xref: /linux/fs/ntfs3/index.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/nls.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 				  : false;
436 		put_bh(bh);
437 
438 		if (ok) {
439 			*ret += 8 * vbo;
440 			return 0;
441 		}
442 
443 		if (++vblock >= eblock) {
444 			*ret = MINUS_ONE_T;
445 			return 0;
446 		}
447 	}
448 	blk = 0;
449 	vcn_next = vcn + clen;
450 	down_read(lock);
451 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 	if (!ok)
453 		vcn = vcn_next;
454 	up_read(lock);
455 	goto next_run;
456 }
457 
458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 	size_t pos = find_next_zero_bit(buf, bits, bit);
461 
462 	if (pos >= bits)
463 		return false;
464 	*ret = pos;
465 	return true;
466 }
467 
468 /*
469  * indx_find_free - Look for free bit.
470  *
471  * Return: -1 if no free bits.
472  */
473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 			  size_t *bit, struct ATTRIB **bitmap)
475 {
476 	struct ATTRIB *b;
477 	struct ATTR_LIST_ENTRY *le = NULL;
478 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 	int err;
480 
481 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 			 NULL, NULL);
483 
484 	if (!b)
485 		return -ENOENT;
486 
487 	*bitmap = b;
488 	*bit = MINUS_ONE_T;
489 
490 	if (!b->non_res) {
491 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 		size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493 
494 		if (pos < nbits)
495 			*bit = pos;
496 	} else {
497 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498 
499 		if (err)
500 			return err;
501 	}
502 
503 	return 0;
504 }
505 
506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 	size_t pos = find_next_bit(buf, bits, bit);
509 
510 	if (pos >= bits)
511 		return false;
512 	*ret = pos;
513 	return true;
514 }
515 
516 /*
517  * indx_used_bit - Look for used bit.
518  *
519  * Return: MINUS_ONE_T if no used bits.
520  */
521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 	struct ATTRIB *b;
524 	struct ATTR_LIST_ENTRY *le = NULL;
525 	size_t from = *bit;
526 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 	int err;
528 
529 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 			 NULL, NULL);
531 
532 	if (!b)
533 		return -ENOENT;
534 
535 	*bit = MINUS_ONE_T;
536 
537 	if (!b->non_res) {
538 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 		size_t pos = find_next_bit(resident_data(b), nbits, from);
540 
541 		if (pos < nbits)
542 			*bit = pos;
543 	} else {
544 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 		if (err)
546 			return err;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * hdr_find_split
554  *
555  * Find a point at which the index allocation buffer would like to be split.
556  * NOTE: This function should never return 'END' entry NULL returns on error.
557  */
558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 	size_t o;
561 	const struct NTFS_DE *e = hdr_first_de(hdr);
562 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 	u16 esize;
564 
565 	if (!e || de_is_last(e))
566 		return NULL;
567 
568 	esize = le16_to_cpu(e->size);
569 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 		const struct NTFS_DE *p = e;
571 
572 		e = Add2Ptr(hdr, o);
573 
574 		/* We must not return END entry. */
575 		if (de_is_last(e))
576 			return p;
577 
578 		esize = le16_to_cpu(e->size);
579 	}
580 
581 	return e;
582 }
583 
584 /*
585  * hdr_insert_head - Insert some entries at the beginning of the buffer.
586  *
587  * It is used to insert entries into a newly-created buffer.
588  */
589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 					     const void *ins, u32 ins_bytes)
591 {
592 	u32 to_move;
593 	struct NTFS_DE *e = hdr_first_de(hdr);
594 	u32 used = le32_to_cpu(hdr->used);
595 
596 	if (!e)
597 		return NULL;
598 
599 	/* Now we just make room for the inserted entries and jam it in. */
600 	to_move = used - le32_to_cpu(hdr->de_off);
601 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 	memcpy(e, ins, ins_bytes);
603 	hdr->used = cpu_to_le32(used + ins_bytes);
604 
605 	return e;
606 }
607 
608 void fnd_clear(struct ntfs_fnd *fnd)
609 {
610 	int i;
611 
612 	for (i = 0; i < fnd->level; i++) {
613 		struct indx_node *n = fnd->nodes[i];
614 
615 		if (!n)
616 			continue;
617 
618 		put_indx_node(n);
619 		fnd->nodes[i] = NULL;
620 	}
621 	fnd->level = 0;
622 	fnd->root_de = NULL;
623 }
624 
625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
626 		    struct NTFS_DE *e)
627 {
628 	int i;
629 
630 	i = fnd->level;
631 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
632 		return -EINVAL;
633 	fnd->nodes[i] = n;
634 	fnd->de[i] = e;
635 	fnd->level += 1;
636 	return 0;
637 }
638 
639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
640 {
641 	struct indx_node *n;
642 	int i = fnd->level;
643 
644 	i -= 1;
645 	n = fnd->nodes[i];
646 	fnd->nodes[i] = NULL;
647 	fnd->level = i;
648 
649 	return n;
650 }
651 
652 static bool fnd_is_empty(struct ntfs_fnd *fnd)
653 {
654 	if (!fnd->level)
655 		return !fnd->root_de;
656 
657 	return !fnd->de[fnd->level - 1];
658 }
659 
660 /*
661  * hdr_find_e - Locate an entry the index buffer.
662  *
663  * If no matching entry is found, it returns the first entry which is greater
664  * than the desired entry If the search key is greater than all the entries the
665  * buffer, it returns the 'end' entry. This function does a binary search of the
666  * current index buffer, for the first entry that is <= to the search value.
667  *
668  * Return: NULL if error.
669  */
670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 				  const struct INDEX_HDR *hdr, const void *key,
672 				  size_t key_len, const void *ctx, int *diff)
673 {
674 	struct NTFS_DE *e;
675 	NTFS_CMP_FUNC cmp = indx->cmp;
676 	u32 e_size, e_key_len;
677 	u32 end = le32_to_cpu(hdr->used);
678 	u32 off = le32_to_cpu(hdr->de_off);
679 
680 #ifdef NTFS3_INDEX_BINARY_SEARCH
681 	int max_idx = 0, fnd, min_idx;
682 	int nslots = 64;
683 	u16 *offs;
684 
685 	if (end > 0x10000)
686 		goto next;
687 
688 	offs = kmalloc(sizeof(u16) * nslots, GFP_NOFS);
689 	if (!offs)
690 		goto next;
691 
692 	/* Use binary search algorithm. */
693 next1:
694 	if (off + sizeof(struct NTFS_DE) > end) {
695 		e = NULL;
696 		goto out1;
697 	}
698 	e = Add2Ptr(hdr, off);
699 	e_size = le16_to_cpu(e->size);
700 
701 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) {
702 		e = NULL;
703 		goto out1;
704 	}
705 
706 	if (max_idx >= nslots) {
707 		u16 *ptr;
708 		int new_slots = ALIGN(2 * nslots, 8);
709 
710 		ptr = kmalloc(sizeof(u16) * new_slots, GFP_NOFS);
711 		if (ptr)
712 			memcpy(ptr, offs, sizeof(u16) * max_idx);
713 		kfree(offs);
714 		offs = ptr;
715 		nslots = new_slots;
716 		if (!ptr)
717 			goto next;
718 	}
719 
720 	/* Store entry table. */
721 	offs[max_idx] = off;
722 
723 	if (!de_is_last(e)) {
724 		off += e_size;
725 		max_idx += 1;
726 		goto next1;
727 	}
728 
729 	/*
730 	 * Table of pointers is created.
731 	 * Use binary search to find entry that is <= to the search value.
