xref: /linux/fs/ntfs3/record.c (revision e1c4c5436b4ad579762fbe78bfabc8aef59bd5b1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fs.h>
9 
10 #include "debug.h"
11 #include "ntfs.h"
12 #include "ntfs_fs.h"
13 
14 static inline int compare_attr(const struct ATTRIB *left, enum ATTR_TYPE type,
15 			       const __le16 *name, u8 name_len,
16 			       const u16 *upcase)
17 {
18 	/* First, compare the type codes. */
19 	int diff = le32_to_cpu(left->type) - le32_to_cpu(type);
20 
21 	if (diff)
22 		return diff;
23 
24 	/* They have the same type code, so we have to compare the names. */
25 	return ntfs_cmp_names(attr_name(left), left->name_len, name, name_len,
26 			      upcase, true);
27 }
28 
29 /*
30  * mi_new_attt_id
31  *
32  * Return: Unused attribute id that is less than mrec->next_attr_id.
33  */
34 static __le16 mi_new_attt_id(struct mft_inode *mi)
35 {
36 	u16 free_id, max_id, t16;
37 	struct MFT_REC *rec = mi->mrec;
38 	struct ATTRIB *attr;
39 	__le16 id;
40 
41 	id = rec->next_attr_id;
42 	free_id = le16_to_cpu(id);
43 	if (free_id < 0x7FFF) {
44 		rec->next_attr_id = cpu_to_le16(free_id + 1);
45 		return id;
46 	}
47 
48 	/* One record can store up to 1024/24 ~= 42 attributes. */
49 	free_id = 0;
50 	max_id = 0;
51 
52 	attr = NULL;
53 
54 	for (;;) {
55 		attr = mi_enum_attr(mi, attr);
56 		if (!attr) {
57 			rec->next_attr_id = cpu_to_le16(max_id + 1);
58 			mi->dirty = true;
59 			return cpu_to_le16(free_id);
60 		}
61 
62 		t16 = le16_to_cpu(attr->id);
63 		if (t16 == free_id) {
64 			free_id += 1;
65 			attr = NULL;
66 		} else if (max_id < t16)
67 			max_id = t16;
68 	}
69 }
70 
71 int mi_get(struct ntfs_sb_info *sbi, CLST rno, struct mft_inode **mi)
72 {
73 	int err;
74 	struct mft_inode *m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
75 
76 	if (!m)
77 		return -ENOMEM;
78 
79 	err = mi_init(m, sbi, rno);
80 	if (err) {
81 		kfree(m);
82 		return err;
83 	}
84 
85 	err = mi_read(m, false);
86 	if (err) {
87 		mi_put(m);
88 		return err;
89 	}
90 
91 	*mi = m;
92 	return 0;
93 }
94 
95 void mi_put(struct mft_inode *mi)
96 {
97 	mi_clear(mi);
98 	kfree(mi);
99 }
100 
101 int mi_init(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno)
102 {
103 	mi->sbi = sbi;
104 	mi->rno = rno;
105 	mi->mrec = kmalloc(sbi->record_size, GFP_NOFS);
106 	if (!mi->mrec)
107 		return -ENOMEM;
108 
109 	return 0;
110 }
111 
112 /*
113  * mi_read - Read MFT data.
114  */
115 int mi_read(struct mft_inode *mi, bool is_mft)
116 {
117 	int err;
118 	struct MFT_REC *rec = mi->mrec;
119 	struct ntfs_sb_info *sbi = mi->sbi;
120 	u32 bpr = sbi->record_size;
121 	u64 vbo = (u64)mi->rno << sbi->record_bits;
122 	struct ntfs_inode *mft_ni = sbi->mft.ni;
123 	struct runs_tree *run = mft_ni ? &mft_ni->file.run : NULL;
124 	struct rw_semaphore *rw_lock = NULL;
125 
126 	if (is_mounted(sbi)) {
127 		if (!is_mft) {
128 			rw_lock = &mft_ni->file.run_lock;
129 			down_read(rw_lock);
130 		}
131 	}
132 
133 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
134 	if (rw_lock)
135 		up_read(rw_lock);
136 	if (!err)
137 		goto ok;
138 
139 	if (err == -E_NTFS_FIXUP) {
140 		mi->dirty = true;
141 		goto ok;
142 	}
143 
144 	if (err != -ENOENT)
145 		goto out;
146 
