xref: /linux/fs/ntfs3/index.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit_le(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit_le(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ?
435 			     (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436 			     false;
437 		put_bh(bh);
438 
439 		if (ok) {
440 			*ret += 8 * vbo;
441 			return 0;
442 		}
443 
444 		if (++vblock >= eblock) {
445 			*ret = MINUS_ONE_T;
446 			return 0;
447 		}
448 	}
449 	blk = 0;
450 	vcn_next = vcn + clen;
451 	down_read(lock);
452 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
453 	if (!ok)
454 		vcn = vcn_next;
455 	up_read(lock);
456 	goto next_run;
457 }
458 
459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460 {
461 	size_t pos = find_next_zero_bit_le(buf, bits, bit);
462 
463 	if (pos >= bits)
464 		return false;
465 	*ret = pos;
466 	return true;
467 }
468 
469 /*
470  * indx_find_free - Look for free bit.
471  *
472  * Return: -1 if no free bits.
473  */
474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475 			  size_t *bit, struct ATTRIB **bitmap)
476 {
477 	struct ATTRIB *b;
478 	struct ATTR_LIST_ENTRY *le = NULL;
479 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
480 	int err;
481 
482 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
483 			 NULL, NULL);
484 
485 	if (!b)
486 		return -ENOENT;
487 
488 	*bitmap = b;
489 	*bit = MINUS_ONE_T;
490 
491 	if (!b->non_res) {
492 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493 		size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
494 
495 		if (pos < nbits)
496 			*bit = pos;
497 	} else {
498 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
499 
500 		if (err)
501 			return err;
502 	}
503 
504 	return 0;
505 }
506 
507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508 {
509 	size_t pos = find_next_bit_le(buf, bits, bit);
510 
511 	if (pos >= bits)
512 		return false;
513 	*ret = pos;
514 	return true;
515 }
516 
517 /*
518  * indx_used_bit - Look for used bit.
519  *
520  * Return: MINUS_ONE_T if no used bits.
521  */
522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523 {
524 	struct ATTRIB *b;
525 	struct ATTR_LIST_ENTRY *le = NULL;
526 	size_t from = *bit;
527 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
528 	int err;
529 
530 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
531 			 NULL, NULL);
532 
533 	if (!b)
534 		return -ENOENT;
535 
536 	*bit = MINUS_ONE_T;
537 
538 	if (!b->non_res) {
539 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540 		size_t pos = find_next_bit_le(resident_data(b), nbits, from);
541 
542 		if (pos < nbits)
543 			*bit = pos;
544 	} else {
545 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
546 		if (err)
547 			return err;
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * hdr_find_split
555  *
556  * Find a point at which the index allocation buffer would like to be split.
557  * NOTE: This function should never return 'END' entry NULL returns on error.
558  */
559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560 {
561 	size_t o;
562 	const struct NTFS_DE *e = hdr_first_de(hdr);
563 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
564 	u16 esize;
565 
566 	if (!e || de_is_last(e))
567 		return NULL;
568 
569 	esize = le16_to_cpu(e->size);
570 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571 		const struct NTFS_DE *p = e;
572 
573 		e = Add2Ptr(hdr, o);
574 
575 		/* We must not return END entry. */
576 		if (de_is_last(e))
577 			return p;
578 
579 		esize = le16_to_cpu(e->size);
580 	}
581 
582 	return e;
583 }
584 
585 /*
586  * hdr_insert_head - Insert some entries at the beginning of the buffer.
587  *
588  * It is used to insert entries into a newly-created buffer.
589  */
590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591 					     const void *ins, u32 ins_bytes)
592 {
593 	u32 to_move;
594 	struct NTFS_DE *e = hdr_first_de(hdr);
595 	u32 used = le32_to_cpu(hdr->used);
596 
597 	if (!e)
598 		return NULL;
599 
600 	/* Now we just make room for the inserted entries and jam it in. */
601 	to_move = used - le32_to_cpu(hdr->de_off);
602 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
603 	memcpy(e, ins, ins_bytes);
604 	hdr->used = cpu_to_le32(used + ins_bytes);
605 
606 	return e;
607 }
608 
609 /*
610  * index_hdr_check
611  *
612  * return true if INDEX_HDR is valid
613  */
614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615 {
616 	u32 end = le32_to_cpu(hdr->used);
617 	u32 tot = le32_to_cpu(hdr->total);
618 	u32 off = le32_to_cpu(hdr->de_off);
619 
620 	if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621 	    off + sizeof(struct NTFS_DE) > end) {
622 		/* incorrect index buffer. */
623 		return false;
624 	}
625 
626 	return true;
627 }
628 
629 /*
630  * index_buf_check
631  *
632  * return true if INDEX_BUFFER seems is valid
633  */
634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635 			    const CLST *vbn)
636 {
637 	const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638 	u16 fo = le16_to_cpu(rhdr->fix_off);
639 	u16 fn = le16_to_cpu(rhdr->fix_num);
640 
641 	if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642 	    rhdr->sign != NTFS_INDX_SIGNATURE ||
643 	    fo < sizeof(struct INDEX_BUFFER)
644 	    /* Check index buffer vbn. */
645 	    || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646 	    fo + fn * sizeof(short) >= bytes ||
647 	    fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648 		/* incorrect index buffer. */
649 		return false;
650 	}
651 
652 	return index_hdr_check(&ib->ihdr,
653 			       bytes - offsetof(struct INDEX_BUFFER, ihdr));
654 }
655 
656 void fnd_clear(struct ntfs_fnd *fnd)
657 {
658 	int i;
659 
660 	for (i = fnd->level - 1; i >= 0; i--) {
661 		struct indx_node *n = fnd->nodes[i];
662 
663 		if (!n)
664 			continue;
665 
666 		put_indx_node(n);
667 		fnd->nodes[i] = NULL;
668 	}
669 	fnd->level = 0;
670 	fnd->root_de = NULL;
671 }
672 
673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674 		    struct NTFS_DE *e)
675 {
676 	int i = fnd->level;
677 
678 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 		return -EINVAL;
680 	fnd->nodes[i] = n;
681 	fnd->de[i] = e;
682 	fnd->level += 1;
683 	return 0;
684 }
685 
686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 	struct indx_node *n;
689 	int i = fnd->level;
690 
691 	i -= 1;
692 	n = fnd->nodes[i];
693 	fnd->nodes[i] = NULL;
694 	fnd->level = i;
695 
696 	return n;
697 }
698 
699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 	if (!fnd->level)
702 		return !fnd->root_de;
703 
704 	return !fnd->de[fnd->level - 1];
705 }
706 
707 /*
708  * hdr_find_e - Locate an entry the index buffer.
709  *
710  * If no matching entry is found, it returns the first entry which is greater
711  * than the desired entry If the search key is greater than all the entries the
712  * buffer, it returns the 'end' entry. This function does a binary search of the
713  * current index buffer, for the first entry that is <= to the search value.
714  *
715  * Return: NULL if error.
716  */
717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 				  const struct INDEX_HDR *hdr, const void *key,
719 				  size_t key_len, const void *ctx, int *diff)
720 {
721 	struct NTFS_DE *e, *found = NULL;
722 	NTFS_CMP_FUNC cmp = indx->cmp;
723 	int min_idx = 0, mid_idx, max_idx = 0;
724 	int diff2;
725 	int table_size = 8;
726 	u32 e_size, e_key_len;
727 	u32 end = le32_to_cpu(hdr->used);
728 	u32 off = le32_to_cpu(hdr->de_off);
729 	u32 total = le32_to_cpu(hdr->total);
730 	u16 offs[128];
731 
732 	if (unlikely(!cmp))
733 		return NULL;
734 
735 fill_table:
736 	if (end > total)
737 		return NULL;
738 
739 	if (off + sizeof(struct NTFS_DE) > end)
740 		return NULL;
741 
742 	e = Add2Ptr(hdr, off);
743 	e_size = le16_to_cpu(e->size);
744 
745 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 		return NULL;
747 
748 	if (!de_is_last(e)) {
749 		offs[max_idx] = off;
750 		off += e_size;
751 
752 		max_idx++;
753 		if (max_idx < table_size)
754 			goto fill_table;
755 
756 		max_idx--;
757 	}
758 
759 binary_search:
760 	e_key_len = le16_to_cpu(e->key_size);
761 
762 	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 	if (diff2 > 0) {
764 		if (found) {
765 			min_idx = mid_idx + 1;
766 		} else {
767 			if (de_is_last(e))
768 				return NULL;
769 
770 			max_idx = 0;
771 			table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
772 			goto fill_table;
773 		}
774 	} else if (diff2 < 0) {
775 		if (found)
776 			max_idx = mid_idx - 1;
777 		else
778 			max_idx--;
779 
780 		found = e;
781 	} else {
782 		*diff = 0;
783 		return e;
784 	}
785 
786 	if (min_idx > max_idx) {
787 		*diff = -1;
788 		return found;
789 	}
790 
791 	mid_idx = (min_idx + max_idx) >> 1;
792 	e = Add2Ptr(hdr, offs[mid_idx]);
793 
794 	goto binary_search;
795 }
796 
797 /*
798  * hdr_insert_de - Insert an index entry into the buffer.
