xref: /linux/fs/ntfs3/ntfs.h (revision c27dfca4555bf74dd7dd7161d8ef2790ec1c7283)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  * on-disk ntfs structs
7  */
8 
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12 
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include "debug.h"
21 
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23 
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26 
27 #define NTFS_NAME_LEN 255
28 
29 /*
30  * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31  * xfstest generic/041 creates 3003 hardlinks.
32  */
33 #define NTFS_LINK_MAX 4000
34 
35 /*
36  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37  * Logical and virtual cluster number if needed, may be
38  * redefined to use 64 bit value.
39  */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41 
42 #define NTFS_LZNT_MAX_CLUSTER	4096
43 #define NTFS_LZNT_CUNIT		4
44 #define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
45 
46 struct GUID {
47 	__le32 Data1;
48 	__le16 Data2;
49 	__le16 Data3;
50 	u8 Data4[8];
51 };
52 
53 /*
54  * This struct repeats layout of ATTR_FILE_NAME
55  * at offset 0x40.
56  * It used to store global constants NAME_MFT/NAME_MIRROR...
57  * most constant names are shorter than 10.
58  */
59 struct cpu_str {
60 	u8 len;
61 	u8 unused;
62 	u16 name[10];
63 };
64 
65 struct le_str {
66 	u8 len;
67 	u8 unused;
68 	__le16 name[];
69 };
70 
71 static_assert(SECTOR_SHIFT == 9);
72 
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79 
80 #define SPARSE_LCN64   ((u64)-1)
81 #define SPARSE_LCN     ((CLST)-1)
82 #define RESIDENT_LCN   ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84 
85 #define COMPRESSION_UNIT     4
86 #define COMPRESS_MAX_CLUSTER 0x1000
87 
88 enum RECORD_NUM {
89 	MFT_REC_MFT		= 0,
90 	MFT_REC_MIRR		= 1,
91 	MFT_REC_LOG		= 2,
92 	MFT_REC_VOL		= 3,
93 	MFT_REC_ATTR		= 4,
94 	MFT_REC_ROOT		= 5,
95 	MFT_REC_BITMAP		= 6,
96 	MFT_REC_BOOT		= 7,
97 	MFT_REC_BADCLUST	= 8,
98 	MFT_REC_SECURE		= 9,
99 	MFT_REC_UPCASE		= 10,
100 	MFT_REC_EXTEND		= 11,
101 	MFT_REC_RESERVED	= 12,
102 	MFT_REC_FREE		= 16,
103 	MFT_REC_USER		= 24,
104 };
105 
106 enum ATTR_TYPE {
107 	ATTR_ZERO		= cpu_to_le32(0x00),
108 	ATTR_STD		= cpu_to_le32(0x10),
109 	ATTR_LIST		= cpu_to_le32(0x20),
110 	ATTR_NAME		= cpu_to_le32(0x30),
111 	ATTR_ID			= cpu_to_le32(0x40),
112 	ATTR_SECURE		= cpu_to_le32(0x50),
113 	ATTR_LABEL		= cpu_to_le32(0x60),
114 	ATTR_VOL_INFO		= cpu_to_le32(0x70),
115 	ATTR_DATA		= cpu_to_le32(0x80),
116 	ATTR_ROOT		= cpu_to_le32(0x90),
117 	ATTR_ALLOC		= cpu_to_le32(0xA0),
118 	ATTR_BITMAP		= cpu_to_le32(0xB0),
119 	ATTR_REPARSE		= cpu_to_le32(0xC0),
120 	ATTR_EA_INFO		= cpu_to_le32(0xD0),
121 	ATTR_EA			= cpu_to_le32(0xE0),
122 	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
123 	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
124 	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
125 };
126 
127 static_assert(sizeof(enum ATTR_TYPE) == 4);
128 
129 enum FILE_ATTRIBUTE {
130 	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
131 	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
132 	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
133 	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
134 	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
135 	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
136 	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
137 	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
138 	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
139 	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
140 	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
141 	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
142 	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
143 	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
144 	FILE_ATTRIBUTE_INDEX		= cpu_to_le32(0x20000000)
145 };
146 
147 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
148 
149 extern const struct cpu_str NAME_MFT;
150 extern const struct cpu_str NAME_MIRROR;
151 extern const struct cpu_str NAME_LOGFILE;
152 extern const struct cpu_str NAME_VOLUME;
153 extern const struct cpu_str NAME_ATTRDEF;
154 extern const struct cpu_str NAME_ROOT;
155 extern const struct cpu_str NAME_BITMAP;
156 extern const struct cpu_str NAME_BOOT;
157 extern const struct cpu_str NAME_BADCLUS;
158 extern const struct cpu_str NAME_QUOTA;
159 extern const struct cpu_str NAME_SECURE;
160 extern const struct cpu_str NAME_UPCASE;
161 extern const struct cpu_str NAME_EXTEND;
162 extern const struct cpu_str NAME_OBJID;
163 extern const struct cpu_str NAME_REPARSE;
164 extern const struct cpu_str NAME_USNJRNL;
165 
166 extern const __le16 I30_NAME[4];
167 extern const __le16 SII_NAME[4];
168 extern const __le16 SDH_NAME[4];
169 extern const __le16 SO_NAME[2];
170 extern const __le16 SQ_NAME[2];
171 extern const __le16 SR_NAME[2];
172 
173 extern const __le16 BAD_NAME[4];
174 extern const __le16 SDS_NAME[4];
175 extern const __le16 WOF_NAME[17];	/* WofCompressedData */
176 
177 /* MFT record number structure. */
178 struct MFT_REF {
179 	__le32 low;	// The low part of the number.