732 	 */
733 	fnd = -1;
734 	min_idx = 0;
735 
736 	while (min_idx <= max_idx) {
737 		int mid_idx = min_idx + ((max_idx - min_idx) >> 1);
738 		int diff2;
739 
740 		e = Add2Ptr(hdr, offs[mid_idx]);
741 
742 		e_key_len = le16_to_cpu(e->key_size);
743 
744 		diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
745 
746 		if (!diff2) {
747 			*diff = 0;
748 			goto out1;
749 		}
750 
751 		if (diff2 < 0) {
752 			max_idx = mid_idx - 1;
753 			fnd = mid_idx;
754 			if (!fnd)
755 				break;
756 		} else {
757 			min_idx = mid_idx + 1;
758 		}
759 	}
760 
761 	if (fnd == -1) {
762 		e = NULL;
763 		goto out1;
764 	}
765 
766 	*diff = -1;
767 	e = Add2Ptr(hdr, offs[fnd]);
768 
769 out1:
770 	kfree(offs);
771 
772 	return e;
773 #endif
774 
775 next:
776 	/*
777 	 * Entries index are sorted.
778 	 * Enumerate all entries until we find entry
779 	 * that is <= to the search value.
780 	 */
781 	if (off + sizeof(struct NTFS_DE) > end)
782 		return NULL;
783 
784 	e = Add2Ptr(hdr, off);
785 	e_size = le16_to_cpu(e->size);
786 
787 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
788 		return NULL;
789 
790 	off += e_size;
791 
792 	e_key_len = le16_to_cpu(e->key_size);
793 
794 	*diff = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
795 	if (!*diff)
796 		return e;
797 
798 	if (*diff <= 0)
799 		return e;
800 
801 	if (de_is_last(e)) {
802 		*diff = 1;
803 		return e;
804 	}
805 	goto next;
806 }
807 
808 /*
809  * hdr_insert_de - Insert an index entry into the buffer.
810  *
811  * 'before' should be a pointer previously returned from hdr_find_e.
812  */
813 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
814 				     struct INDEX_HDR *hdr,
815 				     const struct NTFS_DE *de,
816 				     struct NTFS_DE *before, const void *ctx)
817 {
818 	int diff;
819 	size_t off = PtrOffset(hdr, before);
820 	u32 used = le32_to_cpu(hdr->used);
821 	u32 total = le32_to_cpu(hdr->total);
822 	u16 de_size = le16_to_cpu(de->size);
823 
824 	/* First, check to see if there's enough room. */
825 	if (used + de_size > total)
826 		return NULL;
827 
828 	/* We know there's enough space, so we know we'll succeed. */
829 	if (before) {
830 		/* Check that before is inside Index. */
831 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
832 		    off + le16_to_cpu(before->size) > total) {
833 			return NULL;
834 		}
835 		goto ok;
836 	}
837 	/* No insert point is applied. Get it manually. */
838 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
839 			    &diff);
840 	if (!before)
841 		return NULL;
842 	off = PtrOffset(hdr, before);
843 
844 ok:
845 	/* Now we just make room for the entry and jam it in. */
846 	memmove(Add2Ptr(before, de_size), before, used - off);
847 
848 	hdr->used = cpu_to_le32(used + de_size);
849 	memcpy(before, de, de_size);
850 
851 	return before;
852 }
853 
854 /*
855  * hdr_delete_de - Remove an entry from the index buffer.
856  */
857 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
858 					    struct NTFS_DE *re)
859 {
860 	u32 used = le32_to_cpu(hdr->used);
861 	u16 esize = le16_to_cpu(re->size);
862 	u32 off = PtrOffset(hdr, re);
863 	int bytes = used - (off + esize);
864 
865 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
866 	    bytes < sizeof(struct NTFS_DE))
867 		return NULL;
868 
869 	hdr->used = cpu_to_le32(used - esize);
870 	memmove(re, Add2Ptr(re, esize), bytes);
871 
872 	return re;
873 }
874 
875 void indx_clear(struct ntfs_index *indx)
876 {
877 	run_close(&indx->alloc_run);
878 	run_close(&indx->bitmap_run);
879 }
880 
881 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
882 	      const struct ATTRIB *attr, enum index_mutex_classed type)
883 {
884 	u32 t32;
885 	const struct INDEX_ROOT *root = resident_data(attr);
886 
887 	/* Check root fields. */
888 	if (!root->index_block_clst)
889 		return -EINVAL;
890 
891 	indx->type = type;
892 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
893 
894 	t32 = le32_to_cpu(root->index_block_size);
895 	indx->index_bits = blksize_bits(t32);
896 
897 	/* Check index record size. */
898 	if (t32 < sbi->cluster_size) {
899 		/* Index record is smaller than a cluster, use 512 blocks. */
900 		if (t32 != root->index_block_clst * SECTOR_SIZE)
901 			return -EINVAL;
902 
903 		/* Check alignment to a cluster. */
904 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
905 		    (root->index_block_clst - 1)) {
906 			return -EINVAL;
907 		}
908 
909 		indx->vbn2vbo_bits = SECTOR_SHIFT;
910 	} else {
911 		/* Index record must be a multiple of cluster size. */
912 		if (t32 != root->index_block_clst << sbi->cluster_bits)
913 			return -EINVAL;
914 
915 		indx->vbn2vbo_bits = sbi->cluster_bits;
916 	}
917 
918 	init_rwsem(&indx->run_lock);
919 
920 	indx->cmp = get_cmp_func(root);
921 	return indx->cmp ? 0 : -EINVAL;
922 }
923 
924 static struct indx_node *indx_new(struct ntfs_index *indx,
925 				  struct ntfs_inode *ni, CLST vbn,
926 				  const __le64 *sub_vbn)
927 {
928 	int err;
929 	struct NTFS_DE *e;
930 	struct indx_node *r;
931 	struct INDEX_HDR *hdr;
932 	struct INDEX_BUFFER *index;
933 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
934 	u32 bytes = 1u << indx->index_bits;
935 	u16 fn;
936 	u32 eo;
937 
938 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
939 	if (!r)
940 		return ERR_PTR(-ENOMEM);
941 
942 	index = kzalloc(bytes, GFP_NOFS);
943 	if (!index) {
944 		kfree(r);
945 		return ERR_PTR(-ENOMEM);
946 	}
947 
948 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
949 
950 	if (err) {
951 		kfree(index);
952 		kfree(r);
953 		return ERR_PTR(err);
954 	}
955 
956 	/* Create header. */
957 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
958 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
959 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
960 	index->rhdr.fix_num = cpu_to_le16(fn);
961 	index->vbn = cpu_to_le64(vbn);
962 	hdr = &index->ihdr;
963 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
964 	hdr->de_off = cpu_to_le32(eo);
965 
966 	e = Add2Ptr(hdr, eo);
967 
968 	if (sub_vbn) {
969 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
970 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
971 		hdr->used =
972 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
973 		de_set_vbn_le(e, *sub_vbn);
974 		hdr->flags = 1;
975 	} else {
976 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
977 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
978 		e->flags = NTFS_IE_LAST;
979 	}
980 
981 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
982 
983 	r->index = index;
984 	return r;
985 }
986 
987 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
988 				 struct ATTRIB **attr, struct mft_inode **mi)
989 {
990 	struct ATTR_LIST_ENTRY *le = NULL;
991 	struct ATTRIB *a;
992 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
993 
994 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
995 			 mi);
996 	if (!a)
997 		return NULL;
998 
999 	if (attr)
1000 		*attr = a;
1001 
1002 	return resident_data_ex(a, sizeof(struct INDEX_ROOT));
1003 }
1004 
1005 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1006 		      struct indx_node *node, int sync)
1007 {
1008 	struct INDEX_BUFFER *ib = node->index;
1009 
1010 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1011 }
1012 
1013 /*
1014  * indx_read
1015  *
1016  * If ntfs_readdir calls this function
1017  * inode is shared locked and no ni_lock.
1018  * Use rw_semaphore for read/write access to alloc_run.
