xref: /linux/fs/ntfs3/index.c (revision 3c4fc7bf4c9e66fe71abcbf93f62f4ddb89b7f15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 				  : false;
436 		put_bh(bh);
437 
438 		if (ok) {
439 			*ret += 8 * vbo;
440 			return 0;
441 		}
442 
443 		if (++vblock >= eblock) {
444 			*ret = MINUS_ONE_T;
445 			return 0;
446 		}
447 	}
448 	blk = 0;
449 	vcn_next = vcn + clen;
450 	down_read(lock);
451 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 	if (!ok)
453 		vcn = vcn_next;
454 	up_read(lock);
455 	goto next_run;
456 }
457 
458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 	size_t pos = find_next_zero_bit(buf, bits, bit);
461 
462 	if (pos >= bits)
463 		return false;
464 	*ret = pos;
465 	return true;
466 }
467 
468 /*
469  * indx_find_free - Look for free bit.
470  *
471  * Return: -1 if no free bits.
472  */
473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 			  size_t *bit, struct ATTRIB **bitmap)
475 {
476 	struct ATTRIB *b;
477 	struct ATTR_LIST_ENTRY *le = NULL;
478 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 	int err;
480 
481 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 			 NULL, NULL);
483 
484 	if (!b)
485 		return -ENOENT;
486 
487 	*bitmap = b;
488 	*bit = MINUS_ONE_T;
489 
490 	if (!b->non_res) {
491 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 		size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493 
494 		if (pos < nbits)
495 			*bit = pos;
496 	} else {
497 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498 
499 		if (err)
500 			return err;
501 	}
502 
503 	return 0;
504 }
505 
506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 	size_t pos = find_next_bit(buf, bits, bit);
509 
510 	if (pos >= bits)
511 		return false;
512 	*ret = pos;
513 	return true;
514 }
515 
516 /*
517  * indx_used_bit - Look for used bit.
518  *
519  * Return: MINUS_ONE_T if no used bits.
520  */
521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 	struct ATTRIB *b;
524 	struct ATTR_LIST_ENTRY *le = NULL;
525 	size_t from = *bit;
526 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 	int err;
528 
529 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 			 NULL, NULL);
531 
532 	if (!b)
533 		return -ENOENT;
534 
535 	*bit = MINUS_ONE_T;
536 
537 	if (!b->non_res) {
538 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 		size_t pos = find_next_bit(resident_data(b), nbits, from);
540 
541 		if (pos < nbits)
542 			*bit = pos;
543 	} else {
544 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 		if (err)
546 			return err;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * hdr_find_split
554  *
555  * Find a point at which the index allocation buffer would like to be split.
556  * NOTE: This function should never return 'END' entry NULL returns on error.
557  */
558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 	size_t o;
561 	const struct NTFS_DE *e = hdr_first_de(hdr);
562 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 	u16 esize;
564 
565 	if (!e || de_is_last(e))
566 		return NULL;
567 
568 	esize = le16_to_cpu(e->size);
569 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 		const struct NTFS_DE *p = e;
571 
572 		e = Add2Ptr(hdr, o);
573 
574 		/* We must not return END entry. */
575 		if (de_is_last(e))
576 			return p;
577 
578 		esize = le16_to_cpu(e->size);
579 	}
580 
581 	return e;
582 }
583 
584 /*
585  * hdr_insert_head - Insert some entries at the beginning of the buffer.
586  *
587  * It is used to insert entries into a newly-created buffer.
588  */
589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 					     const void *ins, u32 ins_bytes)
591 {
592 	u32 to_move;
593 	struct NTFS_DE *e = hdr_first_de(hdr);
594 	u32 used = le32_to_cpu(hdr->used);
595 
596 	if (!e)
597 		return NULL;
598 
599 	/* Now we just make room for the inserted entries and jam it in. */
600 	to_move = used - le32_to_cpu(hdr->de_off);
601 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 	memcpy(e, ins, ins_bytes);
603 	hdr->used = cpu_to_le32(used + ins_bytes);
604 
605 	return e;
606 }
607 
608 void fnd_clear(struct ntfs_fnd *fnd)
609 {
610 	int i;
611 
612 	for (i = 0; i < fnd->level; i++) {
613 		struct indx_node *n = fnd->nodes[i];
614 
615 		if (!n)
616 			continue;
617 
618 		put_indx_node(n);
619 		fnd->nodes[i] = NULL;
620 	}
621 	fnd->level = 0;
622 	fnd->root_de = NULL;
623 }
624 
625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
626 		    struct NTFS_DE *e)
627 {
628 	int i;
629 
630 	i = fnd->level;
631 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
632 		return -EINVAL;
633 	fnd->nodes[i] = n;
634 	fnd->de[i] = e;
635 	fnd->level += 1;
636 	return 0;
637 }
638 
639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
640 {
641 	struct indx_node *n;
642 	int i = fnd->level;
643 
644 	i -= 1;
645 	n = fnd->nodes[i];
646 	fnd->nodes[i] = NULL;
647 	fnd->level = i;
648 
649 	return n;
650 }
651 
652 static bool fnd_is_empty(struct ntfs_fnd *fnd)
653 {
654 	if (!fnd->level)
655 		return !fnd->root_de;
656 
657 	return !fnd->de[fnd->level - 1];
658 }
659 
660 /*
661  * hdr_find_e - Locate an entry the index buffer.
662  *
663  * If no matching entry is found, it returns the first entry which is greater
664  * than the desired entry If the search key is greater than all the entries the
665  * buffer, it returns the 'end' entry. This function does a binary search of the
666  * current index buffer, for the first entry that is <= to the search value.
667  *
668  * Return: NULL if error.
669  */
670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 				  const struct INDEX_HDR *hdr, const void *key,
672 				  size_t key_len, const void *ctx, int *diff)
673 {
674 	struct NTFS_DE *e, *found = NULL;
675 	NTFS_CMP_FUNC cmp = indx->cmp;
676 	int min_idx = 0, mid_idx, max_idx = 0;
677 	int diff2;
678 	int table_size = 8;
679 	u32 e_size, e_key_len;
680 	u32 end = le32_to_cpu(hdr->used);
681 	u32 off = le32_to_cpu(hdr->de_off);
682 	u16 offs[128];
683 
684 fill_table:
685 	if (off + sizeof(struct NTFS_DE) > end)
686 		return NULL;
687 
688 	e = Add2Ptr(hdr, off);
689 	e_size = le16_to_cpu(e->size);
690 
691 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
692 		return NULL;
693 
694 	if (!de_is_last(e)) {
695 		offs[max_idx] = off;
696 		off += e_size;
697 
698 		max_idx++;
699 		if (max_idx < table_size)
700 			goto fill_table;
701 
702 		max_idx--;
703 	}
704 
705 binary_search:
706 	e_key_len = le16_to_cpu(e->key_size);
707 
708 	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
709 	if (diff2 > 0) {
710 		if (found) {
711 			min_idx = mid_idx + 1;
712 		} else {
713 			if (de_is_last(e))
714 				return NULL;
715 
716 			max_idx = 0;
717 			table_size = min(table_size * 2,
718 					 (int)ARRAY_SIZE(offs));
719 			goto fill_table;
720 		}
721 	} else if (diff2 < 0) {
722 		if (found)
723 			max_idx = mid_idx - 1;
724 		else
725 			max_idx--;
726 
727 		found = e;
728 	} else {
729 		*diff = 0;
730 		return e;
731 	}
732 
733 	if (min_idx > max_idx) {
734 		*diff = -1;
735 		return found;
736 	}
737 
738 	mid_idx = (min_idx + max_idx) >> 1;
739 	e = Add2Ptr(hdr, offs[mid_idx]);
740 
741 	goto binary_search;
742 }
743 
744 /*
745  * hdr_insert_de - Insert an index entry into the buffer.