180 	__le16 high;	// The high part of the number.
181 	__le16 seq;	// The sequence number of MFT record.
182 };
183 
184 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
185 
186 static inline CLST ino_get(const struct MFT_REF *ref)
187 {
188 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
189 	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
190 #else
191 	return le32_to_cpu(ref->low);
192 #endif
193 }
194 
195 struct NTFS_BOOT {
196 	u8 jump_code[3];	// 0x00: Jump to boot code.
197 	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
198 
199 	// NOTE: This member is not aligned(!)
200 	// bytes_per_sector[0] must be 0.
201 	// bytes_per_sector[1] must be multiplied by 256.
202 	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
203 
204 	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
205 	u8 unused1[7];
206 	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
207 	u8 unused2[2];
208 	__le16 sct_per_track;	// 0x18: number of sectors per track.
209 	__le16 heads;		// 0x1A: number of heads per cylinder.
210 	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
211 	u8 unused3[4];
212 	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
213 	u8 unused4;
214 	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
215 	u8 unused5;
216 	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
217 	__le64 mft_clst;	// 0x30: First cluster of $MFT
218 	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
219 	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
220 	u8 unused6[3];
221 	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
222 	u8 unused7[3];
223 	__le64 serial_num;	// 0x48: Volume serial number
224 	__le32 check_sum;	// 0x50: Simple additive checksum of all
225 				// of the u32's which precede the 'check_sum'.
226 
227 	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
228 	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
229 };
230 
231 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
232 
233 enum NTFS_SIGNATURE {
234 	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
235 	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
236 	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
237 	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
238 	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
239 	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
240 	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
241 	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
242 };
243 
244 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
245 
246 /* MFT Record header structure. */
247 struct NTFS_RECORD_HEADER {
248 	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
249 	enum NTFS_SIGNATURE sign; // 0x00:
250 	__le16 fix_off;		// 0x04:
251 	__le16 fix_num;		// 0x06:
252 	__le64 lsn;		// 0x08: Log file sequence number,
253 };
254 
255 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
256 
257 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
258 {
259 	return hdr->sign == NTFS_BAAD_SIGNATURE;
260 }
261 
262 /* Possible bits in struct MFT_REC.flags. */
263 enum RECORD_FLAG {
264 	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
265 	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
266 	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
267 	RECORD_FLAG_INDEX	= cpu_to_le16(0x0008),
268 };
269 
270 /* MFT Record structure. */
271 struct MFT_REC {
272 	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
273 
274 	__le16 seq;		// 0x10: Sequence number for this record.
275 	__le16 hard_links;	// 0x12: The number of hard links to record.
276 	__le16 attr_off;	// 0x14: Offset to attributes.
277 	__le16 flags;		// 0x16: See RECORD_FLAG.
278 	__le32 used;		// 0x18: The size of used part.
279 	__le32 total;		// 0x1C: Total record size.
280 
281 	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
282 	__le16 next_attr_id;	// 0x28: The next attribute Id.
283 
284 	__le16 res;		// 0x2A: High part of MFT record?
285 	__le32 mft_record;	// 0x2C: Current MFT record number.
286 	__le16 fixups[];	// 0x30:
287 };
288 
289 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
290 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
291 /*
292  * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
293  * to format new mft records with bigger header (as current ntfs.sys does)
294  *
295  * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
296  * to format new mft records with smaller header (as old ntfs.sys did)
297  * Both variants are valid.
