xref: /linux/fs/ntfs3/ntfs.h (revision 81c29435073355b8194986a2193d3e7b9d449225)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  * on-disk ntfs structs
7  */
8 
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12 
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include "debug.h"
21 
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23 
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26 
27 #define NTFS_NAME_LEN 255
28 
29 /*
30  * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31  * xfstest generic/041 creates 3003 hardlinks.
32  */
33 #define NTFS_LINK_MAX 4000
34 
35 /*
36  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37  * Logical and virtual cluster number if needed, may be
38  * redefined to use 64 bit value.
39  */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41 
42 #define NTFS_LZNT_MAX_CLUSTER	4096
43 #define NTFS_LZNT_CUNIT		4
44 #define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
45 
46 struct GUID {
47 	__le32 Data1;
48 	__le16 Data2;
49 	__le16 Data3;
50 	u8 Data4[8];
51 };
52 
53 /*
54  * This struct repeats layout of ATTR_FILE_NAME
55  * at offset 0x40.
56  * It used to store global constants NAME_MFT/NAME_MIRROR...
57  * most constant names are shorter than 10.
58  */
59 struct cpu_str {
60 	u8 len;
61 	u8 unused;
62 	u16 name[10];
63 };
64 
65 struct le_str {
66 	u8 len;
67 	u8 unused;
68 	__le16 name[];
69 };
70 
71 static_assert(SECTOR_SHIFT == 9);
72 
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79 
80 #define SPARSE_LCN64   ((u64)-1)
81 #define SPARSE_LCN     ((CLST)-1)
82 #define RESIDENT_LCN   ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84 
85 #define COMPRESSION_UNIT     4
86 #define COMPRESS_MAX_CLUSTER 0x1000
87 
88 enum RECORD_NUM {
89 	MFT_REC_MFT		= 0,
90 	MFT_REC_MIRR		= 1,
91 	MFT_REC_LOG		= 2,
92 	MFT_REC_VOL		= 3,
93 	MFT_REC_ATTR		= 4,
94 	MFT_REC_ROOT		= 5,
95 	MFT_REC_BITMAP		= 6,
96 	MFT_REC_BOOT		= 7,
97 	MFT_REC_BADCLUST	= 8,
98 	//MFT_REC_QUOTA		= 9,
99 	MFT_REC_SECURE		= 9, // NTFS 3.0
100 	MFT_REC_UPCASE		= 10,
101 	MFT_REC_EXTEND		= 11, // NTFS 3.0
102 	MFT_REC_RESERVED	= 11,
103 	MFT_REC_FREE		= 16,
104 	MFT_REC_USER		= 24,
105 };
106 
107 enum ATTR_TYPE {
108 	ATTR_ZERO		= cpu_to_le32(0x00),
109 	ATTR_STD		= cpu_to_le32(0x10),
110 	ATTR_LIST		= cpu_to_le32(0x20),
111 	ATTR_NAME		= cpu_to_le32(0x30),
112 	// ATTR_VOLUME_VERSION on Nt4
113 	ATTR_ID			= cpu_to_le32(0x40),
114 	ATTR_SECURE		= cpu_to_le32(0x50),
115 	ATTR_LABEL		= cpu_to_le32(0x60),
116 	ATTR_VOL_INFO		= cpu_to_le32(0x70),
117 	ATTR_DATA		= cpu_to_le32(0x80),
118 	ATTR_ROOT		= cpu_to_le32(0x90),
119 	ATTR_ALLOC		= cpu_to_le32(0xA0),
120 	ATTR_BITMAP		= cpu_to_le32(0xB0),
121 	// ATTR_SYMLINK on Nt4
122 	ATTR_REPARSE		= cpu_to_le32(0xC0),
123 	ATTR_EA_INFO		= cpu_to_le32(0xD0),
124 	ATTR_EA			= cpu_to_le32(0xE0),
125 	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
126 	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
127 	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
128 };
129 
130 static_assert(sizeof(enum ATTR_TYPE) == 4);
131 
132 enum FILE_ATTRIBUTE {
133 	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
134 	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
135 	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
136 	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
137 	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
138 	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
139 	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
140 	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
141 	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
142 	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
143 	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
144 	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
145 	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
146 	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
147 };
148 
149 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
150 
151 extern const struct cpu_str NAME_MFT;
152 extern const struct cpu_str NAME_MIRROR;
153 extern const struct cpu_str NAME_LOGFILE;
154 extern const struct cpu_str NAME_VOLUME;
155 extern const struct cpu_str NAME_ATTRDEF;
156 extern const struct cpu_str NAME_ROOT;
157 extern const struct cpu_str NAME_BITMAP;
158 extern const struct cpu_str NAME_BOOT;
159 extern const struct cpu_str NAME_BADCLUS;
160 extern const struct cpu_str NAME_QUOTA;
161 extern const struct cpu_str NAME_SECURE;
162 extern const struct cpu_str NAME_UPCASE;
163 extern const struct cpu_str NAME_EXTEND;
164 extern const struct cpu_str NAME_OBJID;
165 extern const struct cpu_str NAME_REPARSE;
166 extern const struct cpu_str NAME_USNJRNL;
167 
168 extern const __le16 I30_NAME[4];
169 extern const __le16 SII_NAME[4];
170 extern const __le16 SDH_NAME[4];
171 extern const __le16 SO_NAME[2];
172 extern const __le16 SQ_NAME[2];
173 extern const __le16 SR_NAME[2];
174 
175 extern const __le16 BAD_NAME[4];
176 extern const __le16 SDS_NAME[4];
177 extern const __le16 WOF_NAME[17];	/* WofCompressedData */
178 
179 /* MFT record number structure. */
180 struct MFT_REF {
181 	__le32 low;	// The low part of the number.