1019  */
1020 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1021 	      struct indx_node **node)
1022 {
1023 	int err;
1024 	struct INDEX_BUFFER *ib;
1025 	struct runs_tree *run = &indx->alloc_run;
1026 	struct rw_semaphore *lock = &indx->run_lock;
1027 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1028 	u32 bytes = 1u << indx->index_bits;
1029 	struct indx_node *in = *node;
1030 	const struct INDEX_NAMES *name;
1031 
1032 	if (!in) {
1033 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1034 		if (!in)
1035 			return -ENOMEM;
1036 	} else {
1037 		nb_put(&in->nb);
1038 	}
1039 
1040 	ib = in->index;
1041 	if (!ib) {
1042 		ib = kmalloc(bytes, GFP_NOFS);
1043 		if (!ib) {
1044 			err = -ENOMEM;
1045 			goto out;
1046 		}
1047 	}
1048 
1049 	down_read(lock);
1050 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1051 	up_read(lock);
1052 	if (!err)
1053 		goto ok;
1054 
1055 	if (err == -E_NTFS_FIXUP)
1056 		goto ok;
1057 
1058 	if (err != -ENOENT)
1059 		goto out;
1060 
1061 	name = &s_index_names[indx->type];
1062 	down_write(lock);
1063 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1064 				   run, vbo, vbo + bytes);
1065 	up_write(lock);
1066 	if (err)
1067 		goto out;
1068 
1069 	down_read(lock);
1070 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1071 	up_read(lock);
1072 	if (err == -E_NTFS_FIXUP)
1073 		goto ok;
1074 
1075 	if (err)
1076 		goto out;
1077 
1078 ok:
1079 	if (err == -E_NTFS_FIXUP) {
1080 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1081 		err = 0;
1082 	}
1083 
1084 	in->index = ib;
1085 	*node = in;
1086 
1087 out:
1088 	if (ib != in->index)
1089 		kfree(ib);
1090 
1091 	if (*node != in) {
1092 		nb_put(&in->nb);
1093 		kfree(in);
1094 	}
1095 
1096 	return err;
1097 }
1098 
1099 /*
1100  * indx_find - Scan NTFS directory for given entry.
1101  */
1102 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1103 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1104 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1105 	      struct ntfs_fnd *fnd)
1106 {
1107 	int err;
1108 	struct NTFS_DE *e;
1109 	const struct INDEX_HDR *hdr;
1110 	struct indx_node *node;
1111 
1112 	if (!root)
1113 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1114 
1115 	if (!root) {
1116 		err = -EINVAL;
1117 		goto out;
1118 	}
1119 
1120 	hdr = &root->ihdr;
1121 
1122 	/* Check cache. */
1123 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1124 	if (e && !de_is_last(e) &&
1125 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1126 		*entry = e;
1127 		*diff = 0;
1128 		return 0;
1129 	}
1130 
1131 	/* Soft finder reset. */
1132 	fnd_clear(fnd);
1133 
1134 	/* Lookup entry that is <= to the search value. */
1135 	e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1136 	if (!e)
1137 		return -EINVAL;
1138 
1139 	if (fnd)
1140 		fnd->root_de = e;
1141 
1142 	err = 0;
1143 
1144 	for (;;) {
1145 		node = NULL;
1146 		if (*diff >= 0 || !de_has_vcn_ex(e)) {
1147 			*entry = e;
1148 			goto out;
1149 		}
1150 
1151 		/* Read next level. */
1152 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1153 		if (err)
1154 			goto out;
1155 
1156 		/* Lookup entry that is <= to the search value. */
1157 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1158 			       diff);
1159 		if (!e) {
1160 			err = -EINVAL;
1161 			put_indx_node(node);
1162 			goto out;
1163 		}
1164 
1165 		fnd_push(fnd, node, e);
1166 	}
1167 
1168 out:
1169 	return err;
1170 }
1171 
1172 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1173 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1174 		   struct ntfs_fnd *fnd)
1175 {
1176 	int err;
1177 	struct indx_node *n = NULL;
1178 	struct NTFS_DE *e;
1179 	size_t iter = 0;
1180 	int level = fnd->level;
1181 
1182 	if (!*entry) {
1183 		/* Start find. */
1184 		e = hdr_first_de(&root->ihdr);
1185 		if (!e)
1186 			return 0;
1187 		fnd_clear(fnd);
1188 		fnd->root_de = e;
1189 	} else if (!level) {
1190 		if (de_is_last(fnd->root_de)) {
1191 			*entry = NULL;
1192 			return 0;
1193 		}
1194 
1195 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1196 		if (!e)
1197 			return -EINVAL;
1198 		fnd->root_de = e;
1199 	} else {
1200 		n = fnd->nodes[level - 1];
1201 		e = fnd->de[level - 1];
1202 
1203 		if (de_is_last(e))
1204 			goto pop_level;
1205 
1206 		e = hdr_next_de(&n->index->ihdr, e);
1207 		if (!e)
1208 			return -EINVAL;
1209 
1210 		fnd->de[level - 1] = e;
1211 	}
1212 
1213 	/* Just to avoid tree cycle. */
1214 next_iter:
1215 	if (iter++ >= 1000)
1216 		return -EINVAL;
1217 
1218 	while (de_has_vcn_ex(e)) {
1219 		if (le16_to_cpu(e->size) <
1220 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1221 			if (n) {
1222 				fnd_pop(fnd);
1223 				kfree(n);
1224 			}
1225 			return -EINVAL;
1226 		}
1227 
1228 		/* Read next level. */
1229 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1230 		if (err)
1231 			return err;
1232 
1233 		/* Try next level. */
1234 		e = hdr_first_de(&n->index->ihdr);
1235 		if (!e) {
1236 			kfree(n);
1237 			return -EINVAL;
1238 		}
1239 
1240 		fnd_push(fnd, n, e);
1241 	}
1242 
1243 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1244 		*entry = e;
1245 		return 0;
1246 	}
1247 
1248 pop_level:
1249 	for (;;) {
1250 		if (!de_is_last(e))
1251 			goto next_iter;
1252 
1253 		/* Pop one level. */
1254 		if (n) {
1255 			fnd_pop(fnd);
1256 			kfree(n);
1257 		}
1258 
1259 		level = fnd->level;
1260 
1261 		if (level) {
1262 			n = fnd->nodes[level - 1];
1263 			e = fnd->de[level - 1];
1264 		} else if (fnd->root_de) {
1265 			n = NULL;
1266 			e = fnd->root_de;
1267 			fnd->root_de = NULL;
1268 		} else {
1269 			*entry = NULL;
1270 			return 0;
1271 		}
1272 
1273 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274 			*entry = e;
1275 			if (!fnd->root_de)
1276 				fnd->root_de = e;
1277 			return 0;
1278 		}
1279 	}
1280 }
1281 
1282 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1283 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1284 		  size_t *off, struct ntfs_fnd *fnd)
1285 {
1286 	int err;
1287 	struct indx_node *n = NULL;
1288 	struct NTFS_DE *e = NULL;
1289 	struct NTFS_DE *e2;
1290 	size_t bit;
1291 	CLST next_used_vbn;
1292 	CLST next_vbn;
1293 	u32 record_size = ni->mi.sbi->record_size;
1294 
1295 	/* Use non sorted algorithm. */
1296 	if (!*entry) {
1297 		/* This is the first call. */
1298 		e = hdr_first_de(&root->ihdr);
1299 		if (!e)
1300 			return 0;
1301 		fnd_clear(fnd);
1302 		fnd->root_de = e;
1303 
1304 		/* The first call with setup of initial element. */
1305 		if (*off >= record_size) {
1306 			next_vbn = (((*off - record_size) >> indx->index_bits))
1307 				   << indx->idx2vbn_bits;
1308 			/* Jump inside cycle 'for'. */
1309 			goto next;
1310 		}
1311 
1312 		/* Start enumeration from root. */
1313 		*off = 0;
1314 	} else if (!fnd->root_de)
1315 		return -EINVAL;
1316 
1317 	for (;;) {
1318 		/* Check if current entry can be used. */
1319 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1320 			goto ok;
1321 
1322 		if (!fnd->level) {
1323 			/* Continue to enumerate root. */
1324 			if (!de_is_last(fnd->root_de)) {
