1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 * on-disk ntfs structs 7 */ 8 9 // clang-format off 10 #ifndef _LINUX_NTFS3_NTFS_H 11 #define _LINUX_NTFS3_NTFS_H 12 13 #include <linux/blkdev.h> 14 #include <linux/build_bug.h> 15 #include <linux/kernel.h> 16 #include <linux/stddef.h> 17 #include <linux/string.h> 18 #include <linux/types.h> 19 20 #include "debug.h" 21 22 /* TODO: Check 4K MFT record and 512 bytes cluster. */ 23 24 /* Check each run for marked clusters. */ 25 #define NTFS3_CHECK_FREE_CLST 26 27 #define NTFS_NAME_LEN 255 28 29 /* 30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff. 31 * xfstest generic/041 creates 3003 hardlinks. 32 */ 33 #define NTFS_LINK_MAX 4000 34 35 /* 36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys. 37 * Logical and virtual cluster number if needed, may be 38 * redefined to use 64 bit value. 39 */ 40 //#define CONFIG_NTFS3_64BIT_CLUSTER 41 42 #define NTFS_LZNT_MAX_CLUSTER 4096 43 #define NTFS_LZNT_CUNIT 4 44 #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT) 45 46 struct GUID { 47 __le32 Data1; 48 __le16 Data2; 49 __le16 Data3; 50 u8 Data4[8]; 51 }; 52 53 /* 54 * This struct repeats layout of ATTR_FILE_NAME 55 * at offset 0x40. 56 * It used to store global constants NAME_MFT/NAME_MIRROR... 57 * most constant names are shorter than 10. 58 */ 59 struct cpu_str { 60 u8 len; 61 u8 unused; 62 u16 name[10]; 63 }; 64 65 struct le_str { 66 u8 len; 67 u8 unused; 68 __le16 name[]; 69 }; 70 71 static_assert(SECTOR_SHIFT == 9); 72 73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER 74 typedef u64 CLST; 75 static_assert(sizeof(size_t) == 8); 76 #else 77 typedef u32 CLST; 78 #endif 79 80 #define SPARSE_LCN64 ((u64)-1) 81 #define SPARSE_LCN ((CLST)-1) 82 #define RESIDENT_LCN ((CLST)-2) 83 #define COMPRESSED_LCN ((CLST)-3) 84 85 #define COMPRESSION_UNIT 4 86 #define COMPRESS_MAX_CLUSTER 0x1000 87 88 enum RECORD_NUM { 89 MFT_REC_MFT = 0, 90 MFT_REC_MIRR = 1, 91 MFT_REC_LOG = 2, 92 MFT_REC_VOL = 3, 93 MFT_REC_ATTR = 4, 94 MFT_REC_ROOT = 5, 95 MFT_REC_BITMAP = 6, 96 MFT_REC_BOOT = 7, 97 MFT_REC_BADCLUST = 8, 98 //MFT_REC_QUOTA = 9, 99 MFT_REC_SECURE = 9, // NTFS 3.0 100 MFT_REC_UPCASE = 10, 101 MFT_REC_EXTEND = 11, // NTFS 3.0 102 MFT_REC_RESERVED = 11, 103 MFT_REC_FREE = 16, 104 MFT_REC_USER = 24, 105 }; 106 107 enum ATTR_TYPE { 108 ATTR_ZERO = cpu_to_le32(0x00), 109 ATTR_STD = cpu_to_le32(0x10), 110 ATTR_LIST = cpu_to_le32(0x20), 111 ATTR_NAME = cpu_to_le32(0x30), 112 // ATTR_VOLUME_VERSION on Nt4 113 ATTR_ID = cpu_to_le32(0x40), 114 ATTR_SECURE = cpu_to_le32(0x50), 115 ATTR_LABEL = cpu_to_le32(0x60), 116 ATTR_VOL_INFO = cpu_to_le32(0x70), 117 ATTR_DATA = cpu_to_le32(0x80), 118 ATTR_ROOT = cpu_to_le32(0x90), 119 ATTR_ALLOC = cpu_to_le32(0xA0), 120 ATTR_BITMAP = cpu_to_le32(0xB0), 121 // ATTR_SYMLINK on Nt4 122 ATTR_REPARSE = cpu_to_le32(0xC0), 123 ATTR_EA_INFO = cpu_to_le32(0xD0), 124 ATTR_EA = cpu_to_le32(0xE0), 125 ATTR_PROPERTYSET = cpu_to_le32(0xF0), 126 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100), 127 ATTR_END = cpu_to_le32(0xFFFFFFFF) 128 }; 129 130 static_assert(sizeof(enum ATTR_TYPE) == 4); 131 132 enum FILE_ATTRIBUTE { 133 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001), 134 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002), 135 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004), 136 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020), 137 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040), 138 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100), 139 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200), 140 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400), 141 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800), 142 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000), 143 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000), 144 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000), 145 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7), 146 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000), 147 }; 148 149 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4); 150 151 extern const struct cpu_str NAME_MFT; 152 extern const struct cpu_str NAME_MIRROR; 153 extern const struct cpu_str NAME_LOGFILE; 154 extern const struct cpu_str NAME_VOLUME; 155 extern const struct cpu_str NAME_ATTRDEF; 156 extern const struct cpu_str NAME_ROOT; 157 extern const struct cpu_str NAME_BITMAP; 158 extern const struct cpu_str NAME_BOOT; 159 extern const struct cpu_str NAME_BADCLUS; 160 extern const struct cpu_str NAME_QUOTA; 161 extern const struct cpu_str NAME_SECURE; 162 extern const struct cpu_str NAME_UPCASE; 163 extern const struct cpu_str NAME_EXTEND; 164 extern const struct cpu_str NAME_OBJID; 165 extern const struct cpu_str NAME_REPARSE; 166 extern const struct cpu_str NAME_USNJRNL; 167 168 extern const __le16 I30_NAME[4]; 169 extern const __le16 SII_NAME[4]; 170 extern const __le16 SDH_NAME[4]; 171 extern const __le16 SO_NAME[2]; 172 extern const __le16 SQ_NAME[2]; 173 extern const __le16 SR_NAME[2]; 174 175 extern const __le16 BAD_NAME[4]; 176 extern const __le16 SDS_NAME[4]; 177 extern const __le16 WOF_NAME[17]; /* WofCompressedData */ 178 179 /* MFT record number structure. */ 180 struct MFT_REF { 181 __le32 low; // The low part of the number. 