799  *
800  * 'before' should be a pointer previously returned from hdr_find_e.
801  */
802 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
803 				     struct INDEX_HDR *hdr,
804 				     const struct NTFS_DE *de,
805 				     struct NTFS_DE *before, const void *ctx)
806 {
807 	int diff;
808 	size_t off = PtrOffset(hdr, before);
809 	u32 used = le32_to_cpu(hdr->used);
810 	u32 total = le32_to_cpu(hdr->total);
811 	u16 de_size = le16_to_cpu(de->size);
812 
813 	/* First, check to see if there's enough room. */
814 	if (used + de_size > total)
815 		return NULL;
816 
817 	/* We know there's enough space, so we know we'll succeed. */
818 	if (before) {
819 		/* Check that before is inside Index. */
820 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
821 		    off + le16_to_cpu(before->size) > total) {
822 			return NULL;
823 		}
824 		goto ok;
825 	}
826 	/* No insert point is applied. Get it manually. */
827 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
828 			    &diff);
829 	if (!before)
830 		return NULL;
831 	off = PtrOffset(hdr, before);
832 
833 ok:
834 	/* Now we just make room for the entry and jam it in. */
835 	memmove(Add2Ptr(before, de_size), before, used - off);
836 
837 	hdr->used = cpu_to_le32(used + de_size);
838 	memcpy(before, de, de_size);
839 
840 	return before;
841 }
842 
843 /*
844  * hdr_delete_de - Remove an entry from the index buffer.
845  */
846 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
847 					    struct NTFS_DE *re)
848 {
849 	u32 used = le32_to_cpu(hdr->used);
850 	u16 esize = le16_to_cpu(re->size);
851 	u32 off = PtrOffset(hdr, re);
852 	int bytes = used - (off + esize);
853 
854 	/* check INDEX_HDR valid before using INDEX_HDR */
855 	if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
856 		return NULL;
857 
858 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
859 	    bytes < sizeof(struct NTFS_DE))
860 		return NULL;
861 
862 	hdr->used = cpu_to_le32(used - esize);
863 	memmove(re, Add2Ptr(re, esize), bytes);
864 
865 	return re;
866 }
867 
868 void indx_clear(struct ntfs_index *indx)
869 {
870 	run_close(&indx->alloc_run);
871 	run_close(&indx->bitmap_run);
872 }
873 
874 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
875 	      const struct ATTRIB *attr, enum index_mutex_classed type)
876 {
877 	u32 t32;
878 	const struct INDEX_ROOT *root = resident_data(attr);
879 
880 	t32 = le32_to_cpu(attr->res.data_size);
881 	if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
882 	    !index_hdr_check(&root->ihdr,
883 			     t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884 		goto out;
885 	}
886 
887 	/* Check root fields. */
888 	if (!root->index_block_clst)
889 		goto out;
890 
891 	indx->type = type;
892 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
893 
894 	t32 = le32_to_cpu(root->index_block_size);
895 	indx->index_bits = blksize_bits(t32);
896 
897 	/* Check index record size. */
898 	if (t32 < sbi->cluster_size) {
899 		/* Index record is smaller than a cluster, use 512 blocks. */
900 		if (t32 != root->index_block_clst * SECTOR_SIZE)
901 			goto out;
902 
903 		/* Check alignment to a cluster. */
904 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
905 		    (root->index_block_clst - 1)) {
906 			goto out;
907 		}
908 
909 		indx->vbn2vbo_bits = SECTOR_SHIFT;
910 	} else {
911 		/* Index record must be a multiple of cluster size. */
912 		if (t32 != root->index_block_clst << sbi->cluster_bits)
913 			goto out;
914 
915 		indx->vbn2vbo_bits = sbi->cluster_bits;
916 	}
917 
918 	init_rwsem(&indx->run_lock);
919 
920 	indx->cmp = get_cmp_func(root);
921 	if (!indx->cmp)
922 		goto out;
923 
924 	return 0;
925 
926 out:
927 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
928 	return -EINVAL;
929 }
930 
931 static struct indx_node *indx_new(struct ntfs_index *indx,
932 				  struct ntfs_inode *ni, CLST vbn,
933 				  const __le64 *sub_vbn)
934 {
935 	int err;
936 	struct NTFS_DE *e;
937 	struct indx_node *r;
938 	struct INDEX_HDR *hdr;
939 	struct INDEX_BUFFER *index;
940 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
941 	u32 bytes = 1u << indx->index_bits;
942 	u16 fn;
943 	u32 eo;
944 
945 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
946 	if (!r)
947 		return ERR_PTR(-ENOMEM);
948 
949 	index = kzalloc(bytes, GFP_NOFS);
950 	if (!index) {
951 		kfree(r);
952 		return ERR_PTR(-ENOMEM);
953 	}
954 
955 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
956 
957 	if (err) {
958 		kfree(index);
959 		kfree(r);
960 		return ERR_PTR(err);
961 	}
962 
963 	/* Create header. */
964 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
965 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
966 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
967 	index->rhdr.fix_num = cpu_to_le16(fn);
968 	index->vbn = cpu_to_le64(vbn);
969 	hdr = &index->ihdr;
970 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
971 	hdr->de_off = cpu_to_le32(eo);
972 
973 	e = Add2Ptr(hdr, eo);
974 
975 	if (sub_vbn) {
976 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
977 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
978 		hdr->used =
979 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
980 		de_set_vbn_le(e, *sub_vbn);
981 		hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
982 	} else {
983 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
984 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
985 		e->flags = NTFS_IE_LAST;
986 	}
987 
988 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
989 
990 	r->index = index;
991 	return r;
992 }
993 
994 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
995 				 struct ATTRIB **attr, struct mft_inode **mi)
996 {
997 	struct ATTR_LIST_ENTRY *le = NULL;
998 	struct ATTRIB *a;
999 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1000 	struct INDEX_ROOT *root;
1001 
1002 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003 			 mi);
1004 	if (!a)
1005 		return NULL;
1006 
1007 	if (attr)
1008 		*attr = a;
1009 
1010 	root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011 
1012 	/* length check */
1013 	if (root &&
1014 	    offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015 		    le32_to_cpu(a->res.data_size)) {
1016 		return NULL;
1017 	}
1018 
1019 	return root;
1020 }
1021 
1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023 		      struct indx_node *node, int sync)
1024 {
1025 	struct INDEX_BUFFER *ib = node->index;
1026 
1027 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028 }
1029 
1030 /*
1031  * indx_read
1032  *
1033  * If ntfs_readdir calls this function
1034  * inode is shared locked and no ni_lock.
1035  * Use rw_semaphore for read/write access to alloc_run.