298  */
299 #define MFTRECORD_FIXUP_OFFSET  MFTRECORD_FIXUP_OFFSET_1
300 
301 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
302 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
303 
304 static inline bool is_rec_base(const struct MFT_REC *rec)
305 {
306 	const struct MFT_REF *r = &rec->parent_ref;
307 
308 	return !r->low && !r->high && !r->seq;
309 }
310 
311 static inline bool is_mft_rec5(const struct MFT_REC *rec)
312 {
313 	return le16_to_cpu(rec->rhdr.fix_off) >=
314 	       offsetof(struct MFT_REC, fixups);
315 }
316 
317 static inline bool is_rec_inuse(const struct MFT_REC *rec)
318 {
319 	return rec->flags & RECORD_FLAG_IN_USE;
320 }
321 
322 static inline bool clear_rec_inuse(struct MFT_REC *rec)
323 {
324 	return rec->flags &= ~RECORD_FLAG_IN_USE;
325 }
326 
327 /* Possible values of ATTR_RESIDENT.flags */
328 #define RESIDENT_FLAG_INDEXED 0x01
329 
330 struct ATTR_RESIDENT {
331 	__le32 data_size;	// 0x10: The size of data.
332 	__le16 data_off;	// 0x14: Offset to data.
333 	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
334 	u8 res;			// 0x17:
335 }; // sizeof() = 0x18
336 
337 struct ATTR_NONRESIDENT {
338 	__le64 svcn;		// 0x10: Starting VCN of this segment.
339 	__le64 evcn;		// 0x18: End VCN of this segment.
340 	__le16 run_off;		// 0x20: Offset to packed runs.
341 	// Unit of Compression size for this stream, expressed
342 	// as a log of the cluster size.
343 	//
344 	// 0 means file is not compressed
345 	// 1, 2, 3, and 4 are potentially legal values if the
346 	// stream is compressed, however the implementation
347 	// may only choose to use 4, or possibly 3.
348         // Note that 4 means cluster size time 16.
349         // If convenient the implementation may wish to accept a
350 	// reasonable range of legal values here (1-5?),
351 	// even if the implementation only generates
352 	// a smaller set of values itself.
353 	u8 c_unit;		// 0x22:
354 	u8 res1[5];		// 0x23:
355 	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
356 				// (multiple of cluster size)
357 	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
358 	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
359 	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
360 				// (present only for the first segment (0 == vcn)
361 				// of compressed attribute)
362 
363 }; // sizeof()=0x40 or 0x48 (if compressed)
364 
365 /* Possible values of ATTRIB.flags: */
366 #define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
367 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
368 #define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
369 #define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
370 
371 struct ATTRIB {
372 	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
373 	__le32 size;		// 0x04: The size of this attribute.
374 	u8 non_res;		// 0x08: Is this attribute non-resident?
375 	u8 name_len;		// 0x09: This attribute name length.
376 	__le16 name_off;	// 0x0A: Offset to the attribute name.
377 	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
378 	__le16 id;		// 0x0E: Unique id (per record).
379 
380 	union {
381 		struct ATTR_RESIDENT res;     // 0x10
382 		struct ATTR_NONRESIDENT nres; // 0x10
383 	};
384 };
385 
386 /* Define attribute sizes. */
387 #define SIZEOF_RESIDENT			0x18
388 #define SIZEOF_NONRESIDENT_EX		0x48
389 #define SIZEOF_NONRESIDENT		0x40
390 
391 #define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
392 #define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
393 #define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
394 
395 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
396 {
397 	return attr->non_res ? ((attr->flags &
398 				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
399 					le64_to_cpu(attr->nres.total_size) :
400 					le64_to_cpu(attr->nres.alloc_size))
401 			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
402 }
403 
404 static inline u64 attr_size(const struct ATTRIB *attr)
405 {
406 	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
407 			       le32_to_cpu(attr->res.data_size);
408 }
409 
410 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
411 {
412 	return attr->flags & ATTR_FLAG_ENCRYPTED;
413 }
414 
415 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
416 {
417 	return attr->flags & ATTR_FLAG_SPARSED;
418 }
419 
420 static inline bool is_attr_compressed(const struct ATTRIB *attr)
421 {
422 	return attr->flags & ATTR_FLAG_COMPRESSED;
423 }
424 
425 static inline bool is_attr_ext(const struct ATTRIB *attr)
426 {
427 	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
428 }
429 
430 static inline bool is_attr_indexed(const struct ATTRIB *attr)
431 {
432 	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
433 }
434 
435 static inline __le16 const *attr_name(const struct ATTRIB *attr)
436 {
437 	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
438 }
439 
440 static inline u64 attr_svcn(const struct ATTRIB *attr)
441 {
442 	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
443 }
444 
445 static_assert(sizeof(struct ATTRIB) == 0x48);
446 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
447 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
448 
449 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
450 {
451 	u32 asize, rsize;
452 	u16 off;
453 
454 	if (attr->non_res)
455 		return NULL;
456 
457 	asize = le32_to_cpu(attr->size);
458 	off = le16_to_cpu(attr->res.data_off);
459 
460 	if (asize < datasize + off)
461 		return NULL;
462 
463 	rsize = le32_to_cpu(attr->res.data_size);
464 	if (rsize < datasize)
465 		return NULL;
466 
467 	return Add2Ptr(attr, off);
468 }
469 
470 static inline void *resident_data(const struct ATTRIB *attr)
471 {
472 	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
473 }
474 
475 static inline void *attr_run(const struct ATTRIB *attr)
476 {
477 	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
478 }
479 
480 /* Standard information attribute (0x10). */
481 struct ATTR_STD_INFO {
482 	__le64 cr_time;		// 0x00: File creation file.
