xref: /linux/fs/ntfs3/fslog.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 /*
18  * LOG FILE structs
19  */
20 
21 // clang-format off
22 
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26 
27 struct RESTART_HDR {
28 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 	__le32 page_size;     // 0x14: Log page size used for this log file.
31 	__le16 ra_off;        // 0x18:
32 	__le16 minor_ver;     // 0x1A:
33 	__le16 major_ver;     // 0x1C:
34 	__le16 fixups[];
35 };
36 
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39 
40 struct CLIENT_REC {
41 	__le64 oldest_lsn;
42 	__le64 restart_lsn; // 0x08:
43 	__le16 prev_client; // 0x10:
44 	__le16 next_client; // 0x12:
45 	__le16 seq_num;     // 0x14:
46 	u8 align[6];        // 0x16:
47 	__le32 name_bytes;  // 0x1C: In bytes.
48 	__le16 name[32];    // 0x20: Name of client.
49 };
50 
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52 
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 	__le64 current_lsn;    // 0x00: Current logical end of log file.
56 	__le16 log_clients;    // 0x08: Maximum number of clients.
57 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60 	__le16 ra_len;         // 0x14:
61 	__le16 client_off;     // 0x16:
62 	__le64 l_size;         // 0x18: Usable log file size.
63 	__le32 last_lsn_data_len; // 0x20:
64 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65 	__le16 data_off;       // 0x26: Log page data length.
66 	__le32 open_log_count; // 0x28:
67 	__le32 align[5];       // 0x2C:
68 	struct CLIENT_REC clients[]; // 0x40:
69 };
70 
71 struct LOG_REC_HDR {
72 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74 	__le16 redo_off;     // 0x04:  Offset to Redo record.
75 	__le16 redo_len;     // 0x06:  Redo length.
76 	__le16 undo_off;     // 0x08:  Offset to Undo record.
77 	__le16 undo_len;     // 0x0A:  Undo length.
78 	__le16 target_attr;  // 0x0C:
79 	__le16 lcns_follow;  // 0x0E:
80 	__le16 record_off;   // 0x10:
81 	__le16 attr_off;     // 0x12:
82 	__le16 cluster_off;  // 0x14:
83 	__le16 reserved;     // 0x16:
84 	__le64 target_vcn;   // 0x18:
85 	__le64 page_lcns[];  // 0x20:
86 };
87 
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89 
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92 
93 struct RESTART_TABLE {
94 	__le16 size;       // 0x00: In bytes
95 	__le16 used;       // 0x02: Entries
96 	__le16 total;      // 0x04: Entries
97 	__le16 res[3];     // 0x06:
98 	__le32 free_goal;  // 0x0C:
99 	__le32 first_free; // 0x10:
100 	__le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107 	__le16 off; // Offset in the Open attribute Table.
108 	__le16 name_bytes;
109 	__le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 	__le32 bytes_per_index; // 0x04:
115 	enum ATTR_TYPE type;    // 0x08:
116 	u8 is_dirty_pages;      // 0x0C:
117 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119 	u8 res;
120 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121 	__le64 open_record_lsn; // 0x18:
122 	void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 	__le32 ptr;             // 0x04:
129 	struct MFT_REF ref;     // 0x08:
130 	__le64 open_record_lsn; // 0x10:
131 	u8 is_dirty_pages;      // 0x18:
132 	u8 is_attr_name;        // 0x19:
133 	u8 res1[2];
134 	enum ATTR_TYPE type;    // 0x1C:
135 	u8 name_len;            // 0x20: In wchar
136 	u8 res2[3];
137 	__le32 AttributeName;   // 0x24:
138 	__le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152 	__le32 transfer_len; // 0x08:
153 	__le32 lcns_follow;  // 0x0C:
154 	__le64 vcn;          // 0x10: Vcn of dirty page
155 	__le64 oldest_lsn;   // 0x18:
156 	__le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165 	__le32 transfer_len;	// 0x08:
166 	__le32 lcns_follow;	// 0x0C:
167 	__le32 reserved;	// 0x10:
168 	__le32 vcn_low;		// 0x14: Vcn of dirty page
169 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170 	__le32 oldest_lsn_low;	// 0x1C:
171 	__le32 oldest_lsn_hi;	// 0x1C:
172 	__le32 page_lcns_low;	// 0x24:
173 	__le32 page_lcns_hi;	// 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180 	TransactionUninitialized = 0,
181 	TransactionActive,
182 	TransactionPrepared,
183 	TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 	u8 transact_state;    // 0x04:
189 	u8 reserved[3];       // 0x05:
190 	__le64 first_lsn;     // 0x08:
191 	__le64 prev_lsn;      // 0x10:
192 	__le64 undo_next_lsn; // 0x18:
193 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194 	__le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200 	__le32 major_ver;             // 0x00:
201 	__le32 minor_ver;             // 0x04:
202 	__le64 check_point_start;     // 0x08:
203 	__le64 open_attr_table_lsn;   // 0x10:
204 	__le64 attr_names_lsn;        // 0x18:
205 	__le64 dirty_pages_table_lsn; // 0x20:
206 	__le64 transact_table_lsn;    // 0x28:
207 	__le32 open_attr_len;         // 0x30: In bytes
208 	__le32 attr_names_len;        // 0x34: In bytes
209 	__le32 dirty_pages_len;       // 0x38: In bytes
210 	__le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216 	__le64 alloc_size;
217 	__le64 valid_size;
218 	__le64 data_size;
219 	__le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223 	__le32 bitmap_off;
224 	__le32 bits;
225 };
226 
227 struct LCN_RANGE {
228 	__le64 lcn;
229 	__le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 	__le16 seq_num;
239 	__le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 	__le64 this_lsn;		// 0x00:
245 	__le64 client_prev_lsn;		// 0x08:
246 	__le64 client_undo_next_lsn;	// 0x10:
247 	__le32 client_data_len;		// 0x18:
248 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250 	__le32 transact_id;		// 0x24:
251 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252 	u8 align[6];			// 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261 	u8 align[6];		// 0x02:
262 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270 	__le16 page_count;		// 0x14:
271 	__le16 page_pos;		// 0x16:
272 	struct LFS_RECORD record_hdr;	// 0x18:
273 	__le16 fixups[10];		// 0x28:
274 	__le32 file_off;		// 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298 	Noop = 0x00,
299 	CompensationLogRecord = 0x01,
300 	InitializeFileRecordSegment = 0x02,
301 	DeallocateFileRecordSegment = 0x03,
302 	WriteEndOfFileRecordSegment = 0x04,
303 	CreateAttribute = 0x05,
304 	DeleteAttribute = 0x06,
305 	UpdateResidentValue = 0x07,
306 	UpdateNonresidentValue = 0x08,
307 	UpdateMappingPairs = 0x09,
308 	DeleteDirtyClusters = 0x0A,
309 	SetNewAttributeSizes = 0x0B,
310 	AddIndexEntryRoot = 0x0C,
311 	DeleteIndexEntryRoot = 0x0D,
312 	AddIndexEntryAllocation = 0x0E,
313 	DeleteIndexEntryAllocation = 0x0F,
314 	WriteEndOfIndexBuffer = 0x10,
315 	SetIndexEntryVcnRoot = 0x11,
316 	SetIndexEntryVcnAllocation = 0x12,
317 	UpdateFileNameRoot = 0x13,
318 	UpdateFileNameAllocation = 0x14,
319 	SetBitsInNonresidentBitMap = 0x15,
320 	ClearBitsInNonresidentBitMap = 0x16,
321 	HotFix = 0x17,
322 	EndTopLevelAction = 0x18,
323 	PrepareTransaction = 0x19,
324 	CommitTransaction = 0x1A,
325 	ForgetTransaction = 0x1B,
326 	OpenNonresidentAttribute = 0x1C,
327 	OpenAttributeTableDump = 0x1D,
328 	AttributeNamesDump = 0x1E,
329 	DirtyPageTableDump = 0x1F,
330 	TransactionTableDump = 0x20,
331 	UpdateRecordDataRoot = 0x21,
332 	UpdateRecordDataAllocation = 0x22,
333 
334 	UpdateRelativeDataInIndex =
335 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 	UpdateRelativeDataInIndex2 = 0x24,
337 	ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
349 static inline bool is_target_required(u16 op)
350 {
351 	bool ret = op <= UpdateRecordDataAllocation &&
352 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 	return ret;
354 }
355 
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 	switch (op) {
359 	case Noop:
360 	case DeleteDirtyClusters:
361 	case HotFix:
362 	case EndTopLevelAction:
363 	case PrepareTransaction:
364 	case CommitTransaction:
365 	case ForgetTransaction:
366 	case CompensationLogRecord:
367 	case OpenNonresidentAttribute:
368 	case OpenAttributeTableDump:
369 	case AttributeNamesDump:
370 	case DirtyPageTableDump:
371 	case TransactionTableDump:
372 		return true;
373 	default:
374 		return false;
375 	}
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 	       sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 	u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 	struct LOG_REC_HDR *log_rec;
398 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 	struct CLIENT_ID client;
400 	bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
403 static void lcb_put(struct lcb *lcb)
404 {
405 	if (lcb->alloc)
406 		kfree(lcb->log_rec);
407 	kfree(lcb->lrh);
408 	kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 				     __le16 next_client, u64 *oldest_lsn)
414 {
415 	while (next_client != LFS_NO_CLIENT_LE) {
416 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419 		/* Ignore this block if it's oldest lsn is 0. */
420 		if (lsn && lsn < *oldest_lsn)
421 			*oldest_lsn = lsn;
422 
423 		next_client = cr->next_client;
424 	}
425 }
426 
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 					 const struct RESTART_HDR *rhdr)
429 {
430 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 	u32 page_size = le32_to_cpu(rhdr->page_size);
432 	u32 end_usa;
433 	u16 ro;
434 
435 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 		return false;
438 	}
439 
440 	/* Check that if the file offset isn't 0, it is the system page size. */
441 	if (file_off && file_off != sys_page)
442 		return false;
443 
444 	/* Check support version 1.1+. */
445 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 		return false;
447 
448 	if (le16_to_cpu(rhdr->major_ver) > 2)
449 		return false;
450 
451 	ro = le16_to_cpu(rhdr->ra_off);
452 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 		return false;
454 
455 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458 	if (ro < end_usa)
459 		return false;
460 
461 	return true;
462 }
463 
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 	const struct RESTART_AREA *ra;
467 	u16 cl, fl, ul;
468 	u32 off, l_size, file_dat_bits, file_size_round;
469 	u16 ro = le16_to_cpu(rhdr->ra_off);
470 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472 	if (ro + offsetof(struct RESTART_AREA, l_size) >
473 	    SECTOR_SIZE - sizeof(short))
474 		return false;
475 
476 	ra = Add2Ptr(rhdr, ro);
477 	cl = le16_to_cpu(ra->log_clients);
478 
479 	if (cl > 1)
480 		return false;
481 
482 	off = le16_to_cpu(ra->client_off);
483 
484 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 		return false;
486 
487 	off += cl * sizeof(struct CLIENT_REC);
488 
489 	if (off > sys_page)
490 		return false;
491 
492 	/*
493 	 * Check the restart length field and whether the entire
494 	 * restart area is contained that length.
495 	 */
496 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 	    off > le16_to_cpu(ra->ra_len)) {
498 		return false;
499 	}
500 
501 	/*
502 	 * As a final check make sure that the use list and the free list
503 	 * are either empty or point to a valid client.
504 	 */
505 	fl = le16_to_cpu(ra->client_idx[0]);
506 	ul = le16_to_cpu(ra->client_idx[1]);
507 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 	    (ul != LFS_NO_CLIENT && ul >= cl))
509 		return false;
510 
511 	/* Make sure the sequence number bits match the log file size. */
512 	l_size = le64_to_cpu(ra->l_size);
513 
514 	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515 	file_size_round = 1u << (file_dat_bits + 3);
516 	if (file_size_round != l_size &&
517 	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518 		return false;
519 	}
520 
521 	/* The log page data offset and record header length must be quad-aligned. */
522 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
524 		return false;
525 
526 	return true;
527 }
528 
529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530 					bool usa_error)
531 {
532 	u16 ro = le16_to_cpu(rhdr->ra_off);
533 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534 	u16 ra_len = le16_to_cpu(ra->ra_len);
535 	const struct CLIENT_REC *ca;
536 	u32 i;
537 
538 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539 		return false;
540 
541 	/* Find the start of the client array. */
542 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543 
544 	/*
545 	 * Start with the free list.
546 	 * Check that all the clients are valid and that there isn't a cycle.
547 	 * Do the in-use list on the second pass.
548 	 */
549 	for (i = 0; i < 2; i++) {
550 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551 		bool first_client = true;
552 		u16 clients = le16_to_cpu(ra->log_clients);
553 
554 		while (client_idx != LFS_NO_CLIENT) {
555 			const struct CLIENT_REC *cr;
556 
557 			if (!clients ||
558 			    client_idx >= le16_to_cpu(ra->log_clients))
559 				return false;
560 
561 			clients -= 1;
562 			cr = ca + client_idx;
563 
564 			client_idx = le16_to_cpu(cr->next_client);
565 
566 			if (first_client) {
567 				first_client = false;
568 				if (cr->prev_client != LFS_NO_CLIENT_LE)
569 					return false;
570 			}
571 		}
572 	}
573 
574 	return true;
575 }
576 
577 /*
578  * remove_client
579  *
580  * Remove a client record from a client record list an restart area.
581  */
582 static inline void remove_client(struct CLIENT_REC *ca,
583 				 const struct CLIENT_REC *cr, __le16 *head)
584 {
585 	if (cr->prev_client == LFS_NO_CLIENT_LE)
586 		*head = cr->next_client;
587 	else
588 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589 
590 	if (cr->next_client != LFS_NO_CLIENT_LE)
591 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592 }
593 
594 /*
595  * add_client - Add a client record to the start of a list.
596  */
597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598 {
599 	struct CLIENT_REC *cr = ca + index;
600 
601 	cr->prev_client = LFS_NO_CLIENT_LE;
602 	cr->next_client = *head;
603 
604 	if (*head != LFS_NO_CLIENT_LE)
605 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606 
607 	*head = cpu_to_le16(index);
608 }
609 
610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611 {
612 	__le32 *e;
613 	u32 bprt;
614 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
615 
616 	if (!c) {
617 		if (!t || !t->total)
618 			return NULL;
619 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620 	} else {
621 		e = Add2Ptr(c, rsize);
622 	}
623 
624 	/* Loop until we hit the first one allocated, or the end of the list. */
625 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626 	     e = Add2Ptr(e, rsize)) {
627 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
628 			return e;
629 	}
630 	return NULL;
631 }
632 
633 /*
634  * find_dp - Search for a @vcn in Dirty Page Table.
635  */
636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637 					     u32 target_attr, u64 vcn)
638 {
639 	__le32 ta = cpu_to_le32(target_attr);
640 	struct DIR_PAGE_ENTRY *dp = NULL;
641 
642 	while ((dp = enum_rstbl(dptbl, dp))) {
643 		u64 dp_vcn = le64_to_cpu(dp->vcn);
644 
645 		if (dp->target_attr == ta && vcn >= dp_vcn &&
646 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647 			return dp;
648 		}
649 	}
650 	return NULL;
651 }
652 
653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654 {
655 	if (use_default)
656 		page_size = DefaultLogPageSize;
657 
658 	/* Round the file size down to a system page boundary. */
659 	*l_size &= ~(page_size - 1);
660 
661 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662 	if (*l_size < (MinLogRecordPages + 2) * page_size)
663 		return 0;
664 
665 	return page_size;
666 }
667 
668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669 			  u32 bytes_per_attr_entry)
670 {
671 	u16 t16;
672 
673 	if (bytes < sizeof(struct LOG_REC_HDR))
674 		return false;
675 	if (!tr)
676 		return false;
677 
678 	if ((tr - sizeof(struct RESTART_TABLE)) %
679 	    sizeof(struct TRANSACTION_ENTRY))
680 		return false;
681 
682 	if (le16_to_cpu(lr->redo_off) & 7)
683 		return false;
684 
685 	if (le16_to_cpu(lr->undo_off) & 7)
686 		return false;
687 
688 	if (lr->target_attr)
689 		goto check_lcns;
690 
691 	if (is_target_required(le16_to_cpu(lr->redo_op)))
692 		return false;
693 
694 	if (is_target_required(le16_to_cpu(lr->undo_op)))
695 		return false;
696 
697 check_lcns:
698 	if (!lr->lcns_follow)
699 		goto check_length;
700 
701 	t16 = le16_to_cpu(lr->target_attr);
702 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703 		return false;
704 
705 check_length:
706 	if (bytes < lrh_length(lr))
707 		return false;
708 
709 	return true;
710 }
711 
712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713 {
714 	u32 ts;
715 	u32 i, off;
716 	u16 rsize = le16_to_cpu(rt->size);
717 	u16 ne = le16_to_cpu(rt->used);
718 	u32 ff = le32_to_cpu(rt->first_free);
719 	u32 lf = le32_to_cpu(rt->last_free);
720 
721 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
722 
723 	if (!rsize || rsize > bytes ||
724 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
727 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
728 		return false;
729 	}
730 
731 	/*
732 	 * Verify each entry is either allocated or points
733 	 * to a valid offset the table.
734 	 */
735 	for (i = 0; i < ne; i++) {
736 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
737 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
738 
739 		if (off != RESTART_ENTRY_ALLOCATED && off &&
740 		    (off < sizeof(struct RESTART_TABLE) ||
741 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742 			return false;
743 		}
744 	}
745 
746 	/*
747 	 * Walk through the list headed by the first entry to make
748 	 * sure none of the entries are currently being used.
749 	 */
750 	for (off = ff; off;) {
751 		if (off == RESTART_ENTRY_ALLOCATED)
752 			return false;
753 
754 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755 	}
756 
757 	return true;
758 }
759 
760 /*
761  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
762  */
763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764 {
765 	__le32 *e;
766 	u32 lf = le32_to_cpu(rt->last_free);
767 	__le32 off_le = cpu_to_le32(off);
768 
769 	e = Add2Ptr(rt, off);
770 
771 	if (off < le32_to_cpu(rt->free_goal)) {
772 		*e = rt->first_free;
773 		rt->first_free = off_le;
774 		if (!lf)
775 			rt->last_free = off_le;
776 	} else {
777 		if (lf)
778 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
779 		else
780 			rt->first_free = off_le;
781 
782 		rt->last_free = off_le;
783 		*e = 0;
784 	}
785 
786 	le16_sub_cpu(&rt->total, 1);
787 }
788 
789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790 {
791 	__le32 *e, *last_free;
792 	u32 off;
793 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
796 
797 	if (!t)
798 		return NULL;
799 
800 	t->size = cpu_to_le16(esize);
801 	t->used = cpu_to_le16(used);
802 	t->free_goal = cpu_to_le32(~0u);
803 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804 	t->last_free = cpu_to_le32(lf);
805 
806 	e = (__le32 *)(t + 1);
807 	last_free = Add2Ptr(t, lf);
808 
809 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810 	     e = Add2Ptr(e, esize), off += esize) {
811 		*e = cpu_to_le32(off);
812 	}
813 	return t;
814 }
815 
816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817 						  u32 add, u32 free_goal)
818 {
819 	u16 esize = le16_to_cpu(tbl->size);
820 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821 	u32 used = le16_to_cpu(tbl->used);
822 	struct RESTART_TABLE *rt;
823 
824 	rt = init_rsttbl(esize, used + add);
825 	if (!rt)
826 		return NULL;
827 
828 	memcpy(rt + 1, tbl + 1, esize * used);
829 
830 	rt->free_goal = free_goal == ~0u
831 				? cpu_to_le32(~0u)
832 				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
833 					      free_goal * esize);
834 
835 	if (tbl->first_free) {
836 		rt->first_free = tbl->first_free;
837 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838 	} else {
839 		rt->first_free = osize;
840 	}
841 
842 	rt->total = tbl->total;
843 
844 	kfree(tbl);
845 	return rt;
846 }
847 
848 /*
849  * alloc_rsttbl_idx
850  *
851  * Allocate an index from within a previously initialized Restart Table.