746  *
747  * 'before' should be a pointer previously returned from hdr_find_e.
748  */
749 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
750 				     struct INDEX_HDR *hdr,
751 				     const struct NTFS_DE *de,
752 				     struct NTFS_DE *before, const void *ctx)
753 {
754 	int diff;
755 	size_t off = PtrOffset(hdr, before);
756 	u32 used = le32_to_cpu(hdr->used);
757 	u32 total = le32_to_cpu(hdr->total);
758 	u16 de_size = le16_to_cpu(de->size);
759 
760 	/* First, check to see if there's enough room. */
761 	if (used + de_size > total)
762 		return NULL;
763 
764 	/* We know there's enough space, so we know we'll succeed. */
765 	if (before) {
766 		/* Check that before is inside Index. */
767 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
768 		    off + le16_to_cpu(before->size) > total) {
769 			return NULL;
770 		}
771 		goto ok;
772 	}
773 	/* No insert point is applied. Get it manually. */
774 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
775 			    &diff);
776 	if (!before)
777 		return NULL;
778 	off = PtrOffset(hdr, before);
779 
780 ok:
781 	/* Now we just make room for the entry and jam it in. */
782 	memmove(Add2Ptr(before, de_size), before, used - off);
783 
784 	hdr->used = cpu_to_le32(used + de_size);
785 	memcpy(before, de, de_size);
786 
787 	return before;
788 }
789 
790 /*
791  * hdr_delete_de - Remove an entry from the index buffer.
792  */
793 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
794 					    struct NTFS_DE *re)
795 {
796 	u32 used = le32_to_cpu(hdr->used);
797 	u16 esize = le16_to_cpu(re->size);
798 	u32 off = PtrOffset(hdr, re);
799 	int bytes = used - (off + esize);
800 
801 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
802 	    bytes < sizeof(struct NTFS_DE))
803 		return NULL;
804 
805 	hdr->used = cpu_to_le32(used - esize);
806 	memmove(re, Add2Ptr(re, esize), bytes);
807 
808 	return re;
809 }
810 
811 void indx_clear(struct ntfs_index *indx)
812 {
813 	run_close(&indx->alloc_run);
814 	run_close(&indx->bitmap_run);
815 }
816 
817 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
818 	      const struct ATTRIB *attr, enum index_mutex_classed type)
819 {
820 	u32 t32;
821 	const struct INDEX_ROOT *root = resident_data(attr);
822 
823 	/* Check root fields. */
824 	if (!root->index_block_clst)
825 		return -EINVAL;
826 
827 	indx->type = type;
828 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
829 
830 	t32 = le32_to_cpu(root->index_block_size);
831 	indx->index_bits = blksize_bits(t32);
832 
833 	/* Check index record size. */
834 	if (t32 < sbi->cluster_size) {
835 		/* Index record is smaller than a cluster, use 512 blocks. */
836 		if (t32 != root->index_block_clst * SECTOR_SIZE)
837 			return -EINVAL;
838 
839 		/* Check alignment to a cluster. */
840 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
841 		    (root->index_block_clst - 1)) {
842 			return -EINVAL;
843 		}
844 
845 		indx->vbn2vbo_bits = SECTOR_SHIFT;
846 	} else {
847 		/* Index record must be a multiple of cluster size. */
848 		if (t32 != root->index_block_clst << sbi->cluster_bits)
849 			return -EINVAL;
850 
851 		indx->vbn2vbo_bits = sbi->cluster_bits;
852 	}
853 
854 	init_rwsem(&indx->run_lock);
855 
856 	indx->cmp = get_cmp_func(root);
857 	return indx->cmp ? 0 : -EINVAL;
858 }
859 
860 static struct indx_node *indx_new(struct ntfs_index *indx,
861 				  struct ntfs_inode *ni, CLST vbn,
862 				  const __le64 *sub_vbn)
863 {
864 	int err;
865 	struct NTFS_DE *e;
866 	struct indx_node *r;
867 	struct INDEX_HDR *hdr;
868 	struct INDEX_BUFFER *index;
869 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
870 	u32 bytes = 1u << indx->index_bits;
871 	u16 fn;
872 	u32 eo;
873 
874 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
875 	if (!r)
876 		return ERR_PTR(-ENOMEM);
877 
878 	index = kzalloc(bytes, GFP_NOFS);
879 	if (!index) {
880 		kfree(r);
881 		return ERR_PTR(-ENOMEM);
882 	}
883 
884 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
885 
886 	if (err) {
887 		kfree(index);
888 		kfree(r);
889 		return ERR_PTR(err);
890 	}
891 
892 	/* Create header. */
893 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
894 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
895 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
896 	index->rhdr.fix_num = cpu_to_le16(fn);
897 	index->vbn = cpu_to_le64(vbn);
898 	hdr = &index->ihdr;
899 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
900 	hdr->de_off = cpu_to_le32(eo);
901 
902 	e = Add2Ptr(hdr, eo);
903 
904 	if (sub_vbn) {
905 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
906 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
907 		hdr->used =
908 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
909 		de_set_vbn_le(e, *sub_vbn);
910 		hdr->flags = 1;
911 	} else {
912 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
913 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
914 		e->flags = NTFS_IE_LAST;
915 	}
916 
917 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
918 
919 	r->index = index;
920 	return r;
921 }
922 
923 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
924 				 struct ATTRIB **attr, struct mft_inode **mi)
925 {
926 	struct ATTR_LIST_ENTRY *le = NULL;
927 	struct ATTRIB *a;
928 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
929 
930 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
931 			 mi);
932 	if (!a)
933 		return NULL;
934 
935 	if (attr)
936 		*attr = a;
937 
938 	return resident_data_ex(a, sizeof(struct INDEX_ROOT));
939 }
940 
941 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
942 		      struct indx_node *node, int sync)
943 {
944 	struct INDEX_BUFFER *ib = node->index;
945 
946 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
947 }
948 
949 /*
950  * indx_read
951  *
952  * If ntfs_readdir calls this function
953  * inode is shared locked and no ni_lock.
954  * Use rw_semaphore for read/write access to alloc_run.
955  */
956 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
957 	      struct indx_node **node)
958 {
959 	int err;
960 	struct INDEX_BUFFER *ib;
961 	struct runs_tree *run = &indx->alloc_run;
962 	struct rw_semaphore *lock = &indx->run_lock;
963 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
964 	u32 bytes = 1u << indx->index_bits;
965 	struct indx_node *in = *node;
966 	const struct INDEX_NAMES *name;
967 
968 	if (!in) {
969 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
970 		if (!in)
971 			return -ENOMEM;
972 	} else {
973 		nb_put(&in->nb);
974 	}
975 
976 	ib = in->index;
977 	if (!ib) {
978 		ib = kmalloc(bytes, GFP_NOFS);
979 		if (!ib) {
980 			err = -ENOMEM;
981 			goto out;
982 		}
983 	}
984 
985 	down_read(lock);
986 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
987 	up_read(lock);
988 	if (!err)
989 		goto ok;
990 
991 	if (err == -E_NTFS_FIXUP)
992 		goto ok;
993 
994 	if (err != -ENOENT)
995 		goto out;
996 
997 	name = &s_index_names[indx->type];
998 	down_write(lock);
999 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1000 				   run, vbo, vbo + bytes);
1001 	up_write(lock);
1002 	if (err)
1003 		goto out;
1004 
1005 	down_read(lock);
1006 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1007 	up_read(lock);
1008 	if (err == -E_NTFS_FIXUP)
1009 		goto ok;
1010 
1011 	if (err)
1012 		goto out;
1013 
1014 ok:
1015 	if (err == -E_NTFS_FIXUP) {
1016 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1017 		err = 0;
1018 	}
1019 
1020 	in->index = ib;
1021 	*node = in;
1022 
1023 out:
1024 	if (ib != in->index)
1025 		kfree(ib);
1026 
1027 	if (*node != in) {
1028 		nb_put(&in->nb);
1029 		kfree(in);
1030 	}
1031 
1032 	return err;
1033 }
1034 
1035 /*
1036  * indx_find - Scan NTFS directory for given entry.