1036  */
1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038 	      struct indx_node **node)
1039 {
1040 	int err;
1041 	struct INDEX_BUFFER *ib;
1042 	struct runs_tree *run = &indx->alloc_run;
1043 	struct rw_semaphore *lock = &indx->run_lock;
1044 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045 	u32 bytes = 1u << indx->index_bits;
1046 	struct indx_node *in = *node;
1047 	const struct INDEX_NAMES *name;
1048 
1049 	if (!in) {
1050 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051 		if (!in)
1052 			return -ENOMEM;
1053 	} else {
1054 		nb_put(&in->nb);
1055 	}
1056 
1057 	ib = in->index;
1058 	if (!ib) {
1059 		ib = kmalloc(bytes, GFP_NOFS);
1060 		if (!ib) {
1061 			err = -ENOMEM;
1062 			goto out;
1063 		}
1064 	}
1065 
1066 	down_read(lock);
1067 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068 	up_read(lock);
1069 	if (!err)
1070 		goto ok;
1071 
1072 	if (err == -E_NTFS_FIXUP)
1073 		goto ok;
1074 
1075 	if (err != -ENOENT)
1076 		goto out;
1077 
1078 	name = &s_index_names[indx->type];
1079 	down_write(lock);
1080 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081 				   run, vbo, vbo + bytes);
1082 	up_write(lock);
1083 	if (err)
1084 		goto out;
1085 
1086 	down_read(lock);
1087 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088 	up_read(lock);
1089 	if (err == -E_NTFS_FIXUP)
1090 		goto ok;
1091 
1092 	if (err)
1093 		goto out;
1094 
1095 ok:
1096 	if (!index_buf_check(ib, bytes, &vbn)) {
1097 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1098 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1099 		err = -EINVAL;
1100 		goto out;
1101 	}
1102 
1103 	if (err == -E_NTFS_FIXUP) {
1104 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1105 		err = 0;
1106 	}
1107 
1108 	/* check for index header length */
1109 	if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1110 	    bytes) {
1111 		err = -EINVAL;
1112 		goto out;
1113 	}
1114 
1115 	in->index = ib;
1116 	*node = in;
1117 
1118 out:
1119 	if (err == -E_NTFS_CORRUPT) {
1120 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1121 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1122 		err = -EINVAL;
1123 	}
1124 
1125 	if (ib != in->index)
1126 		kfree(ib);
1127 
1128 	if (*node != in) {
1129 		nb_put(&in->nb);
1130 		kfree(in);
1131 	}
1132 
1133 	return err;
1134 }
1135 
1136 /*
1137  * indx_find - Scan NTFS directory for given entry.
1138  */
1139 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1140 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1141 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1142 	      struct ntfs_fnd *fnd)
1143 {
1144 	int err;
1145 	struct NTFS_DE *e;
1146 	struct indx_node *node;
1147 
1148 	if (!root)
1149 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1150 
1151 	if (!root) {
1152 		/* Should not happen. */
1153 		return -EINVAL;
1154 	}
1155 
1156 	/* Check cache. */
1157 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1158 	if (e && !de_is_last(e) &&
1159 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1160 		*entry = e;
1161 		*diff = 0;
1162 		return 0;
1163 	}
1164 
1165 	/* Soft finder reset. */
1166 	fnd_clear(fnd);
1167 
1168 	/* Lookup entry that is <= to the search value. */
1169 	e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1170 	if (!e)
1171 		return -EINVAL;
1172 
1173 	fnd->root_de = e;
1174 
1175 	for (;;) {
1176 		node = NULL;
1177 		if (*diff >= 0 || !de_has_vcn_ex(e))
1178 			break;
1179 
1180 		/* Read next level. */
1181 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1182 		if (err) {
1183 			/* io error? */
1184 			return err;
1185 		}
1186 
1187 		/* Lookup entry that is <= to the search value. */
1188 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1189 			       diff);
1190 		if (!e) {
1191 			put_indx_node(node);
1192 			return -EINVAL;
1193 		}
1194 
1195 		fnd_push(fnd, node, e);
1196 	}
1197 
1198 	*entry = e;
1199 	return 0;
1200 }
1201 
1202 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1203 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1204 		   struct ntfs_fnd *fnd)
1205 {
1206 	int err;
1207 	struct indx_node *n = NULL;
1208 	struct NTFS_DE *e;
1209 	size_t iter = 0;
1210 	int level = fnd->level;
1211 
1212 	if (!*entry) {
1213 		/* Start find. */
1214 		e = hdr_first_de(&root->ihdr);
1215 		if (!e)
1216 			return 0;
1217 		fnd_clear(fnd);
1218 		fnd->root_de = e;
1219 	} else if (!level) {
1220 		if (de_is_last(fnd->root_de)) {
1221 			*entry = NULL;
1222 			return 0;
1223 		}
1224 
1225 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1226 		if (!e)
1227 			return -EINVAL;
1228 		fnd->root_de = e;
1229 	} else {
1230 		n = fnd->nodes[level - 1];
1231 		e = fnd->de[level - 1];
1232 
1233 		if (de_is_last(e))
1234 			goto pop_level;
1235 
1236 		e = hdr_next_de(&n->index->ihdr, e);
1237 		if (!e)
1238 			return -EINVAL;
1239 
1240 		fnd->de[level - 1] = e;
1241 	}
1242 
1243 	/* Just to avoid tree cycle. */
1244 next_iter:
1245 	if (iter++ >= 1000)
1246 		return -EINVAL;
1247 
1248 	while (de_has_vcn_ex(e)) {
1249 		if (le16_to_cpu(e->size) <
1250 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1251 			if (n) {
1252 				fnd_pop(fnd);
1253 				kfree(n);
1254 			}
1255 			return -EINVAL;
1256 		}
1257 
1258 		/* Read next level. */
1259 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1260 		if (err)
1261 			return err;
1262 
1263 		/* Try next level. */
1264 		e = hdr_first_de(&n->index->ihdr);
1265 		if (!e) {
1266 			kfree(n);
1267 			return -EINVAL;
1268 		}
1269 
1270 		fnd_push(fnd, n, e);
1271 	}
1272 
1273 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274 		*entry = e;
1275 		return 0;
1276 	}
1277 
1278 pop_level:
1279 	for (;;) {
1280 		if (!de_is_last(e))
1281 			goto next_iter;
1282 
1283 		/* Pop one level. */
1284 		if (n) {
1285 			fnd_pop(fnd);
1286 			kfree(n);
1287 		}
1288 
1289 		level = fnd->level;
1290 
1291 		if (level) {
1292 			n = fnd->nodes[level - 1];
1293 			e = fnd->de[level - 1];
1294 		} else if (fnd->root_de) {
1295 			n = NULL;
1296 			e = fnd->root_de;
1297 			fnd->root_de = NULL;
1298 		} else {
1299 			*entry = NULL;
1300 			return 0;
1301 		}
1302 
1303 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1304 			*entry = e;
1305 			if (!fnd->root_de)
1306 				fnd->root_de = e;
1307 			return 0;
1308 		}
1309 	}
1310 }
1311 
1312 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1313 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1314 		  size_t *off, struct ntfs_fnd *fnd)
1315 {
1316 	int err;
1317 	struct indx_node *n = NULL;
1318 	struct NTFS_DE *e = NULL;
1319 	struct NTFS_DE *e2;
1320 	size_t bit;
1321 	CLST next_used_vbn;
1322 	CLST next_vbn;
1323 	u32 record_size = ni->mi.sbi->record_size;
1324 
1325 	/* Use non sorted algorithm. */
1326 	if (!*entry) {
1327 		/* This is the first call. */
1328 		e = hdr_first_de(&root->ihdr);
1329 		if (!e)
1330 			return 0;
1331 		fnd_clear(fnd);
1332 		fnd->root_de = e;
1333 
1334 		/* The first call with setup of initial element. */
1335 		if (*off >= record_size) {
1336 			next_vbn = (((*off - record_size) >> indx->index_bits))
1337 				   << indx->idx2vbn_bits;
1338 			/* Jump inside cycle 'for'. */
1339 			goto next;
1340 		}
1341 
1342 		/* Start enumeration from root. */
1343 		*off = 0;
1344 	} else if (!fnd->root_de)
1345 		return -EINVAL;
1346 
1347 	for (;;) {
1348 		/* Check if current entry can be used. */
1349 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1350 			goto ok;
1351 
1352 		if (!fnd->level) {