852  */
853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854 {
855 	u32 off;
856 	__le32 *e;
857 	struct RESTART_TABLE *t = *tbl;
858 
859 	if (!t->first_free) {
860 		*tbl = t = extend_rsttbl(t, 16, ~0u);
861 		if (!t)
862 			return NULL;
863 	}
864 
865 	off = le32_to_cpu(t->first_free);
866 
867 	/* Dequeue this entry and zero it. */
868 	e = Add2Ptr(t, off);
869 
870 	t->first_free = *e;
871 
872 	memset(e, 0, le16_to_cpu(t->size));
873 
874 	*e = RESTART_ENTRY_ALLOCATED_LE;
875 
876 	/* If list is going empty, then we fix the last_free as well. */
877 	if (!t->first_free)
878 		t->last_free = 0;
879 
880 	le16_add_cpu(&t->total, 1);
881 
882 	return Add2Ptr(t, off);
883 }
884 
885 /*
886  * alloc_rsttbl_from_idx
887  *
888  * Allocate a specific index from within a previously initialized Restart Table.
889  */
890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891 {
892 	u32 off;
893 	__le32 *e;
894 	struct RESTART_TABLE *rt = *tbl;
895 	u32 bytes = bytes_per_rt(rt);
896 	u16 esize = le16_to_cpu(rt->size);
897 
898 	/* If the entry is not the table, we will have to extend the table. */
899 	if (vbo >= bytes) {
900 		/*
901 		 * Extend the size by computing the number of entries between
902 		 * the existing size and the desired index and adding 1 to that.
903 		 */
904 		u32 bytes2idx = vbo - bytes;
905 
906 		/*
907 		 * There should always be an integral number of entries
908 		 * being added. Now extend the table.
909 		 */
910 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911 		if (!rt)
912 			return NULL;
913 	}
914 
915 	/* See if the entry is already allocated, and just return if it is. */
916 	e = Add2Ptr(rt, vbo);
917 
918 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
919 		return e;
920 
921 	/*
922 	 * Walk through the table, looking for the entry we're
923 	 * interested and the previous entry.
924 	 */
925 	off = le32_to_cpu(rt->first_free);
926 	e = Add2Ptr(rt, off);
927 
928 	if (off == vbo) {
929 		/* this is a match */
930 		rt->first_free = *e;
931 		goto skip_looking;
932 	}
933 
934 	/*
935 	 * Need to walk through the list looking for the predecessor
936 	 * of our entry.
937 	 */
938 	for (;;) {
939 		/* Remember the entry just found */
940 		u32 last_off = off;
941 		__le32 *last_e = e;
942 
943 		/* Should never run of entries. */
944 
945 		/* Lookup up the next entry the list. */
946 		off = le32_to_cpu(*last_e);
947 		e = Add2Ptr(rt, off);
948 
949 		/* If this is our match we are done. */
950 		if (off == vbo) {
951 			*last_e = *e;
952 
953 			/*
954 			 * If this was the last entry, we update that
955 			 * table as well.
956 			 */
957 			if (le32_to_cpu(rt->last_free) == off)
958 				rt->last_free = cpu_to_le32(last_off);
959 			break;
960 		}
961 	}
962 
963 skip_looking:
964 	/* If the list is now empty, we fix the last_free as well. */
965 	if (!rt->first_free)
966 		rt->last_free = 0;
967 
968 	/* Zero this entry. */
969 	memset(e, 0, esize);
970 	*e = RESTART_ENTRY_ALLOCATED_LE;
971 
972 	le16_add_cpu(&rt->total, 1);
973 
974 	return e;
975 }
976 
977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
978 
979 #define NTFSLOG_WRAPPED 0x00000001
980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981 #define NTFSLOG_NO_LAST_LSN 0x00000004
982 #define NTFSLOG_REUSE_TAIL 0x00000010
983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
984 
985 /* Helper struct to work with NTFS $LogFile. */
986 struct ntfs_log {
987 	struct ntfs_inode *ni;
988 
989 	u32 l_size;
990 	u32 sys_page_size;
991 	u32 sys_page_mask;
992 	u32 page_size;
993 	u32 page_mask; // page_size - 1
994 	u8 page_bits;
995 	struct RECORD_PAGE_HDR *one_page_buf;
996 
997 	struct RESTART_TABLE *open_attr_tbl;
998 	u32 transaction_id;
999 	u32 clst_per_page;
1000 
1001 	u32 first_page;
1002 	u32 next_page;
1003 	u32 ra_off;
1004 	u32 data_off;
1005 	u32 restart_size;
1006 	u32 data_size;
1007 	u16 record_header_len;
1008 	u64 seq_num;
1009 	u32 seq_num_bits;
1010 	u32 file_data_bits;
1011 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012 
1013 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014 	u32 ra_size; /* The usable size of the restart area. */
1015 
1016 	/*
1017 	 * If true, then the in-memory restart area is to be written
1018 	 * to the first position on the disk.
1019 	 */
1020 	bool init_ra;
1021 	bool set_dirty; /* True if we need to set dirty flag. */
1022 
1023 	u64 oldest_lsn;
1024 
1025 	u32 oldest_lsn_off;
1026 	u64 last_lsn;
1027 
1028 	u32 total_avail;
1029 	u32 total_avail_pages;
1030 	u32 total_undo_commit;
1031 	u32 max_current_avail;
1032 	u32 current_avail;
1033 	u32 reserved;
1034 
1035 	short major_ver;
1036 	short minor_ver;
1037 
1038 	u32 l_flags; /* See NTFSLOG_XXX */
1039 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1040 
1041 	struct CLIENT_ID client_id;
1042 	u32 client_undo_commit;
1043 };
1044 
1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046 {
1047 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048 
1049 	return vbo;
1050 }
1051 
1052 /* Compute the offset in the log file of the next log page. */
1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054 {
1055 	off = (off & ~log->sys_page_mask) + log->page_size;
1056 	return off >= log->l_size ? log->first_page : off;
1057 }
1058 
1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060 {
1061 	return (((u32)lsn) << 3) & log->page_mask;
1062 }
1063 
1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065 {
1066 	return (off >> 3) + (Seq << log->file_data_bits);
1067 }
1068 
1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070 {
1071 	return lsn >= log->oldest_lsn &&
1072 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1073 }
1074 
1075 static inline u32 hdr_file_off(struct ntfs_log *log,
1076 			       struct RECORD_PAGE_HDR *hdr)
1077 {
1078 	if (log->major_ver < 2)
1079 		return le64_to_cpu(hdr->rhdr.lsn);
1080 
1081 	return le32_to_cpu(hdr->file_off);
1082 }
1083 
1084 static inline u64 base_lsn(struct ntfs_log *log,
1085 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086 {
1087 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088 	u64 ret = (((h_lsn >> log->file_data_bits) +
1089 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090 		   << log->file_data_bits) +
1091 		  ((((is_log_record_end(hdr) &&
1092 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1093 			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
1094 			     : log->page_size) +
1095 		    lsn) >>
1096 		   3);
1097 
1098 	return ret;
1099 }
1100 
1101 static inline bool verify_client_lsn(struct ntfs_log *log,
1102 				     const struct CLIENT_REC *client, u64 lsn)
1103 {
1104 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106 }
1107 
1108 struct restart_info {
1109 	u64 last_lsn;
1110 	struct RESTART_HDR *r_page;
1111 	u32 vbo;
1112 	bool chkdsk_was_run;
1113 	bool valid_page;
1114 	bool initialized;
1115 	bool restart;
1116 };
1117 
1118 static int read_log_page(struct ntfs_log *log, u32 vbo,
1119 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120 {
1121 	int err = 0;
1122 	u32 page_idx = vbo >> log->page_bits;
1123 	u32 page_off = vbo & log->page_mask;
1124 	u32 bytes = log->page_size - page_off;
1125 	void *to_free = NULL;
1126 	u32 page_vbo = page_idx << log->page_bits;
1127 	struct RECORD_PAGE_HDR *page_buf;
1128 	struct ntfs_inode *ni = log->ni;
1129 	bool bBAAD;
1130 
1131 	if (vbo >= log->l_size)
1132 		return -EINVAL;
1133 
1134 	if (!*buffer) {
1135 		to_free = kmalloc(bytes, GFP_NOFS);
1136 		if (!to_free)
1137 			return -ENOMEM;
1138 		*buffer = to_free;
1139 	}
1140 
1141 	page_buf = page_off ? log->one_page_buf : *buffer;
1142 
1143 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144 			       log->page_size, NULL);
1145 	if (err)
1146 		goto out;
1147 
1148 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150 
1151 	if (page_buf != *buffer)
1152 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153 
1154 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155 
1156 	if (usa_error)
1157 		*usa_error = bBAAD;
1158 	/* Check that the update sequence array for this page is valid */
1159 	/* If we don't allow errors, raise an error status */
1160 	else if (bBAAD)
1161 		err = -EINVAL;
1162 
1163 out:
1164 	if (err && to_free) {
1165 		kfree(to_free);
1166 		*buffer = NULL;
1167 	}
1168 
1169 	return err;
1170 }
1171 
1172 /*
1173  * log_read_rst
1174  *
1175  * It walks through 512 blocks of the file looking for a valid
1176  * restart page header. It will stop the first time we find a
1177  * valid page header.
1178  */
1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180 			struct restart_info *info)
1181 {
1182 	u32 skip, vbo;
1183 	struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS);
1184 
1185 	if (!r_page)
1186 		return -ENOMEM;
1187 
1188 	memset(info, 0, sizeof(struct restart_info));
1189 
1190 	/* Determine which restart area we are looking for. */
1191 	if (first) {
1192 		vbo = 0;
1193 		skip = 512;
1194 	} else {
1195 		vbo = 512;
1196 		skip = 0;
1197 	}
1198 
1199 	/* Loop continuously until we succeed. */
1200 	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1201 		bool usa_error;
1202 		u32 sys_page_size;
1203 		bool brst, bchk;
1204 		struct RESTART_AREA *ra;
1205 
1206 		/* Read a page header at the current offset. */
1207 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1208 				  &usa_error)) {
1209 			/* Ignore any errors. */
1210 			continue;
1211 		}
1212 
1213 		/* Exit if the signature is a log record page. */
1214 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1215 			info->initialized = true;
1216 			break;
1217 		}
1218 
1219 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1220 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1221 
1222 		if (!bchk && !brst) {
1223 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1224 				/*
1225 				 * Remember if the signature does not
1226 				 * indicate uninitialized file.
1227 				 */
1228 				info->initialized = true;
1229 			}
1230 			continue;
1231 		}
1232 
1233 		ra = NULL;
1234 		info->valid_page = false;
1235 		info->initialized = true;
1236 		info->vbo = vbo;
1237 
1238 		/* Let's check the restart area if this is a valid page. */
1239 		if (!is_rst_page_hdr_valid(vbo, r_page))
1240 			goto check_result;
1241 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1242 
1243 		if (!is_rst_area_valid(r_page))
1244 			goto check_result;
1245 
1246 		/*
1247 		 * We have a valid restart page header and restart area.
1248 		 * If chkdsk was run or we have no clients then we have
1249 		 * no more checking to do.
1250 		 */
1251 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1252 			info->valid_page = true;
1253 			goto check_result;
1254 		}
1255 
1256 		/* Read the entire restart area. */
1257 		sys_page_size = le32_to_cpu(r_page->sys_page_size);
1258 		if (DefaultLogPageSize != sys_page_size) {
1259 			kfree(r_page);
1260 			r_page = kzalloc(sys_page_size, GFP_NOFS);
1261 			if (!r_page)
1262 				return -ENOMEM;
1263 
1264 			if (read_log_page(log, vbo,
1265 					  (struct RECORD_PAGE_HDR **)&r_page,
1266 					  &usa_error)) {
1267 				/* Ignore any errors. */
1268 				kfree(r_page);
1269 				r_page = NULL;
1270 				continue;
1271 			}
1272 		}
1273 
1274 		if (is_client_area_valid(r_page, usa_error)) {
1275 			info->valid_page = true;
1276 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1277 		}
1278 
1279 check_result:
1280 		/*
1281 		 * If chkdsk was run then update the caller's
1282 		 * values and return.
1283 		 */
1284 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1285 			info->chkdsk_was_run = true;
1286 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1287 			info->restart = true;
1288 			info->r_page = r_page;
1289 			return 0;
1290 		}
1291 
1292 		/*
1293 		 * If we have a valid page then copy the values
1294 		 * we need from it.
1295 		 */
1296 		if (info->valid_page) {
1297 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1298 			info->restart = true;
1299 			info->r_page = r_page;
1300 			return 0;
1301 		}
1302 	}
1303 
1304 	kfree(r_page);
1305 
1306 	return 0;
1307 }
1308 
1309 /*
1310  * Ilog_init_pg_hdr - Init @log from restart page header.
1311  */
1312 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1313 			    u32 page_size, u16 major_ver, u16 minor_ver)
1314 {
1315 	log->sys_page_size = sys_page_size;
1316 	log->sys_page_mask = sys_page_size - 1;
1317 	log->page_size = page_size;
1318 	log->page_mask = page_size - 1;
1319 	log->page_bits = blksize_bits(page_size);
1320 
1321 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1322 	if (!log->clst_per_page)
1323 		log->clst_per_page = 1;
1324 
1325 	log->first_page = major_ver >= 2
1326 				  ? 0x22 * page_size
1327 				  : ((sys_page_size << 1) + (page_size << 1));
1328 	log->major_ver = major_ver;
1329 	log->minor_ver = minor_ver;
1330 }
1331 
1332 /*
1333  * log_create - Init @log in cases when we don't have a restart area to use.
1334  */
1335 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1336 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1337 {
1338 	log->l_size = l_size;
1339 	/* All file offsets must be quadword aligned. */
1340 	log->file_data_bits = blksize_bits(l_size) - 3;
1341 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1342 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1343 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1344 	log->next_page = log->first_page;
1345 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1346 	log->oldest_lsn_off = 0;
1347 	log->last_lsn = log->oldest_lsn;
1348 
1349 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1350 
1351 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1352 	if (wrapped)
1353 		log->l_flags |= NTFSLOG_WRAPPED;
1354 
1355 	if (use_multi_page)
1356 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1357 
1358 	/* Compute the log page values. */
1359 	log->data_off = ALIGN(
1360 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1361 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1362 		8);
1363 	log->data_size = log->page_size - log->data_off;
1364 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1365 
1366 	/* Remember the different page sizes for reservation. */
1367 	log->reserved = log->data_size - log->record_header_len;
1368 
1369 	/* Compute the restart page values. */
1370 	log->ra_off = ALIGN(
1371 		offsetof(struct RESTART_HDR, fixups) +
1372 			sizeof(short) *
1373 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1374 		8);
1375 	log->restart_size = log->sys_page_size - log->ra_off;
1376 	log->ra_size = struct_size(log->ra, clients, 1);
1377 	log->current_openlog_count = open_log_count;
1378 
1379 	/*
1380 	 * The total available log file space is the number of
1381 	 * log file pages times the space available on each page.
1382 	 */
1383 	log->total_avail_pages = log->l_size - log->first_page;
1384 	log->total_avail = log->total_avail_pages >> log->page_bits;
1385 
1386 	/*
1387 	 * We assume that we can't use the end of the page less than
1388 	 * the file record size.
1389 	 * Then we won't need to reserve more than the caller asks for.
1390 	 */
1391 	log->max_current_avail = log->total_avail * log->reserved;
1392 	log->total_avail = log->total_avail * log->data_size;
1393 	log->current_avail = log->max_current_avail;
1394 }
1395 
1396 /*
1397  * log_create_ra - Fill a restart area from the values stored in @log.
1398  */
1399 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1400 {
1401 	struct CLIENT_REC *cr;
1402 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1403 
1404 	if (!ra)
1405 		return NULL;
1406 
1407 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1408 	ra->log_clients = cpu_to_le16(1);
1409 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1410 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1411 		ra->flags = RESTART_SINGLE_PAGE_IO;
1412 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1413 	ra->ra_len = cpu_to_le16(log->ra_size);
1414 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1415 	ra->l_size = cpu_to_le64(log->l_size);
1416 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1417 	ra->data_off = cpu_to_le16(log->data_off);
1418 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1419 
1420 	cr = ra->clients;
1421 
1422 	cr->prev_client = LFS_NO_CLIENT_LE;
1423 	cr->next_client = LFS_NO_CLIENT_LE;
1424 
1425 	return ra;
1426 }
1427 
1428 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1429 {
1430 	u32 base_vbo = lsn << 3;
1431 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1432 	u32 page_off = base_vbo & log->page_mask;
1433 	u32 tail = log->page_size - page_off;
1434 
1435 	page_off -= 1;
1436 
1437 	/* Add the length of the header. */
1438 	data_len += log->record_header_len;
1439 
1440 	/*
1441 	 * If this lsn is contained this log page we are done.
1442 	 * Otherwise we need to walk through several log pages.
1443 	 */
1444 	if (data_len > tail) {
1445 		data_len -= tail;
1446 		tail = log->data_size;
1447 		page_off = log->data_off - 1;
1448 
1449 		for (;;) {
1450 			final_log_off = next_page_off(log, final_log_off);
1451 
1452 			/*
1453 			 * We are done if the remaining bytes
1454 			 * fit on this page.
1455 			 */
1456 			if (data_len <= tail)
1457 				break;
1458 			data_len -= tail;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * We add the remaining bytes to our starting position on this page
1464 	 * and then add that value to the file offset of this log page.
