1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, file_dat_bits, file_size_round; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits); 515 file_size_round = 1u << (file_dat_bits + 3); 516 if (file_size_round != l_size && 517 (file_size_round < l_size || (file_size_round / 2) > l_size)) { 518 return false; 519 } 520 521 /* The log page data offset and record header length must be quad-aligned. */ 522 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 523 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 524 return false; 525 526 return true; 527 } 528 529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 530 bool usa_error) 531 { 532 u16 ro = le16_to_cpu(rhdr->ra_off); 533 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 534 u16 ra_len = le16_to_cpu(ra->ra_len); 535 const struct CLIENT_REC *ca; 536 u32 i; 537 538 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 539 return false; 540 541 /* Find the start of the client array. */ 542 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 543 544 /* 545 * Start with the free list. 546 * Check that all the clients are valid and that there isn't a cycle. 547 * Do the in-use list on the second pass. 548 */ 549 for (i = 0; i < 2; i++) { 550 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 551 bool first_client = true; 552 u16 clients = le16_to_cpu(ra->log_clients); 553 554 while (client_idx != LFS_NO_CLIENT) { 555 const struct CLIENT_REC *cr; 556 557 if (!clients || 558 client_idx >= le16_to_cpu(ra->log_clients)) 559 return false; 560 561 clients -= 1; 562 cr = ca + client_idx; 563 564 client_idx = le16_to_cpu(cr->next_client); 565 566 if (first_client) { 567 first_client = false; 568 if (cr->prev_client != LFS_NO_CLIENT_LE) 569 return false; 570 } 571 } 572 } 573 574 return true; 575 } 576 577 /* 578 * remove_client 579 * 580 * Remove a client record from a client record list an restart area. 581 */ 582 static inline void remove_client(struct CLIENT_REC *ca, 583 const struct CLIENT_REC *cr, __le16 *head) 584 { 585 if (cr->prev_client == LFS_NO_CLIENT_LE) 586 *head = cr->next_client; 587 else 588 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 589 590 if (cr->next_client != LFS_NO_CLIENT_LE) 591 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 592 } 593 594 /* 595 * add_client - Add a client record to the start of a list. 596 */ 597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 598 { 599 struct CLIENT_REC *cr = ca + index; 600 601 cr->prev_client = LFS_NO_CLIENT_LE; 602 cr->next_client = *head; 603 604 if (*head != LFS_NO_CLIENT_LE) 605 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 606 607 *head = cpu_to_le16(index); 608 } 609 610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 611 { 612 __le32 *e; 613 u32 bprt; 614 u16 rsize = t ? le16_to_cpu(t->size) : 0; 615 616 if (!c) { 617 if (!t || !t->total) 618 return NULL; 619 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 620 } else { 621 e = Add2Ptr(c, rsize); 622 } 623 624 /* Loop until we hit the first one allocated, or the end of the list. */ 625 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 626 e = Add2Ptr(e, rsize)) { 627 if (*e == RESTART_ENTRY_ALLOCATED_LE) 628 return e; 629 } 630 return NULL; 631 } 632 633 /* 634 * find_dp - Search for a @vcn in Dirty Page Table. 635 */ 636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 637 u32 target_attr, u64 vcn) 638 { 639 __le32 ta = cpu_to_le32(target_attr); 640 struct DIR_PAGE_ENTRY *dp = NULL; 641 642 while ((dp = enum_rstbl(dptbl, dp))) { 643 u64 dp_vcn = le64_to_cpu(dp->vcn); 644 645 if (dp->target_attr == ta && vcn >= dp_vcn && 646 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 647 return dp; 648 } 649 } 650 return NULL; 651 } 652 653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 654 { 655 if (use_default) 656 page_size = DefaultLogPageSize; 657 658 /* Round the file size down to a system page boundary. */ 659 *l_size &= ~(page_size - 1); 660 661 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 662 if (*l_size < (MinLogRecordPages + 2) * page_size) 663 return 0; 664 665 return page_size; 666 } 667 668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 669 u32 bytes_per_attr_entry) 670 { 671 u16 t16; 672 673 if (bytes < sizeof(struct LOG_REC_HDR)) 674 return false; 675 if (!tr) 676 return false; 677 678 if ((tr - sizeof(struct RESTART_TABLE)) % 679 sizeof(struct TRANSACTION_ENTRY)) 680 return false; 681 682 if (le16_to_cpu(lr->redo_off) & 7) 683 return false; 684 685 if (le16_to_cpu(lr->undo_off) & 7) 686 return false; 687 688 if (lr->target_attr) 689 goto check_lcns; 690 691 if (is_target_required(le16_to_cpu(lr->redo_op))) 