182 	__le16 high;	// The high part of the number.
183 	__le16 seq;	// The sequence number of MFT record.
184 };
185 
186 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
187 
188 static inline CLST ino_get(const struct MFT_REF *ref)
189 {
190 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
191 	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
192 #else
193 	return le32_to_cpu(ref->low);
194 #endif
195 }
196 
197 struct NTFS_BOOT {
198 	u8 jump_code[3];	// 0x00: Jump to boot code.
199 	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
200 
201 	// NOTE: This member is not aligned(!)
202 	// bytes_per_sector[0] must be 0.
203 	// bytes_per_sector[1] must be multiplied by 256.
204 	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
205 
206 	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
207 	u8 unused1[7];
208 	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
209 	u8 unused2[2];
210 	__le16 sct_per_track;	// 0x18: number of sectors per track.
211 	__le16 heads;		// 0x1A: number of heads per cylinder.
212 	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
213 	u8 unused3[4];
214 	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
215 	u8 unused4;
216 	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
217 	u8 unused5;
218 	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
219 	__le64 mft_clst;	// 0x30: First cluster of $MFT
220 	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
221 	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
222 	u8 unused6[3];
223 	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
224 	u8 unused7[3];
225 	__le64 serial_num;	// 0x48: Volume serial number
226 	__le32 check_sum;	// 0x50: Simple additive checksum of all
227 				// of the u32's which precede the 'check_sum'.
228 
229 	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
230 	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
231 };
232 
233 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
234 
235 enum NTFS_SIGNATURE {
236 	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
237 	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
238 	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
239 	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
240 	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
241 	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
242 	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
243 	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
244 };
245 
246 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
247 
248 /* MFT Record header structure. */
249 struct NTFS_RECORD_HEADER {
250 	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
251 	enum NTFS_SIGNATURE sign; // 0x00:
252 	__le16 fix_off;		// 0x04:
253 	__le16 fix_num;		// 0x06:
254 	__le64 lsn;		// 0x08: Log file sequence number,
255 };
256 
257 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
258 
259 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
260 {
261 	return hdr->sign == NTFS_BAAD_SIGNATURE;
262 }
263 
264 /* Possible bits in struct MFT_REC.flags. */
265 enum RECORD_FLAG {
266 	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
267 	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
268 	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
269 	RECORD_FLAG_UNKNOWN	= cpu_to_le16(0x0008),
270 };
271 
272 /* MFT Record structure. */
273 struct MFT_REC {
274 	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
275 
276 	__le16 seq;		// 0x10: Sequence number for this record.
277 	__le16 hard_links;	// 0x12: The number of hard links to record.
278 	__le16 attr_off;	// 0x14: Offset to attributes.
279 	__le16 flags;		// 0x16: See RECORD_FLAG.
280 	__le32 used;		// 0x18: The size of used part.
281 	__le32 total;		// 0x1C: Total record size.
282 
283 	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
284 	__le16 next_attr_id;	// 0x28: The next attribute Id.
285 
286 	__le16 res;		// 0x2A: High part of MFT record?
287 	__le32 mft_record;	// 0x2C: Current MFT record number.