182 __le16 high; // The high part of the number. 183 __le16 seq; // The sequence number of MFT record. 184 }; 185 186 static_assert(sizeof(__le64) == sizeof(struct MFT_REF)); 187 188 static inline CLST ino_get(const struct MFT_REF *ref) 189 { 190 #ifdef CONFIG_NTFS3_64BIT_CLUSTER 191 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32); 192 #else 193 return le32_to_cpu(ref->low); 194 #endif 195 } 196 197 struct NTFS_BOOT { 198 u8 jump_code[3]; // 0x00: Jump to boot code. 199 u8 system_id[8]; // 0x03: System ID, equals "NTFS " 200 201 // NOTE: This member is not aligned(!) 202 // bytes_per_sector[0] must be 0. 203 // bytes_per_sector[1] must be multiplied by 256. 204 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector. 205 206 u8 sectors_per_clusters;// 0x0D: Sectors per cluster. 207 u8 unused1[7]; 208 u8 media_type; // 0x15: Media type (0xF8 - harddisk) 209 u8 unused2[2]; 210 __le16 sct_per_track; // 0x18: number of sectors per track. 211 __le16 heads; // 0x1A: number of heads per cylinder. 212 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors. 213 u8 unused3[4]; 214 u8 bios_drive_num; // 0x24: BIOS drive number =0x80. 215 u8 unused4; 216 u8 signature_ex; // 0x26: Extended BOOT signature =0x80. 217 u8 unused5; 218 __le64 sectors_per_volume;// 0x28: Size of volume in sectors. 219 __le64 mft_clst; // 0x30: First cluster of $MFT 220 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr 221 s8 record_size; // 0x40: Size of MFT record in clusters(sectors). 222 u8 unused6[3]; 223 s8 index_size; // 0x44: Size of INDX record in clusters(sectors). 224 u8 unused7[3]; 225 __le64 serial_num; // 0x48: Volume serial number 226 __le32 check_sum; // 0x50: Simple additive checksum of all 227 // of the u32's which precede the 'check_sum'. 228 229 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54: 230 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA 231 }; 232 233 static_assert(sizeof(struct NTFS_BOOT) == 0x200); 234 235 enum NTFS_SIGNATURE { 236 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE' 237 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX' 238 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD' 239 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR' 240 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD' 241 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD' 242 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE' 243 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff), 244 }; 245 246 static_assert(sizeof(enum NTFS_SIGNATURE) == 4); 247 248 /* MFT Record header structure. */ 249 struct NTFS_RECORD_HEADER { 250 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */ 251 enum NTFS_SIGNATURE sign; // 0x00: 252 __le16 fix_off; // 0x04: 253 __le16 fix_num; // 0x06: 254 __le64 lsn; // 0x08: Log file sequence number, 255 }; 256 257 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10); 258 259 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr) 260 { 261 return hdr->sign == NTFS_BAAD_SIGNATURE; 262 } 263 264 /* Possible bits in struct MFT_REC.flags. */ 265 enum RECORD_FLAG { 266 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001), 267 RECORD_FLAG_DIR = cpu_to_le16(0x0002), 268 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004), 269 RECORD_FLAG_UNKNOWN = cpu_to_le16(0x0008), 270 }; 271 272 /* MFT Record structure. */ 273 struct MFT_REC { 274 struct NTFS_RECORD_HEADER rhdr; // 'FILE' 275 276 __le16 seq; // 0x10: Sequence number for this record. 277 __le16 hard_links; // 0x12: The number of hard links to record. 278 __le16 attr_off; // 0x14: Offset to attributes. 279 __le16 flags; // 0x16: See RECORD_FLAG. 280 __le32 used; // 0x18: The size of used part. 281 __le32 total; // 0x1C: Total record size. 282 283 struct MFT_REF parent_ref; // 0x20: Parent MFT record. 284 __le16 next_attr_id; // 0x28: The next attribute Id. 285 286 __le16 res; // 0x2A: High part of MFT record? 287 __le32 mft_record; // 0x2C: Current MFT record number. 288 __le16 fixups[]; // 0x30: 289 }; 290 291 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res) 292 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups) 293 294 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A); 295 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30); 296 297 static inline bool is_rec_base(const struct MFT_REC *rec) 298 { 299 const struct MFT_REF *r = &rec->parent_ref; 300 301 return !r->low && !r->high && !r->seq; 302 } 303 304 static inline bool is_mft_rec5(const struct MFT_REC *rec) 305 { 306 return le16_to_cpu(rec->rhdr.fix_off) >= 307 offsetof(struct MFT_REC, fixups); 308 } 309 310 static inline bool is_rec_inuse(const struct MFT_REC *rec) 311 { 312 return rec->flags & RECORD_FLAG_IN_USE; 313 } 314 315 static inline bool clear_rec_inuse(struct MFT_REC *rec) 316 { 317 return rec->flags &= ~RECORD_FLAG_IN_USE; 318 } 319 320 /* Possible values of ATTR_RESIDENT.flags */ 321 #define RESIDENT_FLAG_INDEXED 0x01 322 323 struct ATTR_RESIDENT { 324 __le32 data_size; // 0x10: The size of data. 325 __le16 data_off; // 0x14: Offset to data. 326 u8 flags; // 0x16: Resident flags ( 1 - indexed ). 