1353 			/* Continue to enumerate root. */
1354 			if (!de_is_last(fnd->root_de)) {
1355 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1356 				if (!e)
1357 					return -EINVAL;
1358 				fnd->root_de = e;
1359 				continue;
1360 			}
1361 
1362 			/* Start to enumerate indexes from 0. */
1363 			next_vbn = 0;
1364 		} else {
1365 			/* Continue to enumerate indexes. */
1366 			e2 = fnd->de[fnd->level - 1];
1367 
1368 			n = fnd->nodes[fnd->level - 1];
1369 
1370 			if (!de_is_last(e2)) {
1371 				e = hdr_next_de(&n->index->ihdr, e2);
1372 				if (!e)
1373 					return -EINVAL;
1374 				fnd->de[fnd->level - 1] = e;
1375 				continue;
1376 			}
1377 
1378 			/* Continue with next index. */
1379 			next_vbn = le64_to_cpu(n->index->vbn) +
1380 				   root->index_block_clst;
1381 		}
1382 
1383 next:
1384 		/* Release current index. */
1385 		if (n) {
1386 			fnd_pop(fnd);
1387 			put_indx_node(n);
1388 			n = NULL;
1389 		}
1390 
1391 		/* Skip all free indexes. */
1392 		bit = next_vbn >> indx->idx2vbn_bits;
1393 		err = indx_used_bit(indx, ni, &bit);
1394 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1395 			/* No used indexes. */
1396 			*entry = NULL;
1397 			return 0;
1398 		}
1399 
1400 		next_used_vbn = bit << indx->idx2vbn_bits;
1401 
1402 		/* Read buffer into memory. */
1403 		err = indx_read(indx, ni, next_used_vbn, &n);
1404 		if (err)
1405 			return err;
1406 
1407 		e = hdr_first_de(&n->index->ihdr);
1408 		fnd_push(fnd, n, e);
1409 		if (!e)
1410 			return -EINVAL;
1411 	}
1412 
1413 ok:
1414 	/* Return offset to restore enumerator if necessary. */
1415 	if (!n) {
1416 		/* 'e' points in root, */
1417 		*off = PtrOffset(&root->ihdr, e);
1418 	} else {
1419 		/* 'e' points in index, */
1420 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1421 		       record_size + PtrOffset(&n->index->ihdr, e);
1422 	}
1423 
1424 	*entry = e;
1425 	return 0;
1426 }
1427 
1428 /*
1429  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1430  */
1431 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1432 				CLST *vbn)
1433 {
1434 	int err;
1435 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1436 	struct ATTRIB *bitmap;
1437 	struct ATTRIB *alloc;
1438 	u32 data_size = 1u << indx->index_bits;
1439 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1440 	CLST len = alloc_size >> sbi->cluster_bits;
1441 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1442 	CLST alen;
1443 	struct runs_tree run;
1444 
1445 	run_init(&run);
1446 
1447 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1448 				     &alen, 0, NULL, NULL);
1449 	if (err)
1450 		goto out;
1451 
1452 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1453 				    &run, 0, len, 0, &alloc, NULL, NULL);
1454 	if (err)
1455 		goto out1;
1456 
1457 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1458 
1459 	err = ni_insert_resident(ni, ntfs3_bitmap_size(1), ATTR_BITMAP,
1460 				 in->name, in->name_len, &bitmap, NULL, NULL);
1461 	if (err)
1462 		goto out2;
1463 
1464 	if (in->name == I30_NAME) {
1465 		i_size_write(&ni->vfs_inode, data_size);
1466 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1467 	}
1468 
1469 	memcpy(&indx->alloc_run, &run, sizeof(run));
1470 
1471 	*vbn = 0;
1472 
1473 	return 0;
1474 
1475 out2:
1476 	mi_remove_attr(NULL, &ni->mi, alloc);
1477 
1478 out1:
1479 	run_deallocate(sbi, &run, false);
1480 
1481 out:
1482 	return err;
1483 }
1484 
1485 /*
1486  * indx_add_allocate - Add clusters to index.
1487  */
1488 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1489 			     CLST *vbn)
1490 {
1491 	int err;
1492 	size_t bit;
1493 	u64 data_size;
1494 	u64 bmp_size, bmp_size_v;
1495 	struct ATTRIB *bmp, *alloc;
1496 	struct mft_inode *mi;
1497 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1498 
1499 	err = indx_find_free(indx, ni, &bit, &bmp);
1500 	if (err)
1501 		goto out1;
1502 
1503 	if (bit != MINUS_ONE_T) {
1504 		bmp = NULL;
1505 	} else {
1506 		if (bmp->non_res) {
1507 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1508 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1509 		} else {
1510 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1511 		}
1512 
1513 		bit = bmp_size << 3;
1514 	}
1515 
1516 	data_size = (u64)(bit + 1) << indx->index_bits;
1517 
1518 	if (bmp) {
1519 		/* Increase bitmap. */
1520 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1521 				    &indx->bitmap_run,
1522 				    ntfs3_bitmap_size(bit + 1), NULL, true,
1523 				    NULL);
1524 		if (err)
1525 			goto out1;
1526 	}
1527 
1528 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1529 			     NULL, &mi);
1530 	if (!alloc) {
1531 		err = -EINVAL;
1532 		if (bmp)
1533 			goto out2;
1534 		goto out1;
1535 	}
1536 
1537 	if (data_size <= le64_to_cpu(alloc->nres.data_size)) {
1538 		/* Reuse index. */
1539 		goto out;
1540 	}
1541 
1542 	/* Increase allocation. */
1543 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1544 			    &indx->alloc_run, data_size, &data_size, true,
1545 			    NULL);
1546 	if (err) {
1547 		if (bmp)
1548 			goto out2;
1549 		goto out1;
1550 	}
1551 
1552 	if (in->name == I30_NAME)
1553 		i_size_write(&ni->vfs_inode, data_size);
1554 
1555 out:
1556 	*vbn = bit << indx->idx2vbn_bits;
1557 
1558 	return 0;
1559 
1560 out2:
1561 	/* Ops. No space? */
1562 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1563 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1564 
1565 out1:
1566 	return err;
1567 }
1568 
1569 /*
1570  * indx_insert_into_root - Attempt to insert an entry into the index root.
1571  *
1572  * @undo - True if we undoing previous remove.
1573  * If necessary, it will twiddle the index b-tree.
1574  */
1575 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1576 				 const struct NTFS_DE *new_de,
1577 				 struct NTFS_DE *root_de, const void *ctx,
1578 				 struct ntfs_fnd *fnd, bool undo)
1579 {
1580 	int err = 0;
1581 	struct NTFS_DE *e, *e0, *re;
1582 	struct mft_inode *mi;
1583 	struct ATTRIB *attr;
1584 	struct INDEX_HDR *hdr;
1585 	struct indx_node *n;
1586 	CLST new_vbn;
1587 	__le64 *sub_vbn, t_vbn;
1588 	u16 new_de_size;
1589 	u32 hdr_used, hdr_total, asize, to_move;
1590 	u32 root_size, new_root_size;
1591 	struct ntfs_sb_info *sbi;
1592 	int ds_root;
1593 	struct INDEX_ROOT *root, *a_root;
1594 
1595 	/* Get the record this root placed in. */
1596 	root = indx_get_root(indx, ni, &attr, &mi);
1597 	if (!root)
1598 		return -EINVAL;
1599 
1600 	/*
1601 	 * Try easy case:
1602 	 * hdr_insert_de will succeed if there's
1603 	 * room the root for the new entry.
1604 	 */
1605 	hdr = &root->ihdr;
1606 	sbi = ni->mi.sbi;
1607 	new_de_size = le16_to_cpu(new_de->size);
1608 	hdr_used = le32_to_cpu(hdr->used);
1609 	hdr_total = le32_to_cpu(hdr->total);
1610 	asize = le32_to_cpu(attr->size);
1611 	root_size = le32_to_cpu(attr->res.data_size);
1612 
1613 	ds_root = new_de_size + hdr_used - hdr_total;
1614 
1615 	/* If 'undo' is set then reduce requirements. */
1616 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1617 	    mi_resize_attr(mi, attr, ds_root)) {
1618 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1619 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1620 		WARN_ON(!e);
1621 		fnd_clear(fnd);
1622 		fnd->root_de = e;
1623 
1624 		return 0;
1625 	}
1626 
1627 	/* Make a copy of root attribute to restore if error. */
1628 	a_root = kmemdup(attr, asize, GFP_NOFS);
1629 	if (!a_root)
1630 		return -ENOMEM;
1631 
1632 	/*
1633 	 * Copy all the non-end entries from
1634 	 * the index root to the new buffer.