1037  */
1038 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1039 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1040 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1041 	      struct ntfs_fnd *fnd)
1042 {
1043 	int err;
1044 	struct NTFS_DE *e;
1045 	struct indx_node *node;
1046 
1047 	if (!root)
1048 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1049 
1050 	if (!root) {
1051 		/* Should not happen. */
1052 		return -EINVAL;
1053 	}
1054 
1055 	/* Check cache. */
1056 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1057 	if (e && !de_is_last(e) &&
1058 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1059 		*entry = e;
1060 		*diff = 0;
1061 		return 0;
1062 	}
1063 
1064 	/* Soft finder reset. */
1065 	fnd_clear(fnd);
1066 
1067 	/* Lookup entry that is <= to the search value. */
1068 	e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1069 	if (!e)
1070 		return -EINVAL;
1071 
1072 	fnd->root_de = e;
1073 
1074 	for (;;) {
1075 		node = NULL;
1076 		if (*diff >= 0 || !de_has_vcn_ex(e))
1077 			break;
1078 
1079 		/* Read next level. */
1080 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1081 		if (err)
1082 			return err;
1083 
1084 		/* Lookup entry that is <= to the search value. */
1085 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1086 			       diff);
1087 		if (!e) {
1088 			put_indx_node(node);
1089 			return -EINVAL;
1090 		}
1091 
1092 		fnd_push(fnd, node, e);
1093 	}
1094 
1095 	*entry = e;
1096 	return 0;
1097 }
1098 
1099 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1100 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1101 		   struct ntfs_fnd *fnd)
1102 {
1103 	int err;
1104 	struct indx_node *n = NULL;
1105 	struct NTFS_DE *e;
1106 	size_t iter = 0;
1107 	int level = fnd->level;
1108 
1109 	if (!*entry) {
1110 		/* Start find. */
1111 		e = hdr_first_de(&root->ihdr);
1112 		if (!e)
1113 			return 0;
1114 		fnd_clear(fnd);
1115 		fnd->root_de = e;
1116 	} else if (!level) {
1117 		if (de_is_last(fnd->root_de)) {
1118 			*entry = NULL;
1119 			return 0;
1120 		}
1121 
1122 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1123 		if (!e)
1124 			return -EINVAL;
1125 		fnd->root_de = e;
1126 	} else {
1127 		n = fnd->nodes[level - 1];
1128 		e = fnd->de[level - 1];
1129 
1130 		if (de_is_last(e))
1131 			goto pop_level;
1132 
1133 		e = hdr_next_de(&n->index->ihdr, e);
1134 		if (!e)
1135 			return -EINVAL;
1136 
1137 		fnd->de[level - 1] = e;
1138 	}
1139 
1140 	/* Just to avoid tree cycle. */
1141 next_iter:
1142 	if (iter++ >= 1000)
1143 		return -EINVAL;
1144 
1145 	while (de_has_vcn_ex(e)) {
1146 		if (le16_to_cpu(e->size) <
1147 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1148 			if (n) {
1149 				fnd_pop(fnd);
1150 				kfree(n);
1151 			}
1152 			return -EINVAL;
1153 		}
1154 
1155 		/* Read next level. */
1156 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1157 		if (err)
1158 			return err;
1159 
1160 		/* Try next level. */
1161 		e = hdr_first_de(&n->index->ihdr);
1162 		if (!e) {
1163 			kfree(n);
1164 			return -EINVAL;
1165 		}
1166 
1167 		fnd_push(fnd, n, e);
1168 	}
1169 
1170 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1171 		*entry = e;
1172 		return 0;
1173 	}
1174 
1175 pop_level:
1176 	for (;;) {
1177 		if (!de_is_last(e))
1178 			goto next_iter;
1179 
1180 		/* Pop one level. */
1181 		if (n) {
1182 			fnd_pop(fnd);
1183 			kfree(n);
1184 		}
1185 
1186 		level = fnd->level;
1187 
1188 		if (level) {
1189 			n = fnd->nodes[level - 1];
1190 			e = fnd->de[level - 1];
1191 		} else if (fnd->root_de) {
1192 			n = NULL;
1193 			e = fnd->root_de;
1194 			fnd->root_de = NULL;
1195 		} else {
1196 			*entry = NULL;
1197 			return 0;
1198 		}
1199 
1200 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1201 			*entry = e;
1202 			if (!fnd->root_de)
1203 				fnd->root_de = e;
1204 			return 0;
1205 		}
1206 	}
1207 }
1208 
1209 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1210 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1211 		  size_t *off, struct ntfs_fnd *fnd)
1212 {
1213 	int err;
1214 	struct indx_node *n = NULL;
1215 	struct NTFS_DE *e = NULL;
1216 	struct NTFS_DE *e2;
1217 	size_t bit;
1218 	CLST next_used_vbn;
1219 	CLST next_vbn;
1220 	u32 record_size = ni->mi.sbi->record_size;
1221 
1222 	/* Use non sorted algorithm. */
1223 	if (!*entry) {
1224 		/* This is the first call. */
1225 		e = hdr_first_de(&root->ihdr);
1226 		if (!e)
1227 			return 0;
1228 		fnd_clear(fnd);
1229 		fnd->root_de = e;
1230 
1231 		/* The first call with setup of initial element. */
1232 		if (*off >= record_size) {
1233 			next_vbn = (((*off - record_size) >> indx->index_bits))
1234 				   << indx->idx2vbn_bits;
1235 			/* Jump inside cycle 'for'. */
1236 			goto next;
1237 		}
1238 
1239 		/* Start enumeration from root. */
1240 		*off = 0;
1241 	} else if (!fnd->root_de)
1242 		return -EINVAL;
1243 
1244 	for (;;) {
1245 		/* Check if current entry can be used. */
1246 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1247 			goto ok;
1248 
1249 		if (!fnd->level) {
1250 			/* Continue to enumerate root. */
1251 			if (!de_is_last(fnd->root_de)) {
1252 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1253 				if (!e)
1254 					return -EINVAL;
1255 				fnd->root_de = e;
1256 				continue;
1257 			}
1258 
1259 			/* Start to enumerate indexes from 0. */
1260 			next_vbn = 0;
1261 		} else {
1262 			/* Continue to enumerate indexes. */
1263 			e2 = fnd->de[fnd->level - 1];
1264 
1265 			n = fnd->nodes[fnd->level - 1];
1266 
1267 			if (!de_is_last(e2)) {
1268 				e = hdr_next_de(&n->index->ihdr, e2);
1269 				if (!e)
1270 					return -EINVAL;
1271 				fnd->de[fnd->level - 1] = e;
1272 				continue;
1273 			}
1274 
1275 			/* Continue with next index. */
1276 			next_vbn = le64_to_cpu(n->index->vbn) +
1277 				   root->index_block_clst;
1278 		}
1279 
1280 next:
1281 		/* Release current index. */
1282 		if (n) {
1283 			fnd_pop(fnd);
1284 			put_indx_node(n);
1285 			n = NULL;
1286 		}
1287 
1288 		/* Skip all free indexes. */
1289 		bit = next_vbn >> indx->idx2vbn_bits;
1290 		err = indx_used_bit(indx, ni, &bit);
1291 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1292 			/* No used indexes. */
1293 			*entry = NULL;
1294 			return 0;
1295 		}
1296 
1297 		next_used_vbn = bit << indx->idx2vbn_bits;
1298 
1299 		/* Read buffer into memory. */
1300 		err = indx_read(indx, ni, next_used_vbn, &n);
1301 		if (err)
1302 			return err;
1303 
1304 		e = hdr_first_de(&n->index->ihdr);
1305 		fnd_push(fnd, n, e);
1306 		if (!e)
1307 			return -EINVAL;
1308 	}
1309 
1310 ok:
1311 	/* Return offset to restore enumerator if necessary. */
1312 	if (!n) {
1313 		/* 'e' points in root, */
1314 		*off = PtrOffset(&root->ihdr, e);
1315 	} else {
1316 		/* 'e' points in index, */
1317 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1318 		       record_size + PtrOffset(&n->index->ihdr, e);
1319 	}
1320 
1321 	*entry = e;
1322 	return 0;
1323 }
1324 
1325 /*
1326  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1327  */
1328 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1329 				CLST *vbn)
1330 {
1331 	int err;
1332 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1333 	struct ATTRIB *bitmap;
1334 	struct ATTRIB *alloc;
1335 	u32 data_size = 1u << indx->index_bits;
1336 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1337 	CLST len = alloc_size >> sbi->cluster_bits;
1338 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1339 	CLST alen;
1340 	struct runs_tree run;
1341 
1342 	run_init(&run);
1343 
1344 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1345 				     NULL);
1346 	if (err)
1347 		goto out;
1348 
1349 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1350 				    &run, 0, len, 0, &alloc, NULL, NULL);
1351 	if (err)
1352 		goto out1;
1353 
1354 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1355 
1356 	err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1357 				 in->name_len, &bitmap, NULL, NULL);
1358 	if (err)
1359 		goto out2;
1360 
1361 	if (in->name == I30_NAME) {
1362 		ni->vfs_inode.i_size = data_size;
1363 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1364 	}
1365 
1366 	memcpy(&indx->alloc_run, &run, sizeof(run));
1367 
1368 	*vbn = 0;
1369 
1370 	return 0;
1371 
1372 out2:
1373 	mi_remove_attr(NULL, &ni->mi, alloc);
1374 
1375 out1:
1376 	run_deallocate(sbi, &run, false);
1377 
1378 out:
1379 	return err;
1380 }
1381 
1382 /*
1383  * indx_add_allocate - Add clusters to index.
