xref: /linux/fs/ntfs3/lib/decompress_common.h (revision 1907d3ff5a644ad7c07bf3c0a56a0b1864c9e5cf)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * decompress_common.h - Code shared by the XPRESS and LZX decompressors
4  *
5  * Copyright (C) 2015 Eric Biggers
6  */
7 
8 #include <linux/string.h>
9 #include <linux/compiler.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <asm/unaligned.h>
13 
14 
15 /* "Force inline" macro (not required, but helpful for performance)  */
16 #define forceinline __always_inline
17 
18 /* Enable whole-word match copying on selected architectures  */
19 #if defined(__i386__) || defined(__x86_64__) || defined(__ARM_FEATURE_UNALIGNED)
20 #  define FAST_UNALIGNED_ACCESS
21 #endif
22 
23 /* Size of a machine word  */
24 #define WORDBYTES (sizeof(size_t))
25 
26 static forceinline void
27 copy_unaligned_word(const void *src, void *dst)
28 {
29 	put_unaligned(get_unaligned((const size_t *)src), (size_t *)dst);
30 }
31 
32 
33 /* Generate a "word" with platform-dependent size whose bytes all contain the
34  * value 'b'.
35  */
36 static forceinline size_t repeat_byte(u8 b)
37 {
38 	size_t v;
39 
40 	v = b;
41 	v |= v << 8;
42 	v |= v << 16;
43 	v |= v << ((WORDBYTES == 8) ? 32 : 0);
44 	return v;
45 }
46 
47 /* Structure that encapsulates a block of in-memory data being interpreted as a
48  * stream of bits, optionally with interwoven literal bytes.  Bits are assumed
49  * to be stored in little endian 16-bit coding units, with the bits ordered high
50  * to low.
51  */
52 struct input_bitstream {
53 
54 	/* Bits that have been read from the input buffer.  The bits are
55 	 * left-justified; the next bit is always bit 31.
56 	 */
57 	u32 bitbuf;
58 
59 	/* Number of bits currently held in @bitbuf.  */
60 	u32 bitsleft;
61 
62 	/* Pointer to the next byte to be retrieved from the input buffer.  */
63 	const u8 *next;
64 
65 	/* Pointer to just past the end of the input buffer.  */
66 	const u8 *end;
67 };
68 
69 /* Initialize a bitstream to read from the specified input buffer.  */
70 static forceinline void init_input_bitstream(struct input_bitstream *is,
71 					     const void *buffer, u32 size)
72 {
73 	is->bitbuf = 0;
74 	is->bitsleft = 0;
75 	is->next = buffer;
76 	is->end = is->next + size;
77 }
78 
79 /* Ensure the bit buffer variable for the bitstream contains at least @num_bits
80  * bits.  Following this, bitstream_peek_bits() and/or bitstream_remove_bits()
81  * may be called on the bitstream to peek or remove up to @num_bits bits.  Note
82  * that @num_bits must be <= 16.
83  */
84 static forceinline void bitstream_ensure_bits(struct input_bitstream *is,
85 					      u32 num_bits)
86 {
87 	if (is->bitsleft < num_bits) {
88 		if (is->end - is->next >= 2) {
89 			is->bitbuf |= (u32)get_unaligned_le16(is->next)
90 					<< (16 - is->bitsleft);
91 			is->next += 2;
92 		}
93 		is->bitsleft += 16;
94 	}
95 }
96 
97 /* Return the next @num_bits bits from the bitstream, without removing them.
98  * There must be at least @num_bits remaining in the buffer variable, from a
99  * previous call to bitstream_ensure_bits().
100  */
101 static forceinline u32
102 bitstream_peek_bits(const struct input_bitstream *is, const u32 num_bits)
103 {
104 	return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1);
105 }
106 
107 /* Remove @num_bits from the bitstream.  There must be at least @num_bits
108  * remaining in the buffer variable, from a previous call to
109  * bitstream_ensure_bits().
