1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/kernel.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 static const struct INDEX_NAMES { 18 const __le16 *name; 19 u8 name_len; 20 } s_index_names[INDEX_MUTEX_TOTAL] = { 21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, 22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, 23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, 24 }; 25 26 /* 27 * cmp_fnames - Compare two names in index. 28 * 29 * if l1 != 0 30 * Both names are little endian on-disk ATTR_FILE_NAME structs. 31 * else 32 * key1 - cpu_str, key2 - ATTR_FILE_NAME 33 */ 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, 35 const void *data) 36 { 37 const struct ATTR_FILE_NAME *f2 = key2; 38 const struct ntfs_sb_info *sbi = data; 39 const struct ATTR_FILE_NAME *f1; 40 u16 fsize2; 41 bool both_case; 42 43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) 44 return -1; 45 46 fsize2 = fname_full_size(f2); 47 if (l2 < fsize2) 48 return -1; 49 50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/; 51 if (!l1) { 52 const struct le_str *s2 = (struct le_str *)&f2->name_len; 53 54 /* 55 * If names are equal (case insensitive) 56 * try to compare it case sensitive. 57 */ 58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); 59 } 60 61 f1 = key1; 62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, 63 sbi->upcase, both_case); 64 } 65 66 /* 67 * cmp_uint - $SII of $Secure and $Q of Quota 68 */ 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, 70 const void *data) 71 { 72 const u32 *k1 = key1; 73 const u32 *k2 = key2; 74 75 if (l2 < sizeof(u32)) 76 return -1; 77 78 if (*k1 < *k2) 79 return -1; 80 if (*k1 > *k2) 81 return 1; 82 return 0; 83 } 84 85 /* 86 * cmp_sdh - $SDH of $Secure 87 */ 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, 89 const void *data) 90 { 91 const struct SECURITY_KEY *k1 = key1; 92 const struct SECURITY_KEY *k2 = key2; 93 u32 t1, t2; 94 95 if (l2 < sizeof(struct SECURITY_KEY)) 96 return -1; 97 98 t1 = le32_to_cpu(k1->hash); 99 t2 = le32_to_cpu(k2->hash); 100 101 /* First value is a hash value itself. */ 102 if (t1 < t2) 103 return -1; 104 if (t1 > t2) 105 return 1; 106 107 /* Second value is security Id. */ 108 if (data) { 109 t1 = le32_to_cpu(k1->sec_id); 110 t2 = le32_to_cpu(k2->sec_id); 111 if (t1 < t2) 112 return -1; 113 if (t1 > t2) 114 return 1; 115 } 116 117 return 0; 118 } 119 120 /* 121 * cmp_uints - $O of ObjId and "$R" for Reparse. 122 */ 123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, 124 const void *data) 125 { 126 const __le32 *k1 = key1; 127 const __le32 *k2 = key2; 128 size_t count; 129 130 if ((size_t)data == 1) { 131 /* 132 * ni_delete_all -> ntfs_remove_reparse -> 133 * delete all with this reference. 134 * k1, k2 - pointers to REPARSE_KEY 135 */ 136 137 k1 += 1; // Skip REPARSE_KEY.ReparseTag 138 k2 += 1; // Skip REPARSE_KEY.ReparseTag 139 if (l2 <= sizeof(int)) 140 return -1; 141 l2 -= sizeof(int); 142 if (l1 <= sizeof(int)) 143 return 1; 144 l1 -= sizeof(int); 145 } 146 147 if (l2 < sizeof(int)) 148 return -1; 149 150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { 151 u32 t1 = le32_to_cpu(*k1); 152 u32 t2 = le32_to_cpu(*k2); 153 154 if (t1 > t2) 155 return 1; 156 if (t1 < t2) 157 return -1; 158 } 159 160 if (l1 > l2) 161 return 1; 162 if (l1 < l2) 163 return -1; 164 165 return 0; 166 } 167 168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) 169 { 170 switch (root->type) { 171 case ATTR_NAME: 172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME) 173 return &cmp_fnames; 174 break; 175 case ATTR_ZERO: 176 switch (root->rule) { 177 case NTFS_COLLATION_TYPE_UINT: 178 return &cmp_uint; 179 case NTFS_COLLATION_TYPE_SECURITY_HASH: 180 return &cmp_sdh; 181 case NTFS_COLLATION_TYPE_UINTS: 182 return &cmp_uints; 183 default: 184 break; 185 } 186 break; 187 default: 188 break; 189 } 190 191 return NULL; 192 } 193 194 struct bmp_buf { 195 struct ATTRIB *b; 196 struct mft_inode *mi; 197 struct buffer_head *bh; 198 ulong *buf; 199 size_t bit; 200 u32 nbits; 201 u64 new_valid; 202 }; 203 204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, 205 size_t bit, struct bmp_buf *bbuf) 206 { 207 struct ATTRIB *b; 208 size_t data_size, valid_size, vbo, off = bit >> 3; 209 struct ntfs_sb_info *sbi = ni->mi.sbi; 210 CLST vcn = off >> sbi->cluster_bits; 211 struct ATTR_LIST_ENTRY *le = NULL; 212 struct buffer_head *bh; 213 struct super_block *sb; 214 u32 blocksize; 215 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 216 217 bbuf->bh = NULL; 218 219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 220 &vcn, &bbuf->mi); 221 bbuf->b = b; 222 if (!b) 223 return -EINVAL; 224 225 if (!b->non_res) { 226 data_size = le32_to_cpu(b->res.data_size); 227 228 if (off >= data_size) 229 return -EINVAL; 230 231 bbuf->buf = (ulong *)resident_data(b); 232 bbuf->bit = 0; 233 bbuf->nbits = data_size * 8; 234 235 return 0; 236 } 237 238 data_size = le64_to_cpu(b->nres.data_size); 239 if (WARN_ON(off >= data_size)) { 240 /* Looks like filesystem error. */ 241 return -EINVAL; 242 } 243 244 valid_size = le64_to_cpu(b->nres.valid_size); 245 246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); 247 if (!bh) 248 return -EIO; 249 250 if (IS_ERR(bh)) 251 return PTR_ERR(bh); 252 253 bbuf->bh = bh; 254 255 if (buffer_locked(bh)) 256 __wait_on_buffer(bh); 257 258 lock_buffer(bh); 259 260 sb = sbi->sb; 261 blocksize = sb->s_blocksize; 262 263 vbo = off & ~(size_t)sbi->block_mask; 264 265 bbuf->new_valid = vbo + blocksize; 266 if (bbuf->new_valid <= valid_size) 267 bbuf->new_valid = 0; 268 else if (bbuf->new_valid > data_size) 269 bbuf->new_valid = data_size; 270 271 if (vbo >= valid_size) { 272 memset(bh->b_data, 0, blocksize); 273 } else if (vbo + blocksize > valid_size) { 274 u32 voff = valid_size & sbi->block_mask; 275 276 memset(bh->b_data + voff, 0, blocksize - voff); 277 } 278 279 bbuf->buf = (ulong *)bh->b_data; 280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); 281 bbuf->nbits = 8 * blocksize; 282 283 return 0; 284 } 285 286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) 287 { 288 struct buffer_head *bh = bbuf->bh; 289 struct ATTRIB *b = bbuf->b; 290 291 if (!bh) { 292 if (b && !b->non_res && dirty) 293 bbuf->mi->dirty = true; 294 return; 295 } 296 297 if (!dirty) 298 goto out; 299 300 if (bbuf->new_valid) { 301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid); 302 bbuf->mi->dirty = true; 303 } 304 305 set_buffer_uptodate(bh); 306 mark_buffer_dirty(bh); 307 308 out: 309 unlock_buffer(bh); 310 put_bh(bh); 311 } 312 313 /* 314 * indx_mark_used - Mark the bit @bit as used. 315 */ 316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, 317 size_t bit) 318 { 319 int err; 320 struct bmp_buf bbuf; 321 322 err = bmp_buf_get(indx, ni, bit, &bbuf); 323 if (err) 324 return err; 325 326 __set_bit(bit - bbuf.bit, bbuf.buf); 327 328 bmp_buf_put(&bbuf, true); 329 330 return 0; 331 } 332 333 /* 334 * indx_mark_free - Mark the bit @bit as free. 335 */ 336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, 337 size_t bit) 338 { 339 int err; 340 struct bmp_buf bbuf; 341 342 err = bmp_buf_get(indx, ni, bit, &bbuf); 343 if (err) 344 return err; 345 346 __clear_bit(bit - bbuf.bit, bbuf.buf); 347 348 bmp_buf_put(&bbuf, true); 349 350 return 0; 351 } 352 353 /* 354 * scan_nres_bitmap 355 * 356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), 357 * inode is shared locked and no ni_lock. 358 * Use rw_semaphore for read/write access to bitmap_run. 359 */ 360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, 361 struct ntfs_index *indx, size_t from, 362 bool (*fn)(const ulong *buf, u32 