1635 	 */
1636 	to_move = 0;
1637 	e0 = hdr_first_de(hdr);
1638 
1639 	/* Calculate the size to copy. */
1640 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1641 		if (!e) {
1642 			err = -EINVAL;
1643 			goto out_free_root;
1644 		}
1645 
1646 		if (de_is_last(e))
1647 			break;
1648 		to_move += le16_to_cpu(e->size);
1649 	}
1650 
1651 	if (!to_move) {
1652 		re = NULL;
1653 	} else {
1654 		re = kmemdup(e0, to_move, GFP_NOFS);
1655 		if (!re) {
1656 			err = -ENOMEM;
1657 			goto out_free_root;
1658 		}
1659 	}
1660 
1661 	sub_vbn = NULL;
1662 	if (de_has_vcn(e)) {
1663 		t_vbn = de_get_vbn_le(e);
1664 		sub_vbn = &t_vbn;
1665 	}
1666 
1667 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1668 			sizeof(u64);
1669 	ds_root = new_root_size - root_size;
1670 
1671 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1672 		/* Make root external. */
1673 		err = -EOPNOTSUPP;
1674 		goto out_free_re;
1675 	}
1676 
1677 	if (ds_root)
1678 		mi_resize_attr(mi, attr, ds_root);
1679 
1680 	/* Fill first entry (vcn will be set later). */
1681 	e = (struct NTFS_DE *)(root + 1);
1682 	memset(e, 0, sizeof(struct NTFS_DE));
1683 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1684 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1685 
1686 	hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
1687 	hdr->used = hdr->total =
1688 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1689 
1690 	fnd->root_de = hdr_first_de(hdr);
1691 	mi->dirty = true;
1692 
1693 	/* Create alloc and bitmap attributes (if not). */
1694 	err = run_is_empty(&indx->alloc_run) ?
1695 		      indx_create_allocate(indx, ni, &new_vbn) :
1696 		      indx_add_allocate(indx, ni, &new_vbn);
1697 
1698 	/* Layout of record may be changed, so rescan root. */
1699 	root = indx_get_root(indx, ni, &attr, &mi);
1700 	if (!root) {
1701 		/* Bug? */
1702 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1703 		err = -EINVAL;
1704 		goto out_free_re;
1705 	}
1706 
1707 	if (err) {
1708 		/* Restore root. */
1709 		if (mi_resize_attr(mi, attr, -ds_root)) {
1710 			memcpy(attr, a_root, asize);
1711 		} else {
1712 			/* Bug? */
1713 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1714 		}
1715 		goto out_free_re;
1716 	}
1717 
1718 	e = (struct NTFS_DE *)(root + 1);
1719 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1720 	mi->dirty = true;
1721 
1722 	/* Now we can create/format the new buffer and copy the entries into. */
1723 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1724 	if (IS_ERR(n)) {
1725 		err = PTR_ERR(n);
1726 		goto out_free_re;
1727 	}
1728 
1729 	hdr = &n->index->ihdr;
1730 	hdr_used = le32_to_cpu(hdr->used);
1731 	hdr_total = le32_to_cpu(hdr->total);
1732 
1733 	/* Copy root entries into new buffer. */
1734 	hdr_insert_head(hdr, re, to_move);
1735 
1736 	/* Update bitmap attribute. */
1737 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1738 
1739 	/* Check if we can insert new entry new index buffer. */
1740 	if (hdr_used + new_de_size > hdr_total) {
1741 		/*
1742 		 * This occurs if MFT record is the same or bigger than index
1743 		 * buffer. Move all root new index and have no space to add
1744 		 * new entry classic case when MFT record is 1K and index
1745 		 * buffer 4K the problem should not occurs.
1746 		 */
1747 		kfree(re);
1748 		indx_write(indx, ni, n, 0);
1749 
1750 		put_indx_node(n);
1751 		fnd_clear(fnd);
1752 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1753 		goto out_free_root;
1754 	}
1755 
1756 	/*
1757 	 * Now root is a parent for new index buffer.
1758 	 * Insert NewEntry a new buffer.
1759 	 */
1760 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1761 	if (!e) {
1762 		err = -EINVAL;
1763 		goto out_put_n;
1764 	}
1765 	fnd_push(fnd, n, e);
1766 
1767 	/* Just write updates index into disk. */
1768 	indx_write(indx, ni, n, 0);
1769 
1770 	n = NULL;
1771 
1772 out_put_n:
1773 	put_indx_node(n);
1774 out_free_re:
1775 	kfree(re);
1776 out_free_root:
1777 	kfree(a_root);
1778 	return err;
1779 }
1780 
1781 /*
1782  * indx_insert_into_buffer
1783  *
1784  * Attempt to insert an entry into an Index Allocation Buffer.
1785  * If necessary, it will split the buffer.
1786  */
1787 static int
1788 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1789 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1790 			const void *ctx, int level, struct ntfs_fnd *fnd)
1791 {
1792 	int err;
1793 	const struct NTFS_DE *sp;
1794 	struct NTFS_DE *e, *de_t, *up_e;
1795 	struct indx_node *n2;
1796 	struct indx_node *n1 = fnd->nodes[level];
1797 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1798 	struct INDEX_HDR *hdr2;
1799 	u32 to_copy, used, used1;
1800 	CLST new_vbn;
1801 	__le64 t_vbn, *sub_vbn;
1802 	u16 sp_size;
1803 	void *hdr1_saved = NULL;
1804 
1805 	/* Try the most easy case. */
1806 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1807 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1808 	fnd->de[level] = e;
1809 	if (e) {
1810 		/* Just write updated index into disk. */
1811 		indx_write(indx, ni, n1, 0);
1812 		return 0;
1813 	}
1814 
1815 	/*
1816 	 * No space to insert into buffer. Split it.
1817 	 * To split we:
1818 	 *  - Save split point ('cause index buffers will be changed)
1819 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1820 	 * - Remove all entries (sp including) from TargetBuffer
1821 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1822 	 *     NewEntry)
1823 	 * - Insert sp into parent buffer (or root)
1824 	 * - Make sp a parent for new buffer
1825 	 */
1826 	sp = hdr_find_split(hdr1);
1827 	if (!sp)
1828 		return -EINVAL;
1829 
1830 	sp_size = le16_to_cpu(sp->size);
1831 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1832 	if (!up_e)
1833 		return -ENOMEM;
1834 	memcpy(up_e, sp, sp_size);
1835 
1836 	used1 = le32_to_cpu(hdr1->used);
1837 	hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1838 	if (!hdr1_saved) {
1839 		err = -ENOMEM;
1840 		goto out;
1841 	}
1842 
1843 	if (!hdr1->flags) {
1844 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1845 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1846 		sub_vbn = NULL;
1847 	} else {
1848 		t_vbn = de_get_vbn_le(up_e);
1849 		sub_vbn = &t_vbn;
1850 	}
1851 
1852 	/* Allocate on disk a new index allocation buffer. */
1853 	err = indx_add_allocate(indx, ni, &new_vbn);
1854 	if (err)
1855 		goto out;
1856 
1857 	/* Allocate and format memory a new index buffer. */
1858 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1859 	if (IS_ERR(n2)) {
1860 		err = PTR_ERR(n2);
1861 		goto out;
1862 	}
1863 
1864 	hdr2 = &n2->index->ihdr;
1865 
1866 	/* Make sp a parent for new buffer. */
1867 	de_set_vbn(up_e, new_vbn);
1868 
1869 	/* Copy all the entries <= sp into the new buffer. */
1870 	de_t = hdr_first_de(hdr1);
1871 	to_copy = PtrOffset(de_t, sp);
1872 	hdr_insert_head(hdr2, de_t, to_copy);
1873 
1874 	/* Remove all entries (sp including) from hdr1. */
1875 	used = used1 - to_copy - sp_size;
1876 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1877 	hdr1->used = cpu_to_le32(used);
1878 
1879 	/*
1880 	 * Insert new entry into left or right buffer
1881 	 * (depending on sp <=> new_de).
1882 	 */
1883 	hdr_insert_de(indx,
1884 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1885 				   up_e + 1, le16_to_cpu(up_e->key_size),
1886 				   ctx) < 0 ?