483 	__le64 m_time;		// 0x08: File modification time.
484 	__le64 c_time;		// 0x10: Last time any attribute was modified.
485 	__le64 a_time;		// 0x18: File last access time.
486 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
487 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
488 	__le32 ver_num;		// 0x28: Version Number.
489 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
490 };
491 
492 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
493 
494 #define SECURITY_ID_INVALID 0x00000000
495 #define SECURITY_ID_FIRST 0x00000100
496 
497 struct ATTR_STD_INFO5 {
498 	__le64 cr_time;		// 0x00: File creation file.
499 	__le64 m_time;		// 0x08: File modification time.
500 	__le64 c_time;		// 0x10: Last time any attribute was modified.
501 	__le64 a_time;		// 0x18: File last access time.
502 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
503 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
504 	__le32 ver_num;		// 0x28: Version Number.
505 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
506 
507 	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
508 	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
509 	__le64 quota_charge;	// 0x38:
510 	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
511 				// index into the file $UsnJrnl. If zero, the USN Journal is
512 				// disabled.
513 };
514 
515 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
516 
517 /* Attribute list entry structure (0x20) */
518 struct ATTR_LIST_ENTRY {
519 	enum ATTR_TYPE type;	// 0x00: The type of attribute.
520 	__le16 size;		// 0x04: The size of this record.
521 	u8 name_len;		// 0x06: The length of attribute name.
522 	u8 name_off;		// 0x07: The offset to attribute name.
523 	__le64 vcn;		// 0x08: Starting VCN of this attribute.
524 	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
525 	__le16 id;		// 0x18: struct ATTRIB ID.
526 	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
527 
528 }; // sizeof(0x20)
529 
530 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
531 
532 static inline u32 le_size(u8 name_len)
533 {
534 	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
535 		     name_len * sizeof(short), 8);
536 }
537 
538 /* Returns 0 if 'attr' has the same type and name. */
539 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
540 			 const struct ATTRIB *attr)
541 {
542 	return le->type != attr->type || le->name_len != attr->name_len ||
543 	       (!le->name_len &&
544 		memcmp(Add2Ptr(le, le->name_off),
545 		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
546 		       le->name_len * sizeof(short)));
547 }
548 
549 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
550 {
551 	return Add2Ptr(le, le->name_off);
552 }
553 
554 /* File name types (the field type in struct ATTR_FILE_NAME). */
555 #define FILE_NAME_POSIX   0
556 #define FILE_NAME_UNICODE 1
557 #define FILE_NAME_DOS	  2
558 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
559 
560 /* Filename attribute structure (0x30). */
561 struct NTFS_DUP_INFO {
562 	__le64 cr_time;		// 0x00: File creation file.
563 	__le64 m_time;		// 0x08: File modification time.
564 	__le64 c_time;		// 0x10: Last time any attribute was modified.
565 	__le64 a_time;		// 0x18: File last access time.
566 	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
567 	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
568 	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
569 	__le16 ea_size;		// 0x34: Packed EAs.
570 	__le16 reparse;		// 0x36: Used by Reparse.
571 
572 }; // 0x38
573 
574 struct ATTR_FILE_NAME {
575 	struct MFT_REF home;	// 0x00: MFT record for directory.
576 	struct NTFS_DUP_INFO dup;// 0x08:
577 	u8 name_len;		// 0x40: File name length in words.
578 	u8 type;		// 0x41: File name type.
579 	__le16 name[];		// 0x42: File name.
580 };
581 
582 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
583 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
584 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
585 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
586 
587 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
588 {
589 	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
590 }
591 
592 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
593 {
594 	/* Don't return struct_size(fname, name, fname->name_len); */
595 	return offsetof(struct ATTR_FILE_NAME, name) +
596 	       fname->name_len * sizeof(short);
597 }
598 
599 static inline u8 paired_name(u8 type)
600 {
601 	if (type == FILE_NAME_UNICODE)
602 		return FILE_NAME_DOS;
603 	if (type == FILE_NAME_DOS)
604 		return FILE_NAME_UNICODE;
605 	return FILE_NAME_POSIX;
606 }
607 
608 /* Index entry defines ( the field flags in NtfsDirEntry ). */
609 #define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
610 #define NTFS_IE_LAST		cpu_to_le16(2)
611 
612 /* Directory entry structure. */
613 struct NTFS_DE {
614 	union {
615 		struct MFT_REF ref; // 0x00: MFT record number with this file.