bit, u32 bits, 363 size_t *ret), 364 size_t *ret) 365 { 366 struct ntfs_sb_info *sbi = ni->mi.sbi; 367 struct super_block *sb = sbi->sb; 368 struct runs_tree *run = &indx->bitmap_run; 369 struct rw_semaphore *lock = &indx->run_lock; 370 u32 nbits = sb->s_blocksize * 8; 371 u32 blocksize = sb->s_blocksize; 372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); 373 u64 data_size = le64_to_cpu(bitmap->nres.data_size); 374 sector_t eblock = bytes_to_block(sb, data_size); 375 size_t vbo = from >> 3; 376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; 377 sector_t vblock = vbo >> sb->s_blocksize_bits; 378 sector_t blen, block; 379 CLST lcn, clen, vcn, vcn_next; 380 size_t idx; 381 struct buffer_head *bh; 382 bool ok; 383 384 *ret = MINUS_ONE_T; 385 386 if (vblock >= eblock) 387 return 0; 388 389 from &= nbits - 1; 390 vcn = vbo >> sbi->cluster_bits; 391 392 down_read(lock); 393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 394 up_read(lock); 395 396 next_run: 397 if (!ok) { 398 int err; 399 const struct INDEX_NAMES *name = &s_index_names[indx->type]; 400 401 down_write(lock); 402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, 403 name->name_len, run, vcn); 404 up_write(lock); 405 if (err) 406 return err; 407 down_read(lock); 408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 409 up_read(lock); 410 if (!ok) 411 return -EINVAL; 412 } 413 414 blen = (sector_t)clen * sbi->blocks_per_cluster; 415 block = (sector_t)lcn * sbi->blocks_per_cluster; 416 417 for (; blk < blen; blk++, from = 0) { 418 bh = ntfs_bread(sb, block + blk); 419 if (!bh) 420 return -EIO; 421 422 vbo = (u64)vblock << sb->s_blocksize_bits; 423 if (vbo >= valid_size) { 424 memset(bh->b_data, 0, blocksize); 425 } else if (vbo + blocksize > valid_size) { 426 u32 voff = valid_size & sbi->block_mask; 427 428 memset(bh->b_data + voff, 0, blocksize - voff); 429 } 430 431 if (vbo + blocksize > data_size) 432 nbits = 8 * (data_size - vbo); 433 434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret) 435 : false; 436 put_bh(bh); 437 438 if (ok) { 439 *ret += 8 * vbo; 440 return 0; 441 } 442 443 if (++vblock >= eblock) { 444 *ret = MINUS_ONE_T; 445 return 0; 446 } 447 } 448 blk = 0; 449 vcn_next = vcn + clen; 450 down_read(lock); 451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; 452 if (!ok) 453 vcn = vcn_next; 454 up_read(lock); 455 goto next_run; 456 } 457 458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) 459 { 460 size_t pos = find_next_zero_bit(buf, bits, bit); 461 462 if (pos >= bits) 463 return false; 464 *ret = pos; 465 return true; 466 } 467 468 /* 469 * indx_find_free - Look for free bit. 470 * 471 * Return: -1 if no free bits. 472 */ 473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, 474 size_t *bit, struct ATTRIB **bitmap) 475 { 476 struct ATTRIB *b; 477 struct ATTR_LIST_ENTRY *le = NULL; 478 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 479 int err; 480 481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 482 NULL, NULL); 483 484 if (!b) 485 return -ENOENT; 486 487 *bitmap = b; 488 *bit = MINUS_ONE_T; 489 490 if (!b->non_res) { 491 u32 nbits = 8 * le32_to_cpu(b->res.data_size); 492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0); 493 494 if (pos < nbits) 495 *bit = pos; 496 } else { 497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); 498 499 if (err) 500 return err; 501 } 502 503 return 0; 504 } 505 506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) 507 { 508 size_t pos = find_next_bit(buf, bits, bit); 509 510 if (pos >= bits) 511 return false; 512 *ret = pos; 513 return true; 514 } 515 516 /* 517 * indx_used_bit - Look for used bit. 518 * 519 * Return: MINUS_ONE_T if no used bits. 520 */ 521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) 522 { 523 struct ATTRIB *b; 524 struct ATTR_LIST_ENTRY *le = NULL; 525 size_t from = *bit; 526 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 527 int err; 528 529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 530 NULL, NULL); 531 532 if (!b) 533 return -ENOENT; 534 535 *bit = MINUS_ONE_T; 536 537 if (!b->non_res) { 538 u32 nbits = le32_to_cpu(b->res.data_size) * 8; 539 size_t pos = find_next_bit(resident_data(b), nbits, from); 540 541 if (pos < nbits) 542 *bit = pos; 543 } else { 544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); 545 if (err) 546 return err; 547 } 548 549 return 0; 550 } 551 552 /* 553 * hdr_find_split 554 * 555 * Find a point at which the index allocation buffer would like to be split. 556 * NOTE: This function should never return 'END' entry NULL returns on error. 557 */ 558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) 559 { 560 size_t o; 561 const struct NTFS_DE *e = hdr_first_de(hdr); 562 u32 used_2 = le32_to_cpu(hdr->used) >> 1; 563 u16 esize; 564 565 if (!e || de_is_last(e)) 566 return NULL; 567 568 esize = le16_to_cpu(e->size); 569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { 570 const struct NTFS_DE *p = e; 571 572 e = Add2Ptr(hdr, o); 573 574 /* We must not return END entry. */ 575 if (de_is_last(e)) 576 return p; 577 578 esize = le16_to_cpu(e->size); 579 } 580 581 return e; 582 } 583 584 /* 585 * hdr_insert_head - Insert some entries at the beginning of the buffer. 586 * 587 * It is used to insert entries into a newly-created buffer. 588 */ 589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, 590 const void *ins, u32 ins_bytes) 591 { 592 u32 to_move; 593 struct NTFS_DE *e = hdr_first_de(hdr); 594 u32 used = le32_to_cpu(hdr->used); 595 596 if (!e) 597 return NULL; 598 599 /* Now we just make room for the inserted entries and jam it in. */ 600 to_move = used - le32_to_cpu(hdr->de_off); 601 memmove(Add2Ptr(e, ins_bytes), e, to_move); 602 memcpy(e, ins, ins_bytes); 603 hdr->used = cpu_to_le32(used + ins_bytes); 604 605 return e; 606 } 607 608 void fnd_clear(struct ntfs_fnd *fnd) 609 { 610 int i; 611 612 for (i = 0; i < fnd->level; i++) { 613 struct indx_node *n = fnd->nodes[i]; 614 615 if (!n) 616 continue; 617 618 put_indx_node(n); 619 fnd->nodes[i] = NULL; 620 } 621 fnd->level = 0; 622 fnd->root_de = NULL; 623 } 624 625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, 626 struct NTFS_DE *e) 627 { 628 int i; 629 630 i = fnd->level; 631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) 632 return -EINVAL; 633 fnd->nodes[i] = n; 634 fnd->de[i] = e; 635 fnd->level += 1; 636 return 0; 637 } 638 639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) 640 { 641 struct indx_node *n; 642 int i = fnd->level; 643 644 i -= 1; 645 n = fnd->nodes[i]; 646 fnd->nodes[i] = NULL; 647 fnd->level = i; 648 649 return n; 650 } 651 652 static bool fnd_is_empty(struct ntfs_fnd *fnd) 653 { 654 if (!fnd->level) 655 return !fnd->root_de; 656 657 return !fnd->de[fnd->level - 1]; 658 } 659 660 /* 661 * hdr_find_e - Locate an entry the index buffer. 662 * 663 * If no matching entry is found, it returns the first entry which is greater 664 * than the desired entry If the search key is greater than all the entries the 665 * buffer, it returns the 'end' entry. This function does a binary search of the 666 * current index buffer, for the first entry that is <= to the search value. 667 * 668 * Return: NULL if error. 