1887 			      hdr2 :
1888 			      hdr1,
1889 		      new_de, NULL, ctx);
1890 
1891 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1892 
1893 	indx_write(indx, ni, n1, 0);
1894 	indx_write(indx, ni, n2, 0);
1895 
1896 	put_indx_node(n2);
1897 
1898 	/*
1899 	 * We've finished splitting everybody, so we are ready to
1900 	 * insert the promoted entry into the parent.
1901 	 */
1902 	if (!level) {
1903 		/* Insert in root. */
1904 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1905 	} else {
1906 		/*
1907 		 * The target buffer's parent is another index buffer.
1908 		 * TODO: Remove recursion.
1909 		 */
1910 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1911 					      level - 1, fnd);
1912 	}
1913 
1914 	if (err) {
1915 		/*
1916 		 * Undo critical operations.
1917 		 */
1918 		indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1919 		memcpy(hdr1, hdr1_saved, used1);
1920 		indx_write(indx, ni, n1, 0);
1921 	}
1922 
1923 out:
1924 	kfree(up_e);
1925 	kfree(hdr1_saved);
1926 
1927 	return err;
1928 }
1929 
1930 /*
1931  * indx_insert_entry - Insert new entry into index.
1932  *
1933  * @undo - True if we undoing previous remove.
1934  */
1935 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1936 		      const struct NTFS_DE *new_de, const void *ctx,
1937 		      struct ntfs_fnd *fnd, bool undo)
1938 {
1939 	int err;
1940 	int diff;
1941 	struct NTFS_DE *e;
1942 	struct ntfs_fnd *fnd_a = NULL;
1943 	struct INDEX_ROOT *root;
1944 
1945 	if (!fnd) {
1946 		fnd_a = fnd_get();
1947 		if (!fnd_a) {
1948 			err = -ENOMEM;
1949 			goto out1;
1950 		}
1951 		fnd = fnd_a;
1952 	}
1953 
1954 	root = indx_get_root(indx, ni, NULL, NULL);
1955 	if (!root) {
1956 		err = -EINVAL;
1957 		goto out;
1958 	}
1959 
1960 	if (fnd_is_empty(fnd)) {
1961 		/*
1962 		 * Find the spot the tree where we want to
1963 		 * insert the new entry.
1964 		 */
1965 		err = indx_find(indx, ni, root, new_de + 1,
1966 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1967 				fnd);
1968 		if (err)
1969 			goto out;
1970 
1971 		if (!diff) {
1972 			err = -EEXIST;
1973 			goto out;
1974 		}
1975 	}
1976 
1977 	if (!fnd->level) {
1978 		/*
1979 		 * The root is also a leaf, so we'll insert the
1980 		 * new entry into it.
1981 		 */
1982 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1983 					    fnd, undo);
1984 	} else {
1985 		/*
1986 		 * Found a leaf buffer, so we'll insert the new entry into it.
1987 		 */
1988 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1989 					      fnd->level - 1, fnd);
1990 	}
1991 
1992 out:
1993 	fnd_put(fnd_a);
1994 out1:
1995 	return err;
1996 }
1997 
1998 /*
1999  * indx_find_buffer - Locate a buffer from the tree.
2000  */
2001 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
2002 					  struct ntfs_inode *ni,
2003 					  const struct INDEX_ROOT *root,
2004 					  __le64 vbn, struct indx_node *n)
2005 {
2006 	int err;
2007 	const struct NTFS_DE *e;
2008 	struct indx_node *r;
2009 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
2010 
2011 	/* Step 1: Scan one level. */
2012 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2013 		if (!e)
2014 			return ERR_PTR(-EINVAL);
2015 
2016 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2017 			return n;
2018 
2019 		if (de_is_last(e))
2020 			break;
2021 	}
2022 
2023 	/* Step2: Do recursion. */
2024 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2025 	for (;;) {
2026 		if (de_has_vcn_ex(e)) {
2027 			err = indx_read(indx, ni, de_get_vbn(e), &n);
2028 			if (err)
2029 				return ERR_PTR(err);
2030 
2031 			r = indx_find_buffer(indx, ni, root, vbn, n);
2032 			if (r)
2033 				return r;
2034 		}
2035 
2036 		if (de_is_last(e))
2037 			break;
2038 
2039 		e = Add2Ptr(e, le16_to_cpu(e->size));
2040 	}
2041 
2042 	return NULL;
2043 }
2044 
2045 /*
2046  * indx_shrink - Deallocate unused tail indexes.
2047  */
2048 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2049 		       size_t bit)
2050 {
2051 	int err = 0;
2052 	u64 bpb, new_data;
2053 	size_t nbits;
2054 	struct ATTRIB *b;
2055 	struct ATTR_LIST_ENTRY *le = NULL;
2056 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2057 
2058 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2059 			 NULL, NULL);
2060 
2061 	if (!b)
2062 		return -ENOENT;
2063 
2064 	if (!b->non_res) {
2065 		unsigned long pos;
2066 		const unsigned long *bm = resident_data(b);
2067 
2068 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2069 
2070 		if (bit >= nbits)
2071 			return 0;
2072 
2073 		pos = find_next_bit_le(bm, nbits, bit);
2074 		if (pos < nbits)
2075 			return 0;
2076 	} else {
2077 		size_t used = MINUS_ONE_T;
2078 
2079 		nbits = le64_to_cpu(b->nres.data_size) * 8;
2080 
2081 		if (bit >= nbits)
2082 			return 0;
2083 
2084 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2085 		if (err)
2086 			return err;
2087 
2088 		if (used != MINUS_ONE_T)
2089 			return 0;
2090 	}
2091 
2092 	new_data = (u64)bit << indx->index_bits;
2093 
2094 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2095 			    &indx->alloc_run, new_data, &new_data, false, NULL);
2096 	if (err)
2097 		return err;
2098 
2099 	if (in->name == I30_NAME)
2100 		i_size_write(&ni->vfs_inode, new_data);
2101 
2102 	bpb = ntfs3_bitmap_size(bit);
2103 	if (bpb * 8 == nbits)
2104 		return 0;
2105 
2106 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2107 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2108 
2109 	return err;
2110 }
2111 
2112 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2113 			      const struct NTFS_DE *e, bool trim)
2114 {
2115 	int err;
2116 	struct indx_node *n = NULL;
2117 	struct INDEX_HDR *hdr;
2118 	CLST vbn = de_get_vbn(e);
2119 	size_t i;
2120 
2121 	err = indx_read(indx, ni, vbn, &n);
2122 	if (err)
2123 		return err;
2124 
2125 	hdr = &n->index->ihdr;
2126 	/* First, recurse into the children, if any. */
2127 	if (hdr_has_subnode(hdr)) {
2128 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2129 			indx_free_children(indx, ni, e, false);
2130 			if (de_is_last(e))
2131 				break;
2132 		}
2133 	}
2134 
2135 	put_indx_node(n);
2136 
2137 	i = vbn >> indx->idx2vbn_bits;
2138 	/*
2139 	 * We've gotten rid of the children; add this buffer to the free list.
2140 	 */
2141 	indx_mark_free(indx, ni, i);
2142 
2143 	if (!trim)
2144 		return 0;
2145 
2146 	/*
2147 	 * If there are no used indexes after current free index
2148 	 * then we can truncate allocation and bitmap.
2149 	 * Use bitmap to estimate the case.
2150 	 */
2151 	indx_shrink(indx, ni, i + 1);
2152 	return 0;
2153 }
2154 
2155 /*
2156  * indx_get_entry_to_replace
2157  *
2158  * Find a replacement entry for a deleted entry.
2159  * Always returns a node entry:
2160  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2161  */
2162 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2163 				     struct ntfs_inode *ni,
2164 				     const struct NTFS_DE *de_next,
2165 				     struct NTFS_DE **de_to_replace,
2166 				     struct ntfs_fnd *fnd)
2167 {
2168 	int err;
2169 	int level = -1;
2170 	CLST vbn;
2171 	struct NTFS_DE *e, *te, *re;
2172 	struct indx_node *n;
2173 	struct INDEX_BUFFER *ib;
2174 
2175 	*de_to_replace = NULL;
2176 
2177 	/* Find first leaf entry down from de_next. */
2178 	vbn = de_get_vbn(de_next);
2179 	for (;;) {
2180 		n = NULL;
2181 		err = indx_read(indx, ni, vbn, &n);
2182 		if (err)
2183 			goto out;
2184 
2185 		e = hdr_first_de(&n->index->ihdr);
2186 		fnd_push(fnd, n, e);
2187 
2188 		if (!de_is_last(e)) {
2189 			/*
2190 			 * This buffer is non-empty, so its first entry
2191 			 * could be used as the replacement entry.