327 u8 res; // 0x17: 328 }; // sizeof() = 0x18 329 330 struct ATTR_NONRESIDENT { 331 __le64 svcn; // 0x10: Starting VCN of this segment. 332 __le64 evcn; // 0x18: End VCN of this segment. 333 __le16 run_off; // 0x20: Offset to packed runs. 334 // Unit of Compression size for this stream, expressed 335 // as a log of the cluster size. 336 // 337 // 0 means file is not compressed 338 // 1, 2, 3, and 4 are potentially legal values if the 339 // stream is compressed, however the implementation 340 // may only choose to use 4, or possibly 3. Note 341 // that 4 means cluster size time 16. If convenient 342 // the implementation may wish to accept a 343 // reasonable range of legal values here (1-5?), 344 // even if the implementation only generates 345 // a smaller set of values itself. 346 u8 c_unit; // 0x22: 347 u8 res1[5]; // 0x23: 348 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes. 349 // (multiple of cluster size) 350 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size. 351 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size. 352 __le64 total_size; // 0x40: The sum of the allocated clusters for a file. 353 // (present only for the first segment (0 == vcn) 354 // of compressed attribute) 355 356 }; // sizeof()=0x40 or 0x48 (if compressed) 357 358 /* Possible values of ATTRIB.flags: */ 359 #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001) 360 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF) 361 #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000) 362 #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000) 363 364 struct ATTRIB { 365 enum ATTR_TYPE type; // 0x00: The type of this attribute. 366 __le32 size; // 0x04: The size of this attribute. 367 u8 non_res; // 0x08: Is this attribute non-resident? 368 u8 name_len; // 0x09: This attribute name length. 369 __le16 name_off; // 0x0A: Offset to the attribute name. 370 __le16 flags; // 0x0C: See ATTR_FLAG_XXX. 371 __le16 id; // 0x0E: Unique id (per record). 372 373 union { 374 struct ATTR_RESIDENT res; // 0x10 375 struct ATTR_NONRESIDENT nres; // 0x10 376 }; 377 }; 378 379 /* Define attribute sizes. */ 380 #define SIZEOF_RESIDENT 0x18 381 #define SIZEOF_NONRESIDENT_EX 0x48 382 #define SIZEOF_NONRESIDENT 0x40 383 384 #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18) 385 #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48) 386 #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40) 387 388 static inline u64 attr_ondisk_size(const struct ATTRIB *attr) 389 { 390 return attr->non_res ? ((attr->flags & 391 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 392 le64_to_cpu(attr->nres.total_size) : 393 le64_to_cpu(attr->nres.alloc_size)) 394 : ALIGN(le32_to_cpu(attr->res.data_size), 8); 395 } 396 397 static inline u64 attr_size(const struct ATTRIB *attr) 398 { 399 return attr->non_res ? le64_to_cpu(attr->nres.data_size) : 400 le32_to_cpu(attr->res.data_size); 401 } 402 403 static inline bool is_attr_encrypted(const struct ATTRIB *attr) 404 { 405 return attr->flags & ATTR_FLAG_ENCRYPTED; 406 } 407 408 static inline bool is_attr_sparsed(const struct ATTRIB *attr) 409 { 410 return attr->flags & ATTR_FLAG_SPARSED; 411 } 412 413 static inline bool is_attr_compressed(const struct ATTRIB *attr) 414 { 415 return attr->flags & ATTR_FLAG_COMPRESSED; 416 } 417 418 static inline bool is_attr_ext(const struct ATTRIB *attr) 419 { 420 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED); 421 } 422 423 static inline bool is_attr_indexed(const struct ATTRIB *attr) 424 { 425 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED); 426 } 427 428 static inline __le16 const *attr_name(const struct ATTRIB *attr) 429 { 430 return Add2Ptr(attr, le16_to_cpu(attr->name_off)); 431 } 432 433 static inline u64 attr_svcn(const struct ATTRIB *attr) 434 { 435 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0; 436 } 437 438 static_assert(sizeof(struct ATTRIB) == 0x48); 439 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08); 440 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38); 441 442 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize) 443 { 444 u32 asize, rsize; 445 u16 off; 446 447 if (attr->non_res) 448 return NULL; 449 450 asize = le32_to_cpu(attr->size); 451 off = le16_to_cpu(attr->res.data_off); 452 453 if (asize < datasize + off) 454 return NULL; 455 456 rsize = le32_to_cpu(attr->res.data_size); 457 if (rsize < datasize) 458 return NULL; 459 460 return Add2Ptr(attr, off); 461 } 462 463 static inline void *resident_data(const struct ATTRIB *attr) 464 { 465 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off)); 466 } 467 468 static inline void *attr_run(const struct ATTRIB *attr) 469 { 470 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off)); 471 } 472 473 /* Standard information attribute (0x10). */ 474 struct ATTR_STD_INFO { 475 __le64 cr_time; // 0x00: File creation file. 476 __le64 m_time; // 0x08: File modification time. 477 __le64 c_time; // 0x10: Last time any attribute was modified. 