3776 ocfs2_extent_map_insert_rec(inode, &rec); 3777 3778 bail: 3779 if (last_eb_bh) 3780 brelse(last_eb_bh); 3781 3782 mlog_exit(status); 3783 return status; 3784 } 3785 3786 static void ocfs2_make_right_split_rec(struct super_block *sb, 3787 struct ocfs2_extent_rec *split_rec, 3788 u32 cpos, 3789 struct ocfs2_extent_rec *rec) 3790 { 3791 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 3792 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 3793 3794 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 3795 3796 split_rec->e_cpos = cpu_to_le32(cpos); 3797 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 3798 3799 split_rec->e_blkno = rec->e_blkno; 3800 le64_add_cpu(&split_rec->e_blkno, 3801 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 3802 3803 split_rec->e_flags = rec->e_flags; 3804 } 3805 3806 static int ocfs2_split_and_insert(struct inode *inode, 3807 handle_t *handle, 3808 struct ocfs2_path *path, 3809 struct buffer_head *di_bh, 3810 struct buffer_head **last_eb_bh, 3811 int split_index, 3812 struct ocfs2_extent_rec *orig_split_rec, 3813 struct ocfs2_alloc_context *meta_ac) 3814 { 3815 int ret = 0, depth; 3816 unsigned int insert_range, rec_range, do_leftright = 0; 3817 struct ocfs2_extent_rec tmprec; 3818 struct ocfs2_extent_list *rightmost_el; 3819 struct ocfs2_extent_rec rec; 3820 struct ocfs2_extent_rec split_rec = *orig_split_rec; 3821 struct ocfs2_insert_type insert; 3822 struct ocfs2_extent_block *eb; 3823 struct ocfs2_dinode *di; 3824 3825 leftright: 3826 /* 3827 * Store a copy of the record on the stack - it might move 3828 * around as the tree is manipulated below. 3829 */ 3830 rec = path_leaf_el(path)->l_recs[split_index]; 3831 3832 di = (struct ocfs2_dinode *)di_bh->b_data; 3833 rightmost_el = &di->id2.i_list; 3834 3835 depth = le16_to_cpu(rightmost_el->l_tree_depth); 3836 if (depth) { 3837 BUG_ON(!(*last_eb_bh)); 3838 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 3839 rightmost_el = &eb->h_list; 3840 } 3841 3842 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 3843 le16_to_cpu(rightmost_el->l_count)) { 3844 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh, 3845 meta_ac); 3846 if (ret) { 3847 mlog_errno(ret); 3848 goto out; 3849 } 3850 } 3851 3852 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 3853 insert.ins_appending = APPEND_NONE; 3854 insert.ins_contig = CONTIG_NONE; 3855 insert.ins_tree_depth = depth; 3856 3857 insert_range = le32_to_cpu(split_rec.e_cpos) + 3858 le16_to_cpu(split_rec.e_leaf_clusters); 3859 rec_range = le32_to_cpu(rec.e_cpos) + 3860 le16_to_cpu(rec.e_leaf_clusters); 3861 3862 if (split_rec.e_cpos == rec.e_cpos) { 3863 insert.ins_split = SPLIT_LEFT; 3864 } else if (insert_range == rec_range) { 3865 insert.ins_split = SPLIT_RIGHT; 3866 } else { 3867 /* 3868 * Left/right split. We fake this as a right split 3869 * first and then make a second pass as a left split. 3870 */ 3871 insert.ins_split = SPLIT_RIGHT; 3872 3873 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 3874 &rec); 3875 3876 split_rec = tmprec; 3877 3878 BUG_ON(do_leftright); 3879 do_leftright = 1; 3880 } 3881 3882 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, 3883 &insert); 3884 if (ret) { 3885 mlog_errno(ret); 3886 goto out; 3887 } 3888 3889 if (do_leftright == 1) { 3890 u32 cpos; 3891 struct ocfs2_extent_list *el; 3892 3893 do_leftright++; 3894 split_rec = *orig_split_rec; 3895 3896 ocfs2_reinit_path(path, 1); 3897 3898 cpos = le32_to_cpu(split_rec.e_cpos); 3899 ret = ocfs2_find_path(inode, path, cpos); 3900 if (ret) { 3901 mlog_errno(ret); 3902 goto out; 3903 } 3904 3905 el = path_leaf_el(path); 3906 split_index = ocfs2_search_extent_list(el, cpos); 3907 goto leftright; 3908 } 3909 out: 3910 3911 return ret; 3912 } 3913 3914 /* 3915 * Mark part or all of the extent record at split_index in the leaf 3916 * pointed to by path as written. This removes the unwritten 3917 * extent flag. 3918 * 3919 * Care is taken to handle contiguousness so as to not grow the tree. 3920 * 3921 * meta_ac is not strictly necessary - we only truly need it if growth 3922 * of the tree is required. All other cases will degrade into a less 3923 * optimal tree layout. 3924 * 3925 * last_eb_bh should be the rightmost leaf block for any inode with a 3926 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call. 3927 * 3928 * This code is optimized for readability - several passes might be 3929 * made over certain portions of the tree. All of those blocks will 3930 * have been brought into cache (and pinned via the journal), so the 3931 * extra overhead is not expressed in terms of disk reads. 3932 */ 3933 static int __ocfs2_mark_extent_written(struct inode *inode, 3934 struct buffer_head *di_bh, 3935 handle_t *handle, 3936 struct ocfs2_path *path, 3937 int split_index, 3938 struct ocfs2_extent_rec *split_rec, 3939 struct ocfs2_alloc_context *meta_ac, 3940 struct ocfs2_cached_dealloc_ctxt *dealloc) 3941 { 3942 int ret = 0; 3943 struct ocfs2_extent_list *el = path_leaf_el(path); 3944 struct buffer_head *eb_bh, *last_eb_bh = NULL; 3945 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3946 struct ocfs2_merge_ctxt ctxt; 3947 struct ocfs2_extent_list *rightmost_el; 3948 3949 if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) { 3950 ret = -EIO; 3951 mlog_errno(ret); 3952 goto out; 3953 } 3954 3955 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 3956 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 3957 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 3958 ret = -EIO; 3959 mlog_errno(ret); 3960 goto out; 3961 } 3962 3963 eb_bh = path_leaf_bh(path); 3964 ret = ocfs2_journal_access(handle, inode, eb_bh, 3965 OCFS2_JOURNAL_ACCESS_WRITE); 3966 if (ret) { 3967 mlog_errno(ret); 3968 goto out; 3969 } 3970 3971 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el, 3972 split_index, 3973 split_rec); 3974 3975 /* 3976 * The core merge / split code wants to know how much room is 3977 * left in this inodes allocation tree, so we pass the 3978 * rightmost extent list. 3979 */ 3980 if (path->p_tree_depth) { 3981 struct ocfs2_extent_block *eb; 3982 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 3983 3984 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 3985 le64_to_cpu(di->i_last_eb_blk), 3986 &last_eb_bh, OCFS2_BH_CACHED, inode); 3987 if (ret) { 3988 mlog_exit(ret); 3989 goto out; 3990 } 3991 3992 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 3993 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 3994 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 3995 ret = -EROFS; 3996 goto out; 3997 } 3998 3999 rightmost_el = &eb->h_list; 4000 } else 4001 rightmost_el = path_root_el(path); 4002 4003 if (rec->e_cpos == split_rec->e_cpos && 4004 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4005 ctxt.c_split_covers_rec = 1; 4006 else 4007 ctxt.c_split_covers_rec = 0; 4008 4009 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4010 4011 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4012 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4013 ctxt.c_split_covers_rec); 4014 4015 if (ctxt.c_contig_type == CONTIG_NONE) { 4016 if (ctxt.c_split_covers_rec) 4017 el->l_recs[split_index] = *split_rec; 4018 else 4019 ret = ocfs2_split_and_insert(inode, handle, path, di_bh, 4020 &last_eb_bh, split_index, 4021 split_rec, meta_ac); 4022 if (ret) 4023 mlog_errno(ret); 4024 } else { 4025 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4026 split_index, split_rec, 4027 dealloc, &ctxt); 4028 if (ret) 4029 mlog_errno(ret); 4030 } 4031 4032 ocfs2_journal_dirty(handle, eb_bh); 4033 4034 out: 4035 brelse(last_eb_bh); 4036 return ret; 4037 } 4038 4039 /* 4040 * Mark the already-existing extent at cpos as written for len clusters. 4041 * 4042 * If the existing extent is larger than the request, initiate a 4043 * split. An attempt will be made at merging with adjacent extents. 4044 * 4045 * The caller is responsible for passing down meta_ac if we'll need it. 4046 */ 4047 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh, 4048 handle_t *handle, u32 cpos, u32 len, u32 phys, 4049 struct ocfs2_alloc_context *meta_ac, 4050 struct ocfs2_cached_dealloc_ctxt *dealloc) 4051 { 4052 int ret, index; 4053 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4054 struct ocfs2_extent_rec split_rec; 4055 struct ocfs2_path *left_path = NULL; 4056 struct ocfs2_extent_list *el; 4057 4058 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4059 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4060 4061 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4062 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4063 "that are being written to, but the feature bit " 4064 "is not set in the super block.", 4065 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4066 ret = -EROFS; 4067 goto out; 4068 } 4069 4070 /* 4071 * XXX: This should be fixed up so that we just re-insert the 4072 * next extent records. 