669 */ 670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, 671 const struct INDEX_HDR *hdr, const void *key, 672 size_t key_len, const void *ctx, int *diff) 673 { 674 struct NTFS_DE *e, *found = NULL; 675 NTFS_CMP_FUNC cmp = indx->cmp; 676 int min_idx = 0, mid_idx, max_idx = 0; 677 int diff2; 678 int table_size = 8; 679 u32 e_size, e_key_len; 680 u32 end = le32_to_cpu(hdr->used); 681 u32 off = le32_to_cpu(hdr->de_off); 682 u16 offs[128]; 683 684 fill_table: 685 if (off + sizeof(struct NTFS_DE) > end) 686 return NULL; 687 688 e = Add2Ptr(hdr, off); 689 e_size = le16_to_cpu(e->size); 690 691 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) 692 return NULL; 693 694 if (!de_is_last(e)) { 695 offs[max_idx] = off; 696 off += e_size; 697 698 max_idx++; 699 if (max_idx < table_size) 700 goto fill_table; 701 702 max_idx--; 703 } 704 705 binary_search: 706 e_key_len = le16_to_cpu(e->key_size); 707 708 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 709 if (diff2 > 0) { 710 if (found) { 711 min_idx = mid_idx + 1; 712 } else { 713 if (de_is_last(e)) 714 return NULL; 715 716 max_idx = 0; 717 table_size = min(table_size * 2, 718 (int)ARRAY_SIZE(offs)); 719 goto fill_table; 720 } 721 } else if (diff2 < 0) { 722 if (found) 723 max_idx = mid_idx - 1; 724 else 725 max_idx--; 726 727 found = e; 728 } else { 729 *diff = 0; 730 return e; 731 } 732 733 if (min_idx > max_idx) { 734 *diff = -1; 735 return found; 736 } 737 738 mid_idx = (min_idx + max_idx) >> 1; 739 e = Add2Ptr(hdr, offs[mid_idx]); 740 741 goto binary_search; 742 } 743 744 /* 745 * hdr_insert_de - Insert an index entry into the buffer. 746 * 747 * 'before' should be a pointer previously returned from hdr_find_e. 748 */ 749 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, 750 struct INDEX_HDR *hdr, 751 const struct NTFS_DE *de, 752 struct NTFS_DE *before, const void *ctx) 753 { 754 int diff; 755 size_t off = PtrOffset(hdr, before); 756 u32 used = le32_to_cpu(hdr->used); 757 u32 total = le32_to_cpu(hdr->total); 758 u16 de_size = le16_to_cpu(de->size); 759 760 /* First, check to see if there's enough room. */ 761 if (used + de_size > total) 762 return NULL; 763 764 /* We know there's enough space, so we know we'll succeed. */ 765 if (before) { 766 /* Check that before is inside Index. */ 767 if (off >= used || off < le32_to_cpu(hdr->de_off) || 768 off + le16_to_cpu(before->size) > total) { 769 return NULL; 770 } 771 goto ok; 772 } 773 /* No insert point is applied. Get it manually. */ 774 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, 775 &diff); 776 if (!before) 777 return NULL; 778 off = PtrOffset(hdr, before); 779 780 ok: 781 /* Now we just make room for the entry and jam it in. */ 782 memmove(Add2Ptr(before, de_size), before, used - off); 783 784 hdr->used = cpu_to_le32(used + de_size); 785 memcpy(before, de, de_size); 786 787 return before; 788 } 789 790 /* 791 * hdr_delete_de - Remove an entry from the index buffer. 792 */ 793 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, 794 struct NTFS_DE *re) 795 { 796 u32 used = le32_to_cpu(hdr->used); 797 u16 esize = le16_to_cpu(re->size); 798 u32 off = PtrOffset(hdr, re); 799 int bytes = used - (off + esize); 800 801 if (off >= used || esize < sizeof(struct NTFS_DE) || 802 bytes < sizeof(struct NTFS_DE)) 803 return NULL; 804 805 hdr->used = cpu_to_le32(used - esize); 806 memmove(re, Add2Ptr(re, esize), bytes); 807 808 return re; 809 } 810 811 void indx_clear(struct ntfs_index *indx) 812 { 813 run_close(&indx->alloc_run); 814 run_close(&indx->bitmap_run); 815 } 816 817 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, 818 const struct ATTRIB *attr, enum index_mutex_classed type) 819 { 820 u32 t32; 821 const struct INDEX_ROOT *root = resident_data(attr); 822 823 /* Check root fields. */ 824 if (!root->index_block_clst) 825 return -EINVAL; 826 827 indx->type = type; 828 indx->idx2vbn_bits = __ffs(root->index_block_clst); 829 830 t32 = le32_to_cpu(root->index_block_size); 831 indx->index_bits = blksize_bits(t32); 832 833 /* Check index record size. */ 834 if (t32 < sbi->cluster_size) { 835 /* Index record is smaller than a cluster, use 512 blocks. */ 836 if (t32 != root->index_block_clst * SECTOR_SIZE) 837 return -EINVAL; 838 839 /* Check alignment to a cluster. */ 840 if ((sbi->cluster_size >> SECTOR_SHIFT) & 841 (root->index_block_clst - 1)) { 842 return -EINVAL; 843 } 844 845 indx->vbn2vbo_bits = SECTOR_SHIFT; 846 } else { 847 /* Index record must be a multiple of cluster size. */ 848 if (t32 != root->index_block_clst << sbi->cluster_bits) 849 return -EINVAL; 850 851 indx->vbn2vbo_bits = sbi->cluster_bits; 852 } 853 854 init_rwsem(&indx->run_lock); 855 856 indx->cmp = get_cmp_func(root); 857 return indx->cmp ? 0 : -EINVAL; 858 } 859 860 static struct indx_node *indx_new(struct ntfs_index *indx, 861 struct ntfs_inode *ni, CLST vbn, 862 const __le64 *sub_vbn) 863 { 864 int err; 865 struct NTFS_DE *e; 866 struct indx_node *r; 867 struct INDEX_HDR *hdr; 868 struct INDEX_BUFFER *index; 869 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 870 u32 bytes = 1u << indx->index_bits; 871 u16 fn; 872 u32 eo; 873 874 r = kzalloc(sizeof(struct indx_node), GFP_NOFS); 875 if (!r) 876 return ERR_PTR(-ENOMEM); 877 878 index = kzalloc(bytes, GFP_NOFS); 879 if (!index) { 880 kfree(r); 881 return ERR_PTR(-ENOMEM); 882 } 883 884 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); 885 886 if (err) { 887 kfree(index); 888 kfree(r); 889 return ERR_PTR(err); 890 } 891 892 /* Create header. */ 893 index->rhdr.sign = NTFS_INDX_SIGNATURE; 894 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 895 fn = (bytes >> SECTOR_SHIFT) + 1; // 9 896 index->rhdr.fix_num = cpu_to_le16(fn); 897 index->vbn = cpu_to_le64(vbn); 898 hdr = &index->ihdr; 899 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); 900 hdr->de_off = cpu_to_le32(eo); 901 902 e = Add2Ptr(hdr, eo); 903 904 if (sub_vbn) { 905 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; 906 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 907 hdr->used = 908 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); 909 de_set_vbn_le(e, *sub_vbn); 910 hdr->flags = 1; 911 } else { 912 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 913 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); 914 e->flags = NTFS_IE_LAST; 915 } 916 917 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); 918 919 r->index = index; 920 return r; 921 } 922 923 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, 924 struct ATTRIB **attr, struct mft_inode **mi) 925 { 926 struct ATTR_LIST_ENTRY *le = NULL; 927 struct ATTRIB *a; 928 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 929 930 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, 931 mi); 932 if (!a) 933 return NULL; 934 935 if (attr) 936 *attr = a; 937 938 return resident_data_ex(a, sizeof(struct INDEX_ROOT)); 939 } 940 941 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, 942 struct indx_node *node, int sync) 943 { 944 struct INDEX_BUFFER *ib = node->index; 945 946 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); 947 } 948 949 /* 950 * indx_read 951 * 952 * If ntfs_readdir calls this function 953 * inode is shared locked and no ni_lock. 954 * Use rw_semaphore for read/write access to alloc_run. 955 */ 956 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, 957 struct indx_node **node) 958 { 959 int err; 960 struct INDEX_BUFFER *ib; 961 struct runs_tree *run = &indx->alloc_run; 962 struct rw_semaphore *lock = &indx->run_lock; 963 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 964 u32 bytes = 1u << indx->index_bits; 965 struct indx_node *in = *node; 966 const struct INDEX_NAMES *name; 967 968 if (!in) { 969 in = kzalloc(sizeof(struct indx_node), GFP_NOFS); 970 if (!in) 971 return -ENOMEM; 972 } else { 973 nb_put(&in->nb); 974 } 975 976 ib = in->index; 977 if (!ib) { 978 ib = kmalloc(bytes, GFP_NOFS); 979 if (!ib) { 980 err = -ENOMEM; 981 goto out; 982 } 983 } 984 985 down_read(lock); 986 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 987 up_read(lock); 988 if (!err) 989 goto ok; 990 991 if (err == -E_NTFS_FIXUP) 992 goto ok; 993 994 if (err != -ENOENT) 995 goto out; 996 997 name = &s_index_names[indx->type]; 998 down_write(lock); 999 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, 1000 run, vbo, vbo + bytes); 1001 up_write(lock); 1002 if (err) 1003 goto out; 1004 1005 down_read(lock); 1006 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1007 up_read(lock); 1008 if (err == -E_NTFS_FIXUP) 1009 goto ok; 1010 1011 if (err) 1012 goto out; 1013 1014 ok: 1015 if (err == -E_NTFS_FIXUP) { 1016 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); 1017 err = 0; 1018 } 1019 1020 in->index = ib; 1021 *node = in; 1022 1023 out: 1024 if (ib != in->index) 1025 kfree(ib); 1026 1027 if (*node != in) { 1028 nb_put(&in->nb); 1029 kfree(in); 1030 } 1031 1032 return err; 1033 } 1034 1035 /* 1036 * indx_find - Scan NTFS directory for given entry. 