478 __le64 a_time; // 0x18: File last access time. 479 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more. 480 __le32 max_ver_num; // 0x24: Maximum Number of Versions. 481 __le32 ver_num; // 0x28: Version Number. 482 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index. 483 }; 484 485 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30); 486 487 #define SECURITY_ID_INVALID 0x00000000 488 #define SECURITY_ID_FIRST 0x00000100 489 490 struct ATTR_STD_INFO5 { 491 __le64 cr_time; // 0x00: File creation file. 492 __le64 m_time; // 0x08: File modification time. 493 __le64 c_time; // 0x10: Last time any attribute was modified. 494 __le64 a_time; // 0x18: File last access time. 495 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more. 496 __le32 max_ver_num; // 0x24: Maximum Number of Versions. 497 __le32 ver_num; // 0x28: Version Number. 498 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index. 499 500 __le32 owner_id; // 0x30: Owner Id of the user owning the file. 501 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS. 502 __le64 quota_charge; // 0x38: 503 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct 504 // index into the file $UsnJrnl. If zero, the USN Journal is 505 // disabled. 506 }; 507 508 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48); 509 510 /* Attribute list entry structure (0x20) */ 511 struct ATTR_LIST_ENTRY { 512 enum ATTR_TYPE type; // 0x00: The type of attribute. 513 __le16 size; // 0x04: The size of this record. 514 u8 name_len; // 0x06: The length of attribute name. 515 u8 name_off; // 0x07: The offset to attribute name. 516 __le64 vcn; // 0x08: Starting VCN of this attribute. 517 struct MFT_REF ref; // 0x10: MFT record number with attribute. 518 __le16 id; // 0x18: struct ATTRIB ID. 519 __le16 name[3]; // 0x1A: Just to align. To get real name can use bNameOffset. 520 521 }; // sizeof(0x20) 522 523 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20); 524 525 static inline u32 le_size(u8 name_len) 526 { 527 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) + 528 name_len * sizeof(short), 8); 529 } 530 531 /* Returns 0 if 'attr' has the same type and name. */ 532 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le, 533 const struct ATTRIB *attr) 534 { 535 return le->type != attr->type || le->name_len != attr->name_len || 536 (!le->name_len && 537 memcmp(Add2Ptr(le, le->name_off), 538 Add2Ptr(attr, le16_to_cpu(attr->name_off)), 539 le->name_len * sizeof(short))); 540 } 541 542 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le) 543 { 544 return Add2Ptr(le, le->name_off); 545 } 546 547 /* File name types (the field type in struct ATTR_FILE_NAME). */ 548 #define FILE_NAME_POSIX 0 549 #define FILE_NAME_UNICODE 1 550 #define FILE_NAME_DOS 2 551 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE) 552 553 /* Filename attribute structure (0x30). */ 554 struct NTFS_DUP_INFO { 555 __le64 cr_time; // 0x00: File creation file. 556 __le64 m_time; // 0x08: File modification time. 557 __le64 c_time; // 0x10: Last time any attribute was modified. 558 __le64 a_time; // 0x18: File last access time. 559 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size. 560 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size. 561 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more. 562 __le16 ea_size; // 0x34: Packed EAs. 563 __le16 reparse; // 0x36: Used by Reparse. 564 565 }; // 0x38 566 567 struct ATTR_FILE_NAME { 568 struct MFT_REF home; // 0x00: MFT record for directory. 569 struct NTFS_DUP_INFO dup;// 0x08: 570 u8 name_len; // 0x40: File name length in words. 571 u8 type; // 0x41: File name type. 572 __le16 name[]; // 0x42: File name. 573 }; 574 575 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38); 576 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42); 577 #define SIZEOF_ATTRIBUTE_FILENAME 0x44 578 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2) 579 580 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname) 581 { 582 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT); 583 } 584 585 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname) 586 { 587 /* Don't return struct_size(fname, name, fname->name_len); */ 588 return offsetof(struct ATTR_FILE_NAME, name) + 589 fname->name_len * sizeof(short); 590 } 591 592 static inline u8 paired_name(u8 type) 593 { 594 if (type == FILE_NAME_UNICODE) 595 return FILE_NAME_DOS; 596 if (type == FILE_NAME_DOS) 597 return FILE_NAME_UNICODE; 598 return FILE_NAME_POSIX; 599 } 600 601 /* Index entry defines ( the field flags in NtfsDirEntry ). */ 602 #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1) 603 #define NTFS_IE_LAST cpu_to_le16(2) 604 605 /* Directory entry structure. */ 606 struct NTFS_DE { 607 union { 608 struct MFT_REF ref; // 0x00: MFT record number with this file. 609 struct { 610 __le16 data_off; // 0x00: 611 __le16 data_size; // 0x02: 612 __le32 res; // 0x04: Must be 0. 