4073 */ 4074 ocfs2_extent_map_trunc(inode, 0); 4075 4076 left_path = ocfs2_new_inode_path(di_bh); 4077 if (!left_path) { 4078 ret = -ENOMEM; 4079 mlog_errno(ret); 4080 goto out; 4081 } 4082 4083 ret = ocfs2_find_path(inode, left_path, cpos); 4084 if (ret) { 4085 mlog_errno(ret); 4086 goto out; 4087 } 4088 el = path_leaf_el(left_path); 4089 4090 index = ocfs2_search_extent_list(el, cpos); 4091 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4092 ocfs2_error(inode->i_sb, 4093 "Inode %llu has an extent at cpos %u which can no " 4094 "longer be found.\n", 4095 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4096 ret = -EROFS; 4097 goto out; 4098 } 4099 4100 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4101 split_rec.e_cpos = cpu_to_le32(cpos); 4102 split_rec.e_leaf_clusters = cpu_to_le16(len); 4103 split_rec.e_blkno = cpu_to_le64(start_blkno); 4104 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 4105 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 4106 4107 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path, 4108 index, &split_rec, meta_ac, dealloc); 4109 if (ret) 4110 mlog_errno(ret); 4111 4112 out: 4113 ocfs2_free_path(left_path); 4114 return ret; 4115 } 4116 4117 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh, 4118 handle_t *handle, struct ocfs2_path *path, 4119 int index, u32 new_range, 4120 struct ocfs2_alloc_context *meta_ac) 4121 { 4122 int ret, depth, credits = handle->h_buffer_credits; 4123 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4124 struct buffer_head *last_eb_bh = NULL; 4125 struct ocfs2_extent_block *eb; 4126 struct ocfs2_extent_list *rightmost_el, *el; 4127 struct ocfs2_extent_rec split_rec; 4128 struct ocfs2_extent_rec *rec; 4129 struct ocfs2_insert_type insert; 4130 4131 /* 4132 * Setup the record to split before we grow the tree. 4133 */ 4134 el = path_leaf_el(path); 4135 rec = &el->l_recs[index]; 4136 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 4137 4138 depth = path->p_tree_depth; 4139 if (depth > 0) { 4140 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4141 le64_to_cpu(di->i_last_eb_blk), 4142 &last_eb_bh, OCFS2_BH_CACHED, inode); 4143 if (ret < 0) { 4144 mlog_errno(ret); 4145 goto out; 4146 } 4147 4148 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4149 rightmost_el = &eb->h_list; 4150 } else 4151 rightmost_el = path_leaf_el(path); 4152 4153 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di); 4154 ret = ocfs2_extend_trans(handle, credits); 4155 if (ret) { 4156 mlog_errno(ret); 4157 goto out; 4158 } 4159 4160 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4161 le16_to_cpu(rightmost_el->l_count)) { 4162 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh, 4163 meta_ac); 4164 if (ret) { 4165 mlog_errno(ret); 4166 goto out; 4167 } 4168 } 4169 4170 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4171 insert.ins_appending = APPEND_NONE; 4172 insert.ins_contig = CONTIG_NONE; 4173 insert.ins_split = SPLIT_RIGHT; 4174 insert.ins_tree_depth = depth; 4175 4176 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert); 4177 if (ret) 4178 mlog_errno(ret); 4179 4180 out: 4181 brelse(last_eb_bh); 4182 return ret; 4183 } 4184 4185 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 4186 struct ocfs2_path *path, int index, 4187 struct ocfs2_cached_dealloc_ctxt *dealloc, 4188 u32 cpos, u32 len) 4189 { 4190 int ret; 4191 u32 left_cpos, rec_range, trunc_range; 4192 int wants_rotate = 0, is_rightmost_tree_rec = 0; 4193 struct super_block *sb = inode->i_sb; 4194 struct ocfs2_path *left_path = NULL; 4195 struct ocfs2_extent_list *el = path_leaf_el(path); 4196 struct ocfs2_extent_rec *rec; 4197 struct ocfs2_extent_block *eb; 4198 4199 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 4200 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4201 if (ret) { 4202 mlog_errno(ret); 4203 goto out; 4204 } 4205 4206 index--; 4207 } 4208 4209 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 4210 path->p_tree_depth) { 4211 /* 4212 * Check whether this is the rightmost tree record. If 4213 * we remove all of this record or part of its right 4214 * edge then an update of the record lengths above it 4215 * will be required. 4216 */ 4217 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 4218 if (eb->h_next_leaf_blk == 0) 4219 is_rightmost_tree_rec = 1; 4220 } 4221 4222 rec = &el->l_recs[index]; 4223 if (index == 0 && path->p_tree_depth && 4224 le32_to_cpu(rec->e_cpos) == cpos) { 4225 /* 4226 * Changing the leftmost offset (via partial or whole 4227 * record truncate) of an interior (or rightmost) path 4228 * means we have to update the subtree that is formed 4229 * by this leaf and the one to it's left. 4230 * 4231 * There are two cases we can skip: 4232 * 1) Path is the leftmost one in our inode tree. 4233 * 2) The leaf is rightmost and will be empty after 4234 * we remove the extent record - the rotate code 4235 * knows how to update the newly formed edge. 4236 */ 4237 4238 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 4239 &left_cpos); 4240 if (ret) { 4241 mlog_errno(ret); 4242 goto out; 4243 } 4244 4245 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 4246 left_path = ocfs2_new_path(path_root_bh(path), 4247 path_root_el(path)); 4248 if (!left_path) { 4249 ret = -ENOMEM; 4250 mlog_errno(ret); 4251 goto out; 4252 } 4253 4254 ret = ocfs2_find_path(inode, left_path, left_cpos); 4255 if (ret) { 4256 mlog_errno(ret); 4257 goto out; 4258 } 4259 } 4260 } 4261 4262 ret = ocfs2_extend_rotate_transaction(handle, 0, 4263 handle->h_buffer_credits, 4264 path); 4265 if (ret) { 4266 mlog_errno(ret); 4267 goto out; 4268 } 4269 4270 ret = ocfs2_journal_access_path(inode, handle, path); 4271 if (ret) { 4272 mlog_errno(ret); 4273 goto out; 4274 } 4275 4276 ret = ocfs2_journal_access_path(inode, handle, left_path); 4277 if (ret) { 4278 mlog_errno(ret); 4279 goto out; 4280 } 4281 4282 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4283 trunc_range = cpos + len; 4284 4285 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 4286 int next_free; 4287 4288 memset(rec, 0, sizeof(*rec)); 4289 ocfs2_cleanup_merge(el, index); 4290 wants_rotate = 1; 4291 4292 next_free = le16_to_cpu(el->l_next_free_rec); 4293 if (is_rightmost_tree_rec && next_free > 1) { 4294 /* 4295 * We skip the edge update if this path will 4296 * be deleted by the rotate code. 4297 */ 4298 rec = &el->l_recs[next_free - 1]; 4299 ocfs2_adjust_rightmost_records(inode, handle, path, 4300 rec); 4301 } 4302 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 4303 /* Remove leftmost portion of the record. */ 4304 le32_add_cpu(&rec->e_cpos, len); 4305 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 4306 le16_add_cpu(&rec->e_leaf_clusters, -len); 4307 } else if (rec_range == trunc_range) { 4308 /* Remove rightmost portion of the record */ 4309 le16_add_cpu(&rec->e_leaf_clusters, -len); 4310 if (is_rightmost_tree_rec) 4311 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 4312 } else { 4313 /* Caller should have trapped this. */ 4314 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 4315 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 4316 le32_to_cpu(rec->e_cpos), 4317 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 4318 BUG(); 4319 } 4320 4321 if (left_path) { 4322 int subtree_index; 4323 4324 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 4325 ocfs2_complete_edge_insert(inode, handle, left_path, path, 4326 subtree_index); 4327 } 4328 4329 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4330 4331 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4332 if (ret) { 4333 mlog_errno(ret); 4334 goto out; 4335 } 4336 4337 out: 4338 ocfs2_free_path(left_path); 4339 return ret; 4340 } 4341 4342 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh, 4343 u32 cpos, u32 len, handle_t *handle, 4344 struct ocfs2_alloc_context *meta_ac, 4345 struct ocfs2_cached_dealloc_ctxt *dealloc) 4346 { 4347 int ret, index; 4348 u32 rec_range, trunc_range; 4349 struct ocfs2_extent_rec *rec; 4350 struct ocfs2_extent_list *el; 4351 struct ocfs2_path *path; 4352 4353 ocfs2_extent_map_trunc(inode, 0); 4354 4355 path = ocfs2_new_inode_path(di_bh); 4356 if (!path) { 4357 ret = -ENOMEM; 4358 mlog_errno(ret); 4359 goto out; 4360 } 4361 4362 ret = ocfs2_find_path(inode, path, cpos); 4363 if (ret) { 4364 mlog_errno(ret); 4365 goto out; 4366 } 4367 4368 el = path_leaf_el(path); 4369 index = ocfs2_search_extent_list(el, cpos); 4370 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4371 ocfs2_error(inode->i_sb, 4372 "Inode %llu has an extent at cpos %u which can no " 4373 "longer be found.