1037 */ 1038 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, 1039 const struct INDEX_ROOT *root, const void *key, size_t key_len, 1040 const void *ctx, int *diff, struct NTFS_DE **entry, 1041 struct ntfs_fnd *fnd) 1042 { 1043 int err; 1044 struct NTFS_DE *e; 1045 struct indx_node *node; 1046 1047 if (!root) 1048 root = indx_get_root(&ni->dir, ni, NULL, NULL); 1049 1050 if (!root) { 1051 /* Should not happen. */ 1052 return -EINVAL; 1053 } 1054 1055 /* Check cache. */ 1056 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; 1057 if (e && !de_is_last(e) && 1058 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { 1059 *entry = e; 1060 *diff = 0; 1061 return 0; 1062 } 1063 1064 /* Soft finder reset. */ 1065 fnd_clear(fnd); 1066 1067 /* Lookup entry that is <= to the search value. */ 1068 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff); 1069 if (!e) 1070 return -EINVAL; 1071 1072 fnd->root_de = e; 1073 1074 for (;;) { 1075 node = NULL; 1076 if (*diff >= 0 || !de_has_vcn_ex(e)) 1077 break; 1078 1079 /* Read next level. */ 1080 err = indx_read(indx, ni, de_get_vbn(e), &node); 1081 if (err) 1082 return err; 1083 1084 /* Lookup entry that is <= to the search value. */ 1085 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, 1086 diff); 1087 if (!e) { 1088 put_indx_node(node); 1089 return -EINVAL; 1090 } 1091 1092 fnd_push(fnd, node, e); 1093 } 1094 1095 *entry = e; 1096 return 0; 1097 } 1098 1099 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, 1100 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1101 struct ntfs_fnd *fnd) 1102 { 1103 int err; 1104 struct indx_node *n = NULL; 1105 struct NTFS_DE *e; 1106 size_t iter = 0; 1107 int level = fnd->level; 1108 1109 if (!*entry) { 1110 /* Start find. */ 1111 e = hdr_first_de(&root->ihdr); 1112 if (!e) 1113 return 0; 1114 fnd_clear(fnd); 1115 fnd->root_de = e; 1116 } else if (!level) { 1117 if (de_is_last(fnd->root_de)) { 1118 *entry = NULL; 1119 return 0; 1120 } 1121 1122 e = hdr_next_de(&root->ihdr, fnd->root_de); 1123 if (!e) 1124 return -EINVAL; 1125 fnd->root_de = e; 1126 } else { 1127 n = fnd->nodes[level - 1]; 1128 e = fnd->de[level - 1]; 1129 1130 if (de_is_last(e)) 1131 goto pop_level; 1132 1133 e = hdr_next_de(&n->index->ihdr, e); 1134 if (!e) 1135 return -EINVAL; 1136 1137 fnd->de[level - 1] = e; 1138 } 1139 1140 /* Just to avoid tree cycle. */ 1141 next_iter: 1142 if (iter++ >= 1000) 1143 return -EINVAL; 1144 1145 while (de_has_vcn_ex(e)) { 1146 if (le16_to_cpu(e->size) < 1147 sizeof(struct NTFS_DE) + sizeof(u64)) { 1148 if (n) { 1149 fnd_pop(fnd); 1150 kfree(n); 1151 } 1152 return -EINVAL; 1153 } 1154 1155 /* Read next level. */ 1156 err = indx_read(indx, ni, de_get_vbn(e), &n); 1157 if (err) 1158 return err; 1159 1160 /* Try next level. */ 1161 e = hdr_first_de(&n->index->ihdr); 1162 if (!e) { 1163 kfree(n); 1164 return -EINVAL; 1165 } 1166 1167 fnd_push(fnd, n, e); 1168 } 1169 1170 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1171 *entry = e; 1172 return 0; 1173 } 1174 1175 pop_level: 1176 for (;;) { 1177 if (!de_is_last(e)) 1178 goto next_iter; 1179 1180 /* Pop one level. */ 1181 if (n) { 1182 fnd_pop(fnd); 1183 kfree(n); 1184 } 1185 1186 level = fnd->level; 1187 1188 if (level) { 1189 n = fnd->nodes[level - 1]; 1190 e = fnd->de[level - 1]; 1191 } else if (fnd->root_de) { 1192 n = NULL; 1193 e = fnd->root_de; 1194 fnd->root_de = NULL; 1195 } else { 1196 *entry = NULL; 1197 return 0; 1198 } 1199 1200 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1201 *entry = e; 1202 if (!fnd->root_de) 1203 fnd->root_de = e; 1204 return 0; 1205 } 1206 } 1207 } 1208 1209 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, 1210 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1211 size_t *off, struct ntfs_fnd *fnd) 1212 { 1213 int err; 1214 struct indx_node *n = NULL; 1215 struct NTFS_DE *e = NULL; 1216 struct NTFS_DE *e2; 1217 size_t bit; 1218 CLST next_used_vbn; 1219 CLST next_vbn; 1220 u32 record_size = ni->mi.sbi->record_size; 1221 1222 /* Use non sorted algorithm. */ 1223 if (!*entry) { 1224 /* This is the first call. */ 1225 e = hdr_first_de(&root->ihdr); 1226 if (!e) 1227 return 0; 1228 fnd_clear(fnd); 1229 fnd->root_de = e; 1230 1231 /* The first call with setup of initial element. */ 1232 if (*off >= record_size) { 1233 next_vbn = (((*off - record_size) >> indx->index_bits)) 1234 << indx->idx2vbn_bits; 1235 /* Jump inside cycle 'for'. */ 1236 goto next; 1237 } 1238 1239 /* Start enumeration from root. */ 1240 *off = 0; 1241 } else if (!fnd->root_de) 1242 return -EINVAL; 1243 1244 for (;;) { 1245 /* Check if current entry can be used. */ 1246 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) 1247 goto ok; 1248 1249 if (!fnd->level) { 1250 /* Continue to enumerate root. */ 1251 if (!de_is_last(fnd->root_de)) { 1252 e = hdr_next_de(&root->ihdr, fnd->root_de); 1253 if (!e) 1254 return -EINVAL; 1255 fnd->root_de = e; 1256 continue; 1257 } 1258 1259 /* Start to enumerate indexes from 0. */ 1260 next_vbn = 0; 1261 } else { 1262 /* Continue to enumerate indexes. */ 1263 e2 = fnd->de[fnd->level - 1]; 1264 1265 n = fnd->nodes[fnd->level - 1]; 1266 1267 if (!de_is_last(e2)) { 1268 e = hdr_next_de(&n->index->ihdr, e2); 1269 if (!e) 1270 return -EINVAL; 1271 fnd->de[fnd->level - 1] = e; 1272 continue; 1273 } 1274 1275 /* Continue with next index. */ 1276 next_vbn = le64_to_cpu(n->index->vbn) + 1277 root->index_block_clst; 1278 } 1279 1280 next: 1281 /* Release current index. */ 1282 if (n) { 1283 fnd_pop(fnd); 1284 put_indx_node(n); 1285 n = NULL; 1286 } 1287 1288 /* Skip all free indexes. */ 1289 bit = next_vbn >> indx->idx2vbn_bits; 1290 err = indx_used_bit(indx, ni, &bit); 1291 if (err == -ENOENT || bit == MINUS_ONE_T) { 1292 /* No used indexes. */ 1293 *entry = NULL; 1294 return 0; 1295 } 1296 1297 next_used_vbn = bit << indx->idx2vbn_bits; 1298 1299 /* Read buffer into memory. */ 1300 err = indx_read(indx, ni, next_used_vbn, &n); 1301 if (err) 1302 return err; 1303 1304 e = hdr_first_de(&n->index->ihdr); 1305 fnd_push(fnd, n, e); 1306 if (!e) 1307 return -EINVAL; 1308 } 1309 1310 ok: 1311 /* Return offset to restore enumerator if necessary. */ 1312 if (!n) { 1313 /* 'e' points in root, */ 1314 *off = PtrOffset(&root->ihdr, e); 1315 } else { 1316 /* 'e' points in index, */ 1317 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + 1318 record_size + PtrOffset(&n->index->ihdr, e); 1319 } 1320 1321 *entry = e; 1322 return 0; 1323 } 1324 1325 /* 1326 * indx_create_allocate - Create "Allocation + Bitmap" attributes. 