616 		struct {
617 			__le16 data_off;  // 0x00:
618 			__le16 data_size; // 0x02:
619 			__le32 res;	  // 0x04: Must be 0.
620 		} view;
621 	};
622 	__le16 size;		// 0x08: The size of this entry.
623 	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
624 	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
625 	__le16 res;		// 0x0E:
626 
627 	// Here any indexed attribute can be placed.
628 	// One of them is:
629 	// struct ATTR_FILE_NAME AttrFileName;
630 	//
631 
632 	// The last 8 bytes of this structure contains
633 	// the VBN of subnode.
634 	// !!! Note !!!
635 	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
636 	// __le64 vbn;
637 };
638 
639 static_assert(sizeof(struct NTFS_DE) == 0x10);
640 
641 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
642 {
643 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
644 
645 	*v = vcn;
646 }
647 
648 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
649 {
650 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
651 
652 	*v = cpu_to_le64(vcn);
653 }
654 
655 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
656 {
657 	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
658 }
659 
660 static inline CLST de_get_vbn(const struct NTFS_DE *e)
661 {
662 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
663 
664 	return le64_to_cpu(*v);
665 }
666 
667 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
668 {
669 	return Add2Ptr(e, le16_to_cpu(e->size));
670 }
671 
672 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
673 {
674 	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
675 		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
676 		       NULL;
677 }
678 
679 static inline bool de_is_last(const struct NTFS_DE *e)
680 {
681 	return e->flags & NTFS_IE_LAST;
682 }
683 
684 static inline bool de_has_vcn(const struct NTFS_DE *e)
685 {
686 	return e->flags & NTFS_IE_HAS_SUBNODES;
687 }
688 
689 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
690 {
691 	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
692 	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
693 							sizeof(__le64)));
694 }
695 
696 #define MAX_BYTES_PER_NAME_ENTRY \
697 	ALIGN(sizeof(struct NTFS_DE) + \
698 	      offsetof(struct ATTR_FILE_NAME, name) + \
699 	      NTFS_NAME_LEN * sizeof(short), 8)
700 
701 struct INDEX_HDR {
702 	__le32 de_off;	// 0x00: The offset from the start of this structure
703 			// to the first NTFS_DE.
704 	__le32 used;	// 0x04: The size of this structure plus all
705 			// entries (quad-word aligned).
706 	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
707 	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
708 	u8 res[3];
709 
710 	//
711 	// de_off + used <= total
712 	//
713 };
714 
715 static_assert(sizeof(struct INDEX_HDR) == 0x10);
716 
717 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
718 {
719 	u32 de_off = le32_to_cpu(hdr->de_off);
720 	u32 used = le32_to_cpu(hdr->used);
721 	struct NTFS_DE *e;
722 	u16 esize;
723 
724 	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
725 		return NULL;
726 
727 	e = Add2Ptr(hdr, de_off);
728 	esize = le16_to_cpu(e->size);
729 	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
730 		return NULL;
731 
732 	return e;
733 }
734 
735 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
736 					  const struct NTFS_DE *e)
737 {
738 	size_t off = PtrOffset(hdr, e);
739 	u32 used = le32_to_cpu(hdr->used);
740 	u16 esize;
741 
742 	if (off >= used)
743 		return NULL;
744 
745 	esize = le16_to_cpu(e->size);
746 
747 	if (esize < sizeof(struct NTFS_DE) ||
748 	    off + esize + sizeof(struct NTFS_DE) > used)
749 		return NULL;
750 
751 	return Add2Ptr(e, esize);
752 }
753 
754 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
755 {
756 	return hdr->flags & 1;
757 }
758 
759 struct INDEX_BUFFER {
760 	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
761 	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
762 	struct INDEX_HDR ihdr; // 0x18:
763 };
764 
765 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
766 
767 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
768 {
769 	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
770 
771 	return !first || de_is_last(first);
772 }
773 
774 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
775 {
776 	return !(ib->ihdr.flags & 1);
777 }
778 
779 /* Index root structure ( 0x90 ). */
780 enum COLLATION_RULE {
781 	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
782 	// $I30
783 	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
784 	// $SII of $Secure and $Q of Quota
785 	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
786 	// $O of Quota
787 	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
788 	// $SDH of $Secure
789 	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
790 	// $O of ObjId and "$R" for Reparse
791 	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
792 };
793 
794 static_assert(sizeof(enum COLLATION_RULE) == 4);
795 
796 //
797 struct INDEX_ROOT {
798 	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
799 	enum COLLATION_RULE rule; // 0x04: The rule.