\n", 4374 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4375 ret = -EROFS; 4376 goto out; 4377 } 4378 4379 /* 4380 * We have 3 cases of extent removal: 4381 * 1) Range covers the entire extent rec 4382 * 2) Range begins or ends on one edge of the extent rec 4383 * 3) Range is in the middle of the extent rec (no shared edges) 4384 * 4385 * For case 1 we remove the extent rec and left rotate to 4386 * fill the hole. 4387 * 4388 * For case 2 we just shrink the existing extent rec, with a 4389 * tree update if the shrinking edge is also the edge of an 4390 * extent block. 4391 * 4392 * For case 3 we do a right split to turn the extent rec into 4393 * something case 2 can handle. 4394 */ 4395 rec = &el->l_recs[index]; 4396 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4397 trunc_range = cpos + len; 4398 4399 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 4400 4401 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 4402 "(cpos %u, len %u)\n", 4403 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 4404 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 4405 4406 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 4407 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4408 cpos, len); 4409 if (ret) { 4410 mlog_errno(ret); 4411 goto out; 4412 } 4413 } else { 4414 ret = ocfs2_split_tree(inode, di_bh, handle, path, index, 4415 trunc_range, meta_ac); 4416 if (ret) { 4417 mlog_errno(ret); 4418 goto out; 4419 } 4420 4421 /* 4422 * The split could have manipulated the tree enough to 4423 * move the record location, so we have to look for it again. 4424 */ 4425 ocfs2_reinit_path(path, 1); 4426 4427 ret = ocfs2_find_path(inode, path, cpos); 4428 if (ret) { 4429 mlog_errno(ret); 4430 goto out; 4431 } 4432 4433 el = path_leaf_el(path); 4434 index = ocfs2_search_extent_list(el, cpos); 4435 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4436 ocfs2_error(inode->i_sb, 4437 "Inode %llu: split at cpos %u lost record.", 4438 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4439 cpos); 4440 ret = -EROFS; 4441 goto out; 4442 } 4443 4444 /* 4445 * Double check our values here. If anything is fishy, 4446 * it's easier to catch it at the top level. 4447 */ 4448 rec = &el->l_recs[index]; 4449 rec_range = le32_to_cpu(rec->e_cpos) + 4450 ocfs2_rec_clusters(el, rec); 4451 if (rec_range != trunc_range) { 4452 ocfs2_error(inode->i_sb, 4453 "Inode %llu: error after split at cpos %u" 4454 "trunc len %u, existing record is (%u,%u)", 4455 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4456 cpos, len, le32_to_cpu(rec->e_cpos), 4457 ocfs2_rec_clusters(el, rec)); 4458 ret = -EROFS; 4459 goto out; 4460 } 4461 4462 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4463 cpos, len); 4464 if (ret) { 4465 mlog_errno(ret); 4466 goto out; 4467 } 4468 } 4469 4470 out: 4471 ocfs2_free_path(path); 4472 return ret; 4473 } 4474 4475 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 4476 { 4477 struct buffer_head *tl_bh = osb->osb_tl_bh; 4478 struct ocfs2_dinode *di; 4479 struct ocfs2_truncate_log *tl; 4480 4481 di = (struct ocfs2_dinode *) tl_bh->b_data; 4482 tl = &di->id2.i_dealloc; 4483 4484 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 4485 "slot %d, invalid truncate log parameters: used = " 4486 "%u, count = %u\n", osb->slot_num, 4487 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 4488 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 4489 } 4490 4491 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 4492 unsigned int new_start) 4493 { 4494 unsigned int tail_index; 4495 unsigned int current_tail; 4496 4497 /* No records, nothing to coalesce */ 4498 if (!le16_to_cpu(tl->tl_used)) 4499 return 0; 4500 4501 tail_index = le16_to_cpu(tl->tl_used) - 1; 4502 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 4503 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 4504 4505 return current_tail == new_start; 4506 } 4507 4508 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 4509 handle_t *handle, 4510 u64 start_blk, 4511 unsigned int num_clusters) 4512 { 4513 int status, index; 4514 unsigned int start_cluster, tl_count; 4515 struct inode *tl_inode = osb->osb_tl_inode; 4516 struct buffer_head *tl_bh = osb->osb_tl_bh; 4517 struct ocfs2_dinode *di; 4518 struct ocfs2_truncate_log *tl; 4519 4520 mlog_entry("start_blk = %llu, num_clusters = %u\n", 4521 (unsigned long long)start_blk, num_clusters); 4522 4523 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4524 4525 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 4526 4527 di = (struct ocfs2_dinode *) tl_bh->b_data; 4528 tl = &di->id2.i_dealloc; 4529 if (!OCFS2_IS_VALID_DINODE(di)) { 4530 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4531 status = -EIO; 4532 goto bail; 4533 } 4534 4535 tl_count = le16_to_cpu(tl->tl_count); 4536 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 4537 tl_count == 0, 4538 "Truncate record count on #%llu invalid " 4539 "wanted %u, actual %u\n", 4540 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 4541 ocfs2_truncate_recs_per_inode(osb->sb), 4542 le16_to_cpu(tl->tl_count)); 4543 4544 /* Caller should have known to flush before calling us. */ 4545 index = le16_to_cpu(tl->tl_used); 4546 if (index >= tl_count) { 4547 status = -ENOSPC; 4548 mlog_errno(status); 4549 goto bail; 4550 } 4551 4552 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4553 OCFS2_JOURNAL_ACCESS_WRITE); 4554 if (status < 0) { 4555 mlog_errno(status); 4556 goto bail; 4557 } 4558 4559 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 4560 "%llu (index = %d)\n", num_clusters, start_cluster, 4561 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 4562 4563 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 4564 /* 4565 * Move index back to the record we are coalescing with. 4566 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 4567 */ 4568 index--; 4569 4570 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 4571 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 4572 index, le32_to_cpu(tl->tl_recs[index].t_start), 4573 num_clusters); 4574 } else { 4575 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 4576 tl->tl_used = cpu_to_le16(index + 1); 4577 } 4578 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 4579 4580 status = ocfs2_journal_dirty(handle, tl_bh); 4581 if (status < 0) { 4582 mlog_errno(status); 4583 goto bail; 4584 } 4585 4586 bail: 4587 mlog_exit(status); 4588 return status; 4589 } 4590 4591 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 4592 handle_t *handle, 4593 struct inode *data_alloc_inode, 4594 struct buffer_head *data_alloc_bh) 4595 { 4596 int status = 0; 4597 int i; 4598 unsigned int num_clusters; 4599 u64 start_blk; 4600 struct ocfs2_truncate_rec rec; 4601 struct ocfs2_dinode *di; 4602 struct ocfs2_truncate_log *tl; 4603 struct inode *tl_inode = osb->osb_tl_inode; 4604 struct buffer_head *tl_bh = osb->osb_tl_bh; 4605 4606 mlog_entry_void(); 4607 4608 di = (struct ocfs2_dinode *) tl_bh->b_data; 4609 tl = &di->id2.i_dealloc; 4610 i = le16_to_cpu(tl->tl_used) - 1; 4611 while (i >= 0) { 4612 /* Caller has given us at least enough credits to 4613 * update the truncate log dinode */ 4614 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4615 OCFS2_JOURNAL_ACCESS_WRITE); 4616 if (status < 0) { 4617 mlog_errno(status); 4618 goto bail; 4619 } 4620 4621 tl->tl_used = cpu_to_le16(i); 4622 4623 status = ocfs2_journal_dirty(handle, tl_bh); 4624 if (status < 0) { 4625 mlog_errno(status); 4626 goto bail; 4627 } 4628 4629 /* TODO: Perhaps we can calculate the bulk of the 4630 * credits up front rather than extending like 4631 * this. */ 4632 status = ocfs2_extend_trans(handle, 4633 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 4634 if (status < 0) { 4635 mlog_errno(status); 4636 goto bail; 4637 } 4638 4639 rec = tl->tl_recs[i]; 4640 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 4641 le32_to_cpu(rec.t_start)); 4642 num_clusters = le32_to_cpu(rec.t_clusters); 4643 4644 /* if start_blk is not set, we ignore the record as 4645 * invalid. */ 4646 if (start_blk) { 4647 mlog(0, "free record %d, start = %u, clusters = %u\n", 4648 i, le32_to_cpu(rec.t_start), num_clusters); 4649 4650 status = ocfs2_free_clusters(handle, data_alloc_inode, 4651 data_alloc_bh, start_blk, 4652 num_clusters); 4653 if (status < 0) { 4654 mlog_errno(status); 4655 goto bail; 4656 } 4657 } 4658 i--; 4659 } 4660 4661 bail: 4662 mlog_exit(status); 4663 return status; 4664 } 4665 4666 /* Expects you to already be holding tl_inode->i_mutex */ 4667 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 4668 { 4669 int status; 4670 unsigned int num_to_flush; 4671 handle_t *handle; 4672 struct inode *tl_inode = osb->osb_tl_inode; 4673 struct inode *data_alloc_inode = NULL; 4674 struct buffer_head *tl_bh = osb->osb_tl_bh; 4675 struct buffer_head *data_alloc_bh = NULL; 4676 struct ocfs2_dinode *di; 4677 struct ocfs2_truncate_log *tl; 4678 4679 mlog_entry_void(); 4680 4681 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4682 4683 di = (struct ocfs2_dinode *) tl_bh->b_data; 4684 tl = &di->id2.i_dealloc; 4685 if (!OCFS2_IS_VALID_DINODE(di)) { 4686 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4687 status = -EIO; 4688 goto out; 4689 } 4690 4691 num_to_flush = le16_to_cpu(tl->tl_used); 4692 mlog(0, "Flush %u records from truncate log #%llu\n", 4693 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 4694 if (!num_to_flush) { 4695 status = 0; 4696 goto out; 4697 } 4698 4699 data_alloc_inode = ocfs2_get_system_file_inode(osb, 4700 GLOBAL_BITMAP_SYSTEM_INODE, 4701 OCFS2_INVALID_SLOT); 4702 if (!data_alloc_inode) { 4703 status = -EINVAL; 4704 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 4705 goto out; 4706 } 4707 4708 mutex_lock(&data_alloc_inode->i_mutex); 4709 4710 status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1); 4711 if (status < 0) { 4712 mlog_errno(status); 4713 goto out_mutex; 4714 } 4715 4716 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 4717 if (IS_ERR(handle)) { 4718 status = PTR_ERR(handle); 4719 mlog_errno(status); 4720 goto out_unlock; 4721 } 4722 4723 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 4724 data_alloc_bh); 4725 if (status < 0) 4726 mlog_errno(status); 4727 4728 ocfs2_commit_trans(osb, handle); 4729 4730 out_unlock: 4731 brelse(data_alloc_bh); 4732 ocfs2_meta_unlock(data_alloc_inode, 1); 4733 4734 out_mutex: 4735 mutex_unlock(&data_alloc_inode->i_mutex); 4736 iput(data_alloc_inode); 4737 4738 out: 4739 mlog_exit(status); 4740 return status; 4741 } 4742 4743 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 4744 { 4745 int status; 4746 struct inode *tl_inode = osb->osb_tl_inode; 4747 4748 mutex_lock(&tl_inode->i_mutex); 4749 status = __ocfs2_flush_truncate_log(osb); 4750 mutex_unlock(&tl_inode->i_mutex); 4751 4752 return status; 4753 } 4754 4755 static void ocfs2_truncate_log_worker(struct work_struct *work) 4756 { 4757 int status; 4758 struct ocfs2_super *osb = 4759 container_of(work, struct ocfs2_super, 4760 osb_truncate_log_wq.work); 4761 4762 mlog_entry_void(); 4763 4764 status = ocfs2_flush_truncate_log(osb); 4765 if (status < 0) 4766 mlog_errno(status); 4767 4768 mlog_exit(status); 4769 } 4770 4771 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 4772 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 4773 int cancel) 4774 { 4775 if (osb->osb_tl_inode) { 4776 /* We want to push off log flushes while truncates are 4777 * still running. */ 4778 if (cancel) 4779 cancel_delayed_work(&osb->osb_truncate_log_wq); 4780 4781 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 4782 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 4783 } 4784 } 4785 4786 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 4787 int slot_num, 4788 struct inode **tl_inode, 4789 struct buffer_head **tl_bh) 4790 { 4791 int status; 4792 struct inode *inode = NULL; 4793 struct buffer_head *bh = NULL; 4794 4795 inode = ocfs2_get_system_file_inode(osb, 4796 TRUNCATE_LOG_SYSTEM_INODE, 4797 slot_num); 4798 if (!inode) { 4799 status = -EINVAL; 4800 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 4801 goto bail; 4802 } 4803 4804 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, 4805 OCFS2_BH_CACHED, inode); 4806 if (status < 0) { 4807 iput(inode); 4808 mlog_errno(status); 4809 goto bail; 4810 } 4811 4812 *tl_inode = inode; 4813 *tl_bh = bh; 4814 bail: 4815 mlog_exit(status); 4816 return status; 4817 } 4818 4819 /* called during the 1st stage of node recovery. we stamp a clean 4820 * truncate log and pass back a copy for processing later. if the 4821 * truncate log does not require processing, a *tl_copy is set to 4822 * NULL. */ 4823 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 4824 int slot_num, 4825 struct ocfs2_dinode **tl_copy) 4826 { 4827 int status; 4828 struct inode *tl_inode = NULL; 4829 struct buffer_head *tl_bh = NULL; 4830 struct ocfs2_dinode *di; 4831 struct ocfs2_truncate_log *tl; 4832 4833 *tl_copy = NULL; 4834 4835 mlog(0, "recover truncate log from slot %d\n", slot_num); 4836 4837 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 4838 if (status < 0) { 4839 mlog_errno(status); 4840 goto bail; 4841 } 4842 4843 di = (struct ocfs2_dinode *) tl_bh->b_data; 4844 tl = &di->id2.i_dealloc; 4845 if (!OCFS2_IS_VALID_DINODE(di)) { 4846 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); 4847 status = -EIO; 4848 goto bail; 4849 } 4850 4851 if (le16_to_cpu(tl->tl_used)) { 4852 mlog(0, "We'll have %u logs to recover\n", 4853 le16_to_cpu(tl->tl_used)); 4854 4855 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 4856 if (!(*tl_copy)) { 4857 status = -ENOMEM; 4858 mlog_errno(status); 4859 goto bail; 4860 } 4861 4862 /* Assuming the write-out below goes well, this copy 4863 * will be passed back to recovery for processing. */ 4864 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 4865 4866 /* All we need to do to clear the truncate log is set 4867 * tl_used. */ 4868 tl->tl_used = 0; 4869 4870 status = ocfs2_write_block(osb, tl_bh, tl_inode); 4871 if (status < 0) { 4872 mlog_errno(status); 4873 goto bail; 4874 } 4875 } 4876 4877 bail: 4878 if (tl_inode) 4879 iput(tl_inode); 4880 if (tl_bh) 4881 brelse(tl_bh); 4882 4883 if (status < 0 && (*tl_copy)) { 4884 kfree(*tl_copy); 4885 *tl_copy = NULL; 4886 } 4887 4888 mlog_exit(status); 4889 return status; 4890 } 4891 4892 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 4893 struct ocfs2_dinode *tl_copy) 4894 { 4895 int status = 0; 4896 int i; 4897 unsigned int clusters, num_recs, start_cluster; 4898 u64 start_blk; 4899 handle_t *handle; 4900 struct inode *tl_inode = osb->osb_tl_inode; 4901 struct ocfs2_truncate_log *tl; 4902 4903 mlog_entry_void(); 4904 4905 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 4906 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 4907 return -EINVAL; 4908 } 4909 4910 tl = &tl_copy->id2.i_dealloc; 4911 num_recs = le16_to_cpu(tl->tl_used); 4912 mlog(0, "cleanup %u records from %llu\n", num_recs, 4913 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 4914 4915 mutex_lock(&tl_inode->i_mutex); 4916 for(i = 0; i < num_recs; i++) { 4917 if (ocfs2_truncate_log_needs_flush(osb)) { 4918 status = __ocfs2_flush_truncate_log(osb); 4919 if (status < 0) { 4920 mlog_errno(status); 4921 goto bail_up; 4922 } 4923 } 4924 4925 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 4926 if (IS_ERR(handle)) { 4927 status = PTR_ERR(handle); 4928 mlog_errno(status); 4929 goto bail_up; 4930 } 4931 4932 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 4933 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 4934 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 4935 4936 status = ocfs2_truncate_log_append(osb, handle, 4937 start_blk, clusters); 4938 ocfs2_commit_trans(osb, handle); 4939 if (status < 0) { 4940 mlog_errno(status); 4941 goto bail_up; 4942 } 4943 } 4944 4945 bail_up: 4946 mutex_unlock(&tl_inode->i_mutex); 4947 4948 mlog_exit(status); 4949 return status; 4950 } 4951 4952 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 4953 { 4954 int status; 4955 struct inode *tl_inode = osb->osb_tl_inode; 4956 4957 mlog_entry_void(); 4958 4959 if (tl_inode) { 4960 cancel_delayed_work(&osb->osb_truncate_log_wq); 4961 flush_workqueue(ocfs2_wq); 4962 4963 status = ocfs2_flush_truncate_log(osb); 4964 if (status < 0) 4965 mlog_errno(status); 4966 4967 brelse(osb->osb_tl_bh); 4968 iput(osb->osb_tl_inode); 4969 } 4970 4971 mlog_exit_void(); 4972 } 4973 4974 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 4975 { 4976 int status; 4977 struct inode *tl_inode = NULL; 4978 struct buffer_head *tl_bh = NULL; 4979 4980 mlog_entry_void(); 4981 4982 status = ocfs2_get_truncate_log_info(osb, 4983 osb->slot_num, 4984 &tl_inode, 4985 &tl_bh); 4986 if (status < 0) 4987 mlog_errno(status); 4988 4989 /* ocfs2_truncate_log_shutdown keys on the existence of 4990 * osb->osb_tl_inode so we don't set any of the osb variables 4991 * until we're sure all is well. */ 4992 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 4993 ocfs2_truncate_log_worker); 4994 osb->osb_tl_bh = tl_bh; 4995 osb->osb_tl_inode = tl_inode; 4996 4997 mlog_exit(status); 4998 return status; 4999 } 5000 5001 /* 5002 * Delayed de-allocation of suballocator blocks. 5003 * 5004 * Some sets of block de-allocations might involve multiple suballocator inodes. 5005 * 5006 * The locking for this can get extremely complicated, especially when 5007 * the suballocator inodes to delete from aren't known until deep 5008 * within an unrelated codepath. 