288 	__le16 fixups[];	// 0x30:
289 };
290 
291 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
292 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
293 
294 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
295 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
296 
297 static inline bool is_rec_base(const struct MFT_REC *rec)
298 {
299 	const struct MFT_REF *r = &rec->parent_ref;
300 
301 	return !r->low && !r->high && !r->seq;
302 }
303 
304 static inline bool is_mft_rec5(const struct MFT_REC *rec)
305 {
306 	return le16_to_cpu(rec->rhdr.fix_off) >=
307 	       offsetof(struct MFT_REC, fixups);
308 }
309 
310 static inline bool is_rec_inuse(const struct MFT_REC *rec)
311 {
312 	return rec->flags & RECORD_FLAG_IN_USE;
313 }
314 
315 static inline bool clear_rec_inuse(struct MFT_REC *rec)
316 {
317 	return rec->flags &= ~RECORD_FLAG_IN_USE;
318 }
319 
320 /* Possible values of ATTR_RESIDENT.flags */
321 #define RESIDENT_FLAG_INDEXED 0x01
322 
323 struct ATTR_RESIDENT {
324 	__le32 data_size;	// 0x10: The size of data.
325 	__le16 data_off;	// 0x14: Offset to data.
326 	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
327 	u8 res;			// 0x17:
328 }; // sizeof() = 0x18
329 
330 struct ATTR_NONRESIDENT {
331 	__le64 svcn;		// 0x10: Starting VCN of this segment.
332 	__le64 evcn;		// 0x18: End VCN of this segment.
333 	__le16 run_off;		// 0x20: Offset to packed runs.
334 	//  Unit of Compression size for this stream, expressed
335 	//  as a log of the cluster size.
336 	//
337 	//	0 means file is not compressed
338 	//	1, 2, 3, and 4 are potentially legal values if the
339 	//	    stream is compressed, however the implementation
340 	//	    may only choose to use 4, or possibly 3.  Note
341 	//	    that 4 means cluster size time 16.	If convenient
342 	//	    the implementation may wish to accept a
343 	//	    reasonable range of legal values here (1-5?),
344 	//	    even if the implementation only generates
345 	//	    a smaller set of values itself.
346 	u8 c_unit;		// 0x22:
347 	u8 res1[5];		// 0x23:
348 	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
349 				// (multiple of cluster size)
350 	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
351 	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
352 	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
353 				// (present only for the first segment (0 == vcn)
354 				// of compressed attribute)
355 
356 }; // sizeof()=0x40 or 0x48 (if compressed)
357 
358 /* Possible values of ATTRIB.flags: */
359 #define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
360 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
361 #define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
362 #define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
363 
364 struct ATTRIB {
365 	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
366 	__le32 size;		// 0x04: The size of this attribute.
367 	u8 non_res;		// 0x08: Is this attribute non-resident?
368 	u8 name_len;		// 0x09: This attribute name length.
369 	__le16 name_off;	// 0x0A: Offset to the attribute name.
370 	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
371 	__le16 id;		// 0x0E: Unique id (per record).
372 
373 	union {
374 		struct ATTR_RESIDENT res;     // 0x10
375 		struct ATTR_NONRESIDENT nres; // 0x10
376 	};
377 };
378 
379 /* Define attribute sizes. */
380 #define SIZEOF_RESIDENT			0x18
381 #define SIZEOF_NONRESIDENT_EX		0x48
382 #define SIZEOF_NONRESIDENT		0x40
383 
384 #define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
385 #define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
386 #define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
387 
388 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
389 {
390 	return attr->non_res ? ((attr->flags &
391 				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
392 					le64_to_cpu(attr->nres.total_size) :
393 					le64_to_cpu(attr->nres.alloc_size))
394 			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
395 }
396 
397 static inline u64 attr_size(const struct ATTRIB *attr)
398 {
399 	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
400 			       le32_to_cpu(attr->res.data_size);
401 }
402 
403 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
404 {
405 	return attr->flags & ATTR_FLAG_ENCRYPTED;
406 }
407 
408 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
409 {
410 	return attr->flags & ATTR_FLAG_SPARSED;
411 }
412 
413 static inline bool is_attr_compressed(const struct ATTRIB *attr)
414 {
415 	return attr->flags & ATTR_FLAG_COMPRESSED;
416 }
417 
418 static inline bool is_attr_ext(const struct ATTRIB *attr)
419 {
420 	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
421 }
422 
423 static inline bool is_attr_indexed(const struct ATTRIB *attr)
424 {
425 	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
426 }
427 
428 static inline __le16 const *attr_name(const struct ATTRIB *attr)
429 {
430 	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
431 }
432 
433 static inline u64 attr_svcn(const struct ATTRIB *attr)
434 {
435 	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
436 }
437 
438 static_assert(sizeof(struct ATTRIB) == 0x48);
439 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
440 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
441 
442 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
443 {
444 	u32 asize, rsize;
445 	u16 off;
446 
447 	if (attr->non_res)
448 		return NULL;
449 
450 	asize = le32_to_cpu(attr->size);
451 	off = le16_to_cpu(attr->res.data_off);
452 
453 	if (asize < datasize + off)
454 		return NULL;
455 
456 	rsize = le32_to_cpu(attr->res.data_size);
457 	if (rsize < datasize)
458 		return NULL;
459 
460 	return Add2Ptr(attr, off);
461 }
462 
463 static inline void *resident_data(const struct ATTRIB *attr)
464 {
465 	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
466 }
467 
468 static inline void *attr_run(const struct ATTRIB *attr)
469 {
470 	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
471 }
472 
473 /* Standard information attribute (0x10). */
474 struct ATTR_STD_INFO {
475 	__le64 cr_time;		// 0x00: File creation file.