147 	if (rw_lock) {
148 		ni_lock(mft_ni);
149 		down_write(rw_lock);
150 	}
151 	err = attr_load_runs_vcn(mft_ni, ATTR_DATA, NULL, 0, &mft_ni->file.run,
152 				 vbo >> sbi->cluster_bits);
153 	if (rw_lock) {
154 		up_write(rw_lock);
155 		ni_unlock(mft_ni);
156 	}
157 	if (err)
158 		goto out;
159 
160 	if (rw_lock)
161 		down_read(rw_lock);
162 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
163 	if (rw_lock)
164 		up_read(rw_lock);
165 
166 	if (err == -E_NTFS_FIXUP) {
167 		mi->dirty = true;
168 		goto ok;
169 	}
170 	if (err)
171 		goto out;
172 
173 ok:
174 	/* Check field 'total' only here. */
175 	if (le32_to_cpu(rec->total) != bpr) {
176 		err = -EINVAL;
177 		goto out;
178 	}
179 
180 	return 0;
181 
182 out:
183 	return err;
184 }
185 
186 struct ATTRIB *mi_enum_attr(struct mft_inode *mi, struct ATTRIB *attr)
187 {
188 	const struct MFT_REC *rec = mi->mrec;
189 	u32 used = le32_to_cpu(rec->used);
190 	u32 t32, off, asize;
191 	u16 t16;
192 
193 	if (!attr) {
194 		u32 total = le32_to_cpu(rec->total);
195 
196 		off = le16_to_cpu(rec->attr_off);
197 
198 		if (used > total)
199 			return NULL;
200 
201 		if (off >= used || off < MFTRECORD_FIXUP_OFFSET_1 ||
202 		    !IS_ALIGNED(off, 4)) {
203 			return NULL;
204 		}
205 
206 		/* Skip non-resident records. */
207 		if (!is_rec_inuse(rec))
208 			return NULL;
209 
210 		attr = Add2Ptr(rec, off);
211 	} else {
212 		/* Check if input attr inside record. */
213 		off = PtrOffset(rec, attr);
214 		if (off >= used)
215 			return NULL;
216 
217 		asize = le32_to_cpu(attr->size);
218 		if (asize < SIZEOF_RESIDENT) {
219 			/* Impossible 'cause we should not return such attribute. */
220 			return NULL;
221 		}
222 
223 		attr = Add2Ptr(attr, asize);
224 		off += asize;
225 	}
226 
227 	asize = le32_to_cpu(attr->size);
228 
229 	/* Can we use the first field (attr->type). */
230 	if (off + 8 > used) {
231 		static_assert(ALIGN(sizeof(enum ATTR_TYPE), 8) == 8);
232 		return NULL;
233 	}
234 
235 	if (attr->type == ATTR_END) {
236 		/* End of enumeration. */
237 		return NULL;
238 	}
239 
240 	/* 0x100 is last known attribute for now. */
241 	t32 = le32_to_cpu(attr->type);
242 	if ((t32 & 0xf) || (t32 > 0x100))
243 		return NULL;
244 
245 	/* Check boundary. */
246 	if (off + asize > used)
247 		return NULL;
248 
249 	/* Check size of attribute. */
250 	if (!attr->non_res) {
251 		if (asize < SIZEOF_RESIDENT)
252 			return NULL;
253 
254 		t16 = le16_to_cpu(attr->res.data_off);
255 
256 		if (t16 > asize)
257 			return NULL;
258 
259 		t32 = le32_to_cpu(attr->res.data_size);
260 		if (t16 + t32 > asize)
261 			return NULL;
262 
263 		return attr;
264 	}
265 
266 	/* Check some nonresident fields. */
267 	if (attr->name_len &&
268 	    le16_to_cpu(attr->name_off) + sizeof(short) * attr->name_len >
269 		    le16_to_cpu(attr->nres.run_off)) {
270 		return NULL;
271 	}
272 
273 	if (attr->nres.svcn || !is_attr_ext(attr)) {
274 		if (asize + 8 < SIZEOF_NONRESIDENT)
275 			return NULL;
276 
277 		if (attr->nres.c_unit)
278 			return NULL;
279 	} else if (asize + 8 < SIZEOF_NONRESIDENT_EX)
280 		return NULL;
281 
282 	return attr;
283 }
284 
285 /*
286  * mi_find_attr - Find the attribute by type and name and id.