5009 * 5010 * ocfs2_extent_block structures are a good example of this - an inode 5011 * btree could have been grown by any number of nodes each allocating 5012 * out of their own suballoc inode. 5013 * 5014 * These structures allow the delay of block de-allocation until a 5015 * later time, when locking of multiple cluster inodes won't cause 5016 * deadlock. 5017 */ 5018 5019 /* 5020 * Describes a single block free from a suballocator 5021 */ 5022 struct ocfs2_cached_block_free { 5023 struct ocfs2_cached_block_free *free_next; 5024 u64 free_blk; 5025 unsigned int free_bit; 5026 }; 5027 5028 struct ocfs2_per_slot_free_list { 5029 struct ocfs2_per_slot_free_list *f_next_suballocator; 5030 int f_inode_type; 5031 int f_slot; 5032 struct ocfs2_cached_block_free *f_first; 5033 }; 5034 5035 static int ocfs2_free_cached_items(struct ocfs2_super *osb, 5036 int sysfile_type, 5037 int slot, 5038 struct ocfs2_cached_block_free *head) 5039 { 5040 int ret; 5041 u64 bg_blkno; 5042 handle_t *handle; 5043 struct inode *inode; 5044 struct buffer_head *di_bh = NULL; 5045 struct ocfs2_cached_block_free *tmp; 5046 5047 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 5048 if (!inode) { 5049 ret = -EINVAL; 5050 mlog_errno(ret); 5051 goto out; 5052 } 5053 5054 mutex_lock(&inode->i_mutex); 5055 5056 ret = ocfs2_meta_lock(inode, &di_bh, 1); 5057 if (ret) { 5058 mlog_errno(ret); 5059 goto out_mutex; 5060 } 5061 5062 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 5063 if (IS_ERR(handle)) { 5064 ret = PTR_ERR(handle); 5065 mlog_errno(ret); 5066 goto out_unlock; 5067 } 5068 5069 while (head) { 5070 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 5071 head->free_bit); 5072 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 5073 head->free_bit, (unsigned long long)head->free_blk); 5074 5075 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 5076 head->free_bit, bg_blkno, 1); 5077 if (ret) { 5078 mlog_errno(ret); 5079 goto out_journal; 5080 } 5081 5082 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 5083 if (ret) { 5084 mlog_errno(ret); 5085 goto out_journal; 5086 } 5087 5088 tmp = head; 5089 head = head->free_next; 5090 kfree(tmp); 5091 } 5092 5093 out_journal: 5094 ocfs2_commit_trans(osb, handle); 5095 5096 out_unlock: 5097 ocfs2_meta_unlock(inode, 1); 5098 brelse(di_bh); 5099 out_mutex: 5100 mutex_unlock(&inode->i_mutex); 5101 iput(inode); 5102 out: 5103 while(head) { 5104 /* Premature exit may have left some dangling items. */ 5105 tmp = head; 5106 head = head->free_next; 5107 kfree(tmp); 5108 } 5109 5110 return ret; 5111 } 5112 5113 int ocfs2_run_deallocs(struct ocfs2_super *osb, 5114 struct ocfs2_cached_dealloc_ctxt *ctxt) 5115 { 5116 int ret = 0, ret2; 5117 struct ocfs2_per_slot_free_list *fl; 5118 5119 if (!ctxt) 5120 return 0; 5121 5122 while (ctxt->c_first_suballocator) { 5123 fl = ctxt->c_first_suballocator; 5124 5125 if (fl->f_first) { 5126 mlog(0, "Free items: (type %u, slot %d)\n", 5127 fl->f_inode_type, fl->f_slot); 5128 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type, 5129 fl->f_slot, fl->f_first); 5130 if (ret2) 5131 mlog_errno(ret2); 5132 if (!ret) 5133 ret = ret2; 5134 } 5135 5136 ctxt->c_first_suballocator = fl->f_next_suballocator; 5137 kfree(fl); 5138 } 5139 5140 return ret; 5141 } 5142 5143 static struct ocfs2_per_slot_free_list * 5144 ocfs2_find_per_slot_free_list(int type, 5145 int slot, 5146 struct ocfs2_cached_dealloc_ctxt *ctxt) 5147 { 5148 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 5149 5150 while (fl) { 5151 if (fl->f_inode_type == type && fl->f_slot == slot) 5152 return fl; 5153 5154 fl = fl->f_next_suballocator; 5155 } 5156 5157 fl = kmalloc(sizeof(*fl), GFP_NOFS); 5158 if (fl) { 5159 fl->f_inode_type = type; 5160 fl->f_slot = slot; 5161 fl->f_first = NULL; 5162 fl->f_next_suballocator = ctxt->c_first_suballocator; 5163 5164 ctxt->c_first_suballocator = fl; 5165 } 5166 return fl; 5167 } 5168 5169 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 5170 int type, int slot, u64 blkno, 5171 unsigned int bit) 5172 { 5173 int ret; 5174 struct ocfs2_per_slot_free_list *fl; 5175 struct ocfs2_cached_block_free *item; 5176 5177 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 5178 if (fl == NULL) { 5179 ret = -ENOMEM; 5180 mlog_errno(ret); 5181 goto out; 5182 } 5183 5184 item = kmalloc(sizeof(*item), GFP_NOFS); 5185 if (item == NULL) { 5186 ret = -ENOMEM; 5187 mlog_errno(ret); 5188 goto out; 5189 } 5190 5191 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 5192 type, slot, bit, (unsigned long long)blkno); 5193 5194 item->free_blk = blkno; 5195 item->free_bit = bit; 5196 item->free_next = fl->f_first; 5197 5198 fl->f_first = item; 5199 5200 ret = 0; 5201 out: 5202 return ret; 5203 } 5204 5205 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 5206 struct ocfs2_extent_block *eb) 5207 { 5208 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 5209 le16_to_cpu(eb->h_suballoc_slot), 5210 le64_to_cpu(eb->h_blkno), 5211 le16_to_cpu(eb->h_suballoc_bit)); 5212 } 5213 5214 /* This function will figure out whether the currently last extent 5215 * block will be deleted, and if it will, what the new last extent 5216 * block will be so we can update his h_next_leaf_blk field, as well 5217 * as the dinodes i_last_eb_blk */ 5218 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 5219 unsigned int clusters_to_del, 5220 struct ocfs2_path *path, 5221 struct buffer_head **new_last_eb) 5222 { 5223 int next_free, ret = 0; 5224 u32 cpos; 5225 struct ocfs2_extent_rec *rec; 5226 struct ocfs2_extent_block *eb; 5227 struct ocfs2_extent_list *el; 5228 struct buffer_head *bh = NULL; 5229 5230 *new_last_eb = NULL; 5231 5232 /* we have no tree, so of course, no last_eb. */ 5233 if (!path->p_tree_depth) 5234 goto out; 5235 5236 /* trunc to zero special case - this makes tree_depth = 0 5237 * regardless of what it is. */ 5238 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 5239 goto out; 5240 5241 el = path_leaf_el(path); 5242 BUG_ON(!el->l_next_free_rec); 5243 5244 /* 5245 * Make sure that this extent list will actually be empty 5246 * after we clear away the data. We can shortcut out if 5247 * there's more than one non-empty extent in the 5248 * list. Otherwise, a check of the remaining extent is 5249 * necessary. 5250 */ 5251 next_free = le16_to_cpu(el->l_next_free_rec); 5252 rec = NULL; 5253 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5254 if (next_free > 2) 5255 goto out; 5256 5257 /* We may have a valid extent in index 1, check it. */ 5258 if (next_free == 2) 5259 rec = &el->l_recs[1]; 5260 5261 /* 5262 * Fall through - no more nonempty extents, so we want 5263 * to delete this leaf. 5264 */ 5265 } else { 5266 if (next_free > 1) 5267 goto out; 5268 5269 rec = &el->l_recs[0]; 5270 } 5271 5272 if (rec) { 5273 /* 5274 * Check it we'll only be trimming off the end of this 5275 * cluster. 5276 */ 5277 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 5278 goto out; 5279 } 5280 5281 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 5282 if (ret) { 5283 mlog_errno(ret); 5284 goto out; 5285 } 5286 5287 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 5288 if (ret) { 5289 mlog_errno(ret); 5290 goto out; 5291 } 5292 5293 eb = (struct ocfs2_extent_block *) bh->b_data; 5294 el = &eb->h_list; 5295 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 5296 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 5297 ret = -EROFS; 5298 goto out; 5299 } 5300 5301 *new_last_eb = bh; 5302 get_bh(*new_last_eb); 5303 mlog(0, "returning block %llu, (cpos: %u)\n", 5304 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 5305 out: 5306 brelse(bh); 5307 5308 return ret; 5309 } 5310 5311 /* 5312 * Trim some clusters off the rightmost edge of a tree. Only called 5313 * during truncate. 5314 * 5315 * The caller needs to: 5316 * - start journaling of each path component. 