1384  */
1385 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1386 			     CLST *vbn)
1387 {
1388 	int err;
1389 	size_t bit;
1390 	u64 data_size;
1391 	u64 bmp_size, bmp_size_v;
1392 	struct ATTRIB *bmp, *alloc;
1393 	struct mft_inode *mi;
1394 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1395 
1396 	err = indx_find_free(indx, ni, &bit, &bmp);
1397 	if (err)
1398 		goto out1;
1399 
1400 	if (bit != MINUS_ONE_T) {
1401 		bmp = NULL;
1402 	} else {
1403 		if (bmp->non_res) {
1404 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1405 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1406 		} else {
1407 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1408 		}
1409 
1410 		bit = bmp_size << 3;
1411 	}
1412 
1413 	data_size = (u64)(bit + 1) << indx->index_bits;
1414 
1415 	if (bmp) {
1416 		/* Increase bitmap. */
1417 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1418 				    &indx->bitmap_run, bitmap_size(bit + 1),
1419 				    NULL, true, NULL);
1420 		if (err)
1421 			goto out1;
1422 	}
1423 
1424 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1425 			     NULL, &mi);
1426 	if (!alloc) {
1427 		err = -EINVAL;
1428 		if (bmp)
1429 			goto out2;
1430 		goto out1;
1431 	}
1432 
1433 	/* Increase allocation. */
1434 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1435 			    &indx->alloc_run, data_size, &data_size, true,
1436 			    NULL);
1437 	if (err) {
1438 		if (bmp)
1439 			goto out2;
1440 		goto out1;
1441 	}
1442 
1443 	*vbn = bit << indx->idx2vbn_bits;
1444 
1445 	return 0;
1446 
1447 out2:
1448 	/* Ops. No space? */
1449 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1450 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1451 
1452 out1:
1453 	return err;
1454 }
1455 
1456 /*
1457  * indx_insert_into_root - Attempt to insert an entry into the index root.
1458  *
1459  * @undo - True if we undoing previous remove.
1460  * If necessary, it will twiddle the index b-tree.
1461  */
1462 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1463 				 const struct NTFS_DE *new_de,
1464 				 struct NTFS_DE *root_de, const void *ctx,
1465 				 struct ntfs_fnd *fnd, bool undo)
1466 {
1467 	int err = 0;
1468 	struct NTFS_DE *e, *e0, *re;
1469 	struct mft_inode *mi;
1470 	struct ATTRIB *attr;
1471 	struct INDEX_HDR *hdr;
1472 	struct indx_node *n;
1473 	CLST new_vbn;
1474 	__le64 *sub_vbn, t_vbn;
1475 	u16 new_de_size;
1476 	u32 hdr_used, hdr_total, asize, to_move;
1477 	u32 root_size, new_root_size;
1478 	struct ntfs_sb_info *sbi;
1479 	int ds_root;
1480 	struct INDEX_ROOT *root, *a_root;
1481 
1482 	/* Get the record this root placed in. */
1483 	root = indx_get_root(indx, ni, &attr, &mi);
1484 	if (!root)
1485 		return -EINVAL;
1486 
1487 	/*
1488 	 * Try easy case:
1489 	 * hdr_insert_de will succeed if there's
1490 	 * room the root for the new entry.
1491 	 */
1492 	hdr = &root->ihdr;
1493 	sbi = ni->mi.sbi;
1494 	new_de_size = le16_to_cpu(new_de->size);
1495 	hdr_used = le32_to_cpu(hdr->used);
1496 	hdr_total = le32_to_cpu(hdr->total);
1497 	asize = le32_to_cpu(attr->size);
1498 	root_size = le32_to_cpu(attr->res.data_size);
1499 
1500 	ds_root = new_de_size + hdr_used - hdr_total;
1501 
1502 	/* If 'undo' is set then reduce requirements. */
1503 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1504 	    mi_resize_attr(mi, attr, ds_root)) {
1505 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1506 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1507 		WARN_ON(!e);
1508 		fnd_clear(fnd);
1509 		fnd->root_de = e;
1510 
1511 		return 0;
1512 	}
1513 
1514 	/* Make a copy of root attribute to restore if error. */
1515 	a_root = kmemdup(attr, asize, GFP_NOFS);
1516 	if (!a_root)
1517 		return -ENOMEM;
1518 
1519 	/*
1520 	 * Copy all the non-end entries from
1521 	 * the index root to the new buffer.