1327 */ 1328 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1329 CLST *vbn) 1330 { 1331 int err; 1332 struct ntfs_sb_info *sbi = ni->mi.sbi; 1333 struct ATTRIB *bitmap; 1334 struct ATTRIB *alloc; 1335 u32 data_size = 1u << indx->index_bits; 1336 u32 alloc_size = ntfs_up_cluster(sbi, data_size); 1337 CLST len = alloc_size >> sbi->cluster_bits; 1338 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1339 CLST alen; 1340 struct runs_tree run; 1341 1342 run_init(&run); 1343 1344 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0, 1345 NULL); 1346 if (err) 1347 goto out; 1348 1349 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, 1350 &run, 0, len, 0, &alloc, NULL, NULL); 1351 if (err) 1352 goto out1; 1353 1354 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); 1355 1356 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name, 1357 in->name_len, &bitmap, NULL, NULL); 1358 if (err) 1359 goto out2; 1360 1361 if (in->name == I30_NAME) { 1362 ni->vfs_inode.i_size = data_size; 1363 inode_set_bytes(&ni->vfs_inode, alloc_size); 1364 } 1365 1366 memcpy(&indx->alloc_run, &run, sizeof(run)); 1367 1368 *vbn = 0; 1369 1370 return 0; 1371 1372 out2: 1373 mi_remove_attr(NULL, &ni->mi, alloc); 1374 1375 out1: 1376 run_deallocate(sbi, &run, false); 1377 1378 out: 1379 return err; 1380 } 1381 1382 /* 1383 * indx_add_allocate - Add clusters to index. 1384 */ 1385 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1386 CLST *vbn) 1387 { 1388 int err; 1389 size_t bit; 1390 u64 data_size; 1391 u64 bmp_size, bmp_size_v; 1392 struct ATTRIB *bmp, *alloc; 1393 struct mft_inode *mi; 1394 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1395 1396 err = indx_find_free(indx, ni, &bit, &bmp); 1397 if (err) 1398 goto out1; 1399 1400 if (bit != MINUS_ONE_T) { 1401 bmp = NULL; 1402 } else { 1403 if (bmp->non_res) { 1404 bmp_size = le64_to_cpu(bmp->nres.data_size); 1405 bmp_size_v = le64_to_cpu(bmp->nres.valid_size); 1406 } else { 1407 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); 1408 } 1409 1410 bit = bmp_size << 3; 1411 } 1412 1413 data_size = (u64)(bit + 1) << indx->index_bits; 1414 1415 if (bmp) { 1416 /* Increase bitmap. */ 1417 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1418 &indx->bitmap_run, bitmap_size(bit + 1), 1419 NULL, true, NULL); 1420 if (err) 1421 goto out1; 1422 } 1423 1424 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, 1425 NULL, &mi); 1426 if (!alloc) { 1427 err = -EINVAL; 1428 if (bmp) 1429 goto out2; 1430 goto out1; 1431 } 1432 1433 /* Increase allocation. */ 1434 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1435 &indx->alloc_run, data_size, &data_size, true, 1436 NULL); 1437 if (err) { 1438 if (bmp) 1439 goto out2; 1440 goto out1; 1441 } 1442 1443 *vbn = bit << indx->idx2vbn_bits; 1444 1445 return 0; 1446 1447 out2: 1448 /* Ops. No space? */ 1449 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1450 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); 1451 1452 out1: 1453 return err; 1454 } 1455 1456 /* 1457 * indx_insert_into_root - Attempt to insert an entry into the index root. 1458 * 1459 * @undo - True if we undoing previous remove. 1460 * If necessary, it will twiddle the index b-tree. 1461 */ 1462 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, 1463 const struct NTFS_DE *new_de, 1464 struct NTFS_DE *root_de, const void *ctx, 1465 struct ntfs_fnd *fnd, bool undo) 1466 { 1467 int err = 0; 1468 struct NTFS_DE *e, *e0, *re; 1469 struct mft_inode *mi; 1470 struct ATTRIB *attr; 1471 struct INDEX_HDR *hdr; 1472 struct indx_node *n; 1473 CLST new_vbn; 1474 __le64 *sub_vbn, t_vbn; 1475 u16 new_de_size; 1476 u32 hdr_used, hdr_total, asize, to_move; 1477 u32 root_size, new_root_size; 1478 struct ntfs_sb_info *sbi; 1479 int ds_root; 1480 struct INDEX_ROOT *root, *a_root; 1481 1482 /* Get the record this root placed in. */ 1483 root = indx_get_root(indx, ni, &attr, &mi); 1484 if (!root) 1485 return -EINVAL; 1486 1487 /* 1488 * Try easy case: 1489 * hdr_insert_de will succeed if there's 1490 * room the root for the new entry. 1491 */ 1492 hdr = &root->ihdr; 1493 sbi = ni->mi.sbi; 1494 new_de_size = le16_to_cpu(new_de->size); 1495 hdr_used = le32_to_cpu(hdr->used); 1496 hdr_total = le32_to_cpu(hdr->total); 1497 asize = le32_to_cpu(attr->size); 1498 root_size = le32_to_cpu(attr->res.data_size); 1499 1500 ds_root = new_de_size + hdr_used - hdr_total; 1501 1502 /* If 'undo' is set then reduce requirements. */ 1503 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && 1504 mi_resize_attr(mi, attr, ds_root)) { 1505 hdr->total = cpu_to_le32(hdr_total + ds_root); 1506 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); 1507 WARN_ON(!e); 1508 fnd_clear(fnd); 1509 fnd->root_de = e; 1510 1511 return 0; 1512 } 1513 1514 /* Make a copy of root attribute to restore if error. */ 1515 a_root = kmemdup(attr, asize, GFP_NOFS); 1516 if (!a_root) 1517 return -ENOMEM; 1518 1519 /* 1520 * Copy all the non-end entries from 1521 * the index root to the new buffer. 1522 */ 1523 to_move = 0; 1524 e0 = hdr_first_de(hdr); 1525 1526 /* Calculate the size to copy. */ 1527 for (e = e0;; e = hdr_next_de(hdr, e)) { 1528 if (!e) { 1529 err = -EINVAL; 1530 goto out_free_root; 1531 } 1532 1533 if (de_is_last(e)) 1534 break; 1535 to_move += le16_to_cpu(e->size); 1536 } 1537 1538 if (!to_move) { 1539 re = NULL; 1540 } else { 1541 re = kmemdup(e0, to_move, GFP_NOFS); 1542 if (!re) { 1543 err = -ENOMEM; 1544 goto out_free_root; 1545 } 1546 } 1547 1548 sub_vbn = NULL; 1549 if (de_has_vcn(e)) { 1550 t_vbn = de_get_vbn_le(e); 1551 sub_vbn = &t_vbn; 1552 } 1553 1554 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + 1555 sizeof(u64); 1556 ds_root = new_root_size - root_size; 1557 1558 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { 1559 /* Make root external. */ 1560 err = -EOPNOTSUPP; 1561 goto out_free_re; 1562 } 1563 1564 if (ds_root) 1565 mi_resize_attr(mi, attr, ds_root); 1566 1567 /* Fill first entry (vcn will be set later). */ 1568 e = (struct NTFS_DE *)(root + 1); 1569 memset(e, 0, sizeof(struct NTFS_DE)); 1570 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 1571 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; 1572 1573 hdr->flags = 1; 1574 hdr->used = hdr->total = 1575 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 1576 1577 fnd->root_de = hdr_first_de(hdr); 1578 mi->dirty = true; 1579 1580 /* Create alloc and bitmap attributes (if not). */ 1581 err = run_is_empty(&indx->alloc_run) 1582 ? indx_create_allocate(indx, ni, &new_vbn) 1583 : indx_add_allocate(indx, ni, &new_vbn); 1584 1585 /* Layout of record may be changed, so rescan root. */ 1586 root = indx_get_root(indx, ni, &attr, &mi); 1587 if (!root) { 1588 /* Bug? */ 1589 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1590 err = -EINVAL; 1591 goto out_free_re; 1592 } 1593 1594 if (err) { 1595 /* Restore root. */ 1596 if (mi_resize_attr(mi, attr, -ds_root)) 1597 memcpy(attr, a_root, asize); 1598 else { 1599 /* Bug? */ 1600 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1601 } 1602 goto out_free_re; 1603 } 1604 1605 e = (struct NTFS_DE *)(root + 1); 1606 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); 1607 mi->dirty = true; 1608 1609 /* Now we can create/format the new buffer and copy the entries into. */ 1610 n = indx_new(indx, ni, new_vbn, sub_vbn); 1611 if (IS_ERR(n)) { 1612 err = PTR_ERR(n); 1613 goto out_free_re; 1614 } 1615 1616 hdr = &n->index->ihdr; 1617 hdr_used = le32_to_cpu(hdr->used); 1618 hdr_total = le32_to_cpu(hdr->total); 1619 1620 /* Copy root entries into new buffer. */ 1621 hdr_insert_head(hdr, re, to_move); 1622 1623 /* Update bitmap attribute. */ 1624 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1625 1626 /* Check if we can insert new entry new index buffer. */ 1627 if (hdr_used + new_de_size > hdr_total) { 1628 /* 1629 * This occurs if MFT record is the same or bigger than index 1630 * buffer. Move all root new index and have no space to add 1631 * new entry classic case when MFT record is 1K and index 1632 * buffer 4K the problem should not occurs. 