5317 * - compute and fully set up any new last ext block 5318 */ 5319 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 5320 handle_t *handle, struct ocfs2_truncate_context *tc, 5321 u32 clusters_to_del, u64 *delete_start) 5322 { 5323 int ret, i, index = path->p_tree_depth; 5324 u32 new_edge = 0; 5325 u64 deleted_eb = 0; 5326 struct buffer_head *bh; 5327 struct ocfs2_extent_list *el; 5328 struct ocfs2_extent_rec *rec; 5329 5330 *delete_start = 0; 5331 5332 while (index >= 0) { 5333 bh = path->p_node[index].bh; 5334 el = path->p_node[index].el; 5335 5336 mlog(0, "traveling tree (index = %d, block = %llu)\n", 5337 index, (unsigned long long)bh->b_blocknr); 5338 5339 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 5340 5341 if (index != 5342 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 5343 ocfs2_error(inode->i_sb, 5344 "Inode %lu has invalid ext. block %llu", 5345 inode->i_ino, 5346 (unsigned long long)bh->b_blocknr); 5347 ret = -EROFS; 5348 goto out; 5349 } 5350 5351 find_tail_record: 5352 i = le16_to_cpu(el->l_next_free_rec) - 1; 5353 rec = &el->l_recs[i]; 5354 5355 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 5356 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 5357 ocfs2_rec_clusters(el, rec), 5358 (unsigned long long)le64_to_cpu(rec->e_blkno), 5359 le16_to_cpu(el->l_next_free_rec)); 5360 5361 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 5362 5363 if (le16_to_cpu(el->l_tree_depth) == 0) { 5364 /* 5365 * If the leaf block contains a single empty 5366 * extent and no records, we can just remove 5367 * the block. 5368 */ 5369 if (i == 0 && ocfs2_is_empty_extent(rec)) { 5370 memset(rec, 0, 5371 sizeof(struct ocfs2_extent_rec)); 5372 el->l_next_free_rec = cpu_to_le16(0); 5373 5374 goto delete; 5375 } 5376 5377 /* 5378 * Remove any empty extents by shifting things 5379 * left. That should make life much easier on 5380 * the code below. This condition is rare 5381 * enough that we shouldn't see a performance 5382 * hit. 5383 */ 5384 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5385 le16_add_cpu(&el->l_next_free_rec, -1); 5386 5387 for(i = 0; 5388 i < le16_to_cpu(el->l_next_free_rec); i++) 5389 el->l_recs[i] = el->l_recs[i + 1]; 5390 5391 memset(&el->l_recs[i], 0, 5392 sizeof(struct ocfs2_extent_rec)); 5393 5394 /* 5395 * We've modified our extent list. The 5396 * simplest way to handle this change 5397 * is to being the search from the 5398 * start again. 5399 */ 5400 goto find_tail_record; 5401 } 5402 5403 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 5404 5405 /* 5406 * We'll use "new_edge" on our way back up the 5407 * tree to know what our rightmost cpos is. 5408 */ 5409 new_edge = le16_to_cpu(rec->e_leaf_clusters); 5410 new_edge += le32_to_cpu(rec->e_cpos); 5411 5412 /* 5413 * The caller will use this to delete data blocks. 5414 */ 5415 *delete_start = le64_to_cpu(rec->e_blkno) 5416 + ocfs2_clusters_to_blocks(inode->i_sb, 5417 le16_to_cpu(rec->e_leaf_clusters)); 5418 5419 /* 5420 * If it's now empty, remove this record. 5421 */ 5422 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 5423 memset(rec, 0, 5424 sizeof(struct ocfs2_extent_rec)); 5425 le16_add_cpu(&el->l_next_free_rec, -1); 5426 } 5427 } else { 5428 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 5429 memset(rec, 0, 5430 sizeof(struct ocfs2_extent_rec)); 5431 le16_add_cpu(&el->l_next_free_rec, -1); 5432 5433 goto delete; 5434 } 5435 5436 /* Can this actually happen? */ 5437 if (le16_to_cpu(el->l_next_free_rec) == 0) 5438 goto delete; 5439 5440 /* 5441 * We never actually deleted any clusters 5442 * because our leaf was empty. There's no 5443 * reason to adjust the rightmost edge then. 5444 */ 5445 if (new_edge == 0) 5446 goto delete; 5447 5448 rec->e_int_clusters = cpu_to_le32(new_edge); 5449 le32_add_cpu(&rec->e_int_clusters, 5450 -le32_to_cpu(rec->e_cpos)); 5451 5452 /* 5453 * A deleted child record should have been 5454 * caught above. 5455 */ 5456 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 5457 } 5458 5459 delete: 5460 ret = ocfs2_journal_dirty(handle, bh); 5461 if (ret) { 5462 mlog_errno(ret); 5463 goto out; 5464 } 5465 5466 mlog(0, "extent list container %llu, after: record %d: " 5467 "(%u, %u, %llu), next = %u.\n", 5468 (unsigned long long)bh->b_blocknr, i, 5469 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 5470 (unsigned long long)le64_to_cpu(rec->e_blkno), 5471 le16_to_cpu(el->l_next_free_rec)); 5472 5473 /* 5474 * We must be careful to only attempt delete of an 5475 * extent block (and not the root inode block). 5476 */ 5477 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 5478 struct ocfs2_extent_block *eb = 5479 (struct ocfs2_extent_block *)bh->b_data; 5480 5481 /* 5482 * Save this for use when processing the 5483 * parent block. 5484 */ 5485 deleted_eb = le64_to_cpu(eb->h_blkno); 5486 5487 mlog(0, "deleting this extent block.\n"); 5488 5489 ocfs2_remove_from_cache(inode, bh); 5490 5491 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 5492 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 5493 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 5494 5495 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 5496 /* An error here is not fatal. */ 5497 if (ret < 0) 5498 mlog_errno(ret); 5499 } else { 5500 deleted_eb = 0; 5501 } 5502 5503 index--; 5504 } 5505 5506 ret = 0; 5507 out: 5508 return ret; 5509 } 5510 5511 static int ocfs2_do_truncate(struct ocfs2_super *osb, 5512 unsigned int clusters_to_del, 5513 struct inode *inode, 5514 struct buffer_head *fe_bh, 5515 handle_t *handle, 5516 struct ocfs2_truncate_context *tc, 5517 struct ocfs2_path *path) 5518 { 5519 int status; 5520 struct ocfs2_dinode *fe; 5521 struct ocfs2_extent_block *last_eb = NULL; 5522 struct ocfs2_extent_list *el; 5523 struct buffer_head *last_eb_bh = NULL; 5524 u64 delete_blk = 0; 5525 5526 fe = (struct ocfs2_dinode *) fe_bh->b_data; 5527 5528 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 5529 path, &last_eb_bh); 5530 if (status < 0) { 5531 mlog_errno(status); 5532 goto bail; 5533 } 5534 5535 /* 5536 * Each component will be touched, so we might as well journal 5537 * here to avoid having to handle errors later. 5538 */ 5539 status = ocfs2_journal_access_path(inode, handle, path); 5540 if (status < 0) { 5541 mlog_errno(status); 5542 goto bail; 5543 } 5544 5545 if (last_eb_bh) { 5546 status = ocfs2_journal_access(handle, inode, last_eb_bh, 5547 OCFS2_JOURNAL_ACCESS_WRITE); 5548 if (status < 0) { 5549 mlog_errno(status); 5550 goto bail; 5551 } 5552 5553 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5554 } 5555 5556 el = &(fe->id2.i_list); 5557 5558 /* 5559 * Lower levels depend on this never happening, but it's best 5560 * to check it up here before changing the tree. 5561 */ 5562 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 5563 ocfs2_error(inode->i_sb, 5564 "Inode %lu has an empty extent record, depth %u\n", 5565 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 5566 status = -EROFS; 5567 goto bail; 5568 } 5569 5570 spin_lock(&OCFS2_I(inode)->ip_lock); 5571 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 5572 clusters_to_del; 5573 spin_unlock(&OCFS2_I(inode)->ip_lock); 5574 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 5575 inode->i_blocks = ocfs2_inode_sector_count(inode); 5576 5577 status = ocfs2_trim_tree(inode, path, handle, tc, 5578 clusters_to_del, &delete_blk); 5579 if (status) { 5580 mlog_errno(status); 5581 goto bail; 5582 } 5583 5584 if (le32_to_cpu(fe->i_clusters) == 0) { 5585 /* trunc to zero is a special case. */ 5586 el->l_tree_depth = 0; 5587 fe->i_last_eb_blk = 0; 5588 } else if (last_eb) 5589 fe->i_last_eb_blk = last_eb->h_blkno; 5590 5591 status = ocfs2_journal_dirty(handle, fe_bh); 5592 if (status < 0) { 5593 mlog_errno(status); 5594 goto bail; 5595 } 5596 5597 if (last_eb) { 5598 /* If there will be a new last extent block, then by 5599 * definition, there cannot be any leaves to the right of 5600 * him. */ 5601 last_eb->h_next_leaf_blk = 0; 5602 status = ocfs2_journal_dirty(handle, last_eb_bh); 5603 if (status < 0) { 5604 mlog_errno(status); 5605 goto bail; 5606 } 5607 } 5608 5609 if (delete_blk) { 5610 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 5611 clusters_to_del); 5612 if (status < 0) { 5613 mlog_errno(status); 5614 goto bail; 5615 } 5616 } 5617 status = 0; 5618 bail: 5619 5620 mlog_exit(status); 5621 return status; 5622 } 5623 5624 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) 5625 { 5626 set_buffer_uptodate(bh); 5627 mark_buffer_dirty(bh); 5628 return 0; 5629 } 5630 5631 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) 5632 { 5633 set_buffer_uptodate(bh); 5634 mark_buffer_dirty(bh); 5635 return ocfs2_journal_dirty_data(handle, bh); 5636 } 5637 5638 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 5639 unsigned int from, unsigned int to, 5640 struct page *page, int zero, u64 *phys) 5641 { 5642 int ret, partial = 0; 5643 5644 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 5645 if (ret) 5646 mlog_errno(ret); 5647 5648 if (zero) 5649 zero_user_page(page, from, to - from, KM_USER0); 5650 5651 /* 5652 * Need to set the buffers we zero'd into uptodate 5653 * here if they aren't - ocfs2_map_page_blocks() 5654 * might've skipped some 5655 */ 5656 if (ocfs2_should_order_data(inode)) { 5657 ret = walk_page_buffers(handle, 5658 page_buffers(page), 5659 from, to, &partial, 5660 ocfs2_ordered_zero_func); 5661 if (ret < 0) 5662 mlog_errno(ret); 5663 } else { 5664 ret = walk_page_buffers(handle, page_buffers(page), 