110  */
111 static forceinline void
112 bitstream_remove_bits(struct input_bitstream *is, u32 num_bits)
113 {
114 	is->bitbuf <<= num_bits;
115 	is->bitsleft -= num_bits;
116 }
117 
118 /* Remove and return @num_bits bits from the bitstream.  There must be at least
119  * @num_bits remaining in the buffer variable, from a previous call to
120  * bitstream_ensure_bits().
121  */
122 static forceinline u32
123 bitstream_pop_bits(struct input_bitstream *is, u32 num_bits)
124 {
125 	u32 bits = bitstream_peek_bits(is, num_bits);
126 
127 	bitstream_remove_bits(is, num_bits);
128 	return bits;
129 }
130 
131 /* Read and return the next @num_bits bits from the bitstream.  */
132 static forceinline u32
133 bitstream_read_bits(struct input_bitstream *is, u32 num_bits)
134 {
135 	bitstream_ensure_bits(is, num_bits);
136 	return bitstream_pop_bits(is, num_bits);
137 }
138 
139 /* Read and return the next literal byte embedded in the bitstream.  */
140 static forceinline u8
141 bitstream_read_byte(struct input_bitstream *is)
142 {
143 	if (unlikely(is->end == is->next))
144 		return 0;
145 	return *is->next++;
146 }
147 
148 /* Read and return the next 16-bit integer embedded in the bitstream.  */
149 static forceinline u16
150 bitstream_read_u16(struct input_bitstream *is)
151 {
152 	u16 v;
153 
154 	if (unlikely(is->end - is->next < 2))
155 		return 0;
156 	v = get_unaligned_le16(is->next);
157 	is->next += 2;
158 	return v;
159 }
160 
161 /* Read and return the next 32-bit integer embedded in the bitstream.  */
162 static forceinline u32
163 bitstream_read_u32(struct input_bitstream *is)
164 {
165 	u32 v;
166 
167 	if (unlikely(is->end - is->next < 4))
168 		return 0;
169 	v = get_unaligned_le32(is->next);
170 	is->next += 4;
171 	return v;
172 }
173 
174 /* Read into @dst_buffer an array of literal bytes embedded in the bitstream.
175  * Return either a pointer to the byte past the last written, or NULL if the
176  * read overflows the input buffer.
177  */
178 static forceinline void *bitstream_read_bytes(struct input_bitstream *is,
179 					      void *dst_buffer, size_t count)
180 {
181 	if ((size_t)(is->end - is->next) < count)
182 		return NULL;
183 	memcpy(dst_buffer, is->next, count);
184 	is->next += count;
185 	return (u8 *)dst_buffer + count;
186 }
187 
188 /* Align the input bitstream on a coding-unit boundary.  */
189 static forceinline void bitstream_align(struct input_bitstream *is)
190 {
191 	is->bitsleft = 0;
192 	is->bitbuf = 0;
193 }
194 
195 extern int make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
196 				     const u32 num_bits, const u8 lens[],
197 				     const u32 max_codeword_len,
198 				     u16 working_space[]);
199 
200 
201 /* Reads and returns the next Huffman-encoded symbol from a bitstream.  If the
202  * input data is exhausted, the Huffman symbol is decoded as if the missing bits
203  * are all zeroes.
204  */
205 static forceinline u32 read_huffsym(struct input_bitstream *istream,
206 					 const u16 decode_table[],
207 					 u32 table_bits,
208 					 u32 max_codeword_len)
209 {
210 	u32 entry;
211 	u32 key_bits;
212 
213 	bitstream_ensure_bits(istream, max_codeword_len);
214 
215 	/* Index the decode table by the next table_bits bits of the input.  */
216 	key_bits = bitstream_peek_bits(istream, table_bits);
217 	entry = decode_table[key_bits];
218 	if (entry < 0xC000) {
219 		/* Fast case: The decode table directly provided the
220 		 * symbol and codeword length.  The low 11 bits are the
221 		 * symbol, and the high 5 bits are the codeword length.
222 		 */
223 		bitstream_remove_bits(istream, entry >> 11);
224 		return entry & 0x7FF;
225 	}
226 	/* Slow case: The codeword for the symbol is longer than
227 	 * table_bits, so the symbol does not have an entry
228 	 * directly in the first (1 << table_bits) entries of the
229 	 * decode table.  Traverse the appropriate binary tree
230 	 * bit-by-bit to decode the symbol.