1325 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1326 				if (!e)
1327 					return -EINVAL;
1328 				fnd->root_de = e;
1329 				continue;
1330 			}
1331 
1332 			/* Start to enumerate indexes from 0. */
1333 			next_vbn = 0;
1334 		} else {
1335 			/* Continue to enumerate indexes. */
1336 			e2 = fnd->de[fnd->level - 1];
1337 
1338 			n = fnd->nodes[fnd->level - 1];
1339 
1340 			if (!de_is_last(e2)) {
1341 				e = hdr_next_de(&n->index->ihdr, e2);
1342 				if (!e)
1343 					return -EINVAL;
1344 				fnd->de[fnd->level - 1] = e;
1345 				continue;
1346 			}
1347 
1348 			/* Continue with next index. */
1349 			next_vbn = le64_to_cpu(n->index->vbn) +
1350 				   root->index_block_clst;
1351 		}
1352 
1353 next:
1354 		/* Release current index. */
1355 		if (n) {
1356 			fnd_pop(fnd);
1357 			put_indx_node(n);
1358 			n = NULL;
1359 		}
1360 
1361 		/* Skip all free indexes. */
1362 		bit = next_vbn >> indx->idx2vbn_bits;
1363 		err = indx_used_bit(indx, ni, &bit);
1364 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1365 			/* No used indexes. */
1366 			*entry = NULL;
1367 			return 0;
1368 		}
1369 
1370 		next_used_vbn = bit << indx->idx2vbn_bits;
1371 
1372 		/* Read buffer into memory. */
1373 		err = indx_read(indx, ni, next_used_vbn, &n);
1374 		if (err)
1375 			return err;
1376 
1377 		e = hdr_first_de(&n->index->ihdr);
1378 		fnd_push(fnd, n, e);
1379 		if (!e)
1380 			return -EINVAL;
1381 	}
1382 
1383 ok:
1384 	/* Return offset to restore enumerator if necessary. */
1385 	if (!n) {
1386 		/* 'e' points in root, */
1387 		*off = PtrOffset(&root->ihdr, e);
1388 	} else {
1389 		/* 'e' points in index, */
1390 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1391 		       record_size + PtrOffset(&n->index->ihdr, e);
1392 	}
1393 
1394 	*entry = e;
1395 	return 0;
1396 }
1397 
1398 /*
1399  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1400  */
1401 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1402 				CLST *vbn)
1403 {
1404 	int err = -ENOMEM;
1405 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1406 	struct ATTRIB *bitmap;
1407 	struct ATTRIB *alloc;
1408 	u32 data_size = 1u << indx->index_bits;
1409 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1410 	CLST len = alloc_size >> sbi->cluster_bits;
1411 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1412 	CLST alen;
1413 	struct runs_tree run;
1414 
1415 	run_init(&run);
1416 
1417 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1418 				     NULL);
1419 	if (err)
1420 		goto out;
1421 
1422 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1423 				    &run, 0, len, 0, &alloc, NULL);
1424 	if (err)
1425 		goto out1;
1426 
1427 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1428 
1429 	err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1430 				 in->name_len, &bitmap, NULL, NULL);
1431 	if (err)
1432 		goto out2;
1433 
1434 	if (in->name == I30_NAME) {
1435 		ni->vfs_inode.i_size = data_size;
1436 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1437 	}
1438 
1439 	memcpy(&indx->alloc_run, &run, sizeof(run));
1440 
1441 	*vbn = 0;
1442 
1443 	return 0;
1444 
1445 out2:
1446 	mi_remove_attr(NULL, &ni->mi, alloc);
1447 
1448 out1:
1449 	run_deallocate(sbi, &run, false);
1450 
1451 out:
1452 	return err;
1453 }
1454 
1455 /*
1456  * indx_add_allocate - Add clusters to index.
1457  */
1458 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1459 			     CLST *vbn)
1460 {
1461 	int err;
1462 	size_t bit;
1463 	u64 data_size;
1464 	u64 bmp_size, bmp_size_v;
1465 	struct ATTRIB *bmp, *alloc;
1466 	struct mft_inode *mi;
1467 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1468 
1469 	err = indx_find_free(indx, ni, &bit, &bmp);
1470 	if (err)
1471 		goto out1;
1472 
1473 	if (bit != MINUS_ONE_T) {
1474 		bmp = NULL;
1475 	} else {
1476 		if (bmp->non_res) {
1477 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1478 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1479 		} else {
1480 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1481 		}
1482 
1483 		bit = bmp_size << 3;
1484 	}
1485 
1486 	data_size = (u64)(bit + 1) << indx->index_bits;
1487 
1488 	if (bmp) {
1489 		/* Increase bitmap. */
1490 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1491 				    &indx->bitmap_run, bitmap_size(bit + 1),
1492 				    NULL, true, NULL);
1493 		if (err)
1494 			goto out1;
1495 	}
1496 
1497 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1498 			     NULL, &mi);
1499 	if (!alloc) {
1500 		err = -EINVAL;
1501 		if (bmp)
1502 			goto out2;
1503 		goto out1;
1504 	}
1505 
1506 	/* Increase allocation. */
1507 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1508 			    &indx->alloc_run, data_size, &data_size, true,
1509 			    NULL);
1510 	if (err) {
1511 		if (bmp)
1512 			goto out2;
1513 		goto out1;
1514 	}
1515 
1516 	*vbn = bit << indx->idx2vbn_bits;
1517 
1518 	return 0;
1519 
1520 out2:
1521 	/* Ops. No space? */
1522 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1523 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1524 
1525 out1:
1526 	return err;
1527 }
1528 
1529 /*
1530  * indx_insert_into_root - Attempt to insert an entry into the index root.
1531  *
1532  * @undo - True if we undoing previous remove.
1533  * If necessary, it will twiddle the index b-tree.
1534  */
1535 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1536 				 const struct NTFS_DE *new_de,
1537 				 struct NTFS_DE *root_de, const void *ctx,
1538 				 struct ntfs_fnd *fnd, bool undo)
1539 {
1540 	int err = 0;
1541 	struct NTFS_DE *e, *e0, *re;
1542 	struct mft_inode *mi;
1543 	struct ATTRIB *attr;
1544 	struct INDEX_HDR *hdr;
1545 	struct indx_node *n;
1546 	CLST new_vbn;
1547 	__le64 *sub_vbn, t_vbn;
1548 	u16 new_de_size;
1549 	u32 hdr_used, hdr_total, asize, to_move;
1550 	u32 root_size, new_root_size;
1551 	struct ntfs_sb_info *sbi;
1552 	int ds_root;
1553 	struct INDEX_ROOT *root, *a_root;
1554 
1555 	/* Get the record this root placed in. */
1556 	root = indx_get_root(indx, ni, &attr, &mi);
1557 	if (!root)
1558 		return -EINVAL;
1559 
1560 	/*
1561 	 * Try easy case:
1562 	 * hdr_insert_de will succeed if there's
1563 	 * room the root for the new entry.
1564 	 */
1565 	hdr = &root->ihdr;
1566 	sbi = ni->mi.sbi;
1567 	new_de_size = le16_to_cpu(new_de->size);
1568 	hdr_used = le32_to_cpu(hdr->used);
1569 	hdr_total = le32_to_cpu(hdr->total);
1570 	asize = le32_to_cpu(attr->size);
1571 	root_size = le32_to_cpu(attr->res.data_size);
1572 
1573 	ds_root = new_de_size + hdr_used - hdr_total;
1574 
1575 	/* If 'undo' is set then reduce requirements. */
1576 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1577 	    mi_resize_attr(mi, attr, ds_root)) {
1578 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1579 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1580 		WARN_ON(!e);
1581 		fnd_clear(fnd);
1582 		fnd->root_de = e;
1583 
1584 		return 0;
1585 	}
1586 
1587 	/* Make a copy of root attribute to restore if error. */
1588 	a_root = kmemdup(attr, asize, GFP_NOFS);
1589 	if (!a_root)
1590 		return -ENOMEM;
1591 
1592 	/*
1593 	 * Copy all the non-end entries from
1594 	 * the index root to the new buffer.