800 	__le32 index_block_size;// 0x08: The size of index record.
801 	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
802 	u8 res[3];
803 	struct INDEX_HDR ihdr;	// 0x10:
804 };
805 
806 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
807 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
808 
809 #define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
810 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
811 
812 struct VOLUME_INFO {
813 	__le64 res1;	// 0x00
814 	u8 major_ver;	// 0x08: NTFS major version number (before .)
815 	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
816 	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
817 
818 }; // sizeof=0xC
819 
820 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
821 
822 #define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
823 #define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
824 #define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
825 #define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
826 #define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
827 #define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
828 #define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
829 
830 /* $AttrDef file entry. */
831 struct ATTR_DEF_ENTRY {
832 	__le16 name[0x40];	// 0x00: Attr name.
833 	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
834 	__le32 res;		// 0x84:
835 	enum COLLATION_RULE rule; // 0x88:
836 	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
837 	__le64 min_sz;		// 0x90: Minimum attribute data size.
838 	__le64 max_sz;		// 0x98: Maximum attribute data size.
839 };
840 
841 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
842 
843 /* Object ID (0x40) */
844 struct OBJECT_ID {
845 	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
846 
847 	// Birth Volume Id is the Object Id of the Volume on.
848 	// which the Object Id was allocated. It never changes.
849 	struct GUID BirthVolumeId; //0x10:
850 
851 	// Birth Object Id is the first Object Id that was
852 	// ever assigned to this MFT Record. I.e. If the Object Id
853 	// is changed for some reason, this field will reflect the
854 	// original value of the Object Id.
855 	struct GUID BirthObjectId; // 0x20:
856 
857 	// Domain Id is currently unused but it is intended to be
858 	// used in a network environment where the local machine is
859 	// part of a Windows 2000 Domain. This may be used in a Windows
860 	// 2000 Advanced Server managed domain.
861 	struct GUID DomainId;	// 0x30:
862 };
863 
864 static_assert(sizeof(struct OBJECT_ID) == 0x40);
865 
866 /* O Directory entry structure ( rule = 0x13 ) */
867 struct NTFS_DE_O {
868 	struct NTFS_DE de;
869 	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
870 	struct MFT_REF ref;	// 0x20: MFT record number with this file.
871 
872 	// Birth Volume Id is the Object Id of the Volume on
873 	// which the Object Id was allocated. It never changes.
874 	struct GUID BirthVolumeId; // 0x28:
875 
876 	// Birth Object Id is the first Object Id that was
877 	// ever assigned to this MFT Record. I.e. If the Object Id
878 	// is changed for some reason, this field will reflect the
879 	// original value of the Object Id.
880 	// This field is valid if data_size == 0x48.
881 	struct GUID BirthObjectId; // 0x38:
882 
883 	// Domain Id is currently unused but it is intended
884 	// to be used in a network environment where the local
885 	// machine is part of a Windows 2000 Domain. This may be
886 	// used in a Windows 2000 Advanced Server managed domain.
887 	struct GUID BirthDomainId; // 0x48:
888 };
889 
890 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
891 
892 /* Q Directory entry structure ( rule = 0x11 ) */
893 struct NTFS_DE_Q {
894 	struct NTFS_DE de;
895 	__le32 owner_id;	// 0x10: Unique Id assigned to file
896 
897 	/* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
898 	__le32 Version;		// 0x14: 0x02
899 	__le32 Flags;		// 0x18: Quota flags, see above
900 	__le64 BytesUsed;	// 0x1C:
901 	__le64 ChangeTime;	// 0x24:
902 	__le64 WarningLimit;	// 0x28:
903 	__le64 HardLimit;	// 0x34:
904 	__le64 ExceededTime;	// 0x3C:
905 
906 	// SID is placed here
907 }__packed; // sizeof() = 0x44
908 
909 static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
910 
911 #define SecurityDescriptorsBlockSize 0x40000 // 256K
912 #define SecurityDescriptorMaxSize    0x20000 // 128K
913 #define Log2OfSecurityDescriptorsBlockSize 18
914 
915 struct SECURITY_KEY {
916 	__le32 hash; //  Hash value for descriptor
917 	__le32 sec_id; //  Security Id (guaranteed unique)
918 };
919 
920 /* Security descriptors (the content of $Secure::SDS data stream) */
921 struct SECURITY_HDR {
922 	struct SECURITY_KEY key;	// 0x00: Security Key.
923 	__le64 off;			// 0x08: Offset of this entry in the file.
924 	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
925 	/*
926 	 * Security descriptor itself is placed here.