1465 	 */
1466 	return final_log_off + data_len + page_off;
1467 }
1468 
1469 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1470 			u64 *lsn)
1471 {
1472 	int err;
1473 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1474 	u32 vbo = lsn_to_vbo(log, this_lsn);
1475 	u32 end =
1476 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1477 	u32 hdr_off = end & ~log->sys_page_mask;
1478 	u64 seq = this_lsn >> log->file_data_bits;
1479 	struct RECORD_PAGE_HDR *page = NULL;
1480 
1481 	/* Remember if we wrapped. */
1482 	if (end <= vbo)
1483 		seq += 1;
1484 
1485 	/* Log page header for this page. */
1486 	err = read_log_page(log, hdr_off, &page, NULL);
1487 	if (err)
1488 		return err;
1489 
1490 	/*
1491 	 * If the lsn we were given was not the last lsn on this page,
1492 	 * then the starting offset for the next lsn is on a quad word
1493 	 * boundary following the last file offset for the current lsn.
1494 	 * Otherwise the file offset is the start of the data on the next page.
1495 	 */
1496 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1497 		/* If we wrapped, we need to increment the sequence number. */
1498 		hdr_off = next_page_off(log, hdr_off);
1499 		if (hdr_off == log->first_page)
1500 			seq += 1;
1501 
1502 		vbo = hdr_off + log->data_off;
1503 	} else {
1504 		vbo = ALIGN(end, 8);
1505 	}
1506 
1507 	/* Compute the lsn based on the file offset and the sequence count. */
1508 	*lsn = vbo_to_lsn(log, vbo, seq);
1509 
1510 	/*
1511 	 * If this lsn is within the legal range for the file, we return true.
1512 	 * Otherwise false indicates that there are no more lsn's.
1513 	 */
1514 	if (!is_lsn_in_file(log, *lsn))
1515 		*lsn = 0;
1516 
1517 	kfree(page);
1518 
1519 	return 0;
1520 }
1521 
1522 /*
1523  * current_log_avail - Calculate the number of bytes available for log records.
1524  */
1525 static u32 current_log_avail(struct ntfs_log *log)
1526 {
1527 	u32 oldest_off, next_free_off, free_bytes;
1528 
1529 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1530 		/* The entire file is available. */
1531 		return log->max_current_avail;
1532 	}
1533 
1534 	/*
1535 	 * If there is a last lsn the restart area then we know that we will
1536 	 * have to compute the free range.
1537 	 * If there is no oldest lsn then start at the first page of the file.
1538 	 */
1539 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1540 			     ? log->first_page
1541 			     : (log->oldest_lsn_off & ~log->sys_page_mask);
1542 
1543 	/*
1544 	 * We will use the next log page offset to compute the next free page.
1545 	 * If we are going to reuse this page go to the next page.
1546 	 * If we are at the first page then use the end of the file.
1547 	 */
1548 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1549 				? log->next_page + log->page_size
1550 				: log->next_page == log->first_page
1551 					  ? log->l_size
1552 					  : log->next_page;
1553 
1554 	/* If the two offsets are the same then there is no available space. */
1555 	if (oldest_off == next_free_off)
1556 		return 0;
1557 	/*
1558 	 * If the free offset follows the oldest offset then subtract
1559 	 * this range from the total available pages.
1560 	 */
1561 	free_bytes =
1562 		oldest_off < next_free_off
1563 			? log->total_avail_pages - (next_free_off - oldest_off)
1564 			: oldest_off - next_free_off;
1565 
1566 	free_bytes >>= log->page_bits;
1567 	return free_bytes * log->reserved;
1568 }
1569 
1570 static bool check_subseq_log_page(struct ntfs_log *log,
1571 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1572 				  u64 seq)
1573 {
1574 	u64 lsn_seq;
1575 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1576 	u64 lsn = le64_to_cpu(rhdr->lsn);
1577 
1578 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1579 		return false;
1580 
1581 	/*
1582 	 * If the last lsn on the page occurs was written after the page
1583 	 * that caused the original error then we have a fatal error.
1584 	 */
1585 	lsn_seq = lsn >> log->file_data_bits;
1586 
1587 	/*
1588 	 * If the sequence number for the lsn the page is equal or greater
1589 	 * than lsn we expect, then this is a subsequent write.
1590 	 */
1591 	return lsn_seq >= seq ||
1592 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1593 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1594 }
1595 
1596 /*
1597  * last_log_lsn
1598  *
1599  * Walks through the log pages for a file, searching for the
1600  * last log page written to the file.
1601  */
1602 static int last_log_lsn(struct ntfs_log *log)
1603 {
1604 	int err;
1605 	bool usa_error = false;
1606 	bool replace_page = false;
1607 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1608 	bool wrapped_file, wrapped;
1609 
1610 	u32 page_cnt = 1, page_pos = 1;
1611 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1612 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1613 	u32 first_file_off = 0, second_file_off = 0;
1614 	u32 part_io_count = 0;
1615 	u32 tails = 0;
1616 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1617 
1618 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1619 	u64 best_lsn, best_lsn1, best_lsn2;
1620 	u64 lsn_cur, lsn1, lsn2;
1621 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1622 
1623 	u16 cur_pos, best_page_pos;
1624 
1625 	struct RECORD_PAGE_HDR *page = NULL;
1626 	struct RECORD_PAGE_HDR *tst_page = NULL;
1627 	struct RECORD_PAGE_HDR *first_tail = NULL;
1628 	struct RECORD_PAGE_HDR *second_tail = NULL;
1629 	struct RECORD_PAGE_HDR *tail_page = NULL;
1630 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1631 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1632 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1633 	struct RECORD_PAGE_HDR *best_page;
1634 
1635 	if (log->major_ver >= 2) {
1636 		final_off = 0x02 * log->page_size;
1637 		second_off = 0x12 * log->page_size;
1638 
1639 		// 0x10 == 0x12 - 0x2
1640 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1641 		if (!page_bufs)
1642 			return -ENOMEM;
1643 	} else {
1644 		second_off = log->first_page - log->page_size;
1645 		final_off = second_off - log->page_size;
1646 	}
1647 
1648 next_tail:
1649 	/* Read second tail page (at pos 3/0x12000). */
1650 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1651 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1652 		kfree(second_tail);
1653 		second_tail = NULL;
1654 		second_file_off = 0;
1655 		lsn2 = 0;
1656 	} else {
1657 		second_file_off = hdr_file_off(log, second_tail);
1658 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1659 	}
1660 
1661 	/* Read first tail page (at pos 2/0x2000). */
1662 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1663 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1664 		kfree(first_tail);
1665 		first_tail = NULL;
1666 		first_file_off = 0;
1667 		lsn1 = 0;
1668 	} else {
1669 		first_file_off = hdr_file_off(log, first_tail);
1670 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1671 	}
1672 
1673 	if (log->major_ver < 2) {
1674 		int best_page;
1675 
1676 		first_tail_prev = first_tail;
1677 		final_off_prev = first_file_off;
1678 		second_tail_prev = second_tail;
1679 		second_off_prev = second_file_off;
1680 		tails = 1;
1681 
1682 		if (!first_tail && !second_tail)
1683 			goto tail_read;
1684 
1685 		if (first_tail && second_tail)
1686 			best_page = lsn1 < lsn2 ? 1 : 0;
1687 		else if (first_tail)
1688 			best_page = 0;
1689 		else
1690 			best_page = 1;
1691 
1692 		page_off = best_page ? second_file_off : first_file_off;
1693 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1694 		goto tail_read;
1695 	}
1696 
1697 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1698 	best_lsn2 =
1699 		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1700 
1701 	if (first_tail && second_tail) {
1702 		if (best_lsn1 > best_lsn2) {
1703 			best_lsn = best_lsn1;
1704 			best_page = first_tail;
1705 			this_off = first_file_off;
1706 		} else {
1707 			best_lsn = best_lsn2;
1708 			best_page = second_tail;
1709 			this_off = second_file_off;
1710 		}
1711 	} else if (first_tail) {
1712 		best_lsn = best_lsn1;
1713 		best_page = first_tail;
1714 		this_off = first_file_off;
1715 	} else if (second_tail) {
1716 		best_lsn = best_lsn2;
1717 		best_page = second_tail;
1718 		this_off = second_file_off;
1719 	} else {
1720 		goto tail_read;
1721 	}
1722 
1723 	best_page_pos = le16_to_cpu(best_page->page_pos);
1724 
1725 	if (!tails) {
1726 		if (best_page_pos == page_pos) {
1727 			seq_base = best_lsn >> log->file_data_bits;
1728 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1729 			lsn_base = best_lsn;
1730 
1731 			memmove(page_bufs, best_page, log->page_size);
1732 
1733 			page_cnt = le16_to_cpu(best_page->page_count);
1734 			if (page_cnt > 1)
1735 				page_pos += 1;
1736 
1737 			tails = 1;
1738 		}
1739 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1740 		   saved_off + log->page_size == this_off &&
1741 		   lsn_base < best_lsn &&
1742 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1743 		    best_page_pos == 1) &&
1744 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1745 		u16 bppc = le16_to_cpu(best_page->page_count);
1746 
1747 		saved_off += log->page_size;
1748 		lsn_base = best_lsn;
1749 
1750 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1751 			log->page_size);
1752 
1753 		tails += 1;
1754 
1755 		if (best_page_pos != bppc) {
1756 			page_cnt = bppc;
1757 			page_pos = best_page_pos;
1758 
1759 			if (page_cnt > 1)
1760 				page_pos += 1;
1761 		} else {
1762 			page_pos = page_cnt = 1;
1763 		}
1764 	} else {
1765 		kfree(first_tail);
1766 		kfree(second_tail);
1767 		goto tail_read;
1768 	}
1769 
1770 	kfree(first_tail_prev);
1771 	first_tail_prev = first_tail;
1772 	final_off_prev = first_file_off;
1773 	first_tail = NULL;
1774 
1775 	kfree(second_tail_prev);
1776 	second_tail_prev = second_tail;
1777 	second_off_prev = second_file_off;
1778 	second_tail = NULL;
1779 
1780 	final_off += log->page_size;
1781 	second_off += log->page_size;
1782 
1783 	if (tails < 0x10)
1784 		goto next_tail;
1785 tail_read:
1786 	first_tail = first_tail_prev;
1787 	final_off = final_off_prev;
1788 
1789 	second_tail = second_tail_prev;
1790 	second_off = second_off_prev;
1791 
1792 	page_cnt = page_pos = 1;
1793 
1794 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1795 					       : log->next_page;
1796 
1797 	wrapped_file =
1798 		curpage_off == log->first_page &&
1799 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1800 
1801 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1802 
1803 	nextpage_off = curpage_off;
1804 
1805 next_page:
1806 	tail_page = NULL;
1807 	/* Read the next log page. */
1808 	err = read_log_page(log, curpage_off, &page, &usa_error);
1809 
1810 	/* Compute the next log page offset the file. */
1811 	nextpage_off = next_page_off(log, curpage_off);
1812 	wrapped = nextpage_off == log->first_page;
1813 
1814 	if (tails > 1) {
1815 		struct RECORD_PAGE_HDR *cur_page =
1816 			Add2Ptr(page_bufs, curpage_off - page_off);
1817 
1818 		if (curpage_off == saved_off) {
1819 			tail_page = cur_page;
1820 			goto use_tail_page;
1821 		}
1822 
1823 		if (page_off > curpage_off || curpage_off >= saved_off)
1824 			goto use_tail_page;
1825 
1826 		if (page_off1)
1827 			goto use_cur_page;
1828 
1829 		if (!err && !usa_error &&
1830 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1831 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1832 		    cur_page->record_hdr.next_record_off ==
1833 			    page->record_hdr.next_record_off &&
1834 		    ((page_pos == page_cnt &&
1835 		      le16_to_cpu(page->page_pos) == 1) ||
1836 		     (page_pos != page_cnt &&
1837 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1838 		      le16_to_cpu(page->page_count) == page_cnt))) {
1839 			cur_page = NULL;
1840 			goto use_tail_page;
1841 		}
1842 
1843 		page_off1 = page_off;
1844 
1845 use_cur_page:
1846 
1847 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1848 
1849 		if (last_ok_lsn !=
1850 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1851 		    ((lsn_cur >> log->file_data_bits) +
1852 		     ((curpage_off <
1853 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1854 			      ? 1
1855 			      : 0)) != expected_seq) {
1856 			goto check_tail;
1857 		}
1858 
1859 		if (!is_log_record_end(cur_page)) {
1860 			tail_page = NULL;
1861 			last_ok_lsn = lsn_cur;
1862 			goto next_page_1;
1863 		}
1864 
1865 		log->seq_num = expected_seq;
1866 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1867 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1868 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1869 
1870 		if (log->record_header_len <=
1871 		    log->page_size -
1872 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1873 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1874 			log->next_page = curpage_off;
1875 		} else {
1876 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1877 			log->next_page = nextpage_off;
1878 		}
1879 
1880 		if (wrapped_file)
1881 			log->l_flags |= NTFSLOG_WRAPPED;
1882 
1883 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1884 		goto next_page_1;
1885 	}
1886 
1887 	/*
1888 	 * If we are at the expected first page of a transfer check to see
1889 	 * if either tail copy is at this offset.
1890 	 * If this page is the last page of a transfer, check if we wrote
1891 	 * a subsequent tail copy.
1892 	 */
1893 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1894 		/*
1895 		 * Check if the offset matches either the first or second
1896 		 * tail copy. It is possible it will match both.
1897 		 */
1898 		if (curpage_off == final_off)
1899 			tail_page = first_tail;
1900 
1901 		/*
1902 		 * If we already matched on the first page then
1903 		 * check the ending lsn's.
1904 		 */
1905 		if (curpage_off == second_off) {
1906 			if (!tail_page ||
1907 			    (second_tail &&
1908 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1909 				     le64_to_cpu(first_tail->record_hdr
1910 							 .last_end_lsn))) {
1911 				tail_page = second_tail;
1912 			}
1913 		}
1914 	}
1915 
1916 use_tail_page:
1917 	if (tail_page) {
1918 		/* We have a candidate for a tail copy. */
1919 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1920 
1921 		if (last_ok_lsn < lsn_cur) {
1922 			/*
1923 			 * If the sequence number is not expected,
1924 			 * then don't use the tail copy.
1925 			 */
1926 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1927 				tail_page = NULL;
1928 		} else if (last_ok_lsn > lsn_cur) {
1929 			/*
1930 			 * If the last lsn is greater than the one on
1931 			 * this page then forget this tail.
1932 			 */
1933 			tail_page = NULL;
1934 		}
1935 	}
1936 
1937 	/*
1938 	 *If we have an error on the current page,
1939 	 * we will break of this loop.
1940 	 */
1941 	if (err || usa_error)
1942 		goto check_tail;
1943 
1944 	/*
1945 	 * Done if the last lsn on this page doesn't match the previous known
1946 	 * last lsn or the sequence number is not expected.
1947 	 */
1948 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1949 	if (last_ok_lsn != lsn_cur &&
1950 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1951 		goto check_tail;
1952 	}
1953 
1954 	/*
1955 	 * Check that the page position and page count values are correct.
1956 	 * If this is the first page of a transfer the position must be 1
1957 	 * and the count will be unknown.
1958 	 */
1959 	if (page_cnt == page_pos) {
1960 		if (page->page_pos != cpu_to_le16(1) &&
1961 		    (!reuse_page || page->page_pos != page->page_count)) {
1962 			/*
1963 			 * If the current page is the first page we are
1964 			 * looking at and we are reusing this page then
1965 			 * it can be either the first or last page of a
1966 			 * transfer. Otherwise it can only be the first.
1967 			 */
1968 			goto check_tail;
1969 		}
1970 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1971 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1972 		/*
1973 		 * The page position better be 1 more than the last page
1974 		 * position and the page count better match.
1975 		 */
1976 		goto check_tail;
1977 	}
1978 
1979 	/*
1980 	 * We have a valid page the file and may have a valid page
1981 	 * the tail copy area.
1982 	 * If the tail page was written after the page the file then
1983 	 * break of the loop.
1984 	 */
1985 	if (tail_page &&
1986 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1987 		/* Remember if we will replace the page. */
1988 		replace_page = true;
1989 		goto check_tail;
1990 	}
1991 
1992 	tail_page = NULL;
1993 
1994 	if (is_log_record_end(page)) {
1995 		/*
1996 		 * Since we have read this page we know the sequence number
1997 		 * is the same as our expected value.
1998 		 */
1999 		log->seq_num = expected_seq;
2000 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
2001 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
2002 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2003 
2004 		/*
2005 		 * If there is room on this page for another header then
2006 		 * remember we want to reuse the page.
2007 		 */
2008 		if (log->record_header_len <=
2009 		    log->page_size -
2010 			    le16_to_cpu(page->record_hdr.next_record_off)) {
2011 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2012 			log->next_page = curpage_off;
2013 		} else {
2014 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2015 			log->next_page = nextpage_off;
2016 		}
2017 
2018 		/* Remember if we wrapped the log file. */
2019 		if (wrapped_file)
2020 			log->l_flags |= NTFSLOG_WRAPPED;
2021 	}
2022 
2023 	/*
2024 	 * Remember the last page count and position.
2025 	 * Also remember the last known lsn.
2026 	 */
2027 	page_cnt = le16_to_cpu(page->page_count);
2028 	page_pos = le16_to_cpu(page->page_pos);
2029 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2030 
2031 next_page_1:
2032 
2033 	if (wrapped) {
2034 		expected_seq += 1;
2035 		wrapped_file = 1;
2036 	}
2037 
2038 	curpage_off = nextpage_off;
2039 	kfree(page);
2040 	page = NULL;
2041 	reuse_page = 0;
2042 	goto next_page;
2043 
2044 check_tail:
2045 	if (tail_page) {
2046 		log->seq_num = expected_seq;
2047 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2048 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2049 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2050 
2051 		if (log->page_size -
2052 			    le16_to_cpu(
2053 				    tail_page->record_hdr.next_record_off) >=
2054 		    log->record_header_len) {
2055 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2056 			log->next_page = curpage_off;
2057 		} else {
2058 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2059 			log->next_page = nextpage_off;
2060 		}
2061 
2062 		if (wrapped)
2063 			log->l_flags |= NTFSLOG_WRAPPED;
2064 	}
2065 
2066 	/* Remember that the partial IO will start at the next page. */
2067 	second_off = nextpage_off;
2068 
2069 	/*
2070 	 * If the next page is the first page of the file then update
2071 	 * the sequence number for log records which begon the next page.
2072 	 */
2073 	if (wrapped)
2074 		expected_seq += 1;
2075 
2076 	/*
2077 	 * If we have a tail copy or are performing single page I/O we can
2078 	 * immediately look at the next page.
2079 	 */
2080 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2081 		page_cnt = 2;
2082 		page_pos = 1;
2083 		goto check_valid;
2084 	}
2085 
2086 	if (page_pos != page_cnt)
2087 		goto check_valid;
2088 	/*
2089 	 * If the next page causes us to wrap to the beginning of the log
2090 	 * file then we know which page to check next.
2091 	 */
2092 	if (wrapped) {
2093 		page_cnt = 2;
2094 		page_pos = 1;
2095 		goto check_valid;
2096 	}
2097 
2098 	cur_pos = 2;
2099 
2100 next_test_page:
2101 	kfree(tst_page);
2102 	tst_page = NULL;
2103 
2104 	/* Walk through the file, reading log pages. */
2105 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2106 
2107 	/*
2108 	 * If we get a USA error then assume that we correctly found
2109 	 * the end of the original transfer.