476 	__le64 m_time;		// 0x08: File modification time.
477 	__le64 c_time;		// 0x10: Last time any attribute was modified.
478 	__le64 a_time;		// 0x18: File last access time.
479 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
480 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
481 	__le32 ver_num;		// 0x28: Version Number.
482 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
483 };
484 
485 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
486 
487 #define SECURITY_ID_INVALID 0x00000000
488 #define SECURITY_ID_FIRST 0x00000100
489 
490 struct ATTR_STD_INFO5 {
491 	__le64 cr_time;		// 0x00: File creation file.
492 	__le64 m_time;		// 0x08: File modification time.
493 	__le64 c_time;		// 0x10: Last time any attribute was modified.
494 	__le64 a_time;		// 0x18: File last access time.
495 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
496 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
497 	__le32 ver_num;		// 0x28: Version Number.
498 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
499 
500 	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
501 	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
502 	__le64 quota_charge;	// 0x38:
503 	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
504 				// index into the file $UsnJrnl. If zero, the USN Journal is
505 				// disabled.
506 };
507 
508 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
509 
510 /* Attribute list entry structure (0x20) */
511 struct ATTR_LIST_ENTRY {
512 	enum ATTR_TYPE type;	// 0x00: The type of attribute.
513 	__le16 size;		// 0x04: The size of this record.
514 	u8 name_len;		// 0x06: The length of attribute name.
515 	u8 name_off;		// 0x07: The offset to attribute name.
516 	__le64 vcn;		// 0x08: Starting VCN of this attribute.
517 	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
518 	__le16 id;		// 0x18: struct ATTRIB ID.
519 	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
520 
521 }; // sizeof(0x20)
522 
523 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
524 
525 static inline u32 le_size(u8 name_len)
526 {
527 	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
528 		     name_len * sizeof(short), 8);
529 }
530 
531 /* Returns 0 if 'attr' has the same type and name. */
532 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
533 			 const struct ATTRIB *attr)
534 {
535 	return le->type != attr->type || le->name_len != attr->name_len ||
536 	       (!le->name_len &&
537 		memcmp(Add2Ptr(le, le->name_off),
538 		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
539 		       le->name_len * sizeof(short)));
540 }
541 
542 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
543 {
544 	return Add2Ptr(le, le->name_off);
545 }
546 
547 /* File name types (the field type in struct ATTR_FILE_NAME). */
548 #define FILE_NAME_POSIX   0
549 #define FILE_NAME_UNICODE 1
550 #define FILE_NAME_DOS	  2
551 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
552 
553 /* Filename attribute structure (0x30). */
554 struct NTFS_DUP_INFO {
555 	__le64 cr_time;		// 0x00: File creation file.
556 	__le64 m_time;		// 0x08: File modification time.
557 	__le64 c_time;		// 0x10: Last time any attribute was modified.
558 	__le64 a_time;		// 0x18: File last access time.
559 	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
560 	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
561 	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
562 	__le16 ea_size;		// 0x34: Packed EAs.
563 	__le16 reparse;		// 0x36: Used by Reparse.
564 
565 }; // 0x38
566 
567 struct ATTR_FILE_NAME {
568 	struct MFT_REF home;	// 0x00: MFT record for directory.
569 	struct NTFS_DUP_INFO dup;// 0x08:
570 	u8 name_len;		// 0x40: File name length in words.
571 	u8 type;		// 0x41: File name type.
572 	__le16 name[];		// 0x42: File name.
573 };
574 
575 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
576 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
577 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
578 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
579 
580 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
581 {
582 	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
583 }
584 
585 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
586 {
587 	/* Don't return struct_size(fname, name, fname->name_len); */
588 	return offsetof(struct ATTR_FILE_NAME, name) +
589 	       fname->name_len * sizeof(short);
590 }
591 
592 static inline u8 paired_name(u8 type)
593 {
594 	if (type == FILE_NAME_UNICODE)
595 		return FILE_NAME_DOS;
596 	if (type == FILE_NAME_DOS)
597 		return FILE_NAME_UNICODE;
598 	return FILE_NAME_POSIX;
599 }
600 
601 /* Index entry defines ( the field flags in NtfsDirEntry ). */
602 #define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
603 #define NTFS_IE_LAST		cpu_to_le16(2)
604 
605 /* Directory entry structure. */
606 struct NTFS_DE {
607 	union {
608 		struct MFT_REF ref; // 0x00: MFT record number with this file.