5665 from, to, &partial, 5666 ocfs2_writeback_zero_func); 5667 if (ret < 0) 5668 mlog_errno(ret); 5669 } 5670 5671 if (!partial) 5672 SetPageUptodate(page); 5673 5674 flush_dcache_page(page); 5675 } 5676 5677 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 5678 loff_t end, struct page **pages, 5679 int numpages, u64 phys, handle_t *handle) 5680 { 5681 int i; 5682 struct page *page; 5683 unsigned int from, to = PAGE_CACHE_SIZE; 5684 struct super_block *sb = inode->i_sb; 5685 5686 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 5687 5688 if (numpages == 0) 5689 goto out; 5690 5691 to = PAGE_CACHE_SIZE; 5692 for(i = 0; i < numpages; i++) { 5693 page = pages[i]; 5694 5695 from = start & (PAGE_CACHE_SIZE - 1); 5696 if ((end >> PAGE_CACHE_SHIFT) == page->index) 5697 to = end & (PAGE_CACHE_SIZE - 1); 5698 5699 BUG_ON(from > PAGE_CACHE_SIZE); 5700 BUG_ON(to > PAGE_CACHE_SIZE); 5701 5702 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 5703 &phys); 5704 5705 start = (page->index + 1) << PAGE_CACHE_SHIFT; 5706 } 5707 out: 5708 if (pages) 5709 ocfs2_unlock_and_free_pages(pages, numpages); 5710 } 5711 5712 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 5713 struct page **pages, int *num) 5714 { 5715 int numpages, ret = 0; 5716 struct super_block *sb = inode->i_sb; 5717 struct address_space *mapping = inode->i_mapping; 5718 unsigned long index; 5719 loff_t last_page_bytes; 5720 5721 BUG_ON(start > end); 5722 5723 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 5724 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 5725 5726 numpages = 0; 5727 last_page_bytes = PAGE_ALIGN(end); 5728 index = start >> PAGE_CACHE_SHIFT; 5729 do { 5730 pages[numpages] = grab_cache_page(mapping, index); 5731 if (!pages[numpages]) { 5732 ret = -ENOMEM; 5733 mlog_errno(ret); 5734 goto out; 5735 } 5736 5737 numpages++; 5738 index++; 5739 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 5740 5741 out: 5742 if (ret != 0) { 5743 if (pages) 5744 ocfs2_unlock_and_free_pages(pages, numpages); 5745 numpages = 0; 5746 } 5747 5748 *num = numpages; 5749 5750 return ret; 5751 } 5752 5753 /* 5754 * Zero the area past i_size but still within an allocated 5755 * cluster. This avoids exposing nonzero data on subsequent file 5756 * extends. 5757 * 5758 * We need to call this before i_size is updated on the inode because 5759 * otherwise block_write_full_page() will skip writeout of pages past 5760 * i_size. The new_i_size parameter is passed for this reason. 5761 */ 5762 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 5763 u64 range_start, u64 range_end) 5764 { 5765 int ret = 0, numpages; 5766 struct page **pages = NULL; 5767 u64 phys; 5768 unsigned int ext_flags; 5769 struct super_block *sb = inode->i_sb; 5770 5771 /* 5772 * File systems which don't support sparse files zero on every 5773 * extend. 5774 */ 5775 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 5776 return 0; 5777 5778 pages = kcalloc(ocfs2_pages_per_cluster(sb), 5779 sizeof(struct page *), GFP_NOFS); 5780 if (pages == NULL) { 5781 ret = -ENOMEM; 5782 mlog_errno(ret); 5783 goto out; 5784 } 5785 5786 if (range_start == range_end) 5787 goto out; 5788 5789 ret = ocfs2_extent_map_get_blocks(inode, 5790 range_start >> sb->s_blocksize_bits, 5791 &phys, NULL, &ext_flags); 5792 if (ret) { 5793 mlog_errno(ret); 5794 goto out; 5795 } 5796 5797 /* 5798 * Tail is a hole, or is marked unwritten. In either case, we 5799 * can count on read and write to return/push zero's. 5800 */ 5801 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 5802 goto out; 5803 5804 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 5805 &numpages); 5806 if (ret) { 5807 mlog_errno(ret); 5808 goto out; 5809 } 5810 5811 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 5812 numpages, phys, handle); 5813 5814 /* 5815 * Initiate writeout of the pages we zero'd here. We don't 5816 * wait on them - the truncate_inode_pages() call later will 5817 * do that for us. 5818 */ 5819 ret = do_sync_mapping_range(inode->i_mapping, range_start, 5820 range_end - 1, SYNC_FILE_RANGE_WRITE); 5821 if (ret) 5822 mlog_errno(ret); 5823 5824 out: 5825 if (pages) 5826 kfree(pages); 5827 5828 return ret; 5829 } 5830 5831 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di) 5832 { 5833 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 5834 5835 memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2)); 5836 } 5837 5838 void ocfs2_dinode_new_extent_list(struct inode *inode, 5839 struct ocfs2_dinode *di) 5840 { 5841 ocfs2_zero_dinode_id2(inode, di); 5842 di->id2.i_list.l_tree_depth = 0; 5843 di->id2.i_list.l_next_free_rec = 0; 5844 di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb)); 5845 } 5846 5847 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 5848 { 5849 struct ocfs2_inode_info *oi = OCFS2_I(inode); 5850 struct ocfs2_inline_data *idata = &di->id2.i_data; 5851 5852 spin_lock(&oi->ip_lock); 5853 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 5854 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 5855 spin_unlock(&oi->ip_lock); 5856 5857 /* 5858 * We clear the entire i_data structure here so that all 5859 * fields can be properly initialized. 5860 */ 5861 ocfs2_zero_dinode_id2(inode, di); 5862 5863 idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb)); 5864 } 5865 5866 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 5867 struct buffer_head *di_bh) 5868 { 5869 int ret, i, has_data, num_pages = 0; 5870 handle_t *handle; 5871 u64 uninitialized_var(block); 5872 struct ocfs2_inode_info *oi = OCFS2_I(inode); 5873 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5874 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 5875 struct ocfs2_alloc_context *data_ac = NULL; 5876 struct page **pages = NULL; 5877 loff_t end = osb->s_clustersize; 5878 5879 has_data = i_size_read(inode) ? 1 : 0; 5880 5881 if (has_data) { 5882 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 5883 sizeof(struct page *), GFP_NOFS); 5884 if (pages == NULL) { 5885 ret = -ENOMEM; 5886 mlog_errno(ret); 5887 goto out; 5888 } 5889 5890 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 5891 if (ret) { 5892 mlog_errno(ret); 5893 goto out; 5894 } 5895 } 5896 5897 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS); 5898 if (IS_ERR(handle)) { 5899 ret = PTR_ERR(handle); 5900 mlog_errno(ret); 5901 goto out_unlock; 5902 } 5903 5904 ret = ocfs2_journal_access(handle, inode, di_bh, 5905 OCFS2_JOURNAL_ACCESS_WRITE); 5906 if (ret) { 5907 mlog_errno(ret); 5908 goto out_commit; 5909 } 5910 5911 if (has_data) { 5912 u32 bit_off, num; 5913 unsigned int page_end; 5914 u64 phys; 5915 5916 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 5917 &num); 5918 if (ret) { 5919 mlog_errno(ret); 5920 goto out_commit; 5921 } 5922 5923 /* 5924 * Save two copies, one for insert, and one that can 5925 * be changed by ocfs2_map_and_dirty_page() below. 5926 */ 5927 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 5928 5929 /* 5930 * Non sparse file systems zero on extend, so no need 5931 * to do that now. 5932 */ 5933 if (!ocfs2_sparse_alloc(osb) && 5934 PAGE_CACHE_SIZE < osb->s_clustersize) 5935 end = PAGE_CACHE_SIZE; 5936 5937 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 5938 if (ret) { 5939 mlog_errno(ret); 5940 goto out_commit; 5941 } 5942 5943 /* 5944 * This should populate the 1st page for us and mark 5945 * it up to date. 5946 */ 5947 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 5948 if (ret) { 5949 mlog_errno(ret); 5950 goto out_commit; 5951 } 5952 5953 page_end = PAGE_CACHE_SIZE; 5954 if (PAGE_CACHE_SIZE > osb->s_clustersize) 5955 page_end = osb->s_clustersize; 5956 5957 for (i = 0; i < num_pages; i++) 5958 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 5959 pages[i], i > 0, &phys); 5960 } 5961 5962 spin_lock(&oi->ip_lock); 5963 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 5964 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 5965 spin_unlock(&oi->ip_lock); 5966 5967 ocfs2_dinode_new_extent_list(inode, di); 5968 5969 ocfs2_journal_dirty(handle, di_bh); 5970 5971 if (has_data) { 5972 /* 5973 * An error at this point should be extremely rare. If 5974 * this proves to be false, we could always re-build 5975 * the in-inode data from our pages. 5976 */ 5977 ret = ocfs2_insert_extent(osb, handle, inode, di_bh, 5978 0, block, 1, 0, NULL); 5979 if (ret) { 5980 mlog_errno(ret); 5981 goto out_commit; 5982 } 5983 5984 inode->i_blocks = ocfs2_inode_sector_count(inode); 5985 } 5986 5987 out_commit: 5988 ocfs2_commit_trans(osb, handle); 5989 5990 out_unlock: 5991 if (data_ac) 5992 ocfs2_free_alloc_context(data_ac); 5993 5994 out: 5995 if (pages) { 5996 ocfs2_unlock_and_free_pages(pages, num_pages); 5997 kfree(pages); 5998 } 5999 6000 return ret; 6001 } 6002 6003 /* 6004 * It is expected, that by the time you call this function, 6005 * inode->i_size and fe->i_size have been adjusted. 