287  */
288 struct ATTRIB *mi_find_attr(struct mft_inode *mi, struct ATTRIB *attr,
289 			    enum ATTR_TYPE type, const __le16 *name,
290 			    size_t name_len, const __le16 *id)
291 {
292 	u32 type_in = le32_to_cpu(type);
293 	u32 atype;
294 
295 next_attr:
296 	attr = mi_enum_attr(mi, attr);
297 	if (!attr)
298 		return NULL;
299 
300 	atype = le32_to_cpu(attr->type);
301 	if (atype > type_in)
302 		return NULL;
303 
304 	if (atype < type_in)
305 		goto next_attr;
306 
307 	if (attr->name_len != name_len)
308 		goto next_attr;
309 
310 	if (name_len && memcmp(attr_name(attr), name, name_len * sizeof(short)))
311 		goto next_attr;
312 
313 	if (id && *id != attr->id)
314 		goto next_attr;
315 
316 	return attr;
317 }
318 
319 int mi_write(struct mft_inode *mi, int wait)
320 {
321 	struct MFT_REC *rec;
322 	int err;
323 	struct ntfs_sb_info *sbi;
324 
325 	if (!mi->dirty)
326 		return 0;
327 
328 	sbi = mi->sbi;
329 	rec = mi->mrec;
330 
331 	err = ntfs_write_bh(sbi, &rec->rhdr, &mi->nb, wait);
332 	if (err)
333 		return err;
334 
335 	if (mi->rno < sbi->mft.recs_mirr)
336 		sbi->flags |= NTFS_FLAGS_MFTMIRR;
337 
338 	mi->dirty = false;
339 
340 	return 0;
341 }
342 
343 int mi_format_new(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno,
344 		  __le16 flags, bool is_mft)
345 {
346 	int err;
347 	u16 seq = 1;
348 	struct MFT_REC *rec;
349 	u64 vbo = (u64)rno << sbi->record_bits;
350 
351 	err = mi_init(mi, sbi, rno);
352 	if (err)
353 		return err;
354 
355 	rec = mi->mrec;
356 
357 	if (rno == MFT_REC_MFT) {
358 		;
359 	} else if (rno < MFT_REC_FREE) {
360 		seq = rno;
361 	} else if (rno >= sbi->mft.used) {
362 		;
363 	} else if (mi_read(mi, is_mft)) {
364 		;
365 	} else if (rec->rhdr.sign == NTFS_FILE_SIGNATURE) {
366 		/* Record is reused. Update its sequence number. */
367 		seq = le16_to_cpu(rec->seq) + 1;
368 		if (!seq)
369 			seq = 1;
370 	}
371 
372 	memcpy(rec, sbi->new_rec, sbi->record_size);
373 
374 	rec->seq = cpu_to_le16(seq);
375 	rec->flags = RECORD_FLAG_IN_USE | flags;
376 
377 	mi->dirty = true;
378 
379 	if (!mi->nb.nbufs) {
380 		struct ntfs_inode *ni = sbi->mft.ni;
381 		bool lock = false;
382 
383 		if (is_mounted(sbi) && !is_mft) {
384 			down_read(&ni->file.run_lock);
385 			lock = true;
386 		}
387 
388 		err = ntfs_get_bh(sbi, &ni->file.run, vbo, sbi->record_size,
389 				  &mi->nb);
390 		if (lock)
391 			up_read(&ni->file.run_lock);
392 	}
393 
394 	return err;
395 }
396 
397 /*
398  * mi_insert_attr - Reserve space for new attribute.
399  *
400  * Return: Not full constructed attribute or NULL if not possible to create.
401  */
402 struct ATTRIB *mi_insert_attr(struct mft_inode *mi, enum ATTR_TYPE type,
403 			      const __le16 *name, u8 name_len, u32 asize,
404 			      u16 name_off)
405 {
406 	size_t tail;
407 	struct ATTRIB *attr;
408 	__le16 id;
409 	struct MFT_REC *rec = mi->mrec;
410 	struct ntfs_sb_info *sbi = mi->sbi;
411 	u32 used = le32_to_cpu(rec->used);
412 	const u16 *upcase = sbi->upcase;
413 	int diff;
414 
415 	/* Can we insert mi attribute? */
416 	if (used + asize > mi->sbi->record_size)
417 		return NULL;
418 
419 	/*
420 	 * Scan through the list of attributes to find the point
421 	 * at which we should insert it.
422 	 */
423 	attr = NULL;
424 	while ((attr = mi_enum_attr(mi, attr))) {
425 		diff = compare_attr(attr, type, name, name_len, upcase);
426 
427 		if (diff < 0)
428 			continue;
429 
430 		if (!diff && !is_attr_indexed(attr))
431 			return NULL;
432 		break;
433 	}
434 
435 	if (!attr) {
436 		tail = 8; /* Not used, just to suppress warning. */
437 		attr = Add2Ptr(rec, used - 8);
438 	} else {
439 		tail = used - PtrOffset(rec, attr);
440 	}
441 
442 	id = mi_new_attt_id(mi);
443 
444 	memmove(Add2Ptr(attr, asize), attr, tail);
445 	memset(attr, 0, asize);
446 
447 	attr->type = type;
448 	attr->size = cpu_to_le32(asize);
449 	attr->name_len = name_len;
450 	attr->name_off = cpu_to_le16(name_off);
451 	attr->id = id;
452 
453 	memmove(Add2Ptr(attr, name_off), name, name_len * sizeof(short));
454 	rec->used = cpu_to_le32(used + asize);
455 
456 	mi->dirty = true;
457 
458 	return attr;
459 }
460 
461 /*
462  * mi_remove_attr - Remove the attribute from record.