1595 	 */
1596 	to_move = 0;
1597 	e0 = hdr_first_de(hdr);
1598 
1599 	/* Calculate the size to copy. */
1600 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1601 		if (!e) {
1602 			err = -EINVAL;
1603 			goto out_free_root;
1604 		}
1605 
1606 		if (de_is_last(e))
1607 			break;
1608 		to_move += le16_to_cpu(e->size);
1609 	}
1610 
1611 	if (!to_move) {
1612 		re = NULL;
1613 	} else {
1614 		re = kmemdup(e0, to_move, GFP_NOFS);
1615 		if (!re) {
1616 			err = -ENOMEM;
1617 			goto out_free_root;
1618 		}
1619 	}
1620 
1621 	sub_vbn = NULL;
1622 	if (de_has_vcn(e)) {
1623 		t_vbn = de_get_vbn_le(e);
1624 		sub_vbn = &t_vbn;
1625 	}
1626 
1627 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1628 			sizeof(u64);
1629 	ds_root = new_root_size - root_size;
1630 
1631 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1632 		/* Make root external. */
1633 		err = -EOPNOTSUPP;
1634 		goto out_free_re;
1635 	}
1636 
1637 	if (ds_root)
1638 		mi_resize_attr(mi, attr, ds_root);
1639 
1640 	/* Fill first entry (vcn will be set later). */
1641 	e = (struct NTFS_DE *)(root + 1);
1642 	memset(e, 0, sizeof(struct NTFS_DE));
1643 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1644 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1645 
1646 	hdr->flags = 1;
1647 	hdr->used = hdr->total =
1648 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1649 
1650 	fnd->root_de = hdr_first_de(hdr);
1651 	mi->dirty = true;
1652 
1653 	/* Create alloc and bitmap attributes (if not). */
1654 	err = run_is_empty(&indx->alloc_run)
1655 		      ? indx_create_allocate(indx, ni, &new_vbn)
1656 		      : indx_add_allocate(indx, ni, &new_vbn);
1657 
1658 	/* Layout of record may be changed, so rescan root. */
1659 	root = indx_get_root(indx, ni, &attr, &mi);
1660 	if (!root) {
1661 		/* Bug? */
1662 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1663 		err = -EINVAL;
1664 		goto out_free_re;
1665 	}
1666 
1667 	if (err) {
1668 		/* Restore root. */
1669 		if (mi_resize_attr(mi, attr, -ds_root))
1670 			memcpy(attr, a_root, asize);
1671 		else {
1672 			/* Bug? */
1673 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1674 		}
1675 		goto out_free_re;
1676 	}
1677 
1678 	e = (struct NTFS_DE *)(root + 1);
1679 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1680 	mi->dirty = true;
1681 
1682 	/* Now we can create/format the new buffer and copy the entries into. */
1683 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1684 	if (IS_ERR(n)) {
1685 		err = PTR_ERR(n);
1686 		goto out_free_re;
1687 	}
1688 
1689 	hdr = &n->index->ihdr;
1690 	hdr_used = le32_to_cpu(hdr->used);
1691 	hdr_total = le32_to_cpu(hdr->total);
1692 
1693 	/* Copy root entries into new buffer. */
1694 	hdr_insert_head(hdr, re, to_move);
1695 
1696 	/* Update bitmap attribute. */
1697 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1698 
1699 	/* Check if we can insert new entry new index buffer. */
1700 	if (hdr_used + new_de_size > hdr_total) {
1701 		/*
1702 		 * This occurs if MFT record is the same or bigger than index
1703 		 * buffer. Move all root new index and have no space to add
1704 		 * new entry classic case when MFT record is 1K and index
1705 		 * buffer 4K the problem should not occurs.
1706 		 */
1707 		kfree(re);
1708 		indx_write(indx, ni, n, 0);
1709 
1710 		put_indx_node(n);
1711 		fnd_clear(fnd);
1712 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1713 		goto out_free_root;
1714 	}
1715 
1716 	/*
1717 	 * Now root is a parent for new index buffer.
1718 	 * Insert NewEntry a new buffer.
1719 	 */
1720 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1721 	if (!e) {
1722 		err = -EINVAL;
1723 		goto out_put_n;
1724 	}
1725 	fnd_push(fnd, n, e);
1726 
1727 	/* Just write updates index into disk. */
1728 	indx_write(indx, ni, n, 0);
1729 
1730 	n = NULL;
1731 
1732 out_put_n:
1733 	put_indx_node(n);
1734 out_free_re:
1735 	kfree(re);
1736 out_free_root:
1737 	kfree(a_root);
1738 	return err;
1739 }
1740 
1741 /*
1742  * indx_insert_into_buffer
1743  *
1744  * Attempt to insert an entry into an Index Allocation Buffer.
1745  * If necessary, it will split the buffer.
1746  */
1747 static int
1748 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1749 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1750 			const void *ctx, int level, struct ntfs_fnd *fnd)
1751 {
1752 	int err;
1753 	const struct NTFS_DE *sp;
1754 	struct NTFS_DE *e, *de_t, *up_e = NULL;
1755 	struct indx_node *n2 = NULL;
1756 	struct indx_node *n1 = fnd->nodes[level];
1757 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1758 	struct INDEX_HDR *hdr2;
1759 	u32 to_copy, used;
1760 	CLST new_vbn;
1761 	__le64 t_vbn, *sub_vbn;
1762 	u16 sp_size;
1763 
1764 	/* Try the most easy case. */
1765 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1766 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1767 	fnd->de[level] = e;
1768 	if (e) {
1769 		/* Just write updated index into disk. */
1770 		indx_write(indx, ni, n1, 0);
1771 		return 0;
1772 	}
1773 
1774 	/*
1775 	 * No space to insert into buffer. Split it.
1776 	 * To split we:
1777 	 *  - Save split point ('cause index buffers will be changed)
1778 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1779 	 * - Remove all entries (sp including) from TargetBuffer
1780 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1781 	 *     NewEntry)
1782 	 * - Insert sp into parent buffer (or root)
1783 	 * - Make sp a parent for new buffer
1784 	 */
1785 	sp = hdr_find_split(hdr1);
1786 	if (!sp)
1787 		return -EINVAL;
1788 
1789 	sp_size = le16_to_cpu(sp->size);
1790 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1791 	if (!up_e)
1792 		return -ENOMEM;
1793 	memcpy(up_e, sp, sp_size);
1794 
1795 	if (!hdr1->flags) {
1796 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1797 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1798 		sub_vbn = NULL;
1799 	} else {
1800 		t_vbn = de_get_vbn_le(up_e);
1801 		sub_vbn = &t_vbn;
1802 	}
1803 
1804 	/* Allocate on disk a new index allocation buffer. */
1805 	err = indx_add_allocate(indx, ni, &new_vbn);
1806 	if (err)
1807 		goto out;
1808 
1809 	/* Allocate and format memory a new index buffer. */
1810 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1811 	if (IS_ERR(n2)) {
1812 		err = PTR_ERR(n2);
1813 		goto out;
1814 	}
1815 
1816 	hdr2 = &n2->index->ihdr;
1817 
1818 	/* Make sp a parent for new buffer. */
1819 	de_set_vbn(up_e, new_vbn);
1820 
1821 	/* Copy all the entries <= sp into the new buffer. */
1822 	de_t = hdr_first_de(hdr1);
1823 	to_copy = PtrOffset(de_t, sp);
1824 	hdr_insert_head(hdr2, de_t, to_copy);
1825 
1826 	/* Remove all entries (sp including) from hdr1. */
1827 	used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1828 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1829 	hdr1->used = cpu_to_le32(used);
1830 
1831 	/*
1832 	 * Insert new entry into left or right buffer
1833 	 * (depending on sp <=> new_de).
1834 	 */
1835 	hdr_insert_de(indx,
1836 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1837 				   up_e + 1, le16_to_cpu(up_e->key_size),
1838 				   ctx) < 0
1839 			      ? hdr2
1840 			      : hdr1,
1841 		      new_de, NULL, ctx);
1842 
1843 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1844 
1845 	indx_write(indx, ni, n1, 0);
1846 	indx_write(indx, ni, n2, 0);
1847 
1848 	put_indx_node(n2);
1849 
1850 	/*
1851 	 * We've finished splitting everybody, so we are ready to
1852 	 * insert the promoted entry into the parent.