1522 	 */
1523 	to_move = 0;
1524 	e0 = hdr_first_de(hdr);
1525 
1526 	/* Calculate the size to copy. */
1527 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1528 		if (!e) {
1529 			err = -EINVAL;
1530 			goto out_free_root;
1531 		}
1532 
1533 		if (de_is_last(e))
1534 			break;
1535 		to_move += le16_to_cpu(e->size);
1536 	}
1537 
1538 	if (!to_move) {
1539 		re = NULL;
1540 	} else {
1541 		re = kmemdup(e0, to_move, GFP_NOFS);
1542 		if (!re) {
1543 			err = -ENOMEM;
1544 			goto out_free_root;
1545 		}
1546 	}
1547 
1548 	sub_vbn = NULL;
1549 	if (de_has_vcn(e)) {
1550 		t_vbn = de_get_vbn_le(e);
1551 		sub_vbn = &t_vbn;
1552 	}
1553 
1554 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1555 			sizeof(u64);
1556 	ds_root = new_root_size - root_size;
1557 
1558 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1559 		/* Make root external. */
1560 		err = -EOPNOTSUPP;
1561 		goto out_free_re;
1562 	}
1563 
1564 	if (ds_root)
1565 		mi_resize_attr(mi, attr, ds_root);
1566 
1567 	/* Fill first entry (vcn will be set later). */
1568 	e = (struct NTFS_DE *)(root + 1);
1569 	memset(e, 0, sizeof(struct NTFS_DE));
1570 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1571 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1572 
1573 	hdr->flags = 1;
1574 	hdr->used = hdr->total =
1575 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1576 
1577 	fnd->root_de = hdr_first_de(hdr);
1578 	mi->dirty = true;
1579 
1580 	/* Create alloc and bitmap attributes (if not). */
1581 	err = run_is_empty(&indx->alloc_run)
1582 		      ? indx_create_allocate(indx, ni, &new_vbn)
1583 		      : indx_add_allocate(indx, ni, &new_vbn);
1584 
1585 	/* Layout of record may be changed, so rescan root. */
1586 	root = indx_get_root(indx, ni, &attr, &mi);
1587 	if (!root) {
1588 		/* Bug? */
1589 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1590 		err = -EINVAL;
1591 		goto out_free_re;
1592 	}
1593 
1594 	if (err) {
1595 		/* Restore root. */
1596 		if (mi_resize_attr(mi, attr, -ds_root))
1597 			memcpy(attr, a_root, asize);
1598 		else {
1599 			/* Bug? */
1600 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1601 		}
1602 		goto out_free_re;
1603 	}
1604 
1605 	e = (struct NTFS_DE *)(root + 1);
1606 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1607 	mi->dirty = true;
1608 
1609 	/* Now we can create/format the new buffer and copy the entries into. */
1610 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1611 	if (IS_ERR(n)) {
1612 		err = PTR_ERR(n);
1613 		goto out_free_re;
1614 	}
1615 
1616 	hdr = &n->index->ihdr;
1617 	hdr_used = le32_to_cpu(hdr->used);
1618 	hdr_total = le32_to_cpu(hdr->total);
1619 
1620 	/* Copy root entries into new buffer. */
1621 	hdr_insert_head(hdr, re, to_move);
1622 
1623 	/* Update bitmap attribute. */
1624 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1625 
1626 	/* Check if we can insert new entry new index buffer. */
1627 	if (hdr_used + new_de_size > hdr_total) {
1628 		/*
1629 		 * This occurs if MFT record is the same or bigger than index
1630 		 * buffer. Move all root new index and have no space to add
1631 		 * new entry classic case when MFT record is 1K and index
1632 		 * buffer 4K the problem should not occurs.
1633 		 */
1634 		kfree(re);
1635 		indx_write(indx, ni, n, 0);
1636 
1637 		put_indx_node(n);
1638 		fnd_clear(fnd);
1639 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1640 		goto out_free_root;
1641 	}
1642 
1643 	/*
1644 	 * Now root is a parent for new index buffer.
1645 	 * Insert NewEntry a new buffer.
1646 	 */
1647 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1648 	if (!e) {
1649 		err = -EINVAL;
1650 		goto out_put_n;
1651 	}
1652 	fnd_push(fnd, n, e);
1653 
1654 	/* Just write updates index into disk. */
1655 	indx_write(indx, ni, n, 0);
1656 
1657 	n = NULL;
1658 
1659 out_put_n:
1660 	put_indx_node(n);
1661 out_free_re:
1662 	kfree(re);
1663 out_free_root:
1664 	kfree(a_root);
1665 	return err;
1666 }
1667 
1668 /*
1669  * indx_insert_into_buffer
1670  *
1671  * Attempt to insert an entry into an Index Allocation Buffer.
1672  * If necessary, it will split the buffer.
1673  */
1674 static int
1675 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1676 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1677 			const void *ctx, int level, struct ntfs_fnd *fnd)
1678 {
1679 	int err;
1680 	const struct NTFS_DE *sp;
1681 	struct NTFS_DE *e, *de_t, *up_e;
1682 	struct indx_node *n2;
1683 	struct indx_node *n1 = fnd->nodes[level];
1684 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1685 	struct INDEX_HDR *hdr2;
1686 	u32 to_copy, used;
1687 	CLST new_vbn;
1688 	__le64 t_vbn, *sub_vbn;
1689 	u16 sp_size;
1690 
1691 	/* Try the most easy case. */
1692 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1693 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1694 	fnd->de[level] = e;
1695 	if (e) {
1696 		/* Just write updated index into disk. */
1697 		indx_write(indx, ni, n1, 0);
1698 		return 0;
1699 	}
1700 
1701 	/*
1702 	 * No space to insert into buffer. Split it.
1703 	 * To split we:
1704 	 *  - Save split point ('cause index buffers will be changed)
1705 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1706 	 * - Remove all entries (sp including) from TargetBuffer
1707 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1708 	 *     NewEntry)
1709 	 * - Insert sp into parent buffer (or root)
1710 	 * - Make sp a parent for new buffer
1711 	 */
1712 	sp = hdr_find_split(hdr1);
1713 	if (!sp)
1714 		return -EINVAL;
1715 
1716 	sp_size = le16_to_cpu(sp->size);
1717 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1718 	if (!up_e)
1719 		return -ENOMEM;
1720 	memcpy(up_e, sp, sp_size);
1721 
1722 	if (!hdr1->flags) {
1723 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1724 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1725 		sub_vbn = NULL;
1726 	} else {
1727 		t_vbn = de_get_vbn_le(up_e);
1728 		sub_vbn = &t_vbn;
1729 	}
1730 
1731 	/* Allocate on disk a new index allocation buffer. */
1732 	err = indx_add_allocate(indx, ni, &new_vbn);
1733 	if (err)
1734 		goto out;
1735 
1736 	/* Allocate and format memory a new index buffer. */
1737 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1738 	if (IS_ERR(n2)) {
1739 		err = PTR_ERR(n2);
1740 		goto out;
1741 	}
1742 
1743 	hdr2 = &n2->index->ihdr;
1744 
1745 	/* Make sp a parent for new buffer. */
1746 	de_set_vbn(up_e, new_vbn);
1747 
1748 	/* Copy all the entries <= sp into the new buffer. */
1749 	de_t = hdr_first_de(hdr1);
1750 	to_copy = PtrOffset(de_t, sp);
1751 	hdr_insert_head(hdr2, de_t, to_copy);
1752 
1753 	/* Remove all entries (sp including) from hdr1. */
1754 	used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1755 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1756 	hdr1->used = cpu_to_le32(used);
1757 
1758 	/*
1759 	 * Insert new entry into left or right buffer
1760 	 * (depending on sp <=> new_de).
1761 	 */
1762 	hdr_insert_de(indx,
1763 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1764 				   up_e + 1, le16_to_cpu(up_e->key_size),
1765 				   ctx) < 0
1766 			      ? hdr2
1767 			      : hdr1,
1768 		      new_de, NULL, ctx);
1769 
1770 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1771 
1772 	indx_write(indx, ni, n1, 0);
1773 	indx_write(indx, ni, n2, 0);
1774 
1775 	put_indx_node(n2);
1776 
1777 	/*
1778 	 * We've finished splitting everybody, so we are ready to
1779 	 * insert the promoted entry into the parent.
1780 	 */
1781 	if (!level) {
1782 		/* Insert in root. */
1783 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1784 		if (err)
1785 			goto out;
1786 	} else {
1787 		/*
1788 		 * The target buffer's parent is another index buffer.
1789 		 * TODO: Remove recursion.
1790 		 */
1791 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1792 					      level - 1, fnd);
1793 		if (err)
1794 			goto out;
1795 	}
1796 
1797 out:
1798 	kfree(up_e);
1799 
1800 	return err;
1801 }
1802 
1803 /*
1804  * indx_insert_entry - Insert new entry into index.