927 	 * Total size is 16 byte aligned.
928 	 */
929 } __packed;
930 
931 static_assert(sizeof(struct SECURITY_HDR) == 0x14);
932 
933 /* SII Directory entry structure */
934 struct NTFS_DE_SII {
935 	struct NTFS_DE de;
936 	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
937 	struct SECURITY_HDR sec_hdr;	// 0x14:
938 } __packed;
939 
940 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
941 static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
942 
943 /* SDH Directory entry structure */
944 struct NTFS_DE_SDH {
945 	struct NTFS_DE de;
946 	struct SECURITY_KEY key;	// 0x10: Key
947 	struct SECURITY_HDR sec_hdr;	// 0x18: Data
948 	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
949 };
950 
951 #define SIZEOF_SDH_DIRENTRY 0x30
952 
953 struct REPARSE_KEY {
954 	__le32 ReparseTag;		// 0x00: Reparse Tag
955 	struct MFT_REF ref;		// 0x04: MFT record number with this file
956 }; // sizeof() = 0x0C
957 
958 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
959 #define SIZEOF_REPARSE_KEY 0x0C
960 
961 /* Reparse Directory entry structure */
962 struct NTFS_DE_R {
963 	struct NTFS_DE de;
964 	struct REPARSE_KEY key;		// 0x10: Reparse Key.
965 	u32 zero;			// 0x1c:
966 }; // sizeof() = 0x20
967 
968 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
969 
970 /* CompressReparseBuffer.WofVersion */
971 #define WOF_CURRENT_VERSION		cpu_to_le32(1)
972 /* CompressReparseBuffer.WofProvider */
973 #define WOF_PROVIDER_WIM		cpu_to_le32(1)
974 /* CompressReparseBuffer.WofProvider */
975 #define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
976 /* CompressReparseBuffer.ProviderVer */
977 #define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
978 
979 #define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
980 #define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
981 #define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
982 #define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
983 
984 /*
985  * ATTR_REPARSE (0xC0)
986  *
987  * The reparse struct GUID structure is used by all 3rd party layered drivers to
988  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
989  * cannot be GUID_NULL.
990  * The constraints on reparse tags are defined below.
991  * Microsoft tags can also be used with this format of the reparse point buffer.
992  */
993 struct REPARSE_POINT {
994 	__le32 ReparseTag;	// 0x00:
995 	__le16 ReparseDataLength;// 0x04:
996 	__le16 Reserved;
997 
998 	struct GUID Guid;	// 0x08:
999 
1000 	//
1001 	// Here GenericReparseBuffer is placed
1002 	//
1003 };
1004 
1005 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1006 
1007 /* Maximum allowed size of the reparse data. */
1008 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
1009 
1010 /*
1011  * The value of the following constant needs to satisfy the following
1012  * conditions:
1013  *  (1) Be at least as large as the largest of the reserved tags.
1014  *  (2) Be strictly smaller than all the tags in use.
1015  */
1016 #define IO_REPARSE_TAG_RESERVED_RANGE		1
1017 
1018 /*
1019  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1020  *
1021  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1022  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1023  *  +-+-+-+-+-----------------------+-------------------------------+
1024  *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1025  *  +-+-+-+-+-----------------------+-------------------------------+
1026  *
1027  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1028  *   All ISVs must use a tag with a 0 in this position.
1029  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1030  *   behavior is not defined.
1031  *
1032  * R is reserved.  Must be zero for non-Microsoft tags.
1033  *
1034  * N is name surrogate. When set to 1, the file represents another named
1035  *   entity in the system.
1036  *
1037  * The M and N bits are OR-able.
1038  * The following macros check for the M and N bit values:
1039  */
1040 
1041 /*
1042  * Macro to determine whether a reparse point tag corresponds to a tag
1043  * owned by Microsoft.
1044  */
1045 #define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1046 
1047 /* Macro to determine whether a reparse point tag is a name surrogate. */
1048 #define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1049 
1050 /*
1051  * The following constant represents the bits that are valid to use in
1052  * reparse tags.
1053  */
1054 #define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1055 
1056 /*
1057  * Macro to determine whether a reparse tag is a valid tag.
1058  */
1059 #define IsReparseTagValid(_tag)						       \
1060 	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1061 	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1062 
1063 /* Microsoft tags for reparse points. */
1064 
1065 enum IO_REPARSE_TAG {
1066 	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1067 	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1068 	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1069 	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1070 	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1071 	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1072 	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1073 	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1074 	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1075 
1076 	/*
1077 	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1078 	 * May be published in the future.