1853 	 */
1854 	if (!level) {
1855 		/* Insert in root. */
1856 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1857 		if (err)
1858 			goto out;
1859 	} else {
1860 		/*
1861 		 * The target buffer's parent is another index buffer.
1862 		 * TODO: Remove recursion.
1863 		 */
1864 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1865 					      level - 1, fnd);
1866 		if (err)
1867 			goto out;
1868 	}
1869 
1870 out:
1871 	kfree(up_e);
1872 
1873 	return err;
1874 }
1875 
1876 /*
1877  * indx_insert_entry - Insert new entry into index.
1878  *
1879  * @undo - True if we undoing previous remove.
1880  */
1881 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1882 		      const struct NTFS_DE *new_de, const void *ctx,
1883 		      struct ntfs_fnd *fnd, bool undo)
1884 {
1885 	int err;
1886 	int diff;
1887 	struct NTFS_DE *e;
1888 	struct ntfs_fnd *fnd_a = NULL;
1889 	struct INDEX_ROOT *root;
1890 
1891 	if (!fnd) {
1892 		fnd_a = fnd_get();
1893 		if (!fnd_a) {
1894 			err = -ENOMEM;
1895 			goto out1;
1896 		}
1897 		fnd = fnd_a;
1898 	}
1899 
1900 	root = indx_get_root(indx, ni, NULL, NULL);
1901 	if (!root) {
1902 		err = -EINVAL;
1903 		goto out;
1904 	}
1905 
1906 	if (fnd_is_empty(fnd)) {
1907 		/*
1908 		 * Find the spot the tree where we want to
1909 		 * insert the new entry.
1910 		 */
1911 		err = indx_find(indx, ni, root, new_de + 1,
1912 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1913 				fnd);
1914 		if (err)
1915 			goto out;
1916 
1917 		if (!diff) {
1918 			err = -EEXIST;
1919 			goto out;
1920 		}
1921 	}
1922 
1923 	if (!fnd->level) {
1924 		/*
1925 		 * The root is also a leaf, so we'll insert the
1926 		 * new entry into it.
1927 		 */
1928 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1929 					    fnd, undo);
1930 		if (err)
1931 			goto out;
1932 	} else {
1933 		/*
1934 		 * Found a leaf buffer, so we'll insert the new entry into it.
1935 		 */
1936 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1937 					      fnd->level - 1, fnd);
1938 		if (err)
1939 			goto out;
1940 	}
1941 
1942 out:
1943 	fnd_put(fnd_a);
1944 out1:
1945 	return err;
1946 }
1947 
1948 /*
1949  * indx_find_buffer - Locate a buffer from the tree.
1950  */
1951 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1952 					  struct ntfs_inode *ni,
1953 					  const struct INDEX_ROOT *root,
1954 					  __le64 vbn, struct indx_node *n)
1955 {
1956 	int err;
1957 	const struct NTFS_DE *e;
1958 	struct indx_node *r;
1959 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1960 
1961 	/* Step 1: Scan one level. */
1962 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1963 		if (!e)
1964 			return ERR_PTR(-EINVAL);
1965 
1966 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1967 			return n;
1968 
1969 		if (de_is_last(e))
1970 			break;
1971 	}
1972 
1973 	/* Step2: Do recursion. */
1974 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1975 	for (;;) {
1976 		if (de_has_vcn_ex(e)) {
1977 			err = indx_read(indx, ni, de_get_vbn(e), &n);
1978 			if (err)
1979 				return ERR_PTR(err);
1980 
1981 			r = indx_find_buffer(indx, ni, root, vbn, n);
1982 			if (r)
1983 				return r;
1984 		}
1985 
1986 		if (de_is_last(e))
1987 			break;
1988 
1989 		e = Add2Ptr(e, le16_to_cpu(e->size));
1990 	}
1991 
1992 	return NULL;
1993 }
1994 
1995 /*
1996  * indx_shrink - Deallocate unused tail indexes.
1997  */
1998 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1999 		       size_t bit)
2000 {
2001 	int err = 0;
2002 	u64 bpb, new_data;
2003 	size_t nbits;
2004 	struct ATTRIB *b;
2005 	struct ATTR_LIST_ENTRY *le = NULL;
2006 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2007 
2008 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2009 			 NULL, NULL);
2010 
2011 	if (!b)
2012 		return -ENOENT;
2013 
2014 	if (!b->non_res) {
2015 		unsigned long pos;
2016 		const unsigned long *bm = resident_data(b);
2017 
2018 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2019 
2020 		if (bit >= nbits)
2021 			return 0;
2022 
2023 		pos = find_next_bit(bm, nbits, bit);
2024 		if (pos < nbits)
2025 			return 0;
2026 	} else {
2027 		size_t used = MINUS_ONE_T;
2028 
2029 		nbits = le64_to_cpu(b->nres.data_size) * 8;
2030 
2031 		if (bit >= nbits)
2032 			return 0;
2033 
2034 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2035 		if (err)
2036 			return err;
2037 
2038 		if (used != MINUS_ONE_T)
2039 			return 0;
2040 	}
2041 
2042 	new_data = (u64)bit << indx->index_bits;
2043 
2044 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2045 			    &indx->alloc_run, new_data, &new_data, false, NULL);
2046 	if (err)
2047 		return err;
2048 
2049 	bpb = bitmap_size(bit);
2050 	if (bpb * 8 == nbits)
2051 		return 0;
2052 
2053 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2054 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2055 
2056 	return err;
2057 }
2058 
2059 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2060 			      const struct NTFS_DE *e, bool trim)
2061 {
2062 	int err;
2063 	struct indx_node *n;
2064 	struct INDEX_HDR *hdr;
2065 	CLST vbn = de_get_vbn(e);
2066 	size_t i;
2067 
2068 	err = indx_read(indx, ni, vbn, &n);
2069 	if (err)
2070 		return err;
2071 
2072 	hdr = &n->index->ihdr;
2073 	/* First, recurse into the children, if any. */
2074 	if (hdr_has_subnode(hdr)) {
2075 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2076 			indx_free_children(indx, ni, e, false);
2077 			if (de_is_last(e))
2078 				break;
2079 		}
2080 	}
2081 
2082 	put_indx_node(n);
2083 
2084 	i = vbn >> indx->idx2vbn_bits;
2085 	/*
2086 	 * We've gotten rid of the children; add this buffer to the free list.
2087 	 */
2088 	indx_mark_free(indx, ni, i);
2089 
2090 	if (!trim)
2091 		return 0;
2092 
2093 	/*
2094 	 * If there are no used indexes after current free index
2095 	 * then we can truncate allocation and bitmap.
2096 	 * Use bitmap to estimate the case.
2097 	 */
2098 	indx_shrink(indx, ni, i + 1);
2099 	return 0;
2100 }
2101 
2102 /*
2103  * indx_get_entry_to_replace
2104  *
2105  * Find a replacement entry for a deleted entry.
2106  * Always returns a node entry:
2107  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2108  */
2109 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2110 				     struct ntfs_inode *ni,
2111 				     const struct NTFS_DE *de_next,
2112 				     struct NTFS_DE **de_to_replace,
2113 				     struct ntfs_fnd *fnd)
2114 {
2115 	int err;
2116 	int level = -1;
2117 	CLST vbn;
2118 	struct NTFS_DE *e, *te, *re;
2119 	struct indx_node *n;
2120 	struct INDEX_BUFFER *ib;
2121 
2122 	*de_to_replace = NULL;
2123 
2124 	/* Find first leaf entry down from de_next. */
2125 	vbn = de_get_vbn(de_next);
2126 	for (;;) {
2127 		n = NULL;
2128 		err = indx_read(indx, ni, vbn, &n);
2129 		if (err)
2130 			goto out;
2131 
2132 		e = hdr_first_de(&n->index->ihdr);
2133 		fnd_push(fnd, n, e);
2134 
2135 		if (!de_is_last(e)) {
2136 			/*
2137 			 * This buffer is non-empty, so its first entry
2138 			 * could be used as the replacement entry.