613 } view; 614 }; 615 __le16 size; // 0x08: The size of this entry. 616 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42. 617 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX. 618 __le16 res; // 0x0E: 619 620 // Here any indexed attribute can be placed. 621 // One of them is: 622 // struct ATTR_FILE_NAME AttrFileName; 623 // 624 625 // The last 8 bytes of this structure contains 626 // the VBN of subnode. 627 // !!! Note !!! 628 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES) 629 // __le64 vbn; 630 }; 631 632 static_assert(sizeof(struct NTFS_DE) == 0x10); 633 634 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn) 635 { 636 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 637 638 *v = vcn; 639 } 640 641 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn) 642 { 643 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 644 645 *v = cpu_to_le64(vcn); 646 } 647 648 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e) 649 { 650 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 651 } 652 653 static inline CLST de_get_vbn(const struct NTFS_DE *e) 654 { 655 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 656 657 return le64_to_cpu(*v); 658 } 659 660 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e) 661 { 662 return Add2Ptr(e, le16_to_cpu(e->size)); 663 } 664 665 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e) 666 { 667 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ? 668 Add2Ptr(e, sizeof(struct NTFS_DE)) : 669 NULL; 670 } 671 672 static inline bool de_is_last(const struct NTFS_DE *e) 673 { 674 return e->flags & NTFS_IE_LAST; 675 } 676 677 static inline bool de_has_vcn(const struct NTFS_DE *e) 678 { 679 return e->flags & NTFS_IE_HAS_SUBNODES; 680 } 681 682 static inline bool de_has_vcn_ex(const struct NTFS_DE *e) 683 { 684 return (e->flags & NTFS_IE_HAS_SUBNODES) && 685 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) - 686 sizeof(__le64))); 687 } 688 689 #define MAX_BYTES_PER_NAME_ENTRY \ 690 ALIGN(sizeof(struct NTFS_DE) + \ 691 offsetof(struct ATTR_FILE_NAME, name) + \ 692 NTFS_NAME_LEN * sizeof(short), 8) 693 694 struct INDEX_HDR { 695 __le32 de_off; // 0x00: The offset from the start of this structure 696 // to the first NTFS_DE. 697 __le32 used; // 0x04: The size of this structure plus all 698 // entries (quad-word aligned). 699 __le32 total; // 0x08: The allocated size of for this structure plus all entries. 700 u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory. 701 u8 res[3]; 702 703 // 704 // de_off + used <= total 705 // 706 }; 707 708 static_assert(sizeof(struct INDEX_HDR) == 0x10); 709 710 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr) 711 { 712 u32 de_off = le32_to_cpu(hdr->de_off); 713 u32 used = le32_to_cpu(hdr->used); 714 struct NTFS_DE *e; 715 u16 esize; 716 717 if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used ) 718 return NULL; 719 720 e = Add2Ptr(hdr, de_off); 721 esize = le16_to_cpu(e->size); 722 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used) 723 return NULL; 724 725 return e; 726 } 727 728 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr, 729 const struct NTFS_DE *e) 730 { 731 size_t off = PtrOffset(hdr, e); 732 u32 used = le32_to_cpu(hdr->used); 733 u16 esize; 734 735 if (off >= used) 736 return NULL; 737 738 esize = le16_to_cpu(e->size); 739 740 if (esize < sizeof(struct NTFS_DE) || 741 off + esize + sizeof(struct NTFS_DE) > used) 742 return NULL; 743 744 return Add2Ptr(e, esize); 745 } 746 747 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr) 748 { 749 return hdr->flags & 1; 750 } 751 752 struct INDEX_BUFFER { 753 struct NTFS_RECORD_HEADER rhdr; // 'INDX' 754 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster 755 struct INDEX_HDR ihdr; // 0x18: 756 }; 757 758 static_assert(sizeof(struct INDEX_BUFFER) == 0x28); 759 760 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib) 761 { 762 const struct NTFS_DE *first = hdr_first_de(&ib->ihdr); 763 764 return !first || de_is_last(first); 765 } 766 767 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib) 768 { 769 return !(ib->ihdr.flags & 1); 770 } 771 772 /* Index root structure ( 0x90 ). */ 773 enum COLLATION_RULE { 774 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0), 775 // $I30 776 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01), 777 // $SII of $Secure and $Q of Quota 778 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10), 779 // $O of Quota 780 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11), 781 // $SDH of $Secure 782 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12), 783 // $O of ObjId and "$R" for Reparse 784 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13) 785 }; 786 787 static_assert(sizeof(enum COLLATION_RULE) == 4); 788 789 // 790 struct INDEX_ROOT { 791 enum ATTR_TYPE type; // 0x00: The type of attribute to index on. 792 enum COLLATION_RULE rule; // 0x04: The rule. 793 __le32 index_block_size;// 0x08: The size of index record. 