1805  *
1806  * @undo - True if we undoing previous remove.
1807  */
1808 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1809 		      const struct NTFS_DE *new_de, const void *ctx,
1810 		      struct ntfs_fnd *fnd, bool undo)
1811 {
1812 	int err;
1813 	int diff;
1814 	struct NTFS_DE *e;
1815 	struct ntfs_fnd *fnd_a = NULL;
1816 	struct INDEX_ROOT *root;
1817 
1818 	if (!fnd) {
1819 		fnd_a = fnd_get();
1820 		if (!fnd_a) {
1821 			err = -ENOMEM;
1822 			goto out1;
1823 		}
1824 		fnd = fnd_a;
1825 	}
1826 
1827 	root = indx_get_root(indx, ni, NULL, NULL);
1828 	if (!root) {
1829 		err = -EINVAL;
1830 		goto out;
1831 	}
1832 
1833 	if (fnd_is_empty(fnd)) {
1834 		/*
1835 		 * Find the spot the tree where we want to
1836 		 * insert the new entry.
1837 		 */
1838 		err = indx_find(indx, ni, root, new_de + 1,
1839 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1840 				fnd);
1841 		if (err)
1842 			goto out;
1843 
1844 		if (!diff) {
1845 			err = -EEXIST;
1846 			goto out;
1847 		}
1848 	}
1849 
1850 	if (!fnd->level) {
1851 		/*
1852 		 * The root is also a leaf, so we'll insert the
1853 		 * new entry into it.
1854 		 */
1855 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1856 					    fnd, undo);
1857 		if (err)
1858 			goto out;
1859 	} else {
1860 		/*
1861 		 * Found a leaf buffer, so we'll insert the new entry into it.
1862 		 */
1863 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1864 					      fnd->level - 1, fnd);
1865 		if (err)
1866 			goto out;
1867 	}
1868 
1869 out:
1870 	fnd_put(fnd_a);
1871 out1:
1872 	return err;
1873 }
1874 
1875 /*
1876  * indx_find_buffer - Locate a buffer from the tree.
1877  */
1878 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1879 					  struct ntfs_inode *ni,
1880 					  const struct INDEX_ROOT *root,
1881 					  __le64 vbn, struct indx_node *n)
1882 {
1883 	int err;
1884 	const struct NTFS_DE *e;
1885 	struct indx_node *r;
1886 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1887 
1888 	/* Step 1: Scan one level. */
1889 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1890 		if (!e)
1891 			return ERR_PTR(-EINVAL);
1892 
1893 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1894 			return n;
1895 
1896 		if (de_is_last(e))
1897 			break;
1898 	}
1899 
1900 	/* Step2: Do recursion. */
1901 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1902 	for (;;) {
1903 		if (de_has_vcn_ex(e)) {
1904 			err = indx_read(indx, ni, de_get_vbn(e), &n);
1905 			if (err)
1906 				return ERR_PTR(err);
1907 
1908 			r = indx_find_buffer(indx, ni, root, vbn, n);
1909 			if (r)
1910 				return r;
1911 		}
1912 
1913 		if (de_is_last(e))
1914 			break;
1915 
1916 		e = Add2Ptr(e, le16_to_cpu(e->size));
1917 	}
1918 
1919 	return NULL;
1920 }
1921 
1922 /*
1923  * indx_shrink - Deallocate unused tail indexes.
1924  */
1925 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1926 		       size_t bit)
1927 {
1928 	int err = 0;
1929 	u64 bpb, new_data;
1930 	size_t nbits;
1931 	struct ATTRIB *b;
1932 	struct ATTR_LIST_ENTRY *le = NULL;
1933 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1934 
1935 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
1936 			 NULL, NULL);
1937 
1938 	if (!b)
1939 		return -ENOENT;
1940 
1941 	if (!b->non_res) {
1942 		unsigned long pos;
1943 		const unsigned long *bm = resident_data(b);
1944 
1945 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
1946 
1947 		if (bit >= nbits)
1948 			return 0;
1949 
1950 		pos = find_next_bit(bm, nbits, bit);
1951 		if (pos < nbits)
1952 			return 0;
1953 	} else {
1954 		size_t used = MINUS_ONE_T;
1955 
1956 		nbits = le64_to_cpu(b->nres.data_size) * 8;
1957 
1958 		if (bit >= nbits)
1959 			return 0;
1960 
1961 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
1962 		if (err)
1963 			return err;
1964 
1965 		if (used != MINUS_ONE_T)
1966 			return 0;
1967 	}
1968 
1969 	new_data = (u64)bit << indx->index_bits;
1970 
1971 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1972 			    &indx->alloc_run, new_data, &new_data, false, NULL);
1973 	if (err)
1974 		return err;
1975 
1976 	bpb = bitmap_size(bit);
1977 	if (bpb * 8 == nbits)
1978 		return 0;
1979 
1980 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1981 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
1982 
1983 	return err;
1984 }
1985 
1986 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
1987 			      const struct NTFS_DE *e, bool trim)
1988 {
1989 	int err;
1990 	struct indx_node *n = NULL;
1991 	struct INDEX_HDR *hdr;
1992 	CLST vbn = de_get_vbn(e);
1993 	size_t i;
1994 
1995 	err = indx_read(indx, ni, vbn, &n);
1996 	if (err)
1997 		return err;
1998 
1999 	hdr = &n->index->ihdr;
2000 	/* First, recurse into the children, if any. */
2001 	if (hdr_has_subnode(hdr)) {
2002 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2003 			indx_free_children(indx, ni, e, false);
2004 			if (de_is_last(e))
2005 				break;
2006 		}
2007 	}
2008 
2009 	put_indx_node(n);
2010 
2011 	i = vbn >> indx->idx2vbn_bits;
2012 	/*
2013 	 * We've gotten rid of the children; add this buffer to the free list.
2014 	 */
2015 	indx_mark_free(indx, ni, i);
2016 
2017 	if (!trim)
2018 		return 0;
2019 
2020 	/*
2021 	 * If there are no used indexes after current free index
2022 	 * then we can truncate allocation and bitmap.
2023 	 * Use bitmap to estimate the case.
2024 	 */
2025 	indx_shrink(indx, ni, i + 1);
2026 	return 0;
2027 }
2028 
2029 /*
2030  * indx_get_entry_to_replace
2031  *
2032  * Find a replacement entry for a deleted entry.
2033  * Always returns a node entry:
2034  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2035  */
2036 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2037 				     struct ntfs_inode *ni,
2038 				     const struct NTFS_DE *de_next,
2039 				     struct NTFS_DE **de_to_replace,
2040 				     struct ntfs_fnd *fnd)
2041 {
2042 	int err;
2043 	int level = -1;
2044 	CLST vbn;
2045 	struct NTFS_DE *e, *te, *re;
2046 	struct indx_node *n;
2047 	struct INDEX_BUFFER *ib;
2048 
2049 	*de_to_replace = NULL;
2050 
2051 	/* Find first leaf entry down from de_next. */
2052 	vbn = de_get_vbn(de_next);
2053 	for (;;) {
2054 		n = NULL;
2055 		err = indx_read(indx, ni, vbn, &n);
2056 		if (err)
2057 			goto out;
2058 
2059 		e = hdr_first_de(&n->index->ihdr);
2060 		fnd_push(fnd, n, e);
2061 
2062 		if (!de_is_last(e)) {
2063 			/*
2064 			 * This buffer is non-empty, so its first entry
2065 			 * could be used as the replacement entry.