2139 			 */
2140 			level = fnd->level - 1;
2141 		}
2142 
2143 		if (!de_has_vcn(e))
2144 			break;
2145 
2146 		/* This buffer is a node. Continue to go down. */
2147 		vbn = de_get_vbn(e);
2148 	}
2149 
2150 	if (level == -1)
2151 		goto out;
2152 
2153 	n = fnd->nodes[level];
2154 	te = hdr_first_de(&n->index->ihdr);
2155 	/* Copy the candidate entry into the replacement entry buffer. */
2156 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2157 	if (!re) {
2158 		err = -ENOMEM;
2159 		goto out;
2160 	}
2161 
2162 	*de_to_replace = re;
2163 	memcpy(re, te, le16_to_cpu(te->size));
2164 
2165 	if (!de_has_vcn(re)) {
2166 		/*
2167 		 * The replacement entry we found doesn't have a sub_vcn.
2168 		 * increase its size to hold one.
2169 		 */
2170 		le16_add_cpu(&re->size, sizeof(u64));
2171 		re->flags |= NTFS_IE_HAS_SUBNODES;
2172 	} else {
2173 		/*
2174 		 * The replacement entry we found was a node entry, which
2175 		 * means that all its child buffers are empty. Return them
2176 		 * to the free pool.
2177 		 */
2178 		indx_free_children(indx, ni, te, true);
2179 	}
2180 
2181 	/*
2182 	 * Expunge the replacement entry from its former location,
2183 	 * and then write that buffer.
2184 	 */
2185 	ib = n->index;
2186 	e = hdr_delete_de(&ib->ihdr, te);
2187 
2188 	fnd->de[level] = e;
2189 	indx_write(indx, ni, n, 0);
2190 
2191 	/* Check to see if this action created an empty leaf. */
2192 	if (ib_is_leaf(ib) && ib_is_empty(ib))
2193 		return 0;
2194 
2195 out:
2196 	fnd_clear(fnd);
2197 	return err;
2198 }
2199 
2200 /*
2201  * indx_delete_entry - Delete an entry from the index.
2202  */
2203 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2204 		      const void *key, u32 key_len, const void *ctx)
2205 {
2206 	int err, diff;
2207 	struct INDEX_ROOT *root;
2208 	struct INDEX_HDR *hdr;
2209 	struct ntfs_fnd *fnd, *fnd2;
2210 	struct INDEX_BUFFER *ib;
2211 	struct NTFS_DE *e, *re, *next, *prev, *me;
2212 	struct indx_node *n, *n2d = NULL;
2213 	__le64 sub_vbn;
2214 	int level, level2;
2215 	struct ATTRIB *attr;
2216 	struct mft_inode *mi;
2217 	u32 e_size, root_size, new_root_size;
2218 	size_t trim_bit;
2219 	const struct INDEX_NAMES *in;
2220 
2221 	fnd = fnd_get();
2222 	if (!fnd) {
2223 		err = -ENOMEM;
2224 		goto out2;
2225 	}
2226 
2227 	fnd2 = fnd_get();
2228 	if (!fnd2) {
2229 		err = -ENOMEM;
2230 		goto out1;
2231 	}
2232 
2233 	root = indx_get_root(indx, ni, &attr, &mi);
2234 	if (!root) {
2235 		err = -EINVAL;
2236 		goto out;
2237 	}
2238 
2239 	/* Locate the entry to remove. */
2240 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2241 	if (err)
2242 		goto out;
2243 
2244 	if (!e || diff) {
2245 		err = -ENOENT;
2246 		goto out;
2247 	}
2248 
2249 	level = fnd->level;
2250 
2251 	if (level) {
2252 		n = fnd->nodes[level - 1];
2253 		e = fnd->de[level - 1];
2254 		ib = n->index;
2255 		hdr = &ib->ihdr;
2256 	} else {
2257 		hdr = &root->ihdr;
2258 		e = fnd->root_de;
2259 		n = NULL;
2260 	}
2261 
2262 	e_size = le16_to_cpu(e->size);
2263 
2264 	if (!de_has_vcn_ex(e)) {
2265 		/* The entry to delete is a leaf, so we can just rip it out. */
2266 		hdr_delete_de(hdr, e);
2267 
2268 		if (!level) {
2269 			hdr->total = hdr->used;
2270 
2271 			/* Shrink resident root attribute. */
2272 			mi_resize_attr(mi, attr, 0 - e_size);
2273 			goto out;
2274 		}
2275 
2276 		indx_write(indx, ni, n, 0);
2277 
2278 		/*
2279 		 * Check to see if removing that entry made
2280 		 * the leaf empty.
2281 		 */
2282 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2283 			fnd_pop(fnd);
2284 			fnd_push(fnd2, n, e);
2285 		}
2286 	} else {
2287 		/*
2288 		 * The entry we wish to delete is a node buffer, so we
2289 		 * have to find a replacement for it.
2290 		 */
2291 		next = de_get_next(e);
2292 
2293 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2294 		if (err)
2295 			goto out;
2296 
2297 		if (re) {
2298 			de_set_vbn_le(re, de_get_vbn_le(e));
2299 			hdr_delete_de(hdr, e);
2300 
2301 			err = level ? indx_insert_into_buffer(indx, ni, root,
2302 							      re, ctx,
2303 							      fnd->level - 1,
2304 							      fnd)
2305 				    : indx_insert_into_root(indx, ni, re, e,
2306 							    ctx, fnd, 0);
2307 			kfree(re);
2308 
2309 			if (err)
2310 				goto out;
2311 		} else {
2312 			/*
2313 			 * There is no replacement for the current entry.
2314 			 * This means that the subtree rooted at its node
2315 			 * is empty, and can be deleted, which turn means
2316 			 * that the node can just inherit the deleted
2317 			 * entry sub_vcn.
2318 			 */
2319 			indx_free_children(indx, ni, next, true);
2320 
2321 			de_set_vbn_le(next, de_get_vbn_le(e));
2322 			hdr_delete_de(hdr, e);
2323 			if (level) {
2324 				indx_write(indx, ni, n, 0);
2325 			} else {
2326 				hdr->total = hdr->used;
2327 
2328 				/* Shrink resident root attribute. */
2329 				mi_resize_attr(mi, attr, 0 - e_size);
2330 			}
2331 		}
2332 	}
2333 
2334 	/* Delete a branch of tree. */
2335 	if (!fnd2 || !fnd2->level)
2336 		goto out;
2337 
2338 	/* Reinit root 'cause it can be changed. */
2339 	root = indx_get_root(indx, ni, &attr, &mi);
2340 	if (!root) {
2341 		err = -EINVAL;
2342 		goto out;
2343 	}
2344 
2345 	n2d = NULL;
2346 	sub_vbn = fnd2->nodes[0]->index->vbn;
2347 	level2 = 0;
2348 	level = fnd->level;
2349 
2350 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2351 
2352 	/* Scan current level. */
2353 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2354 		if (!e) {
2355 			err = -EINVAL;
2356 			goto out;
2357 		}
2358 
2359 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2360 			break;
2361 
2362 		if (de_is_last(e)) {
2363 			e = NULL;
2364 			break;
2365 		}
2366 	}
2367 
2368 	if (!e) {
2369 		/* Do slow search from root. */
2370 		struct indx_node *in;
2371 
2372 		fnd_clear(fnd);
2373 
2374 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2375 		if (IS_ERR(in)) {
2376 			err = PTR_ERR(in);
2377 			goto out;
2378 		}
2379 
2380 		if (in)
2381 			fnd_push(fnd, in, NULL);
2382 	}
2383 
2384 	/* Merge fnd2 -> fnd. */
2385 	for (level = 0; level < fnd2->level; level++) {
2386 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2387 		fnd2->nodes[level] = NULL;
2388 	}
2389 	fnd2->level = 0;
2390 
2391 	hdr = NULL;
2392 	for (level = fnd->level; level; level--) {
2393 		struct indx_node *in = fnd->nodes[level - 1];
2394 
2395 		ib = in->index;
2396 		if (ib_is_empty(ib)) {
2397 			sub_vbn = ib->vbn;
2398 		} else {
2399 			hdr = &ib->ihdr;
2400 			n2d = in;
2401 			level2 = level;
2402 			break;
2403 		}
2404 	}
2405 
2406 	if (!hdr)
2407 		hdr = &root->ihdr;
2408 
2409 	e = hdr_first_de(hdr);
2410 	if (!e) {
2411 		err = -EINVAL;
2412 		goto out;
2413 	}
2414 
2415 	if (hdr != &root->ihdr || !de_is_last(e)) {
2416 		prev = NULL;
2417 		while (!de_is_last(e)) {
2418 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2419 				break;
2420 			prev = e;
2421 			e = hdr_next_de(hdr, e);
2422 			if (!e) {
2423 				err = -EINVAL;
2424 				goto out;
2425 			}
2426 		}
2427 
2428 		if (sub_vbn != de_get_vbn_le(e)) {
2429 			/*
2430 			 * Didn't find the parent entry, although this buffer
2431 			 * is the parent trail. Something is corrupt.