794 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index. 795 u8 res[3]; 796 struct INDEX_HDR ihdr; // 0x10: 797 }; 798 799 static_assert(sizeof(struct INDEX_ROOT) == 0x20); 800 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10); 801 802 #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001) 803 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002) 804 805 struct VOLUME_INFO { 806 __le64 res1; // 0x00 807 u8 major_ver; // 0x08: NTFS major version number (before .) 808 u8 minor_ver; // 0x09: NTFS minor version number (after .) 809 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX 810 811 }; // sizeof=0xC 812 813 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc 814 815 #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short)) 816 #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002) 817 #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004) 818 #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010) 819 #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020) 820 #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040) 821 #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080) 822 823 /* $AttrDef file entry. */ 824 struct ATTR_DEF_ENTRY { 825 __le16 name[0x40]; // 0x00: Attr name. 826 enum ATTR_TYPE type; // 0x80: struct ATTRIB type. 827 __le32 res; // 0x84: 828 enum COLLATION_RULE rule; // 0x88: 829 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above). 830 __le64 min_sz; // 0x90: Minimum attribute data size. 831 __le64 max_sz; // 0x98: Maximum attribute data size. 832 }; 833 834 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0); 835 836 /* Object ID (0x40) */ 837 struct OBJECT_ID { 838 struct GUID ObjId; // 0x00: Unique Id assigned to file. 839 struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on. 840 // which the Object Id was allocated. It never changes. 841 struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was 842 // ever assigned to this MFT Record. I.e. If the Object Id 843 // is changed for some reason, this field will reflect the 844 // original value of the Object Id. 845 struct GUID DomainId; // 0x30: Domain Id is currently unused but it is intended to be 846 // used in a network environment where the local machine is 847 // part of a Windows 2000 Domain. This may be used in a Windows 848 // 2000 Advanced Server managed domain. 849 }; 850 851 static_assert(sizeof(struct OBJECT_ID) == 0x40); 852 853 /* O Directory entry structure ( rule = 0x13 ) */ 854 struct NTFS_DE_O { 855 struct NTFS_DE de; 856 struct GUID ObjId; // 0x10: Unique Id assigned to file. 857 struct MFT_REF ref; // 0x20: MFT record number with this file. 858 struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on 859 // which the Object Id was allocated. It never changes. 860 struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was 861 // ever assigned to this MFT Record. I.e. If the Object Id 862 // is changed for some reason, this field will reflect the 863 // original value of the Object Id. 864 // This field is valid if data_size == 0x48. 865 struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended 866 // to be used in a network environment where the local 867 // machine is part of a Windows 2000 Domain. This may be 868 // used in a Windows 2000 Advanced Server managed domain. 869 }; 870 871 static_assert(sizeof(struct NTFS_DE_O) == 0x58); 872 873 #define NTFS_OBJECT_ENTRY_DATA_SIZE1 \ 874 0x38 // struct NTFS_DE_O.BirthDomainId is not used 875 #define NTFS_OBJECT_ENTRY_DATA_SIZE2 \ 876 0x48 // struct NTFS_DE_O.BirthDomainId is used 877 878 /* Q Directory entry structure ( rule = 0x11 ) */ 879 struct NTFS_DE_Q { 880 struct NTFS_DE de; 881 __le32 owner_id; // 0x10: Unique Id assigned to file 882 __le32 Version; // 0x14: 0x02 883 __le32 flags2; // 0x18: Quota flags, see above 884 __le64 BytesUsed; // 0x1C: 885 __le64 ChangeTime; // 0x24: 886 __le64 WarningLimit; // 0x28: 887 __le64 HardLimit; // 0x34: 888 __le64 ExceededTime; // 0x3C: 889 890 // SID is placed here 891 }; // sizeof() = 0x44 892 893 #define SIZEOF_NTFS_DE_Q 0x44 894 895 #define SecurityDescriptorsBlockSize 0x40000 // 256K 896 #define SecurityDescriptorMaxSize 0x20000 // 128K 897 #define Log2OfSecurityDescriptorsBlockSize 18 898 899 struct SECURITY_KEY { 900 __le32 hash; // Hash value for descriptor 901 __le32 sec_id; // Security Id (guaranteed unique) 902 }; 903 904 /* Security descriptors (the content of $Secure::SDS data stream) */ 905 struct SECURITY_HDR { 906 struct SECURITY_KEY key; // 0x00: Security Key. 907 __le64 off; // 0x08: Offset of this entry in the file. 908 __le32 size; // 0x10: Size of this entry, 8 byte aligned. 909 /* 910 * Security descriptor itself is placed here. 911 * Total size is 16 byte aligned. 