1079 	 */
1080 
1081 	/* Microsoft reparse tag reserved for DFS */
1082 	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1083 
1084 	/* Microsoft reparse tag reserved for the file system filter manager. */
1085 	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1086 
1087 	/* Non-Microsoft tags for reparse points */
1088 
1089 	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1090 	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1091 
1092 	/* Tag allocated to ARKIVIO. */
1093 	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1094 
1095 	/* Tag allocated to SOLUTIONSOFT. */
1096 	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1097 
1098 	/* Tag allocated to COMMVAULT. */
1099 	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1100 
1101 	/* OneDrive?? */
1102 	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1103 	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1104 	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1105 	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1106 	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1107 	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1108 	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1109 	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1110 	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1111 	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1112 	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1113 	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1114 	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1115 	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1116 	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1117 	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1118 
1119 };
1120 
1121 #define SYMLINK_FLAG_RELATIVE		1
1122 
1123 /* Microsoft reparse buffer. (see DDK for details) */
1124 struct REPARSE_DATA_BUFFER {
1125 	__le32 ReparseTag;		// 0x00:
1126 	__le16 ReparseDataLength;	// 0x04:
1127 	__le16 Reserved;
1128 
1129 	union {
1130 		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1131 		struct {
1132 			__le16 SubstituteNameOffset; // 0x08
1133 			__le16 SubstituteNameLength; // 0x0A
1134 			__le16 PrintNameOffset;      // 0x0C
1135 			__le16 PrintNameLength;      // 0x0E
1136 			__le16 PathBuffer[];	     // 0x10
1137 		} MountPointReparseBuffer;
1138 
1139 		/*
1140 		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1141 		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1142 		 */
1143 		struct {
1144 			__le16 SubstituteNameOffset; // 0x08
1145 			__le16 SubstituteNameLength; // 0x0A
1146 			__le16 PrintNameOffset;      // 0x0C
1147 			__le16 PrintNameLength;      // 0x0E
1148 			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1149 			__le32 Flags;		     // 0x10
1150 			__le16 PathBuffer[];	     // 0x14
1151 		} SymbolicLinkReparseBuffer;
1152 
1153 		/* If ReparseTag == 0x80000017U */
1154 		struct {
1155 			__le32 WofVersion;  // 0x08 == 1
1156 			/*
1157 			 * 1 - WIM backing provider ("WIMBoot"),
1158 			 * 2 - System compressed file provider
1159 			 */
1160 			__le32 WofProvider; // 0x0C:
1161 			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1162 			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1163 		} CompressReparseBuffer;
1164 
1165 		struct {
1166 			u8 DataBuffer[1];   // 0x08:
1167 		} GenericReparseBuffer;
1168 	};
1169 };
1170 
1171 /* ATTR_EA_INFO (0xD0) */
1172 
1173 #define FILE_NEED_EA 0x80 // See ntifs.h
1174 /*
1175  * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1176  * interpreted without understanding the associated extended attributes.
1177  */
1178 struct EA_INFO {
1179 	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1180 	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1181 	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1182 };
1183 
1184 static_assert(sizeof(struct EA_INFO) == 8);
1185 
1186 /* ATTR_EA (0xE0) */
1187 struct EA_FULL {
1188 	__le32 size;		// 0x00: (not in packed)
1189 	u8 flags;		// 0x04:
1190 	u8 name_len;		// 0x05:
1191 	__le16 elength;		// 0x06:
1192 	u8 name[];		// 0x08:
1193 };
1194 
1195 static_assert(offsetof(struct EA_FULL, name) == 8);
1196 
1197 #define ACL_REVISION	2
1198 #define ACL_REVISION_DS 4
1199 
1200 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1201 
1202 struct SECURITY_DESCRIPTOR_RELATIVE {
1203 	u8 Revision;
1204 	u8 Sbz1;
1205 	__le16 Control;
1206 	__le32 Owner;
1207 	__le32 Group;
1208 	__le32 Sacl;
1209 	__le32 Dacl;
1210 };
1211 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1212 
1213 struct ACE_HEADER {
1214 	u8 AceType;
1215 	u8 AceFlags;
1216 	__le16 AceSize;
1217 };
1218 static_assert(sizeof(struct ACE_HEADER) == 4);
1219 
1220 struct ACL {
1221 	u8 AclRevision;
1222 	u8 Sbz1;
1223 	__le16 AclSize;
1224 	__le16 AceCount;
1225 	__le16 Sbz2;
1226 };
1227 static_assert(sizeof(struct ACL) == 8);
1228 
1229 struct SID {
1230 	u8 Revision;
1231 	u8 SubAuthorityCount;
1232 	u8 IdentifierAuthority[6];
1233 	__le32 SubAuthority[];
1234 };
1235 static_assert(offsetof(struct SID, SubAuthority) == 8);
1236 
1237 #endif /* _LINUX_NTFS3_NTFS_H */
1238 // clang-format on
1239