2192 			 */
2193 			level = fnd->level - 1;
2194 		}
2195 
2196 		if (!de_has_vcn(e))
2197 			break;
2198 
2199 		/* This buffer is a node. Continue to go down. */
2200 		vbn = de_get_vbn(e);
2201 	}
2202 
2203 	if (level == -1)
2204 		goto out;
2205 
2206 	n = fnd->nodes[level];
2207 	te = hdr_first_de(&n->index->ihdr);
2208 	/* Copy the candidate entry into the replacement entry buffer. */
2209 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2210 	if (!re) {
2211 		err = -ENOMEM;
2212 		goto out;
2213 	}
2214 
2215 	*de_to_replace = re;
2216 	memcpy(re, te, le16_to_cpu(te->size));
2217 
2218 	if (!de_has_vcn(re)) {
2219 		/*
2220 		 * The replacement entry we found doesn't have a sub_vcn.
2221 		 * increase its size to hold one.
2222 		 */
2223 		le16_add_cpu(&re->size, sizeof(u64));
2224 		re->flags |= NTFS_IE_HAS_SUBNODES;
2225 	} else {
2226 		/*
2227 		 * The replacement entry we found was a node entry, which
2228 		 * means that all its child buffers are empty. Return them
2229 		 * to the free pool.
2230 		 */
2231 		indx_free_children(indx, ni, te, true);
2232 	}
2233 
2234 	/*
2235 	 * Expunge the replacement entry from its former location,
2236 	 * and then write that buffer.
2237 	 */
2238 	ib = n->index;
2239 	e = hdr_delete_de(&ib->ihdr, te);
2240 
2241 	fnd->de[level] = e;
2242 	indx_write(indx, ni, n, 0);
2243 
2244 	if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2245 		/* An empty leaf. */
2246 		return 0;
2247 	}
2248 
2249 out:
2250 	fnd_clear(fnd);
2251 	return err;
2252 }
2253 
2254 /*
2255  * indx_delete_entry - Delete an entry from the index.
2256  */
2257 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2258 		      const void *key, u32 key_len, const void *ctx)
2259 {
2260 	int err, diff;
2261 	struct INDEX_ROOT *root;
2262 	struct INDEX_HDR *hdr;
2263 	struct ntfs_fnd *fnd, *fnd2;
2264 	struct INDEX_BUFFER *ib;
2265 	struct NTFS_DE *e, *re, *next, *prev, *me;
2266 	struct indx_node *n, *n2d = NULL;
2267 	__le64 sub_vbn;
2268 	int level, level2;
2269 	struct ATTRIB *attr;
2270 	struct mft_inode *mi;
2271 	u32 e_size, root_size, new_root_size;
2272 	size_t trim_bit;
2273 	const struct INDEX_NAMES *in;
2274 
2275 	fnd = fnd_get();
2276 	if (!fnd) {
2277 		err = -ENOMEM;
2278 		goto out2;
2279 	}
2280 
2281 	fnd2 = fnd_get();
2282 	if (!fnd2) {
2283 		err = -ENOMEM;
2284 		goto out1;
2285 	}
2286 
2287 	root = indx_get_root(indx, ni, &attr, &mi);
2288 	if (!root) {
2289 		err = -EINVAL;
2290 		goto out;
2291 	}
2292 
2293 	/* Locate the entry to remove. */
2294 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2295 	if (err)
2296 		goto out;
2297 
2298 	if (!e || diff) {
2299 		err = -ENOENT;
2300 		goto out;
2301 	}
2302 
2303 	level = fnd->level;
2304 
2305 	if (level) {
2306 		n = fnd->nodes[level - 1];
2307 		e = fnd->de[level - 1];
2308 		ib = n->index;
2309 		hdr = &ib->ihdr;
2310 	} else {
2311 		hdr = &root->ihdr;
2312 		e = fnd->root_de;
2313 		n = NULL;
2314 	}
2315 
2316 	e_size = le16_to_cpu(e->size);
2317 
2318 	if (!de_has_vcn_ex(e)) {
2319 		/* The entry to delete is a leaf, so we can just rip it out. */
2320 		hdr_delete_de(hdr, e);
2321 
2322 		if (!level) {
2323 			hdr->total = hdr->used;
2324 
2325 			/* Shrink resident root attribute. */
2326 			mi_resize_attr(mi, attr, 0 - e_size);
2327 			goto out;
2328 		}
2329 
2330 		indx_write(indx, ni, n, 0);
2331 
2332 		/*
2333 		 * Check to see if removing that entry made
2334 		 * the leaf empty.
2335 		 */
2336 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2337 			fnd_pop(fnd);
2338 			fnd_push(fnd2, n, e);
2339 		}
2340 	} else {
2341 		/*
2342 		 * The entry we wish to delete is a node buffer, so we
2343 		 * have to find a replacement for it.
2344 		 */
2345 		next = de_get_next(e);
2346 
2347 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2348 		if (err)
2349 			goto out;
2350 
2351 		if (re) {
2352 			de_set_vbn_le(re, de_get_vbn_le(e));
2353 			hdr_delete_de(hdr, e);
2354 
2355 			err = level ? indx_insert_into_buffer(indx, ni, root,
2356 							      re, ctx,
2357 							      fnd->level - 1,
2358 							      fnd) :
2359 				      indx_insert_into_root(indx, ni, re, e,
2360 							    ctx, fnd, 0);
2361 			kfree(re);
2362 
2363 			if (err)
2364 				goto out;
2365 		} else {
2366 			/*
2367 			 * There is no replacement for the current entry.
2368 			 * This means that the subtree rooted at its node
2369 			 * is empty, and can be deleted, which turn means
2370 			 * that the node can just inherit the deleted
2371 			 * entry sub_vcn.
2372 			 */
2373 			indx_free_children(indx, ni, next, true);
2374 
2375 			de_set_vbn_le(next, de_get_vbn_le(e));
2376 			hdr_delete_de(hdr, e);
2377 			if (level) {
2378 				indx_write(indx, ni, n, 0);
2379 			} else {
2380 				hdr->total = hdr->used;
2381 
2382 				/* Shrink resident root attribute. */
2383 				mi_resize_attr(mi, attr, 0 - e_size);
2384 			}
2385 		}
2386 	}
2387 
2388 	/* Delete a branch of tree. */
2389 	if (!fnd2 || !fnd2->level)
2390 		goto out;
2391 
2392 	/* Reinit root 'cause it can be changed. */
2393 	root = indx_get_root(indx, ni, &attr, &mi);
2394 	if (!root) {
2395 		err = -EINVAL;
2396 		goto out;
2397 	}
2398 
2399 	n2d = NULL;
2400 	sub_vbn = fnd2->nodes[0]->index->vbn;
2401 	level2 = 0;
2402 	level = fnd->level;
2403 
2404 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2405 
2406 	/* Scan current level. */
2407 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2408 		if (!e) {
2409 			err = -EINVAL;
2410 			goto out;
2411 		}
2412 
2413 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2414 			break;
2415 
2416 		if (de_is_last(e)) {
2417 			e = NULL;
2418 			break;
2419 		}
2420 	}
2421 
2422 	if (!e) {
2423 		/* Do slow search from root. */
2424 		struct indx_node *in;
2425 
2426 		fnd_clear(fnd);
2427 
2428 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2429 		if (IS_ERR(in)) {
2430 			err = PTR_ERR(in);
2431 			goto out;
2432 		}
2433 
2434 		if (in)
2435 			fnd_push(fnd, in, NULL);
2436 	}
2437 
2438 	/* Merge fnd2 -> fnd. */
2439 	for (level = 0; level < fnd2->level; level++) {
2440 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2441 		fnd2->nodes[level] = NULL;
2442 	}
2443 	fnd2->level = 0;
2444 
2445 	hdr = NULL;
2446 	for (level = fnd->level; level; level--) {
2447 		struct indx_node *in = fnd->nodes[level - 1];
2448 
2449 		ib = in->index;
2450 		if (ib_is_empty(ib)) {
2451 			sub_vbn = ib->vbn;
2452 		} else {
2453 			hdr = &ib->ihdr;
2454 			n2d = in;
2455 			level2 = level;
2456 			break;
2457 		}
2458 	}
2459 
2460 	if (!hdr)
2461 		hdr = &root->ihdr;
2462 
2463 	e = hdr_first_de(hdr);
2464 	if (!e) {
2465 		err = -EINVAL;
2466 		goto out;
2467 	}
2468 
2469 	if (hdr != &root->ihdr || !de_is_last(e)) {
2470 		prev = NULL;
2471 		while (!de_is_last(e)) {
2472 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2473 				break;
2474 			prev = e;
2475 			e = hdr_next_de(hdr, e);
2476 			if (!e) {
2477 				err = -EINVAL;
2478 				goto out;
2479 			}
2480 		}
2481 
2482 		if (sub_vbn != de_get_vbn_le(e)) {
2483 			/*
2484 			 * Didn't find the parent entry, although this buffer
2485 			 * is the parent trail. Something is corrupt.