2110 	 */
2111 	if (usa_error)
2112 		goto file_is_valid;
2113 
2114 	/*
2115 	 * If we were able to read the page, we examine it to see if it
2116 	 * is the same or different Io block.
2117 	 */
2118 	if (err)
2119 		goto next_test_page_1;
2120 
2121 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2122 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2123 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2124 		page_pos = le16_to_cpu(tst_page->page_pos);
2125 		goto check_valid;
2126 	} else {
2127 		goto file_is_valid;
2128 	}
2129 
2130 next_test_page_1:
2131 
2132 	nextpage_off = next_page_off(log, curpage_off);
2133 	wrapped = nextpage_off == log->first_page;
2134 
2135 	if (wrapped) {
2136 		expected_seq += 1;
2137 		page_cnt = 2;
2138 		page_pos = 1;
2139 	}
2140 
2141 	cur_pos += 1;
2142 	part_io_count += 1;
2143 	if (!wrapped)
2144 		goto next_test_page;
2145 
2146 check_valid:
2147 	/* Skip over the remaining pages this transfer. */
2148 	remain_pages = page_cnt - page_pos - 1;
2149 	part_io_count += remain_pages;
2150 
2151 	while (remain_pages--) {
2152 		nextpage_off = next_page_off(log, curpage_off);
2153 		wrapped = nextpage_off == log->first_page;
2154 
2155 		if (wrapped)
2156 			expected_seq += 1;
2157 	}
2158 
2159 	/* Call our routine to check this log page. */
2160 	kfree(tst_page);
2161 	tst_page = NULL;
2162 
2163 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2164 	if (!err && !usa_error &&
2165 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2166 		err = -EINVAL;
2167 		goto out;
2168 	}
2169 
2170 file_is_valid:
2171 
2172 	/* We have a valid file. */
2173 	if (page_off1 || tail_page) {
2174 		struct RECORD_PAGE_HDR *tmp_page;
2175 
2176 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2177 			err = -EROFS;
2178 			goto out;
2179 		}
2180 
2181 		if (page_off1) {
2182 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2183 			tails -= (page_off1 - page_off) / log->page_size;
2184 			if (!tail_page)
2185 				tails -= 1;
2186 		} else {
2187 			tmp_page = tail_page;
2188 			tails = 1;
2189 		}
2190 
2191 		while (tails--) {
2192 			u64 off = hdr_file_off(log, tmp_page);
2193 
2194 			if (!page) {
2195 				page = kmalloc(log->page_size, GFP_NOFS);
2196 				if (!page)
2197 					return -ENOMEM;
2198 			}
2199 
2200 			/*
2201 			 * Correct page and copy the data from this page
2202 			 * into it and flush it to disk.
2203 			 */
2204 			memcpy(page, tmp_page, log->page_size);
2205 
2206 			/* Fill last flushed lsn value flush the page. */
2207 			if (log->major_ver < 2)
2208 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2209 			else
2210 				page->file_off = 0;
2211 
2212 			page->page_pos = page->page_count = cpu_to_le16(1);
2213 
2214 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2215 
2216 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2217 						&log->ni->file.run, off, page,
2218 						log->page_size, 0);
2219 
2220 			if (err)
2221 				goto out;
2222 
2223 			if (part_io_count && second_off == off) {
2224 				second_off += log->page_size;
2225 				part_io_count -= 1;
2226 			}
2227 
2228 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2229 		}
2230 	}
2231 
2232 	if (part_io_count) {
2233 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2234 			err = -EROFS;
2235 			goto out;
2236 		}
2237 	}
2238 
2239 out:
2240 	kfree(second_tail);
2241 	kfree(first_tail);
2242 	kfree(page);
2243 	kfree(tst_page);
2244 	kfree(page_bufs);
2245 
2246 	return err;
2247 }
2248 
2249 /*
2250  * read_log_rec_buf - Copy a log record from the file to a buffer.
2251  *
2252  * The log record may span several log pages and may even wrap the file.
2253  */
2254 static int read_log_rec_buf(struct ntfs_log *log,
2255 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2256 {
2257 	int err;
2258 	struct RECORD_PAGE_HDR *ph = NULL;
2259 	u64 lsn = le64_to_cpu(rh->this_lsn);
2260 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2261 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2262 	u32 data_len = le32_to_cpu(rh->client_data_len);
2263 
2264 	/*
2265 	 * While there are more bytes to transfer,
2266 	 * we continue to attempt to perform the read.
2267 	 */
2268 	for (;;) {
2269 		bool usa_error;
2270 		u32 tail = log->page_size - off;
2271 
2272 		if (tail >= data_len)
2273 			tail = data_len;
2274 
2275 		data_len -= tail;
2276 
2277 		err = read_log_page(log, vbo, &ph, &usa_error);
2278 		if (err)
2279 			goto out;
2280 
2281 		/*
2282 		 * The last lsn on this page better be greater or equal
2283 		 * to the lsn we are copying.
2284 		 */
2285 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2286 			err = -EINVAL;
2287 			goto out;
2288 		}
2289 
2290 		memcpy(buffer, Add2Ptr(ph, off), tail);
2291 
2292 		/* If there are no more bytes to transfer, we exit the loop. */
2293 		if (!data_len) {
2294 			if (!is_log_record_end(ph) ||
2295 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2296 				err = -EINVAL;
2297 				goto out;
2298 			}
2299 			break;
2300 		}
2301 
2302 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2303 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2304 			err = -EINVAL;
2305 			goto out;
2306 		}
2307 
2308 		vbo = next_page_off(log, vbo);
2309 		off = log->data_off;
2310 
2311 		/*
2312 		 * Adjust our pointer the user's buffer to transfer
2313 		 * the next block to.
2314 		 */
2315 		buffer = Add2Ptr(buffer, tail);
2316 	}
2317 
2318 out:
2319 	kfree(ph);
2320 	return err;
2321 }
2322 
2323 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2324 			 u64 *lsn)
2325 {
2326 	int err;
2327 	struct LFS_RECORD_HDR *rh = NULL;
2328 	const struct CLIENT_REC *cr =
2329 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2330 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2331 	u32 len;
2332 	struct NTFS_RESTART *rst;
2333 
2334 	*lsn = 0;
2335 	*rst_ = NULL;
2336 
2337 	/* If the client doesn't have a restart area, go ahead and exit now. */
2338 	if (!lsnc)
2339 		return 0;
2340 
2341 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2342 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2343 	if (err)
2344 		return err;
2345 
2346 	rst = NULL;
2347 	lsnr = le64_to_cpu(rh->this_lsn);
2348 
2349 	if (lsnc != lsnr) {
2350 		/* If the lsn values don't match, then the disk is corrupt. */
2351 		err = -EINVAL;
2352 		goto out;
2353 	}
2354 
2355 	*lsn = lsnr;
2356 	len = le32_to_cpu(rh->client_data_len);
2357 
2358 	if (!len) {
2359 		err = 0;
2360 		goto out;
2361 	}
2362 
2363 	if (len < sizeof(struct NTFS_RESTART)) {
2364 		err = -EINVAL;
2365 		goto out;
2366 	}
2367 
2368 	rst = kmalloc(len, GFP_NOFS);
2369 	if (!rst) {
2370 		err = -ENOMEM;
2371 		goto out;
2372 	}
2373 
2374 	/* Copy the data into the 'rst' buffer. */
2375 	err = read_log_rec_buf(log, rh, rst);
2376 	if (err)
2377 		goto out;
2378 
2379 	*rst_ = rst;
2380 	rst = NULL;
2381 
2382 out:
2383 	kfree(rh);
2384 	kfree(rst);
2385 
2386 	return err;
2387 }
2388 
2389 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2390 {
2391 	int err;
2392 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2393 	u32 rec_len, len;
2394 
2395 	/* Read the record header for this lsn. */
2396 	if (!rh) {
2397 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2398 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2399 
2400 		lcb->lrh = rh;
2401 		if (err)
2402 			return err;
2403 	}
2404 
2405 	/*
2406 	 * If the lsn the log record doesn't match the desired
2407 	 * lsn then the disk is corrupt.
2408 	 */
2409 	if (lsn != le64_to_cpu(rh->this_lsn))
2410 		return -EINVAL;
2411 
2412 	len = le32_to_cpu(rh->client_data_len);
2413 
2414 	/*
2415 	 * Check that the length field isn't greater than the total
2416 	 * available space the log file.
2417 	 */
2418 	rec_len = len + log->record_header_len;
2419 	if (rec_len >= log->total_avail)
2420 		return -EINVAL;
2421 
2422 	/*
2423 	 * If the entire log record is on this log page,
2424 	 * put a pointer to the log record the context block.
2425 	 */
2426 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2427 		void *lr = kmalloc(len, GFP_NOFS);
2428 
2429 		if (!lr)
2430 			return -ENOMEM;
2431 
2432 		lcb->log_rec = lr;
2433 		lcb->alloc = true;
2434 
2435 		/* Copy the data into the buffer returned. */
2436 		err = read_log_rec_buf(log, rh, lr);
2437 		if (err)
2438 			return err;
2439 	} else {
2440 		/* If beyond the end of the current page -> an error. */
2441 		u32 page_off = lsn_to_page_off(log, lsn);
2442 
2443 		if (page_off + len + log->record_header_len > log->page_size)
2444 			return -EINVAL;
2445 
2446 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2447 		lcb->alloc = false;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 /*
2454  * read_log_rec_lcb - Init the query operation.
2455  */
2456 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2457 			    struct lcb **lcb_)
2458 {
2459 	int err;
2460 	const struct CLIENT_REC *cr;
2461 	struct lcb *lcb;
2462 
2463 	switch (ctx_mode) {
2464 	case lcb_ctx_undo_next:
2465 	case lcb_ctx_prev:
2466 	case lcb_ctx_next:
2467 		break;
2468 	default:
2469 		return -EINVAL;
2470 	}
2471 
2472 	/* Check that the given lsn is the legal range for this client. */
2473 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2474 
2475 	if (!verify_client_lsn(log, cr, lsn))
2476 		return -EINVAL;
2477 
2478 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2479 	if (!lcb)
2480 		return -ENOMEM;
2481 	lcb->client = log->client_id;
2482 	lcb->ctx_mode = ctx_mode;
2483 
2484 	/* Find the log record indicated by the given lsn. */
2485 	err = find_log_rec(log, lsn, lcb);
2486 	if (err)
2487 		goto out;
2488 
2489 	*lcb_ = lcb;
2490 	return 0;
2491 
2492 out:
2493 	lcb_put(lcb);
2494 	*lcb_ = NULL;
2495 	return err;
2496 }
2497 
2498 /*
2499  * find_client_next_lsn
2500  *
2501  * Attempt to find the next lsn to return to a client based on the context mode.
2502  */
2503 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2504 {
2505 	int err;
2506 	u64 next_lsn;
2507 	struct LFS_RECORD_HDR *hdr;
2508 
2509 	hdr = lcb->lrh;
2510 	*lsn = 0;
2511 
2512 	if (lcb_ctx_next != lcb->ctx_mode)
2513 		goto check_undo_next;
2514 
2515 	/* Loop as long as another lsn can be found. */
2516 	for (;;) {
2517 		u64 current_lsn;
2518 
2519 		err = next_log_lsn(log, hdr, &current_lsn);
2520 		if (err)
2521 			goto out;
2522 
2523 		if (!current_lsn)
2524 			break;
2525 
2526 		if (hdr != lcb->lrh)
2527 			kfree(hdr);
2528 
2529 		hdr = NULL;
2530 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2531 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2532 		if (err)
2533 			goto out;
2534 
2535 		if (memcmp(&hdr->client, &lcb->client,
2536 			   sizeof(struct CLIENT_ID))) {
2537 			/*err = -EINVAL; */
2538 		} else if (LfsClientRecord == hdr->record_type) {
2539 			kfree(lcb->lrh);
2540 			lcb->lrh = hdr;
2541 			*lsn = current_lsn;
2542 			return 0;
2543 		}
2544 	}
2545 
2546 out:
2547 	if (hdr != lcb->lrh)
2548 		kfree(hdr);
2549 	return err;
2550 
2551 check_undo_next:
2552 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2553 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2554 	else if (lcb_ctx_prev == lcb->ctx_mode)
2555 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2556 	else
2557 		return 0;
2558 
2559 	if (!next_lsn)
2560 		return 0;
2561 
2562 	if (!verify_client_lsn(
2563 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2564 		    next_lsn))
2565 		return 0;
2566 
2567 	hdr = NULL;
2568 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2569 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2570 	if (err)
2571 		return err;
2572 	kfree(lcb->lrh);
2573 	lcb->lrh = hdr;
2574 
2575 	*lsn = next_lsn;
2576 
2577 	return 0;
2578 }
2579 
2580 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2581 {
2582 	int err;
2583 
2584 	err = find_client_next_lsn(log, lcb, lsn);
2585 	if (err)
2586 		return err;
2587 
2588 	if (!*lsn)
2589 		return 0;
2590 
2591 	if (lcb->alloc)
2592 		kfree(lcb->log_rec);
2593 
2594 	lcb->log_rec = NULL;
2595 	lcb->alloc = false;
2596 	kfree(lcb->lrh);
2597 	lcb->lrh = NULL;
2598 
2599 	return find_log_rec(log, *lsn, lcb);
2600 }
2601 
2602 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2603 {
2604 	__le16 mask;
2605 	u32 min_de, de_off, used, total;
2606 	const struct NTFS_DE *e;
2607 
2608 	if (hdr_has_subnode(hdr)) {
2609 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2610 		mask = NTFS_IE_HAS_SUBNODES;
2611 	} else {
2612 		min_de = sizeof(struct NTFS_DE);
2613 		mask = 0;
2614 	}
2615 
2616 	de_off = le32_to_cpu(hdr->de_off);
2617 	used = le32_to_cpu(hdr->used);
2618 	total = le32_to_cpu(hdr->total);
2619 
2620 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2621 	    de_off + min_de > used || used > total) {
2622 		return false;
2623 	}
2624 
2625 	e = Add2Ptr(hdr, de_off);
2626 	for (;;) {
2627 		u16 esize = le16_to_cpu(e->size);
2628 		struct NTFS_DE *next = Add2Ptr(e, esize);
2629 
2630 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2631 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2632 			return false;
2633 		}
2634 
2635 		if (de_is_last(e))
2636 			break;
2637 
2638 		e = next;
2639 	}
2640 
2641 	return true;
2642 }
2643 
2644 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2645 {
2646 	u16 fo;
2647 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2648 
2649 	if (r->sign != NTFS_INDX_SIGNATURE)
2650 		return false;
2651 
2652 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2653 
2654 	if (le16_to_cpu(r->fix_off) > fo)
2655 		return false;
2656 
2657 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2658 		return false;
2659 
2660 	return check_index_header(&ib->ihdr,
2661 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2662 }
2663 
2664 static inline bool check_index_root(const struct ATTRIB *attr,
2665 				    struct ntfs_sb_info *sbi)
2666 {
2667 	bool ret;
2668 	const struct INDEX_ROOT *root = resident_data(attr);
2669 	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2670 				? sbi->cluster_bits
2671 				: SECTOR_SHIFT;
2672 	u8 block_clst = root->index_block_clst;
2673 
2674 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2675 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2676 	    (root->type == ATTR_NAME &&
2677 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2678 	    (le32_to_cpu(root->index_block_size) !=
2679 	     (block_clst << index_bits)) ||
2680 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2681 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2682 	     block_clst != 0x40 && block_clst != 0x80)) {
2683 		return false;
2684 	}
2685 
2686 	ret = check_index_header(&root->ihdr,
2687 				 le32_to_cpu(attr->res.data_size) -
2688 					 offsetof(struct INDEX_ROOT, ihdr));
2689 	return ret;
2690 }
2691 
2692 static inline bool check_attr(const struct MFT_REC *rec,
2693 			      const struct ATTRIB *attr,
2694 			      struct ntfs_sb_info *sbi)
2695 {
2696 	u32 asize = le32_to_cpu(attr->size);
2697 	u32 rsize = 0;
2698 	u64 dsize, svcn, evcn;
2699 	u16 run_off;
2700 
2701 	/* Check the fixed part of the attribute record header. */
2702 	if (asize >= sbi->record_size ||
2703 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2704 	    (attr->name_len &&
2705 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2706 		     asize)) {
2707 		return false;
2708 	}
2709 
2710 	/* Check the attribute fields. */
2711 	switch (attr->non_res) {
2712 	case 0:
2713 		rsize = le32_to_cpu(attr->res.data_size);
2714 		if (rsize >= asize ||
2715 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2716 			return false;
2717 		}
2718 		break;
2719 
2720 	case 1:
2721 		dsize = le64_to_cpu(attr->nres.data_size);
2722 		svcn = le64_to_cpu(attr->nres.svcn);
2723 		evcn = le64_to_cpu(attr->nres.evcn);
2724 		run_off = le16_to_cpu(attr->nres.run_off);
2725 
2726 		if (svcn > evcn + 1 || run_off >= asize ||
2727 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2728 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2729 			return false;
2730 		}
2731 
2732 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2733 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2734 			return false;
2735 		}
2736 
2737 		return true;
2738 
2739 	default:
2740 		return false;
2741 	}
2742 
2743 	switch (attr->type) {
2744 	case ATTR_NAME:
2745 		if (fname_full_size(Add2Ptr(
2746 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2747 			return false;
2748 		}
2749 		break;
2750 
2751 	case ATTR_ROOT:
2752 		return check_index_root(attr, sbi);
2753 
2754 	case ATTR_STD:
2755 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2756 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2757 			return false;
2758 		}
2759 		break;
2760 
2761 	case ATTR_LIST:
2762 	case ATTR_ID:
2763 	case ATTR_SECURE:
2764 	case ATTR_LABEL:
2765 	case ATTR_VOL_INFO:
2766 	case ATTR_DATA:
2767 	case ATTR_ALLOC:
2768 	case ATTR_BITMAP:
2769 	case ATTR_REPARSE:
2770 	case ATTR_EA_INFO:
2771 	case ATTR_EA:
2772 	case ATTR_PROPERTYSET:
2773 	case ATTR_LOGGED_UTILITY_STREAM:
2774 		break;
2775 
2776 	default:
2777 		return false;
2778 	}
2779 
2780 	return true;
2781 }
2782 
2783 static inline bool check_file_record(const struct MFT_REC *rec,
2784 				     const struct MFT_REC *rec2,
2785 				     struct ntfs_sb_info *sbi)
2786 {
2787 	const struct ATTRIB *attr;
2788 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2789 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2790 	u16 ao = le16_to_cpu(rec->attr_off);
2791 	u32 rs = sbi->record_size;
2792 
2793 	/* Check the file record header for consistency. */
2794 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2795 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2796 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2797 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2798 	    le32_to_cpu(rec->total) != rs) {
2799 		return false;
2800 	}
2801 
2802 	/* Loop to check all of the attributes. */
2803 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2804 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2805 		if (check_attr(rec, attr, sbi))
2806 			continue;
2807 		return false;
2808 	}
2809 
2810 	return true;
2811 }
2812 
2813 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2814 			    const u64 *rlsn)
2815 {
2816 	u64 lsn;
2817 
2818 	if (!rlsn)
2819 		return true;
2820 
2821 	lsn = le64_to_cpu(hdr->lsn);
2822 
2823 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2824 		return false;
2825 
2826 	if (*rlsn > lsn)
2827 		return true;
2828 
2829 	return false;
2830 }
2831 
2832 static inline bool check_if_attr(const struct MFT_REC *rec,
2833 				 const struct LOG_REC_HDR *lrh)
2834 {
2835 	u16 ro = le16_to_cpu(lrh->record_off);
2836 	u16 o = le16_to_cpu(rec->attr_off);
2837 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2838 
2839 	while (o < ro) {
2840 		u32 asize;
2841 
2842 		if (attr->type == ATTR_END)
2843 			break;
2844 
2845 		asize = le32_to_cpu(attr->size);
2846 		if (!asize)
2847 			break;
2848 
2849 		o += asize;
2850 		attr = Add2Ptr(attr, asize);
2851 	}
2852 
2853 	return o == ro;
2854 }
2855 
2856 static inline bool check_if_index_root(const struct MFT_REC *rec,
2857 				       const struct LOG_REC_HDR *lrh)
2858 {
2859 	u16 ro = le16_to_cpu(lrh->record_off);
2860 	u16 o = le16_to_cpu(rec->attr_off);
2861 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2862 
2863 	while (o < ro) {
2864 		u32 asize;
2865 
2866 		if (attr->type == ATTR_END)
2867 			break;
2868 
2869 		asize = le32_to_cpu(attr->size);
2870 		if (!asize)
2871 			break;
2872 
2873 		o += asize;
2874 		attr = Add2Ptr(attr, asize);
2875 	}
2876 
2877 	return o == ro && attr->type == ATTR_ROOT;
2878 }
2879 
2880 static inline bool check_if_root_index(const struct ATTRIB *attr,
2881 				       const struct INDEX_HDR *hdr,
2882 				       const struct LOG_REC_HDR *lrh)
2883 {
2884 	u16 ao = le16_to_cpu(lrh->attr_off);
2885 	u32 de_off = le32_to_cpu(hdr->de_off);
2886 	u32 o = PtrOffset(attr, hdr) + de_off;
2887 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2888 	u32 asize = le32_to_cpu(attr->size);
2889 
2890 	while (o < ao) {
2891 		u16 esize;
2892 
2893 		if (o >= asize)
2894 			break;
2895 
2896 		esize = le16_to_cpu(e->size);
2897 		if (!esize)
2898 			break;
2899 
2900 		o += esize;
2901 		e = Add2Ptr(e, esize);
2902 	}
2903 
2904 	return o == ao;
2905 }
2906 
2907 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2908 					u32 attr_off)
2909 {
2910 	u32 de_off = le32_to_cpu(hdr->de_off);
2911 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2912 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2913 	u32 used = le32_to_cpu(hdr->used);
2914 
2915 	while (o < attr_off) {
2916 		u16 esize;
2917 
2918 		if (de_off >= used)
2919 			break;
2920 
2921 		esize = le16_to_cpu(e->size);
2922 		if (!esize)
2923 			break;
2924 
2925 		o += esize;
2926 		de_off += esize;
2927 		e = Add2Ptr(e, esize);
2928 	}
2929 
2930 	return o == attr_off;
2931 }
2932 
2933 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2934 				    u32 nsize)
2935 {
2936 	u32 asize = le32_to_cpu(attr->size);
2937 	int dsize = nsize - asize;
2938 	u8 *next = Add2Ptr(attr, asize);
2939 	u32 used = le32_to_cpu(rec->used);
2940 
2941 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2942 
2943 	rec->used = cpu_to_le32(used + dsize);
2944 	attr->size = cpu_to_le32(nsize);
2945 }
2946 
2947 struct OpenAttr {
2948 	struct ATTRIB *attr;
2949 	struct runs_tree *run1;
2950 	struct runs_tree run0;
2951 	struct ntfs_inode *ni;
2952 	// CLST rno;
2953 };
2954 
2955 /*
2956  * cmp_type_and_name
2957  *
2958  * Return: 0 if 'attr' has the same type and name.