231 	 */
232 	bitstream_remove_bits(istream, table_bits);
233 	do {
234 		key_bits = (entry & 0x3FFF) + bitstream_pop_bits(istream, 1);
235 	} while ((entry = decode_table[key_bits]) >= 0xC000);
236 	return entry;
237 }
238 
239 /*
240  * Copy an LZ77 match at (dst - offset) to dst.
241  *
242  * The length and offset must be already validated --- that is, (dst - offset)
243  * can't underrun the output buffer, and (dst + length) can't overrun the output
244  * buffer.  Also, the length cannot be 0.
245  *
246  * @bufend points to the byte past the end of the output buffer.  This function
247  * won't write any data beyond this position.
248  *
249  * Returns dst + length.
250  */
251 static forceinline u8 *lz_copy(u8 *dst, u32 length, u32 offset, const u8 *bufend,
252 			       u32 min_length)
253 {
254 	const u8 *src = dst - offset;
255 
256 	/*
257 	 * Try to copy one machine word at a time.  On i386 and x86_64 this is
258 	 * faster than copying one byte at a time, unless the data is
259 	 * near-random and all the matches have very short lengths.  Note that
260 	 * since this requires unaligned memory accesses, it won't necessarily
261 	 * be faster on every architecture.
262 	 *
263 	 * Also note that we might copy more than the length of the match.  For
264 	 * example, if a word is 8 bytes and the match is of length 5, then
265 	 * we'll simply copy 8 bytes.  This is okay as long as we don't write
266 	 * beyond the end of the output buffer, hence the check for (bufend -
267 	 * end >= WORDBYTES - 1).
268 	 */
269 #ifdef FAST_UNALIGNED_ACCESS
270 	u8 * const end = dst + length;
271 
272 	if (bufend - end >= (ptrdiff_t)(WORDBYTES - 1)) {
273 
274 		if (offset >= WORDBYTES) {
275 			/* The source and destination words don't overlap.  */
276 
277 			/* To improve branch prediction, one iteration of this
278 			 * loop is unrolled.  Most matches are short and will
279 			 * fail the first check.  But if that check passes, then
280 			 * it becomes increasing likely that the match is long
281 			 * and we'll need to continue copying.
282 			 */
283 
284 			copy_unaligned_word(src, dst);
285 			src += WORDBYTES;
286 			dst += WORDBYTES;
287 
288 			if (dst < end) {
289 				do {
290 					copy_unaligned_word(src, dst);
291 					src += WORDBYTES;
292 					dst += WORDBYTES;
293 				} while (dst < end);
294 			}
295 			return end;
296 		} else if (offset == 1) {
297 
298 			/* Offset 1 matches are equivalent to run-length
299 			 * encoding of the previous byte.  This case is common
300 			 * if the data contains many repeated bytes.
301 			 */
302 			size_t v = repeat_byte(*(dst - 1));
303 
304 			do {
305 				put_unaligned(v, (size_t *)dst);
306 				src += WORDBYTES;
307 				dst += WORDBYTES;
308 			} while (dst < end);
309 			return end;
310 		}
311 		/*
312 		 * We don't bother with special cases for other 'offset <
313 		 * WORDBYTES', which are usually rarer than 'offset == 1'.  Extra
314 		 * checks will just slow things down.  Actually, it's possible
315 		 * to handle all the 'offset < WORDBYTES' cases using the same
316 		 * code, but it still becomes more complicated doesn't seem any
317 		 * faster overall; it definitely slows down the more common
318 		 * 'offset == 1' case.
319 		 */
320 	}
321 #endif /* FAST_UNALIGNED_ACCESS */
322 
323 	/* Fall back to a bytewise copy.  */
324 
325 	if (min_length >= 2) {
326 		*dst++ = *src++;
327 		length--;
328 	}
329 	if (min_length >= 3) {
330 		*dst++ = *src++;
331 		length--;
332 	}
333 	do {
334 		*dst++ = *src++;
335 	} while (--length);
336 
337 	return dst;
338 }
339