2486 			 */
2487 			err = -EINVAL;
2488 			goto out;
2489 		}
2490 
2491 		if (de_is_last(e)) {
2492 			/*
2493 			 * Since we can't remove the end entry, we'll remove
2494 			 * its predecessor instead. This means we have to
2495 			 * transfer the predecessor's sub_vcn to the end entry.
2496 			 * Note: This index block is not empty, so the
2497 			 * predecessor must exist.
2498 			 */
2499 			if (!prev) {
2500 				err = -EINVAL;
2501 				goto out;
2502 			}
2503 
2504 			if (de_has_vcn(prev)) {
2505 				de_set_vbn_le(e, de_get_vbn_le(prev));
2506 			} else if (de_has_vcn(e)) {
2507 				le16_sub_cpu(&e->size, sizeof(u64));
2508 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2509 				le32_sub_cpu(&hdr->used, sizeof(u64));
2510 			}
2511 			e = prev;
2512 		}
2513 
2514 		/*
2515 		 * Copy the current entry into a temporary buffer (stripping
2516 		 * off its down-pointer, if any) and delete it from the current
2517 		 * buffer or root, as appropriate.
2518 		 */
2519 		e_size = le16_to_cpu(e->size);
2520 		me = kmemdup(e, e_size, GFP_NOFS);
2521 		if (!me) {
2522 			err = -ENOMEM;
2523 			goto out;
2524 		}
2525 
2526 		if (de_has_vcn(me)) {
2527 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2528 			le16_sub_cpu(&me->size, sizeof(u64));
2529 		}
2530 
2531 		hdr_delete_de(hdr, e);
2532 
2533 		if (hdr == &root->ihdr) {
2534 			level = 0;
2535 			hdr->total = hdr->used;
2536 
2537 			/* Shrink resident root attribute. */
2538 			mi_resize_attr(mi, attr, 0 - e_size);
2539 		} else {
2540 			indx_write(indx, ni, n2d, 0);
2541 			level = level2;
2542 		}
2543 
2544 		/* Mark unused buffers as free. */
2545 		trim_bit = -1;
2546 		for (; level < fnd->level; level++) {
2547 			ib = fnd->nodes[level]->index;
2548 			if (ib_is_empty(ib)) {
2549 				size_t k = le64_to_cpu(ib->vbn) >>
2550 					   indx->idx2vbn_bits;
2551 
2552 				indx_mark_free(indx, ni, k);
2553 				if (k < trim_bit)
2554 					trim_bit = k;
2555 			}
2556 		}
2557 
2558 		fnd_clear(fnd);
2559 		/*fnd->root_de = NULL;*/
2560 
2561 		/*
2562 		 * Re-insert the entry into the tree.
2563 		 * Find the spot the tree where we want to insert the new entry.
2564 		 */
2565 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2566 		kfree(me);
2567 		if (err)
2568 			goto out;
2569 
2570 		if (trim_bit != -1)
2571 			indx_shrink(indx, ni, trim_bit);
2572 	} else {
2573 		/*
2574 		 * This tree needs to be collapsed down to an empty root.
2575 		 * Recreate the index root as an empty leaf and free all
2576 		 * the bits the index allocation bitmap.
2577 		 */
2578 		fnd_clear(fnd);
2579 		fnd_clear(fnd2);
2580 
2581 		in = &s_index_names[indx->type];
2582 
2583 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2584 				    &indx->alloc_run, 0, NULL, false, NULL);
2585 		if (in->name == I30_NAME)
2586 			i_size_write(&ni->vfs_inode, 0);
2587 
2588 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2589 				     false, NULL);
2590 		run_close(&indx->alloc_run);
2591 
2592 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2593 				    &indx->bitmap_run, 0, NULL, false, NULL);
2594 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2595 				     false, NULL);
2596 		run_close(&indx->bitmap_run);
2597 
2598 		root = indx_get_root(indx, ni, &attr, &mi);
2599 		if (!root) {
2600 			err = -EINVAL;
2601 			goto out;
2602 		}
2603 
2604 		root_size = le32_to_cpu(attr->res.data_size);
2605 		new_root_size =
2606 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2607 
2608 		if (new_root_size != root_size &&
2609 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2610 			err = -EINVAL;
2611 			goto out;
2612 		}
2613 
2614 		/* Fill first entry. */
2615 		e = (struct NTFS_DE *)(root + 1);
2616 		e->ref.low = 0;
2617 		e->ref.high = 0;
2618 		e->ref.seq = 0;
2619 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2620 		e->flags = NTFS_IE_LAST; // 0x02
2621 		e->key_size = 0;
2622 		e->res = 0;
2623 
2624 		hdr = &root->ihdr;
2625 		hdr->flags = 0;
2626 		hdr->used = hdr->total = cpu_to_le32(
2627 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2628 		mi->dirty = true;
2629 	}
2630 
2631 out:
2632 	fnd_put(fnd2);
2633 out1:
2634 	fnd_put(fnd);
2635 out2:
2636 	return err;
2637 }
2638 
2639 /*
2640  * Update duplicated information in directory entry
2641  * 'dup' - info from MFT record
2642  */
2643 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2644 		    const struct ATTR_FILE_NAME *fname,
2645 		    const struct NTFS_DUP_INFO *dup, int sync)
2646 {
2647 	int err, diff;
2648 	struct NTFS_DE *e = NULL;
2649 	struct ATTR_FILE_NAME *e_fname;
2650 	struct ntfs_fnd *fnd;
2651 	struct INDEX_ROOT *root;
2652 	struct mft_inode *mi;
2653 	struct ntfs_index *indx = &ni->dir;
2654 
2655 	fnd = fnd_get();
2656 	if (!fnd)
2657 		return -ENOMEM;
2658 
2659 	root = indx_get_root(indx, ni, NULL, &mi);
2660 	if (!root) {
2661 		err = -EINVAL;
2662 		goto out;
2663 	}
2664 
2665 	/* Find entry in directory. */
2666 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2667 			&diff, &e, fnd);
2668 	if (err)
2669 		goto out;
2670 
2671 	if (!e) {
2672 		err = -EINVAL;
2673 		goto out;
2674 	}
2675 
2676 	if (diff) {
2677 		err = -EINVAL;
2678 		goto out;
2679 	}
2680 
2681 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2682 
2683 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2684 		/*
2685 		 * Nothing to update in index! Try to avoid this call.
2686 		 */
2687 		goto out;
2688 	}
2689 
2690 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2691 
2692 	if (fnd->level) {
2693 		/* Directory entry in index. */
2694 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2695 	} else {
2696 		/* Directory entry in directory MFT record. */
2697 		mi->dirty = true;
2698 		if (sync)
2699 			err = mi_write(mi, 1);
2700 		else
2701 			mark_inode_dirty(&ni->vfs_inode);
2702 	}
2703 
2704 out:
2705 	fnd_put(fnd);
2706 	return err;
2707 }
2708