6006 * 6007 * WARNING: This will kfree the truncate context 6008 */ 6009 int ocfs2_commit_truncate(struct ocfs2_super *osb, 6010 struct inode *inode, 6011 struct buffer_head *fe_bh, 6012 struct ocfs2_truncate_context *tc) 6013 { 6014 int status, i, credits, tl_sem = 0; 6015 u32 clusters_to_del, new_highest_cpos, range; 6016 struct ocfs2_extent_list *el; 6017 handle_t *handle = NULL; 6018 struct inode *tl_inode = osb->osb_tl_inode; 6019 struct ocfs2_path *path = NULL; 6020 6021 mlog_entry_void(); 6022 6023 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 6024 i_size_read(inode)); 6025 6026 path = ocfs2_new_inode_path(fe_bh); 6027 if (!path) { 6028 status = -ENOMEM; 6029 mlog_errno(status); 6030 goto bail; 6031 } 6032 6033 ocfs2_extent_map_trunc(inode, new_highest_cpos); 6034 6035 start: 6036 /* 6037 * Check that we still have allocation to delete. 6038 */ 6039 if (OCFS2_I(inode)->ip_clusters == 0) { 6040 status = 0; 6041 goto bail; 6042 } 6043 6044 /* 6045 * Truncate always works against the rightmost tree branch. 6046 */ 6047 status = ocfs2_find_path(inode, path, UINT_MAX); 6048 if (status) { 6049 mlog_errno(status); 6050 goto bail; 6051 } 6052 6053 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 6054 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 6055 6056 /* 6057 * By now, el will point to the extent list on the bottom most 6058 * portion of this tree. Only the tail record is considered in 6059 * each pass. 6060 * 6061 * We handle the following cases, in order: 6062 * - empty extent: delete the remaining branch 6063 * - remove the entire record 6064 * - remove a partial record 6065 * - no record needs to be removed (truncate has completed) 6066 */ 6067 el = path_leaf_el(path); 6068 if (le16_to_cpu(el->l_next_free_rec) == 0) { 6069 ocfs2_error(inode->i_sb, 6070 "Inode %llu has empty extent block at %llu\n", 6071 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6072 (unsigned long long)path_leaf_bh(path)->b_blocknr); 6073 status = -EROFS; 6074 goto bail; 6075 } 6076 6077 i = le16_to_cpu(el->l_next_free_rec) - 1; 6078 range = le32_to_cpu(el->l_recs[i].e_cpos) + 6079 ocfs2_rec_clusters(el, &el->l_recs[i]); 6080 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 6081 clusters_to_del = 0; 6082 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 6083 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 6084 } else if (range > new_highest_cpos) { 6085 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 6086 le32_to_cpu(el->l_recs[i].e_cpos)) - 6087 new_highest_cpos; 6088 } else { 6089 status = 0; 6090 goto bail; 6091 } 6092 6093 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 6094 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 6095 6096 BUG_ON(clusters_to_del == 0); 6097 6098 mutex_lock(&tl_inode->i_mutex); 6099 tl_sem = 1; 6100 /* ocfs2_truncate_log_needs_flush guarantees us at least one 6101 * record is free for use. If there isn't any, we flush to get 6102 * an empty truncate log. */ 6103 if (ocfs2_truncate_log_needs_flush(osb)) { 6104 status = __ocfs2_flush_truncate_log(osb); 6105 if (status < 0) { 6106 mlog_errno(status); 6107 goto bail; 6108 } 6109 } 6110 6111 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 6112 (struct ocfs2_dinode *)fe_bh->b_data, 6113 el); 6114 handle = ocfs2_start_trans(osb, credits); 6115 if (IS_ERR(handle)) { 6116 status = PTR_ERR(handle); 6117 handle = NULL; 6118 mlog_errno(status); 6119 goto bail; 6120 } 6121 6122 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 6123 tc, path); 6124 if (status < 0) { 6125 mlog_errno(status); 6126 goto bail; 6127 } 6128 6129 mutex_unlock(&tl_inode->i_mutex); 6130 tl_sem = 0; 6131 6132 ocfs2_commit_trans(osb, handle); 6133 handle = NULL; 6134 6135 ocfs2_reinit_path(path, 1); 6136 6137 /* 6138 * The check above will catch the case where we've truncated 6139 * away all allocation. 6140 */ 6141 goto start; 6142 6143 bail: 6144 6145 ocfs2_schedule_truncate_log_flush(osb, 1); 6146 6147 if (tl_sem) 6148 mutex_unlock(&tl_inode->i_mutex); 6149 6150 if (handle) 6151 ocfs2_commit_trans(osb, handle); 6152 6153 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 6154 6155 ocfs2_free_path(path); 6156 6157 /* This will drop the ext_alloc cluster lock for us */ 6158 ocfs2_free_truncate_context(tc); 6159 6160 mlog_exit(status); 6161 return status; 6162 } 6163 6164 /* 6165 * Expects the inode to already be locked. 6166 */ 6167 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 6168 struct inode *inode, 6169 struct buffer_head *fe_bh, 6170 struct ocfs2_truncate_context **tc) 6171 { 6172 int status; 6173 unsigned int new_i_clusters; 6174 struct ocfs2_dinode *fe; 6175 struct ocfs2_extent_block *eb; 6176 struct buffer_head *last_eb_bh = NULL; 6177 6178 mlog_entry_void(); 6179 6180 *tc = NULL; 6181 6182 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 6183 i_size_read(inode)); 6184 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6185 6186 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 6187 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 6188 (unsigned long long)le64_to_cpu(fe->i_size)); 6189 6190 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 6191 if (!(*tc)) { 6192 status = -ENOMEM; 6193 mlog_errno(status); 6194 goto bail; 6195 } 6196 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 6197 6198 if (fe->id2.i_list.l_tree_depth) { 6199 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 6200 &last_eb_bh, OCFS2_BH_CACHED, inode); 6201 if (status < 0) { 6202 mlog_errno(status); 6203 goto bail; 6204 } 6205 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6206 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 6207 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 6208 6209 brelse(last_eb_bh); 6210 status = -EIO; 6211 goto bail; 6212 } 6213 } 6214 6215 (*tc)->tc_last_eb_bh = last_eb_bh; 6216 6217 status = 0; 6218 bail: 6219 if (status < 0) { 6220 if (*tc) 6221 ocfs2_free_truncate_context(*tc); 6222 *tc = NULL; 6223 } 6224 mlog_exit_void(); 6225 return status; 6226 } 6227 6228 /* 6229 * 'start' is inclusive, 'end' is not. 6230 */ 6231 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 6232 unsigned int start, unsigned int end, int trunc) 6233 { 6234 int ret; 6235 unsigned int numbytes; 6236 handle_t *handle; 6237 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6238 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6239 struct ocfs2_inline_data *idata = &di->id2.i_data; 6240 6241 if (end > i_size_read(inode)) 6242 end = i_size_read(inode); 6243 6244 BUG_ON(start >= end); 6245 6246 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 6247 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 6248 !ocfs2_supports_inline_data(osb)) { 6249 ocfs2_error(inode->i_sb, 6250 "Inline data flags for inode %llu don't agree! " 6251 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 6252 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6253 le16_to_cpu(di->i_dyn_features), 6254 OCFS2_I(inode)->ip_dyn_features, 6255 osb->s_feature_incompat); 6256 ret = -EROFS; 6257 goto out; 6258 } 6259 6260 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 6261 if (IS_ERR(handle)) { 6262 ret = PTR_ERR(handle); 6263 mlog_errno(ret); 6264 goto out; 6265 } 6266 6267 ret = ocfs2_journal_access(handle, inode, di_bh, 6268 OCFS2_JOURNAL_ACCESS_WRITE); 6269 if (ret) { 6270 mlog_errno(ret); 6271 goto out_commit; 6272 } 6273 6274 numbytes = end - start; 6275 memset(idata->id_data + start, 0, numbytes); 6276 6277 /* 6278 * No need to worry about the data page here - it's been 6279 * truncated already and inline data doesn't need it for 6280 * pushing zero's to disk, so we'll let readpage pick it up 6281 * later. 6282 */ 6283 if (trunc) { 6284 i_size_write(inode, start); 6285 di->i_size = cpu_to_le64(start); 6286 } 6287 6288 inode->i_blocks = ocfs2_inode_sector_count(inode); 6289 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 6290 6291 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 6292 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 6293 6294 ocfs2_journal_dirty(handle, di_bh); 6295 6296 out_commit: 6297 ocfs2_commit_trans(osb, handle); 6298 6299 out: 6300 return ret; 6301 } 6302 6303 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 6304 { 6305 /* 6306 * The caller is responsible for completing deallocation 6307 * before freeing the context. 6308 */ 6309 if (tc->tc_dealloc.c_first_suballocator != NULL) 6310 mlog(ML_NOTICE, 6311 "Truncate completion has non-empty dealloc context\n"); 6312 6313 if (tc->tc_last_eb_bh) 6314 brelse(tc->tc_last_eb_bh); 6315 6316 kfree(tc); 6317 } 6318