2066 			 */
2067 			level = fnd->level - 1;
2068 		}
2069 
2070 		if (!de_has_vcn(e))
2071 			break;
2072 
2073 		/* This buffer is a node. Continue to go down. */
2074 		vbn = de_get_vbn(e);
2075 	}
2076 
2077 	if (level == -1)
2078 		goto out;
2079 
2080 	n = fnd->nodes[level];
2081 	te = hdr_first_de(&n->index->ihdr);
2082 	/* Copy the candidate entry into the replacement entry buffer. */
2083 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2084 	if (!re) {
2085 		err = -ENOMEM;
2086 		goto out;
2087 	}
2088 
2089 	*de_to_replace = re;
2090 	memcpy(re, te, le16_to_cpu(te->size));
2091 
2092 	if (!de_has_vcn(re)) {
2093 		/*
2094 		 * The replacement entry we found doesn't have a sub_vcn.
2095 		 * increase its size to hold one.
2096 		 */
2097 		le16_add_cpu(&re->size, sizeof(u64));
2098 		re->flags |= NTFS_IE_HAS_SUBNODES;
2099 	} else {
2100 		/*
2101 		 * The replacement entry we found was a node entry, which
2102 		 * means that all its child buffers are empty. Return them
2103 		 * to the free pool.
2104 		 */
2105 		indx_free_children(indx, ni, te, true);
2106 	}
2107 
2108 	/*
2109 	 * Expunge the replacement entry from its former location,
2110 	 * and then write that buffer.
2111 	 */
2112 	ib = n->index;
2113 	e = hdr_delete_de(&ib->ihdr, te);
2114 
2115 	fnd->de[level] = e;
2116 	indx_write(indx, ni, n, 0);
2117 
2118 	/* Check to see if this action created an empty leaf. */
2119 	if (ib_is_leaf(ib) && ib_is_empty(ib))
2120 		return 0;
2121 
2122 out:
2123 	fnd_clear(fnd);
2124 	return err;
2125 }
2126 
2127 /*
2128  * indx_delete_entry - Delete an entry from the index.
2129  */
2130 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2131 		      const void *key, u32 key_len, const void *ctx)
2132 {
2133 	int err, diff;
2134 	struct INDEX_ROOT *root;
2135 	struct INDEX_HDR *hdr;
2136 	struct ntfs_fnd *fnd, *fnd2;
2137 	struct INDEX_BUFFER *ib;
2138 	struct NTFS_DE *e, *re, *next, *prev, *me;
2139 	struct indx_node *n, *n2d = NULL;
2140 	__le64 sub_vbn;
2141 	int level, level2;
2142 	struct ATTRIB *attr;
2143 	struct mft_inode *mi;
2144 	u32 e_size, root_size, new_root_size;
2145 	size_t trim_bit;
2146 	const struct INDEX_NAMES *in;
2147 
2148 	fnd = fnd_get();
2149 	if (!fnd) {
2150 		err = -ENOMEM;
2151 		goto out2;
2152 	}
2153 
2154 	fnd2 = fnd_get();
2155 	if (!fnd2) {
2156 		err = -ENOMEM;
2157 		goto out1;
2158 	}
2159 
2160 	root = indx_get_root(indx, ni, &attr, &mi);
2161 	if (!root) {
2162 		err = -EINVAL;
2163 		goto out;
2164 	}
2165 
2166 	/* Locate the entry to remove. */
2167 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2168 	if (err)
2169 		goto out;
2170 
2171 	if (!e || diff) {
2172 		err = -ENOENT;
2173 		goto out;
2174 	}
2175 
2176 	level = fnd->level;
2177 
2178 	if (level) {
2179 		n = fnd->nodes[level - 1];
2180 		e = fnd->de[level - 1];
2181 		ib = n->index;
2182 		hdr = &ib->ihdr;
2183 	} else {
2184 		hdr = &root->ihdr;
2185 		e = fnd->root_de;
2186 		n = NULL;
2187 	}
2188 
2189 	e_size = le16_to_cpu(e->size);
2190 
2191 	if (!de_has_vcn_ex(e)) {
2192 		/* The entry to delete is a leaf, so we can just rip it out. */
2193 		hdr_delete_de(hdr, e);
2194 
2195 		if (!level) {
2196 			hdr->total = hdr->used;
2197 
2198 			/* Shrink resident root attribute. */
2199 			mi_resize_attr(mi, attr, 0 - e_size);
2200 			goto out;
2201 		}
2202 
2203 		indx_write(indx, ni, n, 0);
2204 
2205 		/*
2206 		 * Check to see if removing that entry made
2207 		 * the leaf empty.
2208 		 */
2209 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2210 			fnd_pop(fnd);
2211 			fnd_push(fnd2, n, e);
2212 		}
2213 	} else {
2214 		/*
2215 		 * The entry we wish to delete is a node buffer, so we
2216 		 * have to find a replacement for it.
2217 		 */
2218 		next = de_get_next(e);
2219 
2220 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2221 		if (err)
2222 			goto out;
2223 
2224 		if (re) {
2225 			de_set_vbn_le(re, de_get_vbn_le(e));
2226 			hdr_delete_de(hdr, e);
2227 
2228 			err = level ? indx_insert_into_buffer(indx, ni, root,
2229 							      re, ctx,
2230 							      fnd->level - 1,
2231 							      fnd)
2232 				    : indx_insert_into_root(indx, ni, re, e,
2233 							    ctx, fnd, 0);
2234 			kfree(re);
2235 
2236 			if (err)
2237 				goto out;
2238 		} else {
2239 			/*
2240 			 * There is no replacement for the current entry.
2241 			 * This means that the subtree rooted at its node
2242 			 * is empty, and can be deleted, which turn means
2243 			 * that the node can just inherit the deleted
2244 			 * entry sub_vcn.
2245 			 */
2246 			indx_free_children(indx, ni, next, true);
2247 
2248 			de_set_vbn_le(next, de_get_vbn_le(e));
2249 			hdr_delete_de(hdr, e);
2250 			if (level) {
2251 				indx_write(indx, ni, n, 0);
2252 			} else {
2253 				hdr->total = hdr->used;
2254 
2255 				/* Shrink resident root attribute. */
2256 				mi_resize_attr(mi, attr, 0 - e_size);
2257 			}
2258 		}
2259 	}
2260 
2261 	/* Delete a branch of tree. */
2262 	if (!fnd2 || !fnd2->level)
2263 		goto out;
2264 
2265 	/* Reinit root 'cause it can be changed. */
2266 	root = indx_get_root(indx, ni, &attr, &mi);
2267 	if (!root) {
2268 		err = -EINVAL;
2269 		goto out;
2270 	}
2271 
2272 	n2d = NULL;
2273 	sub_vbn = fnd2->nodes[0]->index->vbn;
2274 	level2 = 0;
2275 	level = fnd->level;
2276 
2277 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2278 
2279 	/* Scan current level. */
2280 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2281 		if (!e) {
2282 			err = -EINVAL;
2283 			goto out;
2284 		}
2285 
2286 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2287 			break;
2288 
2289 		if (de_is_last(e)) {
2290 			e = NULL;
2291 			break;
2292 		}
2293 	}
2294 
2295 	if (!e) {
2296 		/* Do slow search from root. */
2297 		struct indx_node *in;
2298 
2299 		fnd_clear(fnd);
2300 
2301 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2302 		if (IS_ERR(in)) {
2303 			err = PTR_ERR(in);
2304 			goto out;
2305 		}
2306 
2307 		if (in)
2308 			fnd_push(fnd, in, NULL);
2309 	}
2310 
2311 	/* Merge fnd2 -> fnd. */
2312 	for (level = 0; level < fnd2->level; level++) {
2313 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2314 		fnd2->nodes[level] = NULL;
2315 	}
2316 	fnd2->level = 0;
2317 
2318 	hdr = NULL;
2319 	for (level = fnd->level; level; level--) {
2320 		struct indx_node *in = fnd->nodes[level - 1];
2321 
2322 		ib = in->index;
2323 		if (ib_is_empty(ib)) {
2324 			sub_vbn = ib->vbn;
2325 		} else {
2326 			hdr = &ib->ihdr;
2327 			n2d = in;
2328 			level2 = level;
2329 			break;
2330 		}
2331 	}
2332 
2333 	if (!hdr)
2334 		hdr = &root->ihdr;
2335 
2336 	e = hdr_first_de(hdr);
2337 	if (!e) {
2338 		err = -EINVAL;
2339 		goto out;
2340 	}
2341 
2342 	if (hdr != &root->ihdr || !de_is_last(e)) {
2343 		prev = NULL;
2344 		while (!de_is_last(e)) {
2345 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2346 				break;
2347 			prev = e;
2348 			e = hdr_next_de(hdr, e);
2349 			if (!e) {
2350 				err = -EINVAL;
2351 				goto out;
2352 			}
2353 		}
2354 
2355 		if (sub_vbn != de_get_vbn_le(e)) {
2356 			/*
2357 			 * Didn't find the parent entry, although this buffer
2358 			 * is the parent trail. Something is corrupt.