2432 			 */
2433 			err = -EINVAL;
2434 			goto out;
2435 		}
2436 
2437 		if (de_is_last(e)) {
2438 			/*
2439 			 * Since we can't remove the end entry, we'll remove
2440 			 * its predecessor instead. This means we have to
2441 			 * transfer the predecessor's sub_vcn to the end entry.
2442 			 * Note: This index block is not empty, so the
2443 			 * predecessor must exist.
2444 			 */
2445 			if (!prev) {
2446 				err = -EINVAL;
2447 				goto out;
2448 			}
2449 
2450 			if (de_has_vcn(prev)) {
2451 				de_set_vbn_le(e, de_get_vbn_le(prev));
2452 			} else if (de_has_vcn(e)) {
2453 				le16_sub_cpu(&e->size, sizeof(u64));
2454 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2455 				le32_sub_cpu(&hdr->used, sizeof(u64));
2456 			}
2457 			e = prev;
2458 		}
2459 
2460 		/*
2461 		 * Copy the current entry into a temporary buffer (stripping
2462 		 * off its down-pointer, if any) and delete it from the current
2463 		 * buffer or root, as appropriate.
2464 		 */
2465 		e_size = le16_to_cpu(e->size);
2466 		me = kmemdup(e, e_size, GFP_NOFS);
2467 		if (!me) {
2468 			err = -ENOMEM;
2469 			goto out;
2470 		}
2471 
2472 		if (de_has_vcn(me)) {
2473 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2474 			le16_sub_cpu(&me->size, sizeof(u64));
2475 		}
2476 
2477 		hdr_delete_de(hdr, e);
2478 
2479 		if (hdr == &root->ihdr) {
2480 			level = 0;
2481 			hdr->total = hdr->used;
2482 
2483 			/* Shrink resident root attribute. */
2484 			mi_resize_attr(mi, attr, 0 - e_size);
2485 		} else {
2486 			indx_write(indx, ni, n2d, 0);
2487 			level = level2;
2488 		}
2489 
2490 		/* Mark unused buffers as free. */
2491 		trim_bit = -1;
2492 		for (; level < fnd->level; level++) {
2493 			ib = fnd->nodes[level]->index;
2494 			if (ib_is_empty(ib)) {
2495 				size_t k = le64_to_cpu(ib->vbn) >>
2496 					   indx->idx2vbn_bits;
2497 
2498 				indx_mark_free(indx, ni, k);
2499 				if (k < trim_bit)
2500 					trim_bit = k;
2501 			}
2502 		}
2503 
2504 		fnd_clear(fnd);
2505 		/*fnd->root_de = NULL;*/
2506 
2507 		/*
2508 		 * Re-insert the entry into the tree.
2509 		 * Find the spot the tree where we want to insert the new entry.
2510 		 */
2511 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2512 		kfree(me);
2513 		if (err)
2514 			goto out;
2515 
2516 		if (trim_bit != -1)
2517 			indx_shrink(indx, ni, trim_bit);
2518 	} else {
2519 		/*
2520 		 * This tree needs to be collapsed down to an empty root.
2521 		 * Recreate the index root as an empty leaf and free all
2522 		 * the bits the index allocation bitmap.
2523 		 */
2524 		fnd_clear(fnd);
2525 		fnd_clear(fnd2);
2526 
2527 		in = &s_index_names[indx->type];
2528 
2529 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2530 				    &indx->alloc_run, 0, NULL, false, NULL);
2531 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2532 				     false, NULL);
2533 		run_close(&indx->alloc_run);
2534 
2535 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2536 				    &indx->bitmap_run, 0, NULL, false, NULL);
2537 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2538 				     false, NULL);
2539 		run_close(&indx->bitmap_run);
2540 
2541 		root = indx_get_root(indx, ni, &attr, &mi);
2542 		if (!root) {
2543 			err = -EINVAL;
2544 			goto out;
2545 		}
2546 
2547 		root_size = le32_to_cpu(attr->res.data_size);
2548 		new_root_size =
2549 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2550 
2551 		if (new_root_size != root_size &&
2552 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2553 			err = -EINVAL;
2554 			goto out;
2555 		}
2556 
2557 		/* Fill first entry. */
2558 		e = (struct NTFS_DE *)(root + 1);
2559 		e->ref.low = 0;
2560 		e->ref.high = 0;
2561 		e->ref.seq = 0;
2562 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2563 		e->flags = NTFS_IE_LAST; // 0x02
2564 		e->key_size = 0;
2565 		e->res = 0;
2566 
2567 		hdr = &root->ihdr;
2568 		hdr->flags = 0;
2569 		hdr->used = hdr->total = cpu_to_le32(
2570 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2571 		mi->dirty = true;
2572 	}
2573 
2574 out:
2575 	fnd_put(fnd2);
2576 out1:
2577 	fnd_put(fnd);
2578 out2:
2579 	return err;
2580 }
2581 
2582 /*
2583  * Update duplicated information in directory entry
2584  * 'dup' - info from MFT record
2585  */
2586 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2587 		    const struct ATTR_FILE_NAME *fname,
2588 		    const struct NTFS_DUP_INFO *dup, int sync)
2589 {
2590 	int err, diff;
2591 	struct NTFS_DE *e = NULL;
2592 	struct ATTR_FILE_NAME *e_fname;
2593 	struct ntfs_fnd *fnd;
2594 	struct INDEX_ROOT *root;
2595 	struct mft_inode *mi;
2596 	struct ntfs_index *indx = &ni->dir;
2597 
2598 	fnd = fnd_get();
2599 	if (!fnd)
2600 		return -ENOMEM;
2601 
2602 	root = indx_get_root(indx, ni, NULL, &mi);
2603 	if (!root) {
2604 		err = -EINVAL;
2605 		goto out;
2606 	}
2607 
2608 	/* Find entry in directory. */
2609 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2610 			&diff, &e, fnd);
2611 	if (err)
2612 		goto out;
2613 
2614 	if (!e) {
2615 		err = -EINVAL;
2616 		goto out;
2617 	}
2618 
2619 	if (diff) {
2620 		err = -EINVAL;
2621 		goto out;
2622 	}
2623 
2624 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2625 
2626 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2627 		/*
2628 		 * Nothing to update in index! Try to avoid this call.
2629 		 */
2630 		goto out;
2631 	}
2632 
2633 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2634 
2635 	if (fnd->level) {
2636 		/* Directory entry in index. */
2637 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2638 	} else {
2639 		/* Directory entry in directory MFT record. */
2640 		mi->dirty = true;
2641 		if (sync)
2642 			err = mi_write(mi, 1);
2643 		else
2644 			mark_inode_dirty(&ni->vfs_inode);
2645 	}
2646 
2647 out:
2648 	fnd_put(fnd);
2649 	return err;
2650 }
2651