1633 */ 1634 kfree(re); 1635 indx_write(indx, ni, n, 0); 1636 1637 put_indx_node(n); 1638 fnd_clear(fnd); 1639 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); 1640 goto out_free_root; 1641 } 1642 1643 /* 1644 * Now root is a parent for new index buffer. 1645 * Insert NewEntry a new buffer. 1646 */ 1647 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); 1648 if (!e) { 1649 err = -EINVAL; 1650 goto out_put_n; 1651 } 1652 fnd_push(fnd, n, e); 1653 1654 /* Just write updates index into disk. */ 1655 indx_write(indx, ni, n, 0); 1656 1657 n = NULL; 1658 1659 out_put_n: 1660 put_indx_node(n); 1661 out_free_re: 1662 kfree(re); 1663 out_free_root: 1664 kfree(a_root); 1665 return err; 1666 } 1667 1668 /* 1669 * indx_insert_into_buffer 1670 * 1671 * Attempt to insert an entry into an Index Allocation Buffer. 1672 * If necessary, it will split the buffer. 1673 */ 1674 static int 1675 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, 1676 struct INDEX_ROOT *root, const struct NTFS_DE *new_de, 1677 const void *ctx, int level, struct ntfs_fnd *fnd) 1678 { 1679 int err; 1680 const struct NTFS_DE *sp; 1681 struct NTFS_DE *e, *de_t, *up_e; 1682 struct indx_node *n2; 1683 struct indx_node *n1 = fnd->nodes[level]; 1684 struct INDEX_HDR *hdr1 = &n1->index->ihdr; 1685 struct INDEX_HDR *hdr2; 1686 u32 to_copy, used; 1687 CLST new_vbn; 1688 __le64 t_vbn, *sub_vbn; 1689 u16 sp_size; 1690 1691 /* Try the most easy case. */ 1692 e = fnd->level - 1 == level ? fnd->de[level] : NULL; 1693 e = hdr_insert_de(indx, hdr1, new_de, e, ctx); 1694 fnd->de[level] = e; 1695 if (e) { 1696 /* Just write updated index into disk. */ 1697 indx_write(indx, ni, n1, 0); 1698 return 0; 1699 } 1700 1701 /* 1702 * No space to insert into buffer. Split it. 1703 * To split we: 1704 * - Save split point ('cause index buffers will be changed) 1705 * - Allocate NewBuffer and copy all entries <= sp into new buffer 1706 * - Remove all entries (sp including) from TargetBuffer 1707 * - Insert NewEntry into left or right buffer (depending on sp <=> 1708 * NewEntry) 1709 * - Insert sp into parent buffer (or root) 1710 * - Make sp a parent for new buffer 1711 */ 1712 sp = hdr_find_split(hdr1); 1713 if (!sp) 1714 return -EINVAL; 1715 1716 sp_size = le16_to_cpu(sp->size); 1717 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); 1718 if (!up_e) 1719 return -ENOMEM; 1720 memcpy(up_e, sp, sp_size); 1721 1722 if (!hdr1->flags) { 1723 up_e->flags |= NTFS_IE_HAS_SUBNODES; 1724 up_e->size = cpu_to_le16(sp_size + sizeof(u64)); 1725 sub_vbn = NULL; 1726 } else { 1727 t_vbn = de_get_vbn_le(up_e); 1728 sub_vbn = &t_vbn; 1729 } 1730 1731 /* Allocate on disk a new index allocation buffer. */ 1732 err = indx_add_allocate(indx, ni, &new_vbn); 1733 if (err) 1734 goto out; 1735 1736 /* Allocate and format memory a new index buffer. */ 1737 n2 = indx_new(indx, ni, new_vbn, sub_vbn); 1738 if (IS_ERR(n2)) { 1739 err = PTR_ERR(n2); 1740 goto out; 1741 } 1742 1743 hdr2 = &n2->index->ihdr; 1744 1745 /* Make sp a parent for new buffer. */ 1746 de_set_vbn(up_e, new_vbn); 1747 1748 /* Copy all the entries <= sp into the new buffer. */ 1749 de_t = hdr_first_de(hdr1); 1750 to_copy = PtrOffset(de_t, sp); 1751 hdr_insert_head(hdr2, de_t, to_copy); 1752 1753 /* Remove all entries (sp including) from hdr1. */ 1754 used = le32_to_cpu(hdr1->used) - to_copy - sp_size; 1755 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); 1756 hdr1->used = cpu_to_le32(used); 1757 1758 /* 1759 * Insert new entry into left or right buffer 1760 * (depending on sp <=> new_de). 1761 */ 1762 hdr_insert_de(indx, 1763 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), 1764 up_e + 1, le16_to_cpu(up_e->key_size), 1765 ctx) < 0 1766 ? hdr2 1767 : hdr1, 1768 new_de, NULL, ctx); 1769 1770 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1771 1772 indx_write(indx, ni, n1, 0); 1773 indx_write(indx, ni, n2, 0); 1774 1775 put_indx_node(n2); 1776 1777 /* 1778 * We've finished splitting everybody, so we are ready to 1779 * insert the promoted entry into the parent. 1780 */ 1781 if (!level) { 1782 /* Insert in root. */ 1783 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); 1784 if (err) 1785 goto out; 1786 } else { 1787 /* 1788 * The target buffer's parent is another index buffer. 1789 * TODO: Remove recursion. 1790 */ 1791 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, 1792 level - 1, fnd); 1793 if (err) 1794 goto out; 1795 } 1796 1797 out: 1798 kfree(up_e); 1799 1800 return err; 1801 } 1802 1803 /* 1804 * indx_insert_entry - Insert new entry into index. 1805 * 1806 * @undo - True if we undoing previous remove. 1807 */ 1808 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 1809 const struct NTFS_DE *new_de, const void *ctx, 1810 struct ntfs_fnd *fnd, bool undo) 1811 { 1812 int err; 1813 int diff; 1814 struct NTFS_DE *e; 1815 struct ntfs_fnd *fnd_a = NULL; 1816 struct INDEX_ROOT *root; 1817 1818 if (!fnd) { 1819 fnd_a = fnd_get(); 1820 if (!fnd_a) { 1821 err = -ENOMEM; 1822 goto out1; 1823 } 1824 fnd = fnd_a; 1825 } 1826 1827 root = indx_get_root(indx, ni, NULL, NULL); 1828 if (!root) { 1829 err = -EINVAL; 1830 goto out; 1831 } 1832 1833 if (fnd_is_empty(fnd)) { 1834 /* 1835 * Find the spot the tree where we want to 1836 * insert the new entry. 1837 */ 1838 err = indx_find(indx, ni, root, new_de + 1, 1839 le16_to_cpu(new_de->key_size), ctx, &diff, &e, 1840 fnd); 1841 if (err) 1842 goto out; 1843 1844 if (!diff) { 1845 err = -EEXIST; 1846 goto out; 1847 } 1848 } 1849 1850 if (!fnd->level) { 1851 /* 1852 * The root is also a leaf, so we'll insert the 1853 * new entry into it. 1854 */ 1855 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, 1856 fnd, undo); 1857 if (err) 1858 goto out; 1859 } else { 1860 /* 1861 * Found a leaf buffer, so we'll insert the new entry into it. 1862 */ 1863 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, 1864 fnd->level - 1, fnd); 1865 if (err) 1866 goto out; 1867 } 1868 1869 out: 1870 fnd_put(fnd_a); 1871 out1: 1872 return err; 1873 } 1874 1875 /* 1876 * indx_find_buffer - Locate a buffer from the tree. 1877 */ 1878 static struct indx_node *indx_find_buffer(struct ntfs_index *indx, 1879 struct ntfs_inode *ni, 1880 const struct INDEX_ROOT *root, 1881 __le64 vbn, struct indx_node *n) 1882 { 1883 int err; 1884 const struct NTFS_DE *e; 1885 struct indx_node *r; 1886 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; 1887 1888 /* Step 1: Scan one level. */ 1889 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 1890 if (!e) 1891 return ERR_PTR(-EINVAL); 1892 1893 if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) 1894 return n; 1895 1896 if (de_is_last(e)) 1897 break; 1898 } 1899 1900 /* Step2: Do recursion. */ 1901 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); 1902 for (;;) { 1903 if (de_has_vcn_ex(e)) { 1904 err = indx_read(indx, ni, de_get_vbn(e), &n); 1905 if (err) 1906 return ERR_PTR(err); 1907 1908 r = indx_find_buffer(indx, ni, root, vbn, n); 1909 if (r) 1910 return r; 1911 } 1912 1913 if (de_is_last(e)) 1914 break; 1915 1916 e = Add2Ptr(e, le16_to_cpu(e->size)); 1917 } 1918 1919 return NULL; 1920 } 1921 1922 /* 1923 * indx_shrink - Deallocate unused tail indexes. 