2959  */
2960 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2961 				    const struct ATTRIB *a2)
2962 {
2963 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2964 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2965 				       a1->name_len * sizeof(short)));
2966 }
2967 
2968 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2969 					 const struct ATTRIB *attr, CLST rno)
2970 {
2971 	struct OPEN_ATTR_ENRTY *oe = NULL;
2972 
2973 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2974 		struct OpenAttr *op_attr;
2975 
2976 		if (ino_get(&oe->ref) != rno)
2977 			continue;
2978 
2979 		op_attr = (struct OpenAttr *)oe->ptr;
2980 		if (!cmp_type_and_name(op_attr->attr, attr))
2981 			return op_attr;
2982 	}
2983 	return NULL;
2984 }
2985 
2986 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2987 					     enum ATTR_TYPE type, u64 size,
2988 					     const u16 *name, size_t name_len,
2989 					     __le16 flags)
2990 {
2991 	struct ATTRIB *attr;
2992 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2993 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2994 	u32 asize = name_size +
2995 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2996 
2997 	attr = kzalloc(asize, GFP_NOFS);
2998 	if (!attr)
2999 		return NULL;
3000 
3001 	attr->type = type;
3002 	attr->size = cpu_to_le32(asize);
3003 	attr->flags = flags;
3004 	attr->non_res = 1;
3005 	attr->name_len = name_len;
3006 
3007 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3008 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3009 	attr->nres.data_size = cpu_to_le64(size);
3010 	attr->nres.valid_size = attr->nres.data_size;
3011 	if (is_ext) {
3012 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3013 		if (is_attr_compressed(attr))
3014 			attr->nres.c_unit = COMPRESSION_UNIT;
3015 
3016 		attr->nres.run_off =
3017 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3018 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3019 		       name_len * sizeof(short));
3020 	} else {
3021 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3022 		attr->nres.run_off =
3023 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3024 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3025 		       name_len * sizeof(short));
3026 	}
3027 
3028 	return attr;
3029 }
3030 
3031 /*
3032  * do_action - Common routine for the Redo and Undo Passes.
3033  * @rlsn: If it is NULL then undo.
3034  */
3035 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3036 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3037 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3038 {
3039 	int err = 0;
3040 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3041 	struct inode *inode = NULL, *inode_parent;
3042 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3043 	CLST rno = 0, rno_base = 0;
3044 	struct INDEX_BUFFER *ib = NULL;
3045 	struct MFT_REC *rec = NULL;
3046 	struct ATTRIB *attr = NULL, *attr2;
3047 	struct INDEX_HDR *hdr;
3048 	struct INDEX_ROOT *root;
3049 	struct NTFS_DE *e, *e1, *e2;
3050 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3051 	struct ATTR_FILE_NAME *fname;
3052 	struct OpenAttr *oa, *oa2;
3053 	u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
3054 	u16 id, id2;
3055 	u32 record_size = sbi->record_size;
3056 	u64 t64;
3057 	u16 roff = le16_to_cpu(lrh->record_off);
3058 	u16 aoff = le16_to_cpu(lrh->attr_off);
3059 	u64 lco = 0;
3060 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3061 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3062 	u64 vbo = cbo + tvo;
3063 	void *buffer_le = NULL;
3064 	u32 bytes = 0;
3065 	bool a_dirty = false;
3066 	u16 data_off;
3067 
3068 	oa = oe->ptr;
3069 
3070 	/* Big switch to prepare. */
3071 	switch (op) {
3072 	/* ============================================================
3073 	 * Process MFT records, as described by the current log record.
3074 	 * ============================================================
3075 	 */
3076 	case InitializeFileRecordSegment:
3077 	case DeallocateFileRecordSegment:
3078 	case WriteEndOfFileRecordSegment:
3079 	case CreateAttribute:
3080 	case DeleteAttribute:
3081 	case UpdateResidentValue:
3082 	case UpdateMappingPairs:
3083 	case SetNewAttributeSizes:
3084 	case AddIndexEntryRoot:
3085 	case DeleteIndexEntryRoot:
3086 	case SetIndexEntryVcnRoot:
3087 	case UpdateFileNameRoot:
3088 	case UpdateRecordDataRoot:
3089 	case ZeroEndOfFileRecord:
3090 		rno = vbo >> sbi->record_bits;
3091 		inode = ilookup(sbi->sb, rno);
3092 		if (inode) {
3093 			mi = &ntfs_i(inode)->mi;
3094 		} else if (op == InitializeFileRecordSegment) {
3095 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3096 			if (!mi)
3097 				return -ENOMEM;
3098 			err = mi_format_new(mi, sbi, rno, 0, false);
3099 			if (err)
3100 				goto out;
3101 		} else {
3102 			/* Read from disk. */
3103 			err = mi_get(sbi, rno, &mi);
3104 			if (err)
3105 				return err;
3106 		}
3107 		rec = mi->mrec;
3108 
3109 		if (op == DeallocateFileRecordSegment)
3110 			goto skip_load_parent;
3111 
3112 		if (InitializeFileRecordSegment != op) {
3113 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3114 				goto dirty_vol;
3115 			if (!check_lsn(&rec->rhdr, rlsn))
3116 				goto out;
3117 			if (!check_file_record(rec, NULL, sbi))
3118 				goto dirty_vol;
3119 			attr = Add2Ptr(rec, roff);
3120 		}
3121 
3122 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3123 			rno_base = rno;
3124 			goto skip_load_parent;
3125 		}
3126 
3127 		rno_base = ino_get(&rec->parent_ref);
3128 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3129 		if (IS_ERR(inode_parent))
3130 			goto skip_load_parent;
3131 
3132 		if (is_bad_inode(inode_parent)) {
3133 			iput(inode_parent);
3134 			goto skip_load_parent;
3135 		}
3136 
3137 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3138 			iput(inode_parent);
3139 		} else {
3140 			if (mi2_child->mrec != mi->mrec)
3141 				memcpy(mi2_child->mrec, mi->mrec,
3142 				       sbi->record_size);
3143 
3144 			if (inode)
3145 				iput(inode);
3146 			else if (mi)
3147 				mi_put(mi);
3148 
3149 			inode = inode_parent;
3150 			mi = mi2_child;
3151 			rec = mi2_child->mrec;
3152 			attr = Add2Ptr(rec, roff);
3153 		}
3154 
3155 skip_load_parent:
3156 		inode_parent = NULL;
3157 		break;
3158 
3159 	/*
3160 	 * Process attributes, as described by the current log record.
3161 	 */
3162 	case UpdateNonresidentValue:
3163 	case AddIndexEntryAllocation:
3164 	case DeleteIndexEntryAllocation:
3165 	case WriteEndOfIndexBuffer:
3166 	case SetIndexEntryVcnAllocation:
3167 	case UpdateFileNameAllocation:
3168 	case SetBitsInNonresidentBitMap:
3169 	case ClearBitsInNonresidentBitMap:
3170 	case UpdateRecordDataAllocation:
3171 		attr = oa->attr;
3172 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3173 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3174 
3175 		if (attr->type == ATTR_ALLOC) {
3176 			t32 = le32_to_cpu(oe->bytes_per_index);
3177 			if (bytes < t32)
3178 				bytes = t32;
3179 		}
3180 
3181 		if (!bytes)
3182 			bytes = lco - cbo;
3183 
3184 		bytes += roff;
3185 		if (attr->type == ATTR_ALLOC)
3186 			bytes = (bytes + 511) & ~511; // align
3187 
3188 		buffer_le = kmalloc(bytes, GFP_NOFS);
3189 		if (!buffer_le)
3190 			return -ENOMEM;
3191 
3192 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3193 				       NULL);
3194 		if (err)
3195 			goto out;
3196 
3197 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3198 			ntfs_fix_post_read(buffer_le, bytes, false);
3199 		break;
3200 
3201 	default:
3202 		WARN_ON(1);
3203 	}
3204 
3205 	/* Big switch to do operation. */
3206 	switch (op) {
3207 	case InitializeFileRecordSegment:
3208 		if (roff + dlen > record_size)
3209 			goto dirty_vol;
3210 
3211 		memcpy(Add2Ptr(rec, roff), data, dlen);
3212 		mi->dirty = true;
3213 		break;
3214 
3215 	case DeallocateFileRecordSegment:
3216 		clear_rec_inuse(rec);
3217 		le16_add_cpu(&rec->seq, 1);
3218 		mi->dirty = true;
3219 		break;
3220 
3221 	case WriteEndOfFileRecordSegment:
3222 		attr2 = (struct ATTRIB *)data;
3223 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3224 			goto dirty_vol;
3225 
3226 		memmove(attr, attr2, dlen);
3227 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3228 
3229 		mi->dirty = true;
3230 		break;
3231 
3232 	case CreateAttribute:
3233 		attr2 = (struct ATTRIB *)data;
3234 		asize = le32_to_cpu(attr2->size);
3235 		used = le32_to_cpu(rec->used);
3236 
3237 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3238 		    !IS_ALIGNED(asize, 8) ||
3239 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3240 		    dlen > record_size - used) {
3241 			goto dirty_vol;
3242 		}
3243 
3244 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3245 		memcpy(attr, attr2, asize);
3246 
3247 		rec->used = cpu_to_le32(used + asize);
3248 		id = le16_to_cpu(rec->next_attr_id);
3249 		id2 = le16_to_cpu(attr2->id);
3250 		if (id <= id2)
3251 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3252 		if (is_attr_indexed(attr))
3253 			le16_add_cpu(&rec->hard_links, 1);
3254 
3255 		oa2 = find_loaded_attr(log, attr, rno_base);
3256 		if (oa2) {
3257 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3258 					   GFP_NOFS);
3259 			if (p2) {
3260 				// run_close(oa2->run1);
3261 				kfree(oa2->attr);
3262 				oa2->attr = p2;
3263 			}
3264 		}
3265 
3266 		mi->dirty = true;
3267 		break;
3268 
3269 	case DeleteAttribute:
3270 		asize = le32_to_cpu(attr->size);
3271 		used = le32_to_cpu(rec->used);
3272 
3273 		if (!check_if_attr(rec, lrh))
3274 			goto dirty_vol;
3275 
3276 		rec->used = cpu_to_le32(used - asize);
3277 		if (is_attr_indexed(attr))
3278 			le16_add_cpu(&rec->hard_links, -1);
3279 
3280 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3281 
3282 		mi->dirty = true;
3283 		break;
3284 
3285 	case UpdateResidentValue:
3286 		nsize = aoff + dlen;
3287 
3288 		if (!check_if_attr(rec, lrh))
3289 			goto dirty_vol;
3290 
3291 		asize = le32_to_cpu(attr->size);
3292 		used = le32_to_cpu(rec->used);
3293 
3294 		if (lrh->redo_len == lrh->undo_len) {
3295 			if (nsize > asize)
3296 				goto dirty_vol;
3297 			goto move_data;
3298 		}
3299 
3300 		if (nsize > asize && nsize - asize > record_size - used)
3301 			goto dirty_vol;
3302 
3303 		nsize = ALIGN(nsize, 8);
3304 		data_off = le16_to_cpu(attr->res.data_off);
3305 
3306 		if (nsize < asize) {
3307 			memmove(Add2Ptr(attr, aoff), data, dlen);
3308 			data = NULL; // To skip below memmove().