912 */ 913 } __packed; 914 915 #define SIZEOF_SECURITY_HDR 0x14 916 917 /* SII Directory entry structure */ 918 struct NTFS_DE_SII { 919 struct NTFS_DE de; 920 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize 921 struct SECURITY_HDR sec_hdr; // 0x14: 922 } __packed; 923 924 #define SIZEOF_SII_DIRENTRY 0x28 925 926 /* SDH Directory entry structure */ 927 struct NTFS_DE_SDH { 928 struct NTFS_DE de; 929 struct SECURITY_KEY key; // 0x10: Key 930 struct SECURITY_HDR sec_hdr; // 0x18: Data 931 __le16 magic[2]; // 0x2C: 0x00490049 "I I" 932 }; 933 934 #define SIZEOF_SDH_DIRENTRY 0x30 935 936 struct REPARSE_KEY { 937 __le32 ReparseTag; // 0x00: Reparse Tag 938 struct MFT_REF ref; // 0x04: MFT record number with this file 939 }; // sizeof() = 0x0C 940 941 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04); 942 #define SIZEOF_REPARSE_KEY 0x0C 943 944 /* Reparse Directory entry structure */ 945 struct NTFS_DE_R { 946 struct NTFS_DE de; 947 struct REPARSE_KEY key; // 0x10: Reparse Key. 948 u32 zero; // 0x1c: 949 }; // sizeof() = 0x20 950 951 static_assert(sizeof(struct NTFS_DE_R) == 0x20); 952 953 /* CompressReparseBuffer.WofVersion */ 954 #define WOF_CURRENT_VERSION cpu_to_le32(1) 955 /* CompressReparseBuffer.WofProvider */ 956 #define WOF_PROVIDER_WIM cpu_to_le32(1) 957 /* CompressReparseBuffer.WofProvider */ 958 #define WOF_PROVIDER_SYSTEM cpu_to_le32(2) 959 /* CompressReparseBuffer.ProviderVer */ 960 #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1) 961 962 #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k 963 #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k 964 #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k 965 #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k 966 967 /* 968 * ATTR_REPARSE (0xC0) 969 * 970 * The reparse struct GUID structure is used by all 3rd party layered drivers to 971 * store data in a reparse point. For non-Microsoft tags, The struct GUID field 972 * cannot be GUID_NULL. 973 * The constraints on reparse tags are defined below. 974 * Microsoft tags can also be used with this format of the reparse point buffer. 975 */ 976 struct REPARSE_POINT { 977 __le32 ReparseTag; // 0x00: 978 __le16 ReparseDataLength;// 0x04: 979 __le16 Reserved; 980 981 struct GUID Guid; // 0x08: 982 983 // 984 // Here GenericReparseBuffer is placed 985 // 986 }; 987 988 static_assert(sizeof(struct REPARSE_POINT) == 0x18); 989 990 /* Maximum allowed size of the reparse data. */ 991 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024) 992 993 /* 994 * The value of the following constant needs to satisfy the following 995 * conditions: 996 * (1) Be at least as large as the largest of the reserved tags. 997 * (2) Be strictly smaller than all the tags in use. 998 */ 999 #define IO_REPARSE_TAG_RESERVED_RANGE 1 1000 1001 /* 1002 * The reparse tags are a ULONG. The 32 bits are laid out as follows: 1003 * 1004 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1005 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 1006 * +-+-+-+-+-----------------------+-------------------------------+ 1007 * |M|R|N|R| Reserved bits | Reparse Tag Value | 1008 * +-+-+-+-+-----------------------+-------------------------------+ 1009 * 1010 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft. 1011 * All ISVs must use a tag with a 0 in this position. 1012 * Note: If a Microsoft tag is used by non-Microsoft software, the 1013 * behavior is not defined. 1014 * 1015 * R is reserved. Must be zero for non-Microsoft tags. 1016 * 1017 * N is name surrogate. When set to 1, the file represents another named 1018 * entity in the system. 1019 * 1020 * The M and N bits are OR-able. 1021 * The following macros check for the M and N bit values: 1022 */ 1023 1024 /* 1025 * Macro to determine whether a reparse point tag corresponds to a tag 1026 * owned by Microsoft. 1027 */ 1028 #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT)) 1029 1030 /* Macro to determine whether a reparse point tag is a name surrogate. */ 1031 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE)) 1032 1033 /* 1034 * The following constant represents the bits that are valid to use in 1035 * reparse tags. 1036 */ 1037 #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF 1038 1039 /* 1040 * Macro to determine whether a reparse tag is a valid tag. 1041 */ 1042 #define IsReparseTagValid(_tag) \ 1043 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \ 1044 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE)) 1045 1046 /* Microsoft tags for reparse points. */ 1047 1048 enum IO_REPARSE_TAG { 1049 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0), 1050 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000), 1051 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000), 1052 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003), 1053 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C), 1054 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004), 1055 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007), 1056 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013), 1057 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017), 1058 1059 /* 1060 * The reparse tag 0x80000008 is reserved for Microsoft internal use. 1061 * May be published in the future. 