609 		struct {
610 			__le16 data_off;  // 0x00:
611 			__le16 data_size; // 0x02:
612 			__le32 res;	  // 0x04: Must be 0.
613 		} view;
614 	};
615 	__le16 size;		// 0x08: The size of this entry.
616 	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
617 	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
618 	__le16 res;		// 0x0E:
619 
620 	// Here any indexed attribute can be placed.
621 	// One of them is:
622 	// struct ATTR_FILE_NAME AttrFileName;
623 	//
624 
625 	// The last 8 bytes of this structure contains
626 	// the VBN of subnode.
627 	// !!! Note !!!
628 	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
629 	// __le64 vbn;
630 };
631 
632 static_assert(sizeof(struct NTFS_DE) == 0x10);
633 
634 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
635 {
636 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
637 
638 	*v = vcn;
639 }
640 
641 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
642 {
643 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
644 
645 	*v = cpu_to_le64(vcn);
646 }
647 
648 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
649 {
650 	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
651 }
652 
653 static inline CLST de_get_vbn(const struct NTFS_DE *e)
654 {
655 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
656 
657 	return le64_to_cpu(*v);
658 }
659 
660 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
661 {
662 	return Add2Ptr(e, le16_to_cpu(e->size));
663 }
664 
665 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
666 {
667 	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
668 		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
669 		       NULL;
670 }
671 
672 static inline bool de_is_last(const struct NTFS_DE *e)
673 {
674 	return e->flags & NTFS_IE_LAST;
675 }
676 
677 static inline bool de_has_vcn(const struct NTFS_DE *e)
678 {
679 	return e->flags & NTFS_IE_HAS_SUBNODES;
680 }
681 
682 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
683 {
684 	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
685 	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
686 							sizeof(__le64)));
687 }
688 
689 #define MAX_BYTES_PER_NAME_ENTRY \
690 	ALIGN(sizeof(struct NTFS_DE) + \
691 	      offsetof(struct ATTR_FILE_NAME, name) + \
692 	      NTFS_NAME_LEN * sizeof(short), 8)
693 
694 struct INDEX_HDR {
695 	__le32 de_off;	// 0x00: The offset from the start of this structure
696 			// to the first NTFS_DE.
697 	__le32 used;	// 0x04: The size of this structure plus all
698 			// entries (quad-word aligned).
699 	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
700 	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
701 	u8 res[3];
702 
703 	//
704 	// de_off + used <= total
705 	//
706 };
707 
708 static_assert(sizeof(struct INDEX_HDR) == 0x10);
709 
710 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
711 {
712 	u32 de_off = le32_to_cpu(hdr->de_off);
713 	u32 used = le32_to_cpu(hdr->used);
714 	struct NTFS_DE *e;
715 	u16 esize;
716 
717 	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
718 		return NULL;
719 
720 	e = Add2Ptr(hdr, de_off);
721 	esize = le16_to_cpu(e->size);
722 	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
723 		return NULL;
724 
725 	return e;
726 }
727 
728 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
729 					  const struct NTFS_DE *e)
730 {
731 	size_t off = PtrOffset(hdr, e);
732 	u32 used = le32_to_cpu(hdr->used);
733 	u16 esize;
734 
735 	if (off >= used)
736 		return NULL;
737 
738 	esize = le16_to_cpu(e->size);
739 
740 	if (esize < sizeof(struct NTFS_DE) ||
741 	    off + esize + sizeof(struct NTFS_DE) > used)
742 		return NULL;
743 
744 	return Add2Ptr(e, esize);
745 }
746 
747 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
748 {
749 	return hdr->flags & 1;
750 }
751 
752 struct INDEX_BUFFER {
753 	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
754 	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
755 	struct INDEX_HDR ihdr; // 0x18:
756 };
757 
758 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
759 
760 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
761 {
762 	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
763 
764 	return !first || de_is_last(first);
765 }
766 
767 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
768 {
769 	return !(ib->ihdr.flags & 1);
770 }
771 
772 /* Index root structure ( 0x90 ). */
773 enum COLLATION_RULE {
774 	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
775 	// $I30
776 	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
777 	// $SII of $Secure and $Q of Quota
778 	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
779 	// $O of Quota
780 	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
781 	// $SDH of $Secure
782 	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
783 	// $O of ObjId and "$R" for Reparse
784 	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
785 };
786 
787 static_assert(sizeof(enum COLLATION_RULE) == 4);
788 
789 //
790 struct INDEX_ROOT {
791 	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
792 	enum COLLATION_RULE rule; // 0x04: The rule.