3309 		}
3310 
3311 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3312 			used - le16_to_cpu(lrh->record_off) - asize);
3313 
3314 		rec->used = cpu_to_le32(used + nsize - asize);
3315 		attr->size = cpu_to_le32(nsize);
3316 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3317 
3318 move_data:
3319 		if (data)
3320 			memmove(Add2Ptr(attr, aoff), data, dlen);
3321 
3322 		oa2 = find_loaded_attr(log, attr, rno_base);
3323 		if (oa2) {
3324 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3325 					   GFP_NOFS);
3326 			if (p2) {
3327 				// run_close(&oa2->run0);
3328 				oa2->run1 = &oa2->run0;
3329 				kfree(oa2->attr);
3330 				oa2->attr = p2;
3331 			}
3332 		}
3333 
3334 		mi->dirty = true;
3335 		break;
3336 
3337 	case UpdateMappingPairs:
3338 		nsize = aoff + dlen;
3339 		asize = le32_to_cpu(attr->size);
3340 		used = le32_to_cpu(rec->used);
3341 
3342 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3343 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3344 		    (nsize > asize && nsize - asize > record_size - used)) {
3345 			goto dirty_vol;
3346 		}
3347 
3348 		nsize = ALIGN(nsize, 8);
3349 
3350 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3351 			used - le16_to_cpu(lrh->record_off) - asize);
3352 		rec->used = cpu_to_le32(used + nsize - asize);
3353 		attr->size = cpu_to_le32(nsize);
3354 		memmove(Add2Ptr(attr, aoff), data, dlen);
3355 
3356 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3357 					attr_run(attr), &t64)) {
3358 			goto dirty_vol;
3359 		}
3360 
3361 		attr->nres.evcn = cpu_to_le64(t64);
3362 		oa2 = find_loaded_attr(log, attr, rno_base);
3363 		if (oa2 && oa2->attr->non_res)
3364 			oa2->attr->nres.evcn = attr->nres.evcn;
3365 
3366 		mi->dirty = true;
3367 		break;
3368 
3369 	case SetNewAttributeSizes:
3370 		new_sz = data;
3371 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3372 			goto dirty_vol;
3373 
3374 		attr->nres.alloc_size = new_sz->alloc_size;
3375 		attr->nres.data_size = new_sz->data_size;
3376 		attr->nres.valid_size = new_sz->valid_size;
3377 
3378 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3379 			attr->nres.total_size = new_sz->total_size;
3380 
3381 		oa2 = find_loaded_attr(log, attr, rno_base);
3382 		if (oa2) {
3383 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3384 					   GFP_NOFS);
3385 			if (p2) {
3386 				kfree(oa2->attr);
3387 				oa2->attr = p2;
3388 			}
3389 		}
3390 		mi->dirty = true;
3391 		break;
3392 
3393 	case AddIndexEntryRoot:
3394 		e = (struct NTFS_DE *)data;
3395 		esize = le16_to_cpu(e->size);
3396 		root = resident_data(attr);
3397 		hdr = &root->ihdr;
3398 		used = le32_to_cpu(hdr->used);
3399 
3400 		if (!check_if_index_root(rec, lrh) ||
3401 		    !check_if_root_index(attr, hdr, lrh) ||
3402 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3403 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3404 			goto dirty_vol;
3405 		}
3406 
3407 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3408 
3409 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3410 
3411 		memmove(Add2Ptr(e1, esize), e1,
3412 			PtrOffset(e1, Add2Ptr(hdr, used)));
3413 		memmove(e1, e, esize);
3414 
3415 		le32_add_cpu(&attr->res.data_size, esize);
3416 		hdr->used = cpu_to_le32(used + esize);
3417 		le32_add_cpu(&hdr->total, esize);
3418 
3419 		mi->dirty = true;
3420 		break;
3421 
3422 	case DeleteIndexEntryRoot:
3423 		root = resident_data(attr);
3424 		hdr = &root->ihdr;
3425 		used = le32_to_cpu(hdr->used);
3426 
3427 		if (!check_if_index_root(rec, lrh) ||
3428 		    !check_if_root_index(attr, hdr, lrh)) {
3429 			goto dirty_vol;
3430 		}
3431 
3432 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3433 		esize = le16_to_cpu(e1->size);
3434 		e2 = Add2Ptr(e1, esize);
3435 
3436 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3437 
3438 		le32_sub_cpu(&attr->res.data_size, esize);
3439 		hdr->used = cpu_to_le32(used - esize);
3440 		le32_sub_cpu(&hdr->total, esize);
3441 
3442 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3443 
3444 		mi->dirty = true;
3445 		break;
3446 
3447 	case SetIndexEntryVcnRoot:
3448 		root = resident_data(attr);
3449 		hdr = &root->ihdr;
3450 
3451 		if (!check_if_index_root(rec, lrh) ||
3452 		    !check_if_root_index(attr, hdr, lrh)) {
3453 			goto dirty_vol;
3454 		}
3455 
3456 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3457 
3458 		de_set_vbn_le(e, *(__le64 *)data);
3459 		mi->dirty = true;
3460 		break;
3461 
3462 	case UpdateFileNameRoot:
3463 		root = resident_data(attr);
3464 		hdr = &root->ihdr;
3465 
3466 		if (!check_if_index_root(rec, lrh) ||
3467 		    !check_if_root_index(attr, hdr, lrh)) {
3468 			goto dirty_vol;
3469 		}
3470 
3471 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3472 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3473 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3474 		mi->dirty = true;
3475 		break;
3476 
3477 	case UpdateRecordDataRoot:
3478 		root = resident_data(attr);
3479 		hdr = &root->ihdr;
3480 
3481 		if (!check_if_index_root(rec, lrh) ||
3482 		    !check_if_root_index(attr, hdr, lrh)) {
3483 			goto dirty_vol;
3484 		}
3485 
3486 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3487 
3488 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3489 
3490 		mi->dirty = true;
3491 		break;
3492 
3493 	case ZeroEndOfFileRecord:
3494 		if (roff + dlen > record_size)
3495 			goto dirty_vol;
3496 
3497 		memset(attr, 0, dlen);
3498 		mi->dirty = true;
3499 		break;
3500 
3501 	case UpdateNonresidentValue:
3502 		if (lco < cbo + roff + dlen)
3503 			goto dirty_vol;
3504 
3505 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3506 
3507 		a_dirty = true;
3508 		if (attr->type == ATTR_ALLOC)
3509 			ntfs_fix_pre_write(buffer_le, bytes);
3510 		break;
3511 
3512 	case AddIndexEntryAllocation:
3513 		ib = Add2Ptr(buffer_le, roff);
3514 		hdr = &ib->ihdr;
3515 		e = data;
3516 		esize = le16_to_cpu(e->size);
3517 		e1 = Add2Ptr(ib, aoff);
3518 
3519 		if (is_baad(&ib->rhdr))
3520 			goto dirty_vol;
3521 		if (!check_lsn(&ib->rhdr, rlsn))
3522 			goto out;
3523 
3524 		used = le32_to_cpu(hdr->used);
3525 
3526 		if (!check_index_buffer(ib, bytes) ||
3527 		    !check_if_alloc_index(hdr, aoff) ||
3528 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3529 		    used + esize > le32_to_cpu(hdr->total)) {
3530 			goto dirty_vol;
3531 		}
3532 
3533 		memmove(Add2Ptr(e1, esize), e1,
3534 			PtrOffset(e1, Add2Ptr(hdr, used)));
3535 		memcpy(e1, e, esize);
3536 
3537 		hdr->used = cpu_to_le32(used + esize);
3538 
3539 		a_dirty = true;
3540 
3541 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3542 		break;
3543 
3544 	case DeleteIndexEntryAllocation:
3545 		ib = Add2Ptr(buffer_le, roff);
3546 		hdr = &ib->ihdr;
3547 		e = Add2Ptr(ib, aoff);
3548 		esize = le16_to_cpu(e->size);
3549 
3550 		if (is_baad(&ib->rhdr))
3551 			goto dirty_vol;
3552 		if (!check_lsn(&ib->rhdr, rlsn))
3553 			goto out;
3554 
3555 		if (!check_index_buffer(ib, bytes) ||
3556 		    !check_if_alloc_index(hdr, aoff)) {
3557 			goto dirty_vol;
3558 		}
3559 
3560 		e1 = Add2Ptr(e, esize);
3561 		nsize = esize;
3562 		used = le32_to_cpu(hdr->used);
3563 
3564 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3565 
3566 		hdr->used = cpu_to_le32(used - nsize);
3567 
3568 		a_dirty = true;
3569 
3570 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3571 		break;
3572 
3573 	case WriteEndOfIndexBuffer:
3574 		ib = Add2Ptr(buffer_le, roff);
3575 		hdr = &ib->ihdr;
3576 		e = Add2Ptr(ib, aoff);
3577 
3578 		if (is_baad(&ib->rhdr))
3579 			goto dirty_vol;
3580 		if (!check_lsn(&ib->rhdr, rlsn))
3581 			goto out;
3582 		if (!check_index_buffer(ib, bytes) ||
3583 		    !check_if_alloc_index(hdr, aoff) ||
3584 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3585 					  le32_to_cpu(hdr->total)) {
3586 			goto dirty_vol;
3587 		}
3588 
3589 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3590 		memmove(e, data, dlen);
3591 
3592 		a_dirty = true;
3593 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3594 		break;
3595 
3596 	case SetIndexEntryVcnAllocation:
3597 		ib = Add2Ptr(buffer_le, roff);
3598 		hdr = &ib->ihdr;
3599 		e = Add2Ptr(ib, aoff);
3600 
3601 		if (is_baad(&ib->rhdr))
3602 			goto dirty_vol;
3603 
3604 		if (!check_lsn(&ib->rhdr, rlsn))
3605 			goto out;
3606 		if (!check_index_buffer(ib, bytes) ||
3607 		    !check_if_alloc_index(hdr, aoff)) {
3608 			goto dirty_vol;
3609 		}
3610 
3611 		de_set_vbn_le(e, *(__le64 *)data);
3612 
3613 		a_dirty = true;
3614 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3615 		break;
3616 
3617 	case UpdateFileNameAllocation:
3618 		ib = Add2Ptr(buffer_le, roff);
3619 		hdr = &ib->ihdr;
3620 		e = Add2Ptr(ib, aoff);
3621 
3622 		if (is_baad(&ib->rhdr))
3623 			goto dirty_vol;
3624 
3625 		if (!check_lsn(&ib->rhdr, rlsn))
3626 			goto out;
3627 		if (!check_index_buffer(ib, bytes) ||
3628 		    !check_if_alloc_index(hdr, aoff)) {
3629 			goto dirty_vol;
3630 		}
3631 
3632 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3633 		memmove(&fname->dup, data, sizeof(fname->dup));
3634 
3635 		a_dirty = true;
3636 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3637 		break;
3638 
3639 	case SetBitsInNonresidentBitMap:
3640 		bmp_off =
3641 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3642 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3643 
3644 		if (cbo + (bmp_off + 7) / 8 > lco ||
3645 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3646 			goto dirty_vol;
3647 		}
3648 
3649 		__bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3650 		a_dirty = true;
3651 		break;
3652 
3653 	case ClearBitsInNonresidentBitMap:
3654 		bmp_off =
3655 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3656 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3657 
3658 		if (cbo + (bmp_off + 7) / 8 > lco ||
3659 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3660 			goto dirty_vol;
3661 		}
3662 
3663 		__bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3664 		a_dirty = true;
3665 		break;
3666 
3667 	case UpdateRecordDataAllocation:
3668 		ib = Add2Ptr(buffer_le, roff);
3669 		hdr = &ib->ihdr;
3670 		e = Add2Ptr(ib, aoff);
3671 
3672 		if (is_baad(&ib->rhdr))
3673 			goto dirty_vol;
3674 
3675 		if (!check_lsn(&ib->rhdr, rlsn))
3676 			goto out;
3677 		if (!check_index_buffer(ib, bytes) ||
3678 		    !check_if_alloc_index(hdr, aoff)) {
3679 			goto dirty_vol;
3680 		}
3681 
3682 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3683 
3684 		a_dirty = true;
3685 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3686 		break;
3687 
3688 	default:
3689 		WARN_ON(1);
3690 	}
3691 
3692 	if (rlsn) {
3693 		__le64 t64 = cpu_to_le64(*rlsn);
3694 
3695 		if (rec)
3696 			rec->rhdr.lsn = t64;
3697 		if (ib)
3698 			ib->rhdr.lsn = t64;
3699 	}
3700 
3701 	if (mi && mi->dirty) {
3702 		err = mi_write(mi, 0);
3703 		if (err)
3704 			goto out;
3705 	}
3706 
3707 	if (a_dirty) {
3708 		attr = oa->attr;
3709 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3710 		if (err)
3711 			goto out;
3712 	}
3713 
3714 out:
3715 
3716 	if (inode)
3717 		iput(inode);
3718 	else if (mi != mi2_child)
3719 		mi_put(mi);
3720 
3721 	kfree(buffer_le);
3722 
3723 	return err;
3724 
3725 dirty_vol:
3726 	log->set_dirty = true;
3727 	goto out;
3728 }
3729 
3730 /*
3731  * log_replay - Replays log and empties it.
3732  *
3733  * This function is called during mount operation.
3734  * It replays log and empties it.
3735  * Initialized is set false if logfile contains '-1'.
3736  */
3737 int log_replay(struct ntfs_inode *ni, bool *initialized)
3738 {
3739 	int err;
3740 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3741 	struct ntfs_log *log;
3742 
3743 	struct restart_info rst_info, rst_info2;
3744 	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3745 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3746 	struct ATTR_NAME_ENTRY *ane;
3747 	struct RESTART_TABLE *dptbl = NULL;
3748 	struct RESTART_TABLE *trtbl = NULL;
3749 	const struct RESTART_TABLE *rt;
3750 	struct RESTART_TABLE *oatbl = NULL;
3751 	struct inode *inode;
3752 	struct OpenAttr *oa;
3753 	struct ntfs_inode *ni_oe;
3754 	struct ATTRIB *attr = NULL;
3755 	u64 size, vcn, undo_next_lsn;
3756 	CLST rno, lcn, lcn0, len0, clen;
3757 	void *data;
3758 	struct NTFS_RESTART *rst = NULL;
3759 	struct lcb *lcb = NULL;
3760 	struct OPEN_ATTR_ENRTY *oe;
3761 	struct TRANSACTION_ENTRY *tr;
3762 	struct DIR_PAGE_ENTRY *dp;
3763 	u32 i, bytes_per_attr_entry;
3764 	u32 l_size = ni->vfs_inode.i_size;
3765 	u32 orig_file_size = l_size;
3766 	u32 page_size, vbo, tail, off, dlen;
3767 	u32 saved_len, rec_len, transact_id;
3768 	bool use_second_page;
3769 	struct RESTART_AREA *ra2, *ra = NULL;
3770 	struct CLIENT_REC *ca, *cr;
3771 	__le16 client;
3772 	struct RESTART_HDR *rh;
3773 	const struct LFS_RECORD_HDR *frh;
3774 	const struct LOG_REC_HDR *lrh;
3775 	bool is_mapped;
3776 	bool is_ro = sb_rdonly(sbi->sb);
3777 	u64 t64;
3778 	u16 t16;
3779 	u32 t32;
3780 
3781 	/* Get the size of page. NOTE: To replay we can use default page. */
3782 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3783 	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3784 #else
3785 	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3786 #endif
3787 	if (!page_size)
3788 		return -EINVAL;
3789 
3790 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3791 	if (!log)
3792 		return -ENOMEM;
3793 
3794 	log->ni = ni;
3795 	log->l_size = l_size;
3796 	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3797 
3798 	if (!log->one_page_buf) {
3799 		err = -ENOMEM;
3800 		goto out;
3801 	}
3802 
3803 	log->page_size = page_size;
3804 	log->page_mask = page_size - 1;
3805 	log->page_bits = blksize_bits(page_size);
3806 
3807 	/* Look for a restart area on the disk. */
3808 	err = log_read_rst(log, l_size, true, &rst_info);
3809 	if (err)
3810 		goto out;
3811 
3812 	/* remember 'initialized' */
3813 	*initialized = rst_info.initialized;
3814 
3815 	if (!rst_info.restart) {
3816 		if (rst_info.initialized) {
3817 			/* No restart area but the file is not initialized. */
3818 			err = -EINVAL;
3819 			goto out;
3820 		}
3821 
3822 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3823 		log_create(log, l_size, 0, get_random_int(), false, false);
3824 
3825 		log->ra = ra;
3826 
3827 		ra = log_create_ra(log);
3828 		if (!ra) {
3829 			err = -ENOMEM;
3830 			goto out;
3831 		}
3832 		log->ra = ra;
3833 		log->init_ra = true;
3834 
3835 		goto process_log;
3836 	}
3837 
3838 	/*
3839 	 * If the restart offset above wasn't zero then we won't
3840 	 * look for a second restart.
3841 	 */
3842 	if (rst_info.vbo)
3843 		goto check_restart_area;
3844 
3845 	err = log_read_rst(log, l_size, false, &rst_info2);
3846 
3847 	/* Determine which restart area to use. */
3848 	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3849 		goto use_first_page;
3850 
3851 	use_second_page = true;
3852 
3853 	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3854 		struct RECORD_PAGE_HDR *sp = NULL;
3855 		bool usa_error;
3856 
3857 		if (!read_log_page(log, page_size, &sp, &usa_error) &&
3858 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3859 			use_second_page = false;
3860 		}
3861 		kfree(sp);
3862 	}
3863 
3864 	if (use_second_page) {
3865 		kfree(rst_info.r_page);
3866 		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3867 		rst_info2.r_page = NULL;
3868 	}
3869 
3870 use_first_page:
3871 	kfree(rst_info2.r_page);
3872 
3873 check_restart_area:
3874 	/*
3875 	 * If the restart area is at offset 0, we want
3876 	 * to write the second restart area first.
3877 	 */
3878 	log->init_ra = !!rst_info.vbo;
3879 
3880 	/* If we have a valid page then grab a pointer to the restart area. */
3881 	ra2 = rst_info.valid_page
3882 		      ? Add2Ptr(rst_info.r_page,
3883 				le16_to_cpu(rst_info.r_page->ra_off))
3884 		      : NULL;
3885 
3886 	if (rst_info.chkdsk_was_run ||
3887 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3888 		bool wrapped = false;
3889 		bool use_multi_page = false;
3890 		u32 open_log_count;
3891 
3892 		/* Do some checks based on whether we have a valid log page. */
3893 		if (!rst_info.valid_page) {
3894 			open_log_count = get_random_int();
3895 			goto init_log_instance;
3896 		}
3897 		open_log_count = le32_to_cpu(ra2->open_log_count);
3898 
3899 		/*
3900 		 * If the restart page size isn't changing then we want to
3901 		 * check how much work we need to do.
3902 		 */
3903 		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3904 			goto init_log_instance;
3905 
3906 init_log_instance:
3907 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3908 
3909 		log_create(log, l_size, rst_info.last_lsn, open_log_count,
3910 			   wrapped, use_multi_page);
3911 
3912 		ra = log_create_ra(log);
3913 		if (!ra) {
3914 			err = -ENOMEM;
3915 			goto out;
3916 		}
3917 		log->ra = ra;
3918 
3919 		/* Put the restart areas and initialize
3920 		 * the log file as required.
3921 		 */
3922 		goto process_log;
3923 	}
3924 
3925 	if (!ra2) {
3926 		err = -EINVAL;
3927 		goto out;
3928 	}
3929 
3930 	/*
3931 	 * If the log page or the system page sizes have changed, we can't
3932 	 * use the log file. We must use the system page size instead of the
3933 	 * default size if there is not a clean shutdown.
3934 	 */
3935 	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3936 	if (page_size != t32) {
3937 		l_size = orig_file_size;
3938 		page_size =
3939 			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3940 	}
3941 
3942 	if (page_size != t32 ||
3943 	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3944 		err = -EINVAL;
3945 		goto out;
3946 	}
3947 
3948 	/* If the file size has shrunk then we won't mount it. */
3949 	if (l_size < le64_to_cpu(ra2->l_size)) {
3950 		err = -EINVAL;
3951 		goto out;
3952 	}
3953 
3954 	log_init_pg_hdr(log, page_size, page_size,
3955 			le16_to_cpu(rst_info.r_page->major_ver),
3956 			le16_to_cpu(rst_info.r_page->minor_ver));
3957 
3958 	log->l_size = le64_to_cpu(ra2->l_size);
3959 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3960 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3961 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3962 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3963 	log->seq_num = log->last_lsn >> log->file_data_bits;
3964 	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3965 	log->restart_size = log->sys_page_size - log->ra_off;
3966 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3967 	log->ra_size = le16_to_cpu(ra2->ra_len);
3968 	log->data_off = le16_to_cpu(ra2->data_off);
3969 	log->data_size = log->page_size - log->data_off;
3970 	log->reserved = log->data_size - log->record_header_len;
3971 
3972 	vbo = lsn_to_vbo(log, log->last_lsn);
3973 
3974 	if (vbo < log->first_page) {
3975 		/* This is a pseudo lsn. */
3976 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3977 		log->next_page = log->first_page;
3978 		goto find_oldest;
3979 	}
3980 
3981 	/* Find the end of this log record. */
3982 	off = final_log_off(log, log->last_lsn,
3983 			    le32_to_cpu(ra2->last_lsn_data_len));
3984 
3985 	/* If we wrapped the file then increment the sequence number. */
3986 	if (off <= vbo) {
3987 		log->seq_num += 1;
3988 		log->l_flags |= NTFSLOG_WRAPPED;
3989 	}
3990 
3991 	/* Now compute the next log page to use. */
3992 	vbo &= ~log->sys_page_mask;
3993 	tail = log->page_size - (off & log->page_mask) - 1;
3994 
3995 	/*
3996 	 *If we can fit another log record on the page,
3997 	 * move back a page the log file.
3998 	 */
3999 	if (tail >= log->record_header_len) {
4000 		log->l_flags |= NTFSLOG_REUSE_TAIL;
4001 		log->next_page = vbo;
4002 	} else {
4003 		log->next_page = next_page_off(log, vbo);
4004 	}
4005 
4006 find_oldest:
4007 	/*
4008 	 * Find the oldest client lsn. Use the last
4009 	 * flushed lsn as a starting point.