1924 */ 1925 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, 1926 size_t bit) 1927 { 1928 int err = 0; 1929 u64 bpb, new_data; 1930 size_t nbits; 1931 struct ATTRIB *b; 1932 struct ATTR_LIST_ENTRY *le = NULL; 1933 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1934 1935 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 1936 NULL, NULL); 1937 1938 if (!b) 1939 return -ENOENT; 1940 1941 if (!b->non_res) { 1942 unsigned long pos; 1943 const unsigned long *bm = resident_data(b); 1944 1945 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; 1946 1947 if (bit >= nbits) 1948 return 0; 1949 1950 pos = find_next_bit(bm, nbits, bit); 1951 if (pos < nbits) 1952 return 0; 1953 } else { 1954 size_t used = MINUS_ONE_T; 1955 1956 nbits = le64_to_cpu(b->nres.data_size) * 8; 1957 1958 if (bit >= nbits) 1959 return 0; 1960 1961 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); 1962 if (err) 1963 return err; 1964 1965 if (used != MINUS_ONE_T) 1966 return 0; 1967 } 1968 1969 new_data = (u64)bit << indx->index_bits; 1970 1971 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1972 &indx->alloc_run, new_data, &new_data, false, NULL); 1973 if (err) 1974 return err; 1975 1976 bpb = bitmap_size(bit); 1977 if (bpb * 8 == nbits) 1978 return 0; 1979 1980 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1981 &indx->bitmap_run, bpb, &bpb, false, NULL); 1982 1983 return err; 1984 } 1985 1986 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, 1987 const struct NTFS_DE *e, bool trim) 1988 { 1989 int err; 1990 struct indx_node *n = NULL; 1991 struct INDEX_HDR *hdr; 1992 CLST vbn = de_get_vbn(e); 1993 size_t i; 1994 1995 err = indx_read(indx, ni, vbn, &n); 1996 if (err) 1997 return err; 1998 1999 hdr = &n->index->ihdr; 2000 /* First, recurse into the children, if any. */ 2001 if (hdr_has_subnode(hdr)) { 2002 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { 2003 indx_free_children(indx, ni, e, false); 2004 if (de_is_last(e)) 2005 break; 2006 } 2007 } 2008 2009 put_indx_node(n); 2010 2011 i = vbn >> indx->idx2vbn_bits; 2012 /* 2013 * We've gotten rid of the children; add this buffer to the free list. 2014 */ 2015 indx_mark_free(indx, ni, i); 2016 2017 if (!trim) 2018 return 0; 2019 2020 /* 2021 * If there are no used indexes after current free index 2022 * then we can truncate allocation and bitmap. 2023 * Use bitmap to estimate the case. 2024 */ 2025 indx_shrink(indx, ni, i + 1); 2026 return 0; 2027 } 2028 2029 /* 2030 * indx_get_entry_to_replace 2031 * 2032 * Find a replacement entry for a deleted entry. 2033 * Always returns a node entry: 2034 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. 2035 */ 2036 static int indx_get_entry_to_replace(struct ntfs_index *indx, 2037 struct ntfs_inode *ni, 2038 const struct NTFS_DE *de_next, 2039 struct NTFS_DE **de_to_replace, 2040 struct ntfs_fnd *fnd) 2041 { 2042 int err; 2043 int level = -1; 2044 CLST vbn; 2045 struct NTFS_DE *e, *te, *re; 2046 struct indx_node *n; 2047 struct INDEX_BUFFER *ib; 2048 2049 *de_to_replace = NULL; 2050 2051 /* Find first leaf entry down from de_next. */ 2052 vbn = de_get_vbn(de_next); 2053 for (;;) { 2054 n = NULL; 2055 err = indx_read(indx, ni, vbn, &n); 2056 if (err) 2057 goto out; 2058 2059 e = hdr_first_de(&n->index->ihdr); 2060 fnd_push(fnd, n, e); 2061 2062 if (!de_is_last(e)) { 2063 /* 2064 * This buffer is non-empty, so its first entry 2065 * could be used as the replacement entry. 2066 */ 2067 level = fnd->level - 1; 2068 } 2069 2070 if (!de_has_vcn(e)) 2071 break; 2072 2073 /* This buffer is a node. Continue to go down. */ 2074 vbn = de_get_vbn(e); 2075 } 2076 2077 if (level == -1) 2078 goto out; 2079 2080 n = fnd->nodes[level]; 2081 te = hdr_first_de(&n->index->ihdr); 2082 /* Copy the candidate entry into the replacement entry buffer. */ 2083 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); 2084 if (!re) { 2085 err = -ENOMEM; 2086 goto out; 2087 } 2088 2089 *de_to_replace = re; 2090 memcpy(re, te, le16_to_cpu(te->size)); 2091 2092 if (!de_has_vcn(re)) { 2093 /* 2094 * The replacement entry we found doesn't have a sub_vcn. 2095 * increase its size to hold one. 2096 */ 2097 le16_add_cpu(&re->size, sizeof(u64)); 2098 re->flags |= NTFS_IE_HAS_SUBNODES; 2099 } else { 2100 /* 2101 * The replacement entry we found was a node entry, which 2102 * means that all its child buffers are empty. Return them 2103 * to the free pool. 2104 */ 2105 indx_free_children(indx, ni, te, true); 2106 } 2107 2108 /* 2109 * Expunge the replacement entry from its former location, 2110 * and then write that buffer. 2111 */ 2112 ib = n->index; 2113 e = hdr_delete_de(&ib->ihdr, te); 2114 2115 fnd->de[level] = e; 2116 indx_write(indx, ni, n, 0); 2117 2118 /* Check to see if this action created an empty leaf. */ 2119 if (ib_is_leaf(ib) && ib_is_empty(ib)) 2120 return 0; 2121 2122 out: 2123 fnd_clear(fnd); 2124 return err; 2125 } 2126 2127 /* 2128 * indx_delete_entry - Delete an entry from the index. 2129 */ 2130 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 2131 const void *key, u32 key_len, const void *ctx) 2132 { 2133 int err, diff; 2134 struct INDEX_ROOT *root; 2135 struct INDEX_HDR *hdr; 2136 struct ntfs_fnd *fnd, *fnd2; 2137 struct INDEX_BUFFER *ib; 2138 struct NTFS_DE *e, *re, *next, *prev, *me; 2139 struct indx_node *n, *n2d = NULL; 2140 __le64 sub_vbn; 2141 int level, level2; 2142 struct ATTRIB *attr; 2143 struct mft_inode *mi; 2144 u32 e_size, root_size, new_root_size; 2145 size_t trim_bit; 2146 const struct INDEX_NAMES *in; 2147 2148 fnd = fnd_get(); 2149 if (!fnd) { 2150 err = -ENOMEM; 2151 goto out2; 2152 } 2153 2154 fnd2 = fnd_get(); 2155 if (!fnd2) { 2156 err = -ENOMEM; 2157 goto out1; 2158 } 2159 2160 root = indx_get_root(indx, ni, &attr, &mi); 2161 if (!root) { 2162 err = -EINVAL; 2163 goto out; 2164 } 2165 2166 /* Locate the entry to remove. */ 2167 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); 2168 if (err) 2169 goto out; 2170 2171 if (!e || diff) { 2172 err = -ENOENT; 2173 goto out; 2174 } 2175 2176 level = fnd->level; 2177 2178 if (level) { 2179 n = fnd->nodes[level - 1]; 2180 e = fnd->de[level - 1]; 2181 ib = n->index; 2182 hdr = &ib->ihdr; 2183 } else { 2184 hdr = &root->ihdr; 2185 e = fnd->root_de; 2186 n = NULL; 2187 } 2188 2189 e_size = le16_to_cpu(e->size); 2190 2191 if (!de_has_vcn_ex(e)) { 2192 /* The entry to delete is a leaf, so we can just rip it out. */ 2193 hdr_delete_de(hdr, e); 2194 2195 if (!level) { 2196 hdr->total = hdr->used; 2197 2198 /* Shrink resident root attribute. */ 2199 mi_resize_attr(mi, attr, 0 - e_size); 2200 goto out; 2201 } 2202 2203 indx_write(indx, ni, n, 0); 2204 2205 /* 2206 * Check to see if removing that entry made 2207 * the leaf empty. 2208 */ 2209 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2210 fnd_pop(fnd); 2211 fnd_push(fnd2, n, e); 2212 } 2213 } else { 2214 /* 2215 * The entry we wish to delete is a node buffer, so we 2216 * have to find a replacement for it. 2217 */ 2218 next = de_get_next(e); 2219 2220 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); 2221 if (err) 2222 goto out; 2223 2224 if (re) { 2225 de_set_vbn_le(re, de_get_vbn_le(e)); 2226 hdr_delete_de(hdr, e); 2227 2228 err = level ? indx_insert_into_buffer(indx, ni, root, 2229 re, ctx, 2230 fnd->level - 1, 2231 fnd) 2232 : indx_insert_into_root(indx, ni, re, e, 2233 ctx, fnd, 0); 2234 kfree(re); 2235 2236 if (err) 2237 goto out; 2238 } else { 2239 /* 2240 * There is no replacement for the current entry. 