793 	__le32 index_block_size;// 0x08: The size of index record.
794 	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
795 	u8 res[3];
796 	struct INDEX_HDR ihdr;	// 0x10:
797 };
798 
799 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
800 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
801 
802 #define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
803 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
804 
805 struct VOLUME_INFO {
806 	__le64 res1;	// 0x00
807 	u8 major_ver;	// 0x08: NTFS major version number (before .)
808 	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
809 	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
810 
811 }; // sizeof=0xC
812 
813 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
814 
815 #define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
816 #define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
817 #define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
818 #define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
819 #define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
820 #define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
821 #define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
822 
823 /* $AttrDef file entry. */
824 struct ATTR_DEF_ENTRY {
825 	__le16 name[0x40];	// 0x00: Attr name.
826 	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
827 	__le32 res;		// 0x84:
828 	enum COLLATION_RULE rule; // 0x88:
829 	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
830 	__le64 min_sz;		// 0x90: Minimum attribute data size.
831 	__le64 max_sz;		// 0x98: Maximum attribute data size.
832 };
833 
834 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
835 
836 /* Object ID (0x40) */
837 struct OBJECT_ID {
838 	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
839 	struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
840 				// which the Object Id was allocated. It never changes.
841 	struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
842 				// ever assigned to this MFT Record. I.e. If the Object Id
843 				// is changed for some reason, this field will reflect the
844 				// original value of the Object Id.
845 	struct GUID DomainId;	// 0x30: Domain Id is currently unused but it is intended to be
846 				// used in a network environment where the local machine is
847 				// part of a Windows 2000 Domain. This may be used in a Windows
848 				// 2000 Advanced Server managed domain.
849 };
850 
851 static_assert(sizeof(struct OBJECT_ID) == 0x40);
852 
853 /* O Directory entry structure ( rule = 0x13 ) */
854 struct NTFS_DE_O {
855 	struct NTFS_DE de;
856 	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
857 	struct MFT_REF ref;	// 0x20: MFT record number with this file.
858 	struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
859 				// which the Object Id was allocated. It never changes.
860 	struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
861 				// ever assigned to this MFT Record. I.e. If the Object Id
862 				// is changed for some reason, this field will reflect the
863 				// original value of the Object Id.
864 				// This field is valid if data_size == 0x48.
865 	struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
866 				// to be used in a network environment where the local
867 				// machine is part of a Windows 2000 Domain. This may be
868 				// used in a Windows 2000 Advanced Server managed domain.
869 };
870 
871 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
872 
873 #define NTFS_OBJECT_ENTRY_DATA_SIZE1					       \
874 	0x38 // struct NTFS_DE_O.BirthDomainId is not used
875 #define NTFS_OBJECT_ENTRY_DATA_SIZE2					       \
876 	0x48 // struct NTFS_DE_O.BirthDomainId is used
877 
878 /* Q Directory entry structure ( rule = 0x11 ) */
879 struct NTFS_DE_Q {
880 	struct NTFS_DE de;
881 	__le32 owner_id;	// 0x10: Unique Id assigned to file
882 	__le32 Version;		// 0x14: 0x02
883 	__le32 flags2;		// 0x18: Quota flags, see above
884 	__le64 BytesUsed;	// 0x1C:
885 	__le64 ChangeTime;	// 0x24:
886 	__le64 WarningLimit;	// 0x28:
887 	__le64 HardLimit;	// 0x34:
888 	__le64 ExceededTime;	// 0x3C:
889 
890 	// SID is placed here
891 }; // sizeof() = 0x44
892 
893 #define SIZEOF_NTFS_DE_Q 0x44
894 
895 #define SecurityDescriptorsBlockSize 0x40000 // 256K
896 #define SecurityDescriptorMaxSize    0x20000 // 128K
897 #define Log2OfSecurityDescriptorsBlockSize 18
898 
899 struct SECURITY_KEY {
900 	__le32 hash; //  Hash value for descriptor
901 	__le32 sec_id; //  Security Id (guaranteed unique)
902 };
903 
904 /* Security descriptors (the content of $Secure::SDS data stream) */
905 struct SECURITY_HDR {
906 	struct SECURITY_KEY key;	// 0x00: Security Key.
907 	__le64 off;			// 0x08: Offset of this entry in the file.
908 	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
909 	/*
910 	 * Security descriptor itself is placed here.
911 	 * Total size is 16 byte aligned.