1062 */ 1063 1064 /* Microsoft reparse tag reserved for DFS */ 1065 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A), 1066 1067 /* Microsoft reparse tag reserved for the file system filter manager. */ 1068 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B), 1069 1070 /* Non-Microsoft tags for reparse points */ 1071 1072 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */ 1073 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009), 1074 1075 /* Tag allocated to ARKIVIO. */ 1076 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C), 1077 1078 /* Tag allocated to SOLUTIONSOFT. */ 1079 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D), 1080 1081 /* Tag allocated to COMMVAULT. */ 1082 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E), 1083 1084 /* OneDrive?? */ 1085 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A), 1086 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A), 1087 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A), 1088 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A), 1089 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A), 1090 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A), 1091 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A), 1092 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A), 1093 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A), 1094 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A), 1095 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A), 1096 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A), 1097 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A), 1098 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A), 1099 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A), 1100 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A), 1101 1102 }; 1103 1104 #define SYMLINK_FLAG_RELATIVE 1 1105 1106 /* Microsoft reparse buffer. (see DDK for details) */ 1107 struct REPARSE_DATA_BUFFER { 1108 __le32 ReparseTag; // 0x00: 1109 __le16 ReparseDataLength; // 0x04: 1110 __le16 Reserved; 1111 1112 union { 1113 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */ 1114 struct { 1115 __le16 SubstituteNameOffset; // 0x08 1116 __le16 SubstituteNameLength; // 0x0A 1117 __le16 PrintNameOffset; // 0x0C 1118 __le16 PrintNameLength; // 0x0E 1119 __le16 PathBuffer[]; // 0x10 1120 } MountPointReparseBuffer; 1121 1122 /* 1123 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK) 1124 * https://msdn.microsoft.com/en-us/library/cc232006.aspx 1125 */ 1126 struct { 1127 __le16 SubstituteNameOffset; // 0x08 1128 __le16 SubstituteNameLength; // 0x0A 1129 __le16 PrintNameOffset; // 0x0C 1130 __le16 PrintNameLength; // 0x0E 1131 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE 1132 __le32 Flags; // 0x10 1133 __le16 PathBuffer[]; // 0x14 1134 } SymbolicLinkReparseBuffer; 1135 1136 /* If ReparseTag == 0x80000017U */ 1137 struct { 1138 __le32 WofVersion; // 0x08 == 1 1139 /* 1140 * 1 - WIM backing provider ("WIMBoot"), 1141 * 2 - System compressed file provider 1142 */ 1143 __le32 WofProvider; // 0x0C: 1144 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1 1145 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX 1146 } CompressReparseBuffer; 1147 1148 struct { 1149 u8 DataBuffer[1]; // 0x08: 1150 } GenericReparseBuffer; 1151 }; 1152 }; 1153 1154 /* ATTR_EA_INFO (0xD0) */ 1155 1156 #define FILE_NEED_EA 0x80 // See ntifs.h 1157 /* 1158 *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be 1159 * interpreted without understanding the associated extended attributes. 1160 */ 1161 struct EA_INFO { 1162 __le16 size_pack; // 0x00: Size of buffer to hold in packed form. 1163 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set. 1164 __le32 size; // 0x04: Size of buffer to hold in unpacked form. 1165 }; 1166 1167 static_assert(sizeof(struct EA_INFO) == 8); 1168 1169 /* ATTR_EA (0xE0) */ 1170 struct EA_FULL { 1171 __le32 size; // 0x00: (not in packed) 1172 u8 flags; // 0x04: 1173 u8 name_len; // 0x05: 1174 __le16 elength; // 0x06: 1175 u8 name[]; // 0x08: 1176 }; 1177 1178 static_assert(offsetof(struct EA_FULL, name) == 8); 1179 1180 #define ACL_REVISION 2 1181 #define ACL_REVISION_DS 4 1182 1183 #define SE_SELF_RELATIVE cpu_to_le16(0x8000) 1184 1185 struct SECURITY_DESCRIPTOR_RELATIVE { 1186 u8 Revision; 1187 u8 Sbz1; 1188 __le16 Control; 1189 __le32 Owner; 1190 __le32 Group; 1191 __le32 Sacl; 1192 __le32 Dacl; 1193 }; 1194 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14); 1195 1196 struct ACE_HEADER { 1197 u8 AceType; 1198 u8 AceFlags; 1199 __le16 AceSize; 1200 }; 1201 static_assert(sizeof(struct ACE_HEADER) == 4); 1202 1203 struct ACL { 1204 u8 AclRevision; 1205 u8 Sbz1; 1206 __le16 AclSize; 1207 __le16 AceCount; 1208 __le16 Sbz2; 1209 }; 1210 static_assert(sizeof(struct ACL) == 8); 1211 1212 struct SID { 1213 u8 Revision; 1214 u8 SubAuthorityCount; 1215 u8 IdentifierAuthority[6]; 1216 __le32 SubAuthority[]; 1217 }; 1218 static_assert(offsetof(struct SID, SubAuthority) == 8); 1219 1220 #endif /* _LINUX_NTFS3_NTFS_H */ 1221 // clang-format on 1222