2359 			 */
2360 			err = -EINVAL;
2361 			goto out;
2362 		}
2363 
2364 		if (de_is_last(e)) {
2365 			/*
2366 			 * Since we can't remove the end entry, we'll remove
2367 			 * its predecessor instead. This means we have to
2368 			 * transfer the predecessor's sub_vcn to the end entry.
2369 			 * Note: This index block is not empty, so the
2370 			 * predecessor must exist.
2371 			 */
2372 			if (!prev) {
2373 				err = -EINVAL;
2374 				goto out;
2375 			}
2376 
2377 			if (de_has_vcn(prev)) {
2378 				de_set_vbn_le(e, de_get_vbn_le(prev));
2379 			} else if (de_has_vcn(e)) {
2380 				le16_sub_cpu(&e->size, sizeof(u64));
2381 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2382 				le32_sub_cpu(&hdr->used, sizeof(u64));
2383 			}
2384 			e = prev;
2385 		}
2386 
2387 		/*
2388 		 * Copy the current entry into a temporary buffer (stripping
2389 		 * off its down-pointer, if any) and delete it from the current
2390 		 * buffer or root, as appropriate.
2391 		 */
2392 		e_size = le16_to_cpu(e->size);
2393 		me = kmemdup(e, e_size, GFP_NOFS);
2394 		if (!me) {
2395 			err = -ENOMEM;
2396 			goto out;
2397 		}
2398 
2399 		if (de_has_vcn(me)) {
2400 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2401 			le16_sub_cpu(&me->size, sizeof(u64));
2402 		}
2403 
2404 		hdr_delete_de(hdr, e);
2405 
2406 		if (hdr == &root->ihdr) {
2407 			level = 0;
2408 			hdr->total = hdr->used;
2409 
2410 			/* Shrink resident root attribute. */
2411 			mi_resize_attr(mi, attr, 0 - e_size);
2412 		} else {
2413 			indx_write(indx, ni, n2d, 0);
2414 			level = level2;
2415 		}
2416 
2417 		/* Mark unused buffers as free. */
2418 		trim_bit = -1;
2419 		for (; level < fnd->level; level++) {
2420 			ib = fnd->nodes[level]->index;
2421 			if (ib_is_empty(ib)) {
2422 				size_t k = le64_to_cpu(ib->vbn) >>
2423 					   indx->idx2vbn_bits;
2424 
2425 				indx_mark_free(indx, ni, k);
2426 				if (k < trim_bit)
2427 					trim_bit = k;
2428 			}
2429 		}
2430 
2431 		fnd_clear(fnd);
2432 		/*fnd->root_de = NULL;*/
2433 
2434 		/*
2435 		 * Re-insert the entry into the tree.
2436 		 * Find the spot the tree where we want to insert the new entry.
2437 		 */
2438 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2439 		kfree(me);
2440 		if (err)
2441 			goto out;
2442 
2443 		if (trim_bit != -1)
2444 			indx_shrink(indx, ni, trim_bit);
2445 	} else {
2446 		/*
2447 		 * This tree needs to be collapsed down to an empty root.
2448 		 * Recreate the index root as an empty leaf and free all
2449 		 * the bits the index allocation bitmap.
2450 		 */
2451 		fnd_clear(fnd);
2452 		fnd_clear(fnd2);
2453 
2454 		in = &s_index_names[indx->type];
2455 
2456 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2457 				    &indx->alloc_run, 0, NULL, false, NULL);
2458 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2459 				     false, NULL);
2460 		run_close(&indx->alloc_run);
2461 
2462 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2463 				    &indx->bitmap_run, 0, NULL, false, NULL);
2464 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2465 				     false, NULL);
2466 		run_close(&indx->bitmap_run);
2467 
2468 		root = indx_get_root(indx, ni, &attr, &mi);
2469 		if (!root) {
2470 			err = -EINVAL;
2471 			goto out;
2472 		}
2473 
2474 		root_size = le32_to_cpu(attr->res.data_size);
2475 		new_root_size =
2476 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2477 
2478 		if (new_root_size != root_size &&
2479 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2480 			err = -EINVAL;
2481 			goto out;
2482 		}
2483 
2484 		/* Fill first entry. */
2485 		e = (struct NTFS_DE *)(root + 1);
2486 		e->ref.low = 0;
2487 		e->ref.high = 0;
2488 		e->ref.seq = 0;
2489 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2490 		e->flags = NTFS_IE_LAST; // 0x02
2491 		e->key_size = 0;
2492 		e->res = 0;
2493 
2494 		hdr = &root->ihdr;
2495 		hdr->flags = 0;
2496 		hdr->used = hdr->total = cpu_to_le32(
2497 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2498 		mi->dirty = true;
2499 	}
2500 
2501 out:
2502 	fnd_put(fnd2);
2503 out1:
2504 	fnd_put(fnd);
2505 out2:
2506 	return err;
2507 }
2508 
2509 /*
2510  * Update duplicated information in directory entry
2511  * 'dup' - info from MFT record
2512  */
2513 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2514 		    const struct ATTR_FILE_NAME *fname,
2515 		    const struct NTFS_DUP_INFO *dup, int sync)
2516 {
2517 	int err, diff;
2518 	struct NTFS_DE *e = NULL;
2519 	struct ATTR_FILE_NAME *e_fname;
2520 	struct ntfs_fnd *fnd;
2521 	struct INDEX_ROOT *root;
2522 	struct mft_inode *mi;
2523 	struct ntfs_index *indx = &ni->dir;
2524 
2525 	fnd = fnd_get();
2526 	if (!fnd)
2527 		return -ENOMEM;
2528 
2529 	root = indx_get_root(indx, ni, NULL, &mi);
2530 	if (!root) {
2531 		err = -EINVAL;
2532 		goto out;
2533 	}
2534 
2535 	/* Find entry in directory. */
2536 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2537 			&diff, &e, fnd);
2538 	if (err)
2539 		goto out;
2540 
2541 	if (!e) {
2542 		err = -EINVAL;
2543 		goto out;
2544 	}
2545 
2546 	if (diff) {
2547 		err = -EINVAL;
2548 		goto out;
2549 	}
2550 
2551 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2552 
2553 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2554 		/*
2555 		 * Nothing to update in index! Try to avoid this call.
2556 		 */
2557 		goto out;
2558 	}
2559 
2560 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2561 
2562 	if (fnd->level) {
2563 		/* Directory entry in index. */
2564 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2565 	} else {
2566 		/* Directory entry in directory MFT record. */
2567 		mi->dirty = true;
2568 		if (sync)
2569 			err = mi_write(mi, 1);
2570 		else
2571 			mark_inode_dirty(&ni->vfs_inode);
2572 	}
2573 
2574 out:
2575 	fnd_put(fnd);
2576 	return err;
2577 }
2578