912 	 */
913 } __packed;
914 
915 #define SIZEOF_SECURITY_HDR 0x14
916 
917 /* SII Directory entry structure */
918 struct NTFS_DE_SII {
919 	struct NTFS_DE de;
920 	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
921 	struct SECURITY_HDR sec_hdr;	// 0x14:
922 } __packed;
923 
924 #define SIZEOF_SII_DIRENTRY 0x28
925 
926 /* SDH Directory entry structure */
927 struct NTFS_DE_SDH {
928 	struct NTFS_DE de;
929 	struct SECURITY_KEY key;	// 0x10: Key
930 	struct SECURITY_HDR sec_hdr;	// 0x18: Data
931 	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
932 };
933 
934 #define SIZEOF_SDH_DIRENTRY 0x30
935 
936 struct REPARSE_KEY {
937 	__le32 ReparseTag;		// 0x00: Reparse Tag
938 	struct MFT_REF ref;		// 0x04: MFT record number with this file
939 }; // sizeof() = 0x0C
940 
941 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
942 #define SIZEOF_REPARSE_KEY 0x0C
943 
944 /* Reparse Directory entry structure */
945 struct NTFS_DE_R {
946 	struct NTFS_DE de;
947 	struct REPARSE_KEY key;		// 0x10: Reparse Key.
948 	u32 zero;			// 0x1c:
949 }; // sizeof() = 0x20
950 
951 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
952 
953 /* CompressReparseBuffer.WofVersion */
954 #define WOF_CURRENT_VERSION		cpu_to_le32(1)
955 /* CompressReparseBuffer.WofProvider */
956 #define WOF_PROVIDER_WIM		cpu_to_le32(1)
957 /* CompressReparseBuffer.WofProvider */
958 #define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
959 /* CompressReparseBuffer.ProviderVer */
960 #define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
961 
962 #define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
963 #define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
964 #define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
965 #define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
966 
967 /*
968  * ATTR_REPARSE (0xC0)
969  *
970  * The reparse struct GUID structure is used by all 3rd party layered drivers to
971  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
972  * cannot be GUID_NULL.
973  * The constraints on reparse tags are defined below.
974  * Microsoft tags can also be used with this format of the reparse point buffer.
975  */
976 struct REPARSE_POINT {
977 	__le32 ReparseTag;	// 0x00:
978 	__le16 ReparseDataLength;// 0x04:
979 	__le16 Reserved;
980 
981 	struct GUID Guid;	// 0x08:
982 
983 	//
984 	// Here GenericReparseBuffer is placed
985 	//
986 };
987 
988 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
989 
990 /* Maximum allowed size of the reparse data. */
991 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
992 
993 /*
994  * The value of the following constant needs to satisfy the following
995  * conditions:
996  *  (1) Be at least as large as the largest of the reserved tags.
997  *  (2) Be strictly smaller than all the tags in use.
998  */
999 #define IO_REPARSE_TAG_RESERVED_RANGE		1
1000 
1001 /*
1002  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1003  *
1004  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1005  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1006  *  +-+-+-+-+-----------------------+-------------------------------+
1007  *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1008  *  +-+-+-+-+-----------------------+-------------------------------+
1009  *
1010  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1011  *   All ISVs must use a tag with a 0 in this position.
1012  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1013  *   behavior is not defined.
1014  *
1015  * R is reserved.  Must be zero for non-Microsoft tags.
1016  *
1017  * N is name surrogate. When set to 1, the file represents another named
1018  *   entity in the system.
1019  *
1020  * The M and N bits are OR-able.
1021  * The following macros check for the M and N bit values:
1022  */
1023 
1024 /*
1025  * Macro to determine whether a reparse point tag corresponds to a tag
1026  * owned by Microsoft.
1027  */
1028 #define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1029 
1030 /* Macro to determine whether a reparse point tag is a name surrogate. */
1031 #define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1032 
1033 /*
1034  * The following constant represents the bits that are valid to use in
1035  * reparse tags.
1036  */
1037 #define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1038 
1039 /*
1040  * Macro to determine whether a reparse tag is a valid tag.
1041  */
1042 #define IsReparseTagValid(_tag)						       \
1043 	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1044 	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1045 
1046 /* Microsoft tags for reparse points. */
1047 
1048 enum IO_REPARSE_TAG {
1049 	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1050 	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1051 	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1052 	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1053 	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1054 	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1055 	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1056 	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1057 	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1058 
1059 	/*
1060 	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1061 	 * May be published in the future.