4010 	 */
4011 	log->oldest_lsn = log->last_lsn;
4012 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4013 			  ra2->client_idx[1], &log->oldest_lsn);
4014 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4015 
4016 	if (log->oldest_lsn_off < log->first_page)
4017 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4018 
4019 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4020 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4021 
4022 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4023 	log->total_avail_pages = log->l_size - log->first_page;
4024 	log->total_avail = log->total_avail_pages >> log->page_bits;
4025 	log->max_current_avail = log->total_avail * log->reserved;
4026 	log->total_avail = log->total_avail * log->data_size;
4027 
4028 	log->current_avail = current_log_avail(log);
4029 
4030 	ra = kzalloc(log->restart_size, GFP_NOFS);
4031 	if (!ra) {
4032 		err = -ENOMEM;
4033 		goto out;
4034 	}
4035 	log->ra = ra;
4036 
4037 	t16 = le16_to_cpu(ra2->client_off);
4038 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4039 		memcpy(ra, ra2, log->ra_size);
4040 	} else {
4041 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4042 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4043 		       le16_to_cpu(ra2->ra_len) - t16);
4044 
4045 		log->current_openlog_count = get_random_int();
4046 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4047 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4048 			       sizeof(struct CLIENT_REC);
4049 		ra->client_off =
4050 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4051 		ra->ra_len = cpu_to_le16(log->ra_size);
4052 	}
4053 
4054 	le32_add_cpu(&ra->open_log_count, 1);
4055 
4056 	/* Now we need to walk through looking for the last lsn. */
4057 	err = last_log_lsn(log);
4058 	if (err)
4059 		goto out;
4060 
4061 	log->current_avail = current_log_avail(log);
4062 
4063 	/* Remember which restart area to write first. */
4064 	log->init_ra = rst_info.vbo;
4065 
4066 process_log:
4067 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4068 	switch ((log->major_ver << 16) + log->minor_ver) {
4069 	case 0x10000:
4070 	case 0x10001:
4071 	case 0x20000:
4072 		break;
4073 	default:
4074 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4075 			  log->major_ver, log->minor_ver);
4076 		err = -EOPNOTSUPP;
4077 		log->set_dirty = true;
4078 		goto out;
4079 	}
4080 
4081 	/* One client "NTFS" per logfile. */
4082 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4083 
4084 	for (client = ra->client_idx[1];; client = cr->next_client) {
4085 		if (client == LFS_NO_CLIENT_LE) {
4086 			/* Insert "NTFS" client LogFile. */
4087 			client = ra->client_idx[0];
4088 			if (client == LFS_NO_CLIENT_LE)
4089 				return -EINVAL;
4090 
4091 			t16 = le16_to_cpu(client);
4092 			cr = ca + t16;
4093 
4094 			remove_client(ca, cr, &ra->client_idx[0]);
4095 
4096 			cr->restart_lsn = 0;
4097 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4098 			cr->name_bytes = cpu_to_le32(8);
4099 			cr->name[0] = cpu_to_le16('N');
4100 			cr->name[1] = cpu_to_le16('T');
4101 			cr->name[2] = cpu_to_le16('F');
4102 			cr->name[3] = cpu_to_le16('S');
4103 
4104 			add_client(ca, t16, &ra->client_idx[1]);
4105 			break;
4106 		}
4107 
4108 		cr = ca + le16_to_cpu(client);
4109 
4110 		if (cpu_to_le32(8) == cr->name_bytes &&
4111 		    cpu_to_le16('N') == cr->name[0] &&
4112 		    cpu_to_le16('T') == cr->name[1] &&
4113 		    cpu_to_le16('F') == cr->name[2] &&
4114 		    cpu_to_le16('S') == cr->name[3])
4115 			break;
4116 	}
4117 
4118 	/* Update the client handle with the client block information. */
4119 	log->client_id.seq_num = cr->seq_num;
4120 	log->client_id.client_idx = client;
4121 
4122 	err = read_rst_area(log, &rst, &ra_lsn);
4123 	if (err)
4124 		goto out;
4125 
4126 	if (!rst)
4127 		goto out;
4128 
4129 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4130 
4131 	checkpt_lsn = le64_to_cpu(rst->check_point_start);
4132 	if (!checkpt_lsn)
4133 		checkpt_lsn = ra_lsn;
4134 
4135 	/* Allocate and Read the Transaction Table. */
4136 	if (!rst->transact_table_len)
4137 		goto check_dirty_page_table;
4138 
4139 	t64 = le64_to_cpu(rst->transact_table_lsn);
4140 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4141 	if (err)
4142 		goto out;
4143 
4144 	lrh = lcb->log_rec;
4145 	frh = lcb->lrh;
4146 	rec_len = le32_to_cpu(frh->client_data_len);
4147 
4148 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4149 			   bytes_per_attr_entry)) {
4150 		err = -EINVAL;
4151 		goto out;
4152 	}
4153 
4154 	t16 = le16_to_cpu(lrh->redo_off);
4155 
4156 	rt = Add2Ptr(lrh, t16);
4157 	t32 = rec_len - t16;
4158 
4159 	/* Now check that this is a valid restart table. */
4160 	if (!check_rstbl(rt, t32)) {
4161 		err = -EINVAL;
4162 		goto out;
4163 	}
4164 
4165 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4166 	if (!trtbl) {
4167 		err = -ENOMEM;
4168 		goto out;
4169 	}
4170 
4171 	lcb_put(lcb);
4172 	lcb = NULL;
4173 
4174 check_dirty_page_table:
4175 	/* The next record back should be the Dirty Pages Table. */
4176 	if (!rst->dirty_pages_len)
4177 		goto check_attribute_names;
4178 
4179 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4180 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4181 	if (err)
4182 		goto out;
4183 
4184 	lrh = lcb->log_rec;
4185 	frh = lcb->lrh;
4186 	rec_len = le32_to_cpu(frh->client_data_len);
4187 
4188 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4189 			   bytes_per_attr_entry)) {
4190 		err = -EINVAL;
4191 		goto out;
4192 	}
4193 
4194 	t16 = le16_to_cpu(lrh->redo_off);
4195 
4196 	rt = Add2Ptr(lrh, t16);
4197 	t32 = rec_len - t16;
4198 
4199 	/* Now check that this is a valid restart table. */
4200 	if (!check_rstbl(rt, t32)) {
4201 		err = -EINVAL;
4202 		goto out;
4203 	}
4204 
4205 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4206 	if (!dptbl) {
4207 		err = -ENOMEM;
4208 		goto out;
4209 	}
4210 
4211 	/* Convert Ra version '0' into version '1'. */
4212 	if (rst->major_ver)
4213 		goto end_conv_1;
4214 
4215 	dp = NULL;
4216 	while ((dp = enum_rstbl(dptbl, dp))) {
4217 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4218 		// NOTE: Danger. Check for of boundary.
4219 		memmove(&dp->vcn, &dp0->vcn_low,
4220 			2 * sizeof(u64) +
4221 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4222 	}
4223 
4224 end_conv_1:
4225 	lcb_put(lcb);
4226 	lcb = NULL;
4227 
4228 	/*
4229 	 * Go through the table and remove the duplicates,
4230 	 * remembering the oldest lsn values.
4231 	 */
4232 	if (sbi->cluster_size <= log->page_size)
4233 		goto trace_dp_table;
4234 
4235 	dp = NULL;
4236 	while ((dp = enum_rstbl(dptbl, dp))) {
4237 		struct DIR_PAGE_ENTRY *next = dp;
4238 
4239 		while ((next = enum_rstbl(dptbl, next))) {
4240 			if (next->target_attr == dp->target_attr &&
4241 			    next->vcn == dp->vcn) {
4242 				if (le64_to_cpu(next->oldest_lsn) <
4243 				    le64_to_cpu(dp->oldest_lsn)) {
4244 					dp->oldest_lsn = next->oldest_lsn;
4245 				}
4246 
4247 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4248 			}
4249 		}
4250 	}
4251 trace_dp_table:
4252 check_attribute_names:
4253 	/* The next record should be the Attribute Names. */
4254 	if (!rst->attr_names_len)
4255 		goto check_attr_table;
4256 
4257 	t64 = le64_to_cpu(rst->attr_names_lsn);
4258 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4259 	if (err)
4260 		goto out;
4261 
4262 	lrh = lcb->log_rec;
4263 	frh = lcb->lrh;
4264 	rec_len = le32_to_cpu(frh->client_data_len);
4265 
4266 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4267 			   bytes_per_attr_entry)) {
4268 		err = -EINVAL;
4269 		goto out;
4270 	}
4271 
4272 	t32 = lrh_length(lrh);
4273 	rec_len -= t32;
4274 
4275 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4276 
4277 	lcb_put(lcb);
4278 	lcb = NULL;
4279 
4280 check_attr_table:
4281 	/* The next record should be the attribute Table. */
4282 	if (!rst->open_attr_len)
4283 		goto check_attribute_names2;
4284 
4285 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4286 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4287 	if (err)
4288 		goto out;
4289 
4290 	lrh = lcb->log_rec;
4291 	frh = lcb->lrh;
4292 	rec_len = le32_to_cpu(frh->client_data_len);
4293 
4294 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4295 			   bytes_per_attr_entry)) {
4296 		err = -EINVAL;
4297 		goto out;
4298 	}
4299 
4300 	t16 = le16_to_cpu(lrh->redo_off);
4301 
4302 	rt = Add2Ptr(lrh, t16);
4303 	t32 = rec_len - t16;
4304 
4305 	if (!check_rstbl(rt, t32)) {
4306 		err = -EINVAL;
4307 		goto out;
4308 	}
4309 
4310 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4311 	if (!oatbl) {
4312 		err = -ENOMEM;
4313 		goto out;
4314 	}
4315 
4316 	log->open_attr_tbl = oatbl;
4317 
4318 	/* Clear all of the Attr pointers. */
4319 	oe = NULL;
4320 	while ((oe = enum_rstbl(oatbl, oe))) {
4321 		if (!rst->major_ver) {
4322 			struct OPEN_ATTR_ENRTY_32 oe0;
4323 
4324 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4325 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4326 
4327 			oe->bytes_per_index = oe0.bytes_per_index;
4328 			oe->type = oe0.type;
4329 			oe->is_dirty_pages = oe0.is_dirty_pages;
4330 			oe->name_len = 0;
4331 			oe->ref = oe0.ref;
4332 			oe->open_record_lsn = oe0.open_record_lsn;
4333 		}
4334 
4335 		oe->is_attr_name = 0;
4336 		oe->ptr = NULL;
4337 	}
4338 
4339 	lcb_put(lcb);
4340 	lcb = NULL;
4341 
4342 check_attribute_names2:
4343 	if (!rst->attr_names_len)
4344 		goto trace_attribute_table;
4345 
4346 	ane = attr_names;
4347 	if (!oatbl)
4348 		goto trace_attribute_table;
4349 	while (ane->off) {
4350 		/* TODO: Clear table on exit! */
4351 		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4352 		t16 = le16_to_cpu(ane->name_bytes);
4353 		oe->name_len = t16 / sizeof(short);
4354 		oe->ptr = ane->name;
4355 		oe->is_attr_name = 2;
4356 		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4357 	}
4358 
4359 trace_attribute_table:
4360 	/*
4361 	 * If the checkpt_lsn is zero, then this is a freshly
4362 	 * formatted disk and we have no work to do.
4363 	 */
4364 	if (!checkpt_lsn) {
4365 		err = 0;
4366 		goto out;
4367 	}
4368 
4369 	if (!oatbl) {
4370 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4371 		if (!oatbl) {
4372 			err = -ENOMEM;
4373 			goto out;
4374 		}
4375 	}
4376 
4377 	log->open_attr_tbl = oatbl;
4378 
4379 	/* Start the analysis pass from the Checkpoint lsn. */
4380 	rec_lsn = checkpt_lsn;
4381 
4382 	/* Read the first lsn. */
4383 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4384 	if (err)
4385 		goto out;
4386 
4387 	/* Loop to read all subsequent records to the end of the log file. */
4388 next_log_record_analyze:
4389 	err = read_next_log_rec(log, lcb, &rec_lsn);
4390 	if (err)
4391 		goto out;
4392 
4393 	if (!rec_lsn)
4394 		goto end_log_records_enumerate;
4395 
4396 	frh = lcb->lrh;
4397 	transact_id = le32_to_cpu(frh->transact_id);
4398 	rec_len = le32_to_cpu(frh->client_data_len);
4399 	lrh = lcb->log_rec;
4400 
4401 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4402 		err = -EINVAL;
4403 		goto out;
4404 	}
4405 
4406 	/*
4407 	 * The first lsn after the previous lsn remembered
4408 	 * the checkpoint is the first candidate for the rlsn.
4409 	 */
4410 	if (!rlsn)
4411 		rlsn = rec_lsn;
4412 
4413 	if (LfsClientRecord != frh->record_type)
4414 		goto next_log_record_analyze;
4415 
4416 	/*
4417 	 * Now update the Transaction Table for this transaction. If there
4418 	 * is no entry present or it is unallocated we allocate the entry.
4419 	 */
4420 	if (!trtbl) {
4421 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4422 				    INITIAL_NUMBER_TRANSACTIONS);
4423 		if (!trtbl) {
4424 			err = -ENOMEM;
4425 			goto out;
4426 		}
4427 	}
4428 
4429 	tr = Add2Ptr(trtbl, transact_id);
4430 
4431 	if (transact_id >= bytes_per_rt(trtbl) ||
4432 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4433 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4434 		if (!tr) {
4435 			err = -ENOMEM;
4436 			goto out;
4437 		}
4438 		tr->transact_state = TransactionActive;
4439 		tr->first_lsn = cpu_to_le64(rec_lsn);
4440 	}
4441 
4442 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4443 
4444 	/*
4445 	 * If this is a compensation log record, then change
4446 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4447 	 */
4448 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4449 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4450 
4451 	/* Dispatch to handle log record depending on type. */
4452 	switch (le16_to_cpu(lrh->redo_op)) {
4453 	case InitializeFileRecordSegment:
4454 	case DeallocateFileRecordSegment:
4455 	case WriteEndOfFileRecordSegment:
4456 	case CreateAttribute:
4457 	case DeleteAttribute:
4458 	case UpdateResidentValue:
4459 	case UpdateNonresidentValue:
4460 	case UpdateMappingPairs:
4461 	case SetNewAttributeSizes:
4462 	case AddIndexEntryRoot:
4463 	case DeleteIndexEntryRoot:
4464 	case AddIndexEntryAllocation:
4465 	case DeleteIndexEntryAllocation:
4466 	case WriteEndOfIndexBuffer:
4467 	case SetIndexEntryVcnRoot:
4468 	case SetIndexEntryVcnAllocation:
4469 	case UpdateFileNameRoot:
4470 	case UpdateFileNameAllocation:
4471 	case SetBitsInNonresidentBitMap:
4472 	case ClearBitsInNonresidentBitMap:
4473 	case UpdateRecordDataRoot:
4474 	case UpdateRecordDataAllocation:
4475 	case ZeroEndOfFileRecord:
4476 		t16 = le16_to_cpu(lrh->target_attr);
4477 		t64 = le64_to_cpu(lrh->target_vcn);
4478 		dp = find_dp(dptbl, t16, t64);
4479 
4480 		if (dp)
4481 			goto copy_lcns;
4482 
4483 		/*
4484 		 * Calculate the number of clusters per page the system
4485 		 * which wrote the checkpoint, possibly creating the table.
4486 		 */
4487 		if (dptbl) {
4488 			t32 = (le16_to_cpu(dptbl->size) -
4489 			       sizeof(struct DIR_PAGE_ENTRY)) /
4490 			      sizeof(u64);
4491 		} else {
4492 			t32 = log->clst_per_page;
4493 			kfree(dptbl);
4494 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4495 					    32);
4496 			if (!dptbl) {
4497 				err = -ENOMEM;
4498 				goto out;
4499 			}
4500 		}
4501 
4502 		dp = alloc_rsttbl_idx(&dptbl);
4503 		if (!dp) {
4504 			err = -ENOMEM;
4505 			goto out;
4506 		}
4507 		dp->target_attr = cpu_to_le32(t16);
4508 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4509 		dp->lcns_follow = cpu_to_le32(t32);
4510 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4511 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4512 
4513 copy_lcns:
4514 		/*
4515 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4516 		 * TODO: For different page size support, must somehow make
4517 		 * whole routine a loop, case Lcns do not fit below.
4518 		 */
4519 		t16 = le16_to_cpu(lrh->lcns_follow);
4520 		for (i = 0; i < t16; i++) {
4521 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4522 					    le64_to_cpu(dp->vcn));
4523 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4524 		}
4525 
4526 		goto next_log_record_analyze;
4527 
4528 	case DeleteDirtyClusters: {
4529 		u32 range_count =
4530 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4531 		const struct LCN_RANGE *r =
4532 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4533 
4534 		/* Loop through all of the Lcn ranges this log record. */
4535 		for (i = 0; i < range_count; i++, r++) {
4536 			u64 lcn0 = le64_to_cpu(r->lcn);
4537 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4538 
4539 			dp = NULL;
4540 			while ((dp = enum_rstbl(dptbl, dp))) {
4541 				u32 j;
4542 
4543 				t32 = le32_to_cpu(dp->lcns_follow);
4544 				for (j = 0; j < t32; j++) {
4545 					t64 = le64_to_cpu(dp->page_lcns[j]);
4546 					if (t64 >= lcn0 && t64 <= lcn_e)
4547 						dp->page_lcns[j] = 0;
4548 				}
4549 			}
4550 		}
4551 		goto next_log_record_analyze;
4552 		;
4553 	}
4554 
4555 	case OpenNonresidentAttribute:
4556 		t16 = le16_to_cpu(lrh->target_attr);
4557 		if (t16 >= bytes_per_rt(oatbl)) {
4558 			/*
4559 			 * Compute how big the table needs to be.
4560 			 * Add 10 extra entries for some cushion.