463  *
464  * NOTE: The source attr will point to next attribute.
465  */
466 bool mi_remove_attr(struct ntfs_inode *ni, struct mft_inode *mi,
467 		    struct ATTRIB *attr)
468 {
469 	struct MFT_REC *rec = mi->mrec;
470 	u32 aoff = PtrOffset(rec, attr);
471 	u32 used = le32_to_cpu(rec->used);
472 	u32 asize = le32_to_cpu(attr->size);
473 
474 	if (aoff + asize > used)
475 		return false;
476 
477 	if (ni && is_attr_indexed(attr)) {
478 		le16_add_cpu(&ni->mi.mrec->hard_links, -1);
479 		ni->mi.dirty = true;
480 	}
481 
482 	used -= asize;
483 	memmove(attr, Add2Ptr(attr, asize), used - aoff);
484 	rec->used = cpu_to_le32(used);
485 	mi->dirty = true;
486 
487 	return true;
488 }
489 
490 /* bytes = "new attribute size" - "old attribute size" */
491 bool mi_resize_attr(struct mft_inode *mi, struct ATTRIB *attr, int bytes)
492 {
493 	struct MFT_REC *rec = mi->mrec;
494 	u32 aoff = PtrOffset(rec, attr);
495 	u32 total, used = le32_to_cpu(rec->used);
496 	u32 nsize, asize = le32_to_cpu(attr->size);
497 	u32 rsize = le32_to_cpu(attr->res.data_size);
498 	int tail = (int)(used - aoff - asize);
499 	int dsize;
500 	char *next;
501 
502 	if (tail < 0 || aoff >= used)
503 		return false;
504 
505 	if (!bytes)
506 		return true;
507 
508 	total = le32_to_cpu(rec->total);
509 	next = Add2Ptr(attr, asize);
510 
511 	if (bytes > 0) {
512 		dsize = ALIGN(bytes, 8);
513 		if (used + dsize > total)
514 			return false;
515 		nsize = asize + dsize;
516 		/* Move tail */
517 		memmove(next + dsize, next, tail);
518 		memset(next, 0, dsize);
519 		used += dsize;
520 		rsize += dsize;
521 	} else {
522 		dsize = ALIGN(-bytes, 8);
523 		if (dsize > asize)
524 			return false;
525 		nsize = asize - dsize;
526 		memmove(next - dsize, next, tail);
527 		used -= dsize;
528 		rsize -= dsize;
529 	}
530 
531 	rec->used = cpu_to_le32(used);
532 	attr->size = cpu_to_le32(nsize);
533 	if (!attr->non_res)
534 		attr->res.data_size = cpu_to_le32(rsize);
535 	mi->dirty = true;
536 
537 	return true;
538 }
539 
540 int mi_pack_runs(struct mft_inode *mi, struct ATTRIB *attr,
541 		 struct runs_tree *run, CLST len)
542 {
543 	int err = 0;
544 	struct ntfs_sb_info *sbi = mi->sbi;
545 	u32 new_run_size;
546 	CLST plen;
547 	struct MFT_REC *rec = mi->mrec;
548 	CLST svcn = le64_to_cpu(attr->nres.svcn);
549 	u32 used = le32_to_cpu(rec->used);
550 	u32 aoff = PtrOffset(rec, attr);
551 	u32 asize = le32_to_cpu(attr->size);
552 	char *next = Add2Ptr(attr, asize);
553 	u16 run_off = le16_to_cpu(attr->nres.run_off);
554 	u32 run_size = asize - run_off;
555 	u32 tail = used - aoff - asize;
556 	u32 dsize = sbi->record_size - used;
557 
558 	/* Make a maximum gap in current record. */
559 	memmove(next + dsize, next, tail);
560 
561 	/* Pack as much as possible. */
562 	err = run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size + dsize,
563 		       &plen);
564 	if (err < 0) {
565 		memmove(next, next + dsize, tail);
566 		return err;
567 	}
568 
569 	new_run_size = ALIGN(err, 8);
570 
571 	memmove(next + new_run_size - run_size, next + dsize, tail);
572 
573 	attr->size = cpu_to_le32(asize + new_run_size - run_size);
574 	attr->nres.evcn = cpu_to_le64(svcn + plen - 1);
575 	rec->used = cpu_to_le32(used + new_run_size - run_size);
576 	mi->dirty = true;
577 
578 	return 0;
579 }
580