1062 	 */
1063 
1064 	/* Microsoft reparse tag reserved for DFS */
1065 	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1066 
1067 	/* Microsoft reparse tag reserved for the file system filter manager. */
1068 	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1069 
1070 	/* Non-Microsoft tags for reparse points */
1071 
1072 	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1073 	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1074 
1075 	/* Tag allocated to ARKIVIO. */
1076 	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1077 
1078 	/* Tag allocated to SOLUTIONSOFT. */
1079 	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1080 
1081 	/* Tag allocated to COMMVAULT. */
1082 	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1083 
1084 	/* OneDrive?? */
1085 	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1086 	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1087 	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1088 	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1089 	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1090 	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1091 	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1092 	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1093 	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1094 	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1095 	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1096 	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1097 	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1098 	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1099 	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1100 	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1101 
1102 };
1103 
1104 #define SYMLINK_FLAG_RELATIVE		1
1105 
1106 /* Microsoft reparse buffer. (see DDK for details) */
1107 struct REPARSE_DATA_BUFFER {
1108 	__le32 ReparseTag;		// 0x00:
1109 	__le16 ReparseDataLength;	// 0x04:
1110 	__le16 Reserved;
1111 
1112 	union {
1113 		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1114 		struct {
1115 			__le16 SubstituteNameOffset; // 0x08
1116 			__le16 SubstituteNameLength; // 0x0A
1117 			__le16 PrintNameOffset;      // 0x0C
1118 			__le16 PrintNameLength;      // 0x0E
1119 			__le16 PathBuffer[];	     // 0x10
1120 		} MountPointReparseBuffer;
1121 
1122 		/*
1123 		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1124 		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1125 		 */
1126 		struct {
1127 			__le16 SubstituteNameOffset; // 0x08
1128 			__le16 SubstituteNameLength; // 0x0A
1129 			__le16 PrintNameOffset;      // 0x0C
1130 			__le16 PrintNameLength;      // 0x0E
1131 			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1132 			__le32 Flags;		     // 0x10
1133 			__le16 PathBuffer[];	     // 0x14
1134 		} SymbolicLinkReparseBuffer;
1135 
1136 		/* If ReparseTag == 0x80000017U */
1137 		struct {
1138 			__le32 WofVersion;  // 0x08 == 1
1139 			/*
1140 			 * 1 - WIM backing provider ("WIMBoot"),
1141 			 * 2 - System compressed file provider
1142 			 */
1143 			__le32 WofProvider; // 0x0C:
1144 			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1145 			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1146 		} CompressReparseBuffer;
1147 
1148 		struct {
1149 			u8 DataBuffer[1];   // 0x08:
1150 		} GenericReparseBuffer;
1151 	};
1152 };
1153 
1154 /* ATTR_EA_INFO (0xD0) */
1155 
1156 #define FILE_NEED_EA 0x80 // See ntifs.h
1157 /*
1158  *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1159  * interpreted without understanding the associated extended attributes.
1160  */
1161 struct EA_INFO {
1162 	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1163 	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1164 	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1165 };
1166 
1167 static_assert(sizeof(struct EA_INFO) == 8);
1168 
1169 /* ATTR_EA (0xE0) */
1170 struct EA_FULL {
1171 	__le32 size;		// 0x00: (not in packed)
1172 	u8 flags;		// 0x04:
1173 	u8 name_len;		// 0x05:
1174 	__le16 elength;		// 0x06:
1175 	u8 name[];		// 0x08:
1176 };
1177 
1178 static_assert(offsetof(struct EA_FULL, name) == 8);
1179 
1180 #define ACL_REVISION	2
1181 #define ACL_REVISION_DS 4
1182 
1183 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1184 
1185 struct SECURITY_DESCRIPTOR_RELATIVE {
1186 	u8 Revision;
1187 	u8 Sbz1;
1188 	__le16 Control;
1189 	__le32 Owner;
1190 	__le32 Group;
1191 	__le32 Sacl;
1192 	__le32 Dacl;
1193 };
1194 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1195 
1196 struct ACE_HEADER {
1197 	u8 AceType;
1198 	u8 AceFlags;
1199 	__le16 AceSize;
1200 };
1201 static_assert(sizeof(struct ACE_HEADER) == 4);
1202 
1203 struct ACL {
1204 	u8 AclRevision;
1205 	u8 Sbz1;
1206 	__le16 AclSize;
1207 	__le16 AceCount;
1208 	__le16 Sbz2;
1209 };
1210 static_assert(sizeof(struct ACL) == 8);
1211 
1212 struct SID {
1213 	u8 Revision;
1214 	u8 SubAuthorityCount;
1215 	u8 IdentifierAuthority[6];
1216 	__le32 SubAuthority[];
1217 };
1218 static_assert(offsetof(struct SID, SubAuthority) == 8);
1219 
1220 #endif /* _LINUX_NTFS3_NTFS_H */
1221 // clang-format on
1222