2241 * This means that the subtree rooted at its node 2242 * is empty, and can be deleted, which turn means 2243 * that the node can just inherit the deleted 2244 * entry sub_vcn. 2245 */ 2246 indx_free_children(indx, ni, next, true); 2247 2248 de_set_vbn_le(next, de_get_vbn_le(e)); 2249 hdr_delete_de(hdr, e); 2250 if (level) { 2251 indx_write(indx, ni, n, 0); 2252 } else { 2253 hdr->total = hdr->used; 2254 2255 /* Shrink resident root attribute. */ 2256 mi_resize_attr(mi, attr, 0 - e_size); 2257 } 2258 } 2259 } 2260 2261 /* Delete a branch of tree. */ 2262 if (!fnd2 || !fnd2->level) 2263 goto out; 2264 2265 /* Reinit root 'cause it can be changed. */ 2266 root = indx_get_root(indx, ni, &attr, &mi); 2267 if (!root) { 2268 err = -EINVAL; 2269 goto out; 2270 } 2271 2272 n2d = NULL; 2273 sub_vbn = fnd2->nodes[0]->index->vbn; 2274 level2 = 0; 2275 level = fnd->level; 2276 2277 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; 2278 2279 /* Scan current level. */ 2280 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2281 if (!e) { 2282 err = -EINVAL; 2283 goto out; 2284 } 2285 2286 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2287 break; 2288 2289 if (de_is_last(e)) { 2290 e = NULL; 2291 break; 2292 } 2293 } 2294 2295 if (!e) { 2296 /* Do slow search from root. */ 2297 struct indx_node *in; 2298 2299 fnd_clear(fnd); 2300 2301 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); 2302 if (IS_ERR(in)) { 2303 err = PTR_ERR(in); 2304 goto out; 2305 } 2306 2307 if (in) 2308 fnd_push(fnd, in, NULL); 2309 } 2310 2311 /* Merge fnd2 -> fnd. */ 2312 for (level = 0; level < fnd2->level; level++) { 2313 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); 2314 fnd2->nodes[level] = NULL; 2315 } 2316 fnd2->level = 0; 2317 2318 hdr = NULL; 2319 for (level = fnd->level; level; level--) { 2320 struct indx_node *in = fnd->nodes[level - 1]; 2321 2322 ib = in->index; 2323 if (ib_is_empty(ib)) { 2324 sub_vbn = ib->vbn; 2325 } else { 2326 hdr = &ib->ihdr; 2327 n2d = in; 2328 level2 = level; 2329 break; 2330 } 2331 } 2332 2333 if (!hdr) 2334 hdr = &root->ihdr; 2335 2336 e = hdr_first_de(hdr); 2337 if (!e) { 2338 err = -EINVAL; 2339 goto out; 2340 } 2341 2342 if (hdr != &root->ihdr || !de_is_last(e)) { 2343 prev = NULL; 2344 while (!de_is_last(e)) { 2345 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2346 break; 2347 prev = e; 2348 e = hdr_next_de(hdr, e); 2349 if (!e) { 2350 err = -EINVAL; 2351 goto out; 2352 } 2353 } 2354 2355 if (sub_vbn != de_get_vbn_le(e)) { 2356 /* 2357 * Didn't find the parent entry, although this buffer 2358 * is the parent trail. Something is corrupt. 2359 */ 2360 err = -EINVAL; 2361 goto out; 2362 } 2363 2364 if (de_is_last(e)) { 2365 /* 2366 * Since we can't remove the end entry, we'll remove 2367 * its predecessor instead. This means we have to 2368 * transfer the predecessor's sub_vcn to the end entry. 2369 * Note: This index block is not empty, so the 2370 * predecessor must exist. 2371 */ 2372 if (!prev) { 2373 err = -EINVAL; 2374 goto out; 2375 } 2376 2377 if (de_has_vcn(prev)) { 2378 de_set_vbn_le(e, de_get_vbn_le(prev)); 2379 } else if (de_has_vcn(e)) { 2380 le16_sub_cpu(&e->size, sizeof(u64)); 2381 e->flags &= ~NTFS_IE_HAS_SUBNODES; 2382 le32_sub_cpu(&hdr->used, sizeof(u64)); 2383 } 2384 e = prev; 2385 } 2386 2387 /* 2388 * Copy the current entry into a temporary buffer (stripping 2389 * off its down-pointer, if any) and delete it from the current 2390 * buffer or root, as appropriate. 2391 */ 2392 e_size = le16_to_cpu(e->size); 2393 me = kmemdup(e, e_size, GFP_NOFS); 2394 if (!me) { 2395 err = -ENOMEM; 2396 goto out; 2397 } 2398 2399 if (de_has_vcn(me)) { 2400 me->flags &= ~NTFS_IE_HAS_SUBNODES; 2401 le16_sub_cpu(&me->size, sizeof(u64)); 2402 } 2403 2404 hdr_delete_de(hdr, e); 2405 2406 if (hdr == &root->ihdr) { 2407 level = 0; 2408 hdr->total = hdr->used; 2409 2410 /* Shrink resident root attribute. */ 2411 mi_resize_attr(mi, attr, 0 - e_size); 2412 } else { 2413 indx_write(indx, ni, n2d, 0); 2414 level = level2; 2415 } 2416 2417 /* Mark unused buffers as free. */ 2418 trim_bit = -1; 2419 for (; level < fnd->level; level++) { 2420 ib = fnd->nodes[level]->index; 2421 if (ib_is_empty(ib)) { 2422 size_t k = le64_to_cpu(ib->vbn) >> 2423 indx->idx2vbn_bits; 2424 2425 indx_mark_free(indx, ni, k); 2426 if (k < trim_bit) 2427 trim_bit = k; 2428 } 2429 } 2430 2431 fnd_clear(fnd); 2432 /*fnd->root_de = NULL;*/ 2433 2434 /* 2435 * Re-insert the entry into the tree. 2436 * Find the spot the tree where we want to insert the new entry. 2437 */ 2438 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); 2439 kfree(me); 2440 if (err) 2441 goto out; 2442 2443 if (trim_bit != -1) 2444 indx_shrink(indx, ni, trim_bit); 2445 } else { 2446 /* 2447 * This tree needs to be collapsed down to an empty root. 2448 * Recreate the index root as an empty leaf and free all 2449 * the bits the index allocation bitmap. 2450 */ 2451 fnd_clear(fnd); 2452 fnd_clear(fnd2); 2453 2454 in = &s_index_names[indx->type]; 2455 2456 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2457 &indx->alloc_run, 0, NULL, false, NULL); 2458 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, 2459 false, NULL); 2460 run_close(&indx->alloc_run); 2461 2462 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2463 &indx->bitmap_run, 0, NULL, false, NULL); 2464 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, 2465 false, NULL); 2466 run_close(&indx->bitmap_run); 2467 2468 root = indx_get_root(indx, ni, &attr, &mi); 2469 if (!root) { 2470 err = -EINVAL; 2471 goto out; 2472 } 2473 2474 root_size = le32_to_cpu(attr->res.data_size); 2475 new_root_size = 2476 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); 2477 2478 if (new_root_size != root_size && 2479 !mi_resize_attr(mi, attr, new_root_size - root_size)) { 2480 err = -EINVAL; 2481 goto out; 2482 } 2483 2484 /* Fill first entry. */ 2485 e = (struct NTFS_DE *)(root + 1); 2486 e->ref.low = 0; 2487 e->ref.high = 0; 2488 e->ref.seq = 0; 2489 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 2490 e->flags = NTFS_IE_LAST; // 0x02 2491 e->key_size = 0; 2492 e->res = 0; 2493 2494 hdr = &root->ihdr; 2495 hdr->flags = 0; 2496 hdr->used = hdr->total = cpu_to_le32( 2497 new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 2498 mi->dirty = true; 2499 } 2500 2501 out: 2502 fnd_put(fnd2); 2503 out1: 2504 fnd_put(fnd); 2505 out2: 2506 return err; 2507 } 2508 2509 /* 2510 * Update duplicated information in directory entry 2511 * 'dup' - info from MFT record 2512 */ 2513 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, 2514 const struct ATTR_FILE_NAME *fname, 2515 const struct NTFS_DUP_INFO *dup, int sync) 2516 { 2517 int err, diff; 2518 struct NTFS_DE *e = NULL; 2519 struct ATTR_FILE_NAME *e_fname; 2520 struct ntfs_fnd *fnd; 2521 struct INDEX_ROOT *root; 2522 struct mft_inode *mi; 2523 struct ntfs_index *indx = &ni->dir; 2524 2525 fnd = fnd_get(); 2526 if (!fnd) 2527 return -ENOMEM; 2528 2529 root = indx_get_root(indx, ni, NULL, &mi); 2530 if (!root) { 2531 err = -EINVAL; 2532 goto out; 2533 } 2534 2535 /* Find entry in directory. */ 2536 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, 2537 &diff, &e, fnd); 2538 if (err) 2539 goto out; 2540 2541 if (!e) { 2542 err = -EINVAL; 2543 goto out; 2544 } 2545 2546 if (diff) { 2547 err = -EINVAL; 2548 goto out; 2549 } 2550 2551 e_fname = (struct ATTR_FILE_NAME *)(e + 1); 2552 2553 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { 2554 /* 2555 * Nothing to update in index! Try to avoid this call. 2556 */ 2557 goto out; 2558 } 2559 2560 memcpy(&e_fname->dup, dup, sizeof(*dup)); 2561 2562 if (fnd->level) { 2563 /* Directory entry in index. */ 2564 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); 2565 } else { 2566 /* Directory entry in directory MFT record. */ 2567 mi->dirty = true; 2568 if (sync) 2569 err = mi_write(mi, 1); 2570 else 2571 mark_inode_dirty(&ni->vfs_inode); 2572 } 2573 2574 out: 2575 fnd_put(fnd); 2576 return err; 2577 } 2578