4561 			 */
4562 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4563 
4564 			new_e += 10 - le16_to_cpu(oatbl->used);
4565 
4566 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4567 			log->open_attr_tbl = oatbl;
4568 			if (!oatbl) {
4569 				err = -ENOMEM;
4570 				goto out;
4571 			}
4572 		}
4573 
4574 		/* Point to the entry being opened. */
4575 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4576 		log->open_attr_tbl = oatbl;
4577 		if (!oe) {
4578 			err = -ENOMEM;
4579 			goto out;
4580 		}
4581 
4582 		/* Initialize this entry from the log record. */
4583 		t16 = le16_to_cpu(lrh->redo_off);
4584 		if (!rst->major_ver) {
4585 			/* Convert version '0' into version '1'. */
4586 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4587 
4588 			oe->bytes_per_index = oe0->bytes_per_index;
4589 			oe->type = oe0->type;
4590 			oe->is_dirty_pages = oe0->is_dirty_pages;
4591 			oe->name_len = 0; //oe0.name_len;
4592 			oe->ref = oe0->ref;
4593 			oe->open_record_lsn = oe0->open_record_lsn;
4594 		} else {
4595 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4596 		}
4597 
4598 		t16 = le16_to_cpu(lrh->undo_len);
4599 		if (t16) {
4600 			oe->ptr = kmalloc(t16, GFP_NOFS);
4601 			if (!oe->ptr) {
4602 				err = -ENOMEM;
4603 				goto out;
4604 			}
4605 			oe->name_len = t16 / sizeof(short);
4606 			memcpy(oe->ptr,
4607 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4608 			oe->is_attr_name = 1;
4609 		} else {
4610 			oe->ptr = NULL;
4611 			oe->is_attr_name = 0;
4612 		}
4613 
4614 		goto next_log_record_analyze;
4615 
4616 	case HotFix:
4617 		t16 = le16_to_cpu(lrh->target_attr);
4618 		t64 = le64_to_cpu(lrh->target_vcn);
4619 		dp = find_dp(dptbl, t16, t64);
4620 		if (dp) {
4621 			size_t j = le64_to_cpu(lrh->target_vcn) -
4622 				   le64_to_cpu(dp->vcn);
4623 			if (dp->page_lcns[j])
4624 				dp->page_lcns[j] = lrh->page_lcns[0];
4625 		}
4626 		goto next_log_record_analyze;
4627 
4628 	case EndTopLevelAction:
4629 		tr = Add2Ptr(trtbl, transact_id);
4630 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4631 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4632 		goto next_log_record_analyze;
4633 
4634 	case PrepareTransaction:
4635 		tr = Add2Ptr(trtbl, transact_id);
4636 		tr->transact_state = TransactionPrepared;
4637 		goto next_log_record_analyze;
4638 
4639 	case CommitTransaction:
4640 		tr = Add2Ptr(trtbl, transact_id);
4641 		tr->transact_state = TransactionCommitted;
4642 		goto next_log_record_analyze;
4643 
4644 	case ForgetTransaction:
4645 		free_rsttbl_idx(trtbl, transact_id);
4646 		goto next_log_record_analyze;
4647 
4648 	case Noop:
4649 	case OpenAttributeTableDump:
4650 	case AttributeNamesDump:
4651 	case DirtyPageTableDump:
4652 	case TransactionTableDump:
4653 		/* The following cases require no action the Analysis Pass. */
4654 		goto next_log_record_analyze;
4655 
4656 	default:
4657 		/*
4658 		 * All codes will be explicitly handled.
4659 		 * If we see a code we do not expect, then we are trouble.
4660 		 */
4661 		goto next_log_record_analyze;
4662 	}
4663 
4664 end_log_records_enumerate:
4665 	lcb_put(lcb);
4666 	lcb = NULL;
4667 
4668 	/*
4669 	 * Scan the Dirty Page Table and Transaction Table for
4670 	 * the lowest lsn, and return it as the Redo lsn.
4671 	 */
4672 	dp = NULL;
4673 	while ((dp = enum_rstbl(dptbl, dp))) {
4674 		t64 = le64_to_cpu(dp->oldest_lsn);
4675 		if (t64 && t64 < rlsn)
4676 			rlsn = t64;
4677 	}
4678 
4679 	tr = NULL;
4680 	while ((tr = enum_rstbl(trtbl, tr))) {
4681 		t64 = le64_to_cpu(tr->first_lsn);
4682 		if (t64 && t64 < rlsn)
4683 			rlsn = t64;
4684 	}
4685 
4686 	/*
4687 	 * Only proceed if the Dirty Page Table or Transaction
4688 	 * table are not empty.
4689 	 */
4690 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4691 		goto end_reply;
4692 
4693 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4694 	if (is_ro)
4695 		goto out;
4696 
4697 	/* Reopen all of the attributes with dirty pages. */
4698 	oe = NULL;
4699 next_open_attribute:
4700 
4701 	oe = enum_rstbl(oatbl, oe);
4702 	if (!oe) {
4703 		err = 0;
4704 		dp = NULL;
4705 		goto next_dirty_page;
4706 	}
4707 
4708 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4709 	if (!oa) {
4710 		err = -ENOMEM;
4711 		goto out;
4712 	}
4713 
4714 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4715 	if (IS_ERR(inode))
4716 		goto fake_attr;
4717 
4718 	if (is_bad_inode(inode)) {
4719 		iput(inode);
4720 fake_attr:
4721 		if (oa->ni) {
4722 			iput(&oa->ni->vfs_inode);
4723 			oa->ni = NULL;
4724 		}
4725 
4726 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4727 					      oe->name_len, 0);
4728 		if (!attr) {
4729 			kfree(oa);
4730 			err = -ENOMEM;
4731 			goto out;
4732 		}
4733 		oa->attr = attr;
4734 		oa->run1 = &oa->run0;
4735 		goto final_oe;
4736 	}
4737 
4738 	ni_oe = ntfs_i(inode);
4739 	oa->ni = ni_oe;
4740 
4741 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4742 			    NULL, NULL);
4743 
4744 	if (!attr)
4745 		goto fake_attr;
4746 
4747 	t32 = le32_to_cpu(attr->size);
4748 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4749 	if (!oa->attr)
4750 		goto fake_attr;
4751 
4752 	if (!S_ISDIR(inode->i_mode)) {
4753 		if (attr->type == ATTR_DATA && !attr->name_len) {
4754 			oa->run1 = &ni_oe->file.run;
4755 			goto final_oe;
4756 		}
4757 	} else {
4758 		if (attr->type == ATTR_ALLOC &&
4759 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4760 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4761 			oa->run1 = &ni_oe->dir.alloc_run;
4762 			goto final_oe;
4763 		}
4764 	}
4765 
4766 	if (attr->non_res) {
4767 		u16 roff = le16_to_cpu(attr->nres.run_off);
4768 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4769 
4770 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4771 				 le64_to_cpu(attr->nres.evcn), svcn,
4772 				 Add2Ptr(attr, roff), t32 - roff);
4773 		if (err < 0) {
4774 			kfree(oa->attr);
4775 			oa->attr = NULL;
4776 			goto fake_attr;
4777 		}
4778 		err = 0;
4779 	}
4780 	oa->run1 = &oa->run0;
4781 	attr = oa->attr;
4782 
4783 final_oe:
4784 	if (oe->is_attr_name == 1)
4785 		kfree(oe->ptr);
4786 	oe->is_attr_name = 0;
4787 	oe->ptr = oa;
4788 	oe->name_len = attr->name_len;
4789 
4790 	goto next_open_attribute;
4791 
4792 	/*
4793 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4794 	 * Mapping that we have, and insert it into the appropriate run.
4795 	 */
4796 next_dirty_page:
4797 	dp = enum_rstbl(dptbl, dp);
4798 	if (!dp)
4799 		goto do_redo_1;
4800 
4801 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4802 
4803 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4804 		goto next_dirty_page;
4805 
4806 	oa = oe->ptr;
4807 	if (!oa)
4808 		goto next_dirty_page;
4809 
4810 	i = -1;
4811 next_dirty_page_vcn:
4812 	i += 1;
4813 	if (i >= le32_to_cpu(dp->lcns_follow))
4814 		goto next_dirty_page;
4815 
4816 	vcn = le64_to_cpu(dp->vcn) + i;
4817 	size = (vcn + 1) << sbi->cluster_bits;
4818 
4819 	if (!dp->page_lcns[i])
4820 		goto next_dirty_page_vcn;
4821 
4822 	rno = ino_get(&oe->ref);
4823 	if (rno <= MFT_REC_MIRR &&
4824 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4825 	    oe->type == ATTR_DATA) {
4826 		goto next_dirty_page_vcn;
4827 	}
4828 
4829 	lcn = le64_to_cpu(dp->page_lcns[i]);
4830 
4831 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4832 	     lcn0 != lcn) &&
4833 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4834 		err = -ENOMEM;
4835 		goto out;
4836 	}
4837 	attr = oa->attr;
4838 	t64 = le64_to_cpu(attr->nres.alloc_size);
4839 	if (size > t64) {
4840 		attr->nres.valid_size = attr->nres.data_size =
4841 			attr->nres.alloc_size = cpu_to_le64(size);
4842 	}
4843 	goto next_dirty_page_vcn;
4844 
4845 do_redo_1:
4846 	/*
4847 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4848 	 * contents that they had immediately before the crash. If the dirty
4849 	 * page table is empty, then we can skip the entire Redo Pass.
4850 	 */
4851 	if (!dptbl || !dptbl->total)
4852 		goto do_undo_action;
4853 
4854 	rec_lsn = rlsn;
4855 
4856 	/*
4857 	 * Read the record at the Redo lsn, before falling
4858 	 * into common code to handle each record.
4859 	 */
4860 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4861 	if (err)
4862 		goto out;
4863 
4864 	/*
4865 	 * Now loop to read all of our log records forwards, until
4866 	 * we hit the end of the file, cleaning up at the end.
4867 	 */
4868 do_action_next:
4869 	frh = lcb->lrh;
4870 
4871 	if (LfsClientRecord != frh->record_type)
4872 		goto read_next_log_do_action;
4873 
4874 	transact_id = le32_to_cpu(frh->transact_id);
4875 	rec_len = le32_to_cpu(frh->client_data_len);
4876 	lrh = lcb->log_rec;
4877 
4878 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4879 		err = -EINVAL;
4880 		goto out;
4881 	}
4882 
4883 	/* Ignore log records that do not update pages. */
4884 	if (lrh->lcns_follow)
4885 		goto find_dirty_page;
4886 
4887 	goto read_next_log_do_action;
4888 
4889 find_dirty_page:
4890 	t16 = le16_to_cpu(lrh->target_attr);
4891 	t64 = le64_to_cpu(lrh->target_vcn);
4892 	dp = find_dp(dptbl, t16, t64);
4893 
4894 	if (!dp)
4895 		goto read_next_log_do_action;
4896 
4897 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4898 		goto read_next_log_do_action;
4899 
4900 	t16 = le16_to_cpu(lrh->target_attr);
4901 	if (t16 >= bytes_per_rt(oatbl)) {
4902 		err = -EINVAL;
4903 		goto out;
4904 	}
4905 
4906 	oe = Add2Ptr(oatbl, t16);
4907 
4908 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4909 		err = -EINVAL;
4910 		goto out;
4911 	}
4912 
4913 	oa = oe->ptr;
4914 
4915 	if (!oa) {
4916 		err = -EINVAL;
4917 		goto out;
4918 	}
4919 	attr = oa->attr;
4920 
4921 	vcn = le64_to_cpu(lrh->target_vcn);
4922 
4923 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4924 	    lcn == SPARSE_LCN) {
4925 		goto read_next_log_do_action;
4926 	}
4927 
4928 	/* Point to the Redo data and get its length. */
4929 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4930 	dlen = le16_to_cpu(lrh->redo_len);
4931 
4932 	/* Shorten length by any Lcns which were deleted. */
4933 	saved_len = dlen;
4934 
4935 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4936 		size_t j;
4937 		u32 alen, voff;
4938 
4939 		voff = le16_to_cpu(lrh->record_off) +
4940 		       le16_to_cpu(lrh->attr_off);
4941 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4942 
4943 		/* If the Vcn question is allocated, we can just get out. */
4944 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4945 		if (dp->page_lcns[j + i - 1])
4946 			break;
4947 
4948 		if (!saved_len)
4949 			saved_len = 1;
4950 
4951 		/*
4952 		 * Calculate the allocated space left relative to the
4953 		 * log record Vcn, after removing this unallocated Vcn.
4954 		 */
4955 		alen = (i - 1) << sbi->cluster_bits;
4956 
4957 		/*
4958 		 * If the update described this log record goes beyond
4959 		 * the allocated space, then we will have to reduce the length.
4960 		 */
4961 		if (voff >= alen)
4962 			dlen = 0;
4963 		else if (voff + dlen > alen)
4964 			dlen = alen - voff;
4965 	}
4966 
4967 	/*
4968 	 * If the resulting dlen from above is now zero,
4969 	 * we can skip this log record.
4970 	 */
4971 	if (!dlen && saved_len)
4972 		goto read_next_log_do_action;
4973 
4974 	t16 = le16_to_cpu(lrh->redo_op);
4975 	if (can_skip_action(t16))
4976 		goto read_next_log_do_action;
4977 
4978 	/* Apply the Redo operation a common routine. */
4979 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4980 	if (err)
4981 		goto out;
4982 
4983 	/* Keep reading and looping back until end of file. */
4984 read_next_log_do_action:
4985 	err = read_next_log_rec(log, lcb, &rec_lsn);
4986 	if (!err && rec_lsn)
4987 		goto do_action_next;
4988 
4989 	lcb_put(lcb);
4990 	lcb = NULL;
4991 
4992 do_undo_action:
4993 	/* Scan Transaction Table. */
4994 	tr = NULL;
4995 transaction_table_next:
4996 	tr = enum_rstbl(trtbl, tr);
4997 	if (!tr)
4998 		goto undo_action_done;
4999 
5000 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5001 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5002 		goto transaction_table_next;
5003 	}
5004 
5005 	log->transaction_id = PtrOffset(trtbl, tr);
5006 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5007 
5008 	/*
5009 	 * We only have to do anything if the transaction has
5010 	 * something its undo_next_lsn field.
5011 	 */
5012 	if (!undo_next_lsn)
5013 		goto commit_undo;
5014 
5015 	/* Read the first record to be undone by this transaction. */
5016 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5017 	if (err)
5018 		goto out;
5019 
5020 	/*
5021 	 * Now loop to read all of our log records forwards,
5022 	 * until we hit the end of the file, cleaning up at the end.
5023 	 */
5024 undo_action_next:
5025 
5026 	lrh = lcb->log_rec;
5027 	frh = lcb->lrh;
5028 	transact_id = le32_to_cpu(frh->transact_id);
5029 	rec_len = le32_to_cpu(frh->client_data_len);
5030 
5031 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5032 		err = -EINVAL;
5033 		goto out;
5034 	}
5035 
5036 	if (lrh->undo_op == cpu_to_le16(Noop))
5037 		goto read_next_log_undo_action;
5038 
5039 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5040 	oa = oe->ptr;
5041 
5042 	t16 = le16_to_cpu(lrh->lcns_follow);
5043 	if (!t16)
5044 		goto add_allocated_vcns;
5045 
5046 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5047 				     &lcn, &clen, NULL);
5048 
5049 	/*
5050 	 * If the mapping isn't already the table or the  mapping
5051 	 * corresponds to a hole the mapping, we need to make sure
5052 	 * there is no partial page already memory.
5053 	 */
5054 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5055 		goto add_allocated_vcns;
5056 
5057 	vcn = le64_to_cpu(lrh->target_vcn);
5058 	vcn &= ~(log->clst_per_page - 1);
5059 
5060 add_allocated_vcns:
5061 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5062 	    size = (vcn + 1) << sbi->cluster_bits;
5063 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5064 		attr = oa->attr;
5065 		if (!attr->non_res) {
5066 			if (size > le32_to_cpu(attr->res.data_size))
5067 				attr->res.data_size = cpu_to_le32(size);
5068 		} else {
5069 			if (size > le64_to_cpu(attr->nres.data_size))
5070 				attr->nres.valid_size = attr->nres.data_size =
5071 					attr->nres.alloc_size =
5072 						cpu_to_le64(size);
5073 		}
5074 	}
5075 
5076 	t16 = le16_to_cpu(lrh->undo_op);
5077 	if (can_skip_action(t16))
5078 		goto read_next_log_undo_action;
5079 
5080 	/* Point to the Redo data and get its length. */
5081 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5082 	dlen = le16_to_cpu(lrh->undo_len);
5083 
5084 	/* It is time to apply the undo action. */
5085 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5086 
5087 read_next_log_undo_action:
5088 	/*
5089 	 * Keep reading and looping back until we have read the
5090 	 * last record for this transaction.
5091 	 */
5092 	err = read_next_log_rec(log, lcb, &rec_lsn);
5093 	if (err)
5094 		goto out;
5095 
5096 	if (rec_lsn)
5097 		goto undo_action_next;
5098 
5099 	lcb_put(lcb);
5100 	lcb = NULL;
5101 
5102 commit_undo:
5103 	free_rsttbl_idx(trtbl, log->transaction_id);
5104 
5105 	log->transaction_id = 0;
5106 
5107 	goto transaction_table_next;
5108 
5109 undo_action_done:
5110 
5111 	ntfs_update_mftmirr(sbi, 0);
5112 
5113 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5114 
5115 end_reply:
5116 
5117 	err = 0;
5118 	if (is_ro)
5119 		goto out;
5120 
5121 	rh = kzalloc(log->page_size, GFP_NOFS);
5122 	if (!rh) {
5123 		err = -ENOMEM;
5124 		goto out;
5125 	}
5126 
5127 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5128 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5129 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5130 	rh->rhdr.fix_num = cpu_to_le16(t16);
5131 	rh->sys_page_size = cpu_to_le32(log->page_size);
5132 	rh->page_size = cpu_to_le32(log->page_size);
5133 
5134 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5135 		    8);
5136 	rh->ra_off = cpu_to_le16(t16);
5137 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5138 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5139 
5140 	ra2 = Add2Ptr(rh, t16);
5141 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5142 
5143 	ra2->client_idx[0] = 0;
5144 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5145 	ra2->flags = cpu_to_le16(2);
5146 
5147 	le32_add_cpu(&ra2->open_log_count, 1);
5148 
5149 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5150 
5151 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5152 	if (!err)
5153 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5154 					rh, log->page_size, 0);
5155 
5156 	kfree(rh);
5157 	if (err)
5158 		goto out;
5159 
5160 out:
5161 	kfree(rst);
5162 	if (lcb)
5163 		lcb_put(lcb);
5164 
5165 	/*
5166 	 * Scan the Open Attribute Table to close all of
5167 	 * the open attributes.
5168 	 */
5169 	oe = NULL;
5170 	while ((oe = enum_rstbl(oatbl, oe))) {
5171 		rno = ino_get(&oe->ref);
5172 
5173 		if (oe->is_attr_name == 1) {
5174 			kfree(oe->ptr);
5175 			oe->ptr = NULL;
5176 			continue;
5177 		}
5178 
5179 		if (oe->is_attr_name)
5180 			continue;
5181 
5182 		oa = oe->ptr;
5183 		if (!oa)
5184 			continue;
5185 
5186 		run_close(&oa->run0);
5187 		kfree(oa->attr);
5188 		if (oa->ni)
5189 			iput(&oa->ni->vfs_inode);
5190 		kfree(oa);
5191 	}
5192 
5193 	kfree(trtbl);
5194 	kfree(oatbl);
5195 	kfree(dptbl);
5196 	kfree(attr_names);
5197 	kfree(rst_info.r_page);
5198 
5199 	kfree(ra);
5200 	kfree(log->one_page_buf);
5201 
5202 	if (err)
5203 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5204 
5205 	if (err == -EROFS)
5206 		err = 0;
5207 	else if (log->set_dirty)
5208 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5209 
5210 	kfree(log);
5211 
5212 	return err;
5213 }
5214