692 return false; 693 694 if (is_target_required(le16_to_cpu(lr->undo_op))) 695 return false; 696 697 check_lcns: 698 if (!lr->lcns_follow) 699 goto check_length; 700 701 t16 = le16_to_cpu(lr->target_attr); 702 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 703 return false; 704 705 check_length: 706 if (bytes < lrh_length(lr)) 707 return false; 708 709 return true; 710 } 711 712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 713 { 714 u32 ts; 715 u32 i, off; 716 u16 rsize = le16_to_cpu(rt->size); 717 u16 ne = le16_to_cpu(rt->used); 718 u32 ff = le32_to_cpu(rt->first_free); 719 u32 lf = le32_to_cpu(rt->last_free); 720 721 ts = rsize * ne + sizeof(struct RESTART_TABLE); 722 723 if (!rsize || rsize > bytes || 724 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 725 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || 726 (ff && ff < sizeof(struct RESTART_TABLE)) || 727 (lf && lf < sizeof(struct RESTART_TABLE))) { 728 return false; 729 } 730 731 /* 732 * Verify each entry is either allocated or points 733 * to a valid offset the table. 734 */ 735 for (i = 0; i < ne; i++) { 736 off = le32_to_cpu(*(__le32 *)Add2Ptr( 737 rt, i * rsize + sizeof(struct RESTART_TABLE))); 738 739 if (off != RESTART_ENTRY_ALLOCATED && off && 740 (off < sizeof(struct RESTART_TABLE) || 741 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 742 return false; 743 } 744 } 745 746 /* 747 * Walk through the list headed by the first entry to make 748 * sure none of the entries are currently being used. 749 */ 750 for (off = ff; off;) { 751 if (off == RESTART_ENTRY_ALLOCATED) 752 return false; 753 754 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 755 } 756 757 return true; 758 } 759 760 /* 761 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 762 */ 763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 764 { 765 __le32 *e; 766 u32 lf = le32_to_cpu(rt->last_free); 767 __le32 off_le = cpu_to_le32(off); 768 769 e = Add2Ptr(rt, off); 770 771 if (off < le32_to_cpu(rt->free_goal)) { 772 *e = rt->first_free; 773 rt->first_free = off_le; 774 if (!lf) 775 rt->last_free = off_le; 776 } else { 777 if (lf) 778 *(__le32 *)Add2Ptr(rt, lf) = off_le; 779 else 780 rt->first_free = off_le; 781 782 rt->last_free = off_le; 783 *e = 0; 784 } 785 786 le16_sub_cpu(&rt->total, 1); 787 } 788 789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 790 { 791 __le32 *e, *last_free; 792 u32 off; 793 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 794 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 795 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 796 797 if (!t) 798 return NULL; 799 800 t->size = cpu_to_le16(esize); 801 t->used = cpu_to_le16(used); 802 t->free_goal = cpu_to_le32(~0u); 803 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 804 t->last_free = cpu_to_le32(lf); 805 806 e = (__le32 *)(t + 1); 807 last_free = Add2Ptr(t, lf); 808 809 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 810 e = Add2Ptr(e, esize), off += esize) { 811 *e = cpu_to_le32(off); 812 } 813 return t; 814 } 815 816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 817 u32 add, u32 free_goal) 818 { 819 u16 esize = le16_to_cpu(tbl->size); 820 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 821 u32 used = le16_to_cpu(tbl->used); 822 struct RESTART_TABLE *rt; 823 824 rt = init_rsttbl(esize, used + add); 825 if (!rt) 826 return NULL; 827 828 memcpy(rt + 1, tbl + 1, esize * used); 829 830 rt->free_goal = free_goal == ~0u 831 ? cpu_to_le32(~0u) 832 : cpu_to_le32(sizeof(struct RESTART_TABLE) + 833 free_goal * esize); 834 835 if (tbl->first_free) { 836 rt->first_free = tbl->first_free; 837 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 838 } else { 839 rt->first_free = osize; 840 } 841 842 rt->total = tbl->total; 843 844 kfree(tbl); 845 return rt; 846 } 847 848 /* 849 * alloc_rsttbl_idx 850 * 851 * Allocate an index from within a previously initialized Restart Table. 852 */ 853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 854 { 855 u32 off; 856 __le32 *e; 857 struct RESTART_TABLE *t = *tbl; 858 859 if (!t->first_free) { 860 *tbl = t = extend_rsttbl(t, 16, ~0u); 861 if (!t) 862 return NULL; 863 } 864 865 off = le32_to_cpu(t->first_free); 866 867 /* Dequeue this entry and zero it. */ 868 e = Add2Ptr(t, off); 869 870 t->first_free = *e; 871 872 memset(e, 0, le16_to_cpu(t->size)); 873 874 *e = RESTART_ENTRY_ALLOCATED_LE; 875 876 /* If list is going empty, then we fix the last_free as well. */ 877 if (!t->first_free) 878 t->last_free = 0; 879 880 le16_add_cpu(&t->total, 1); 881 882 return Add2Ptr(t, off); 883 } 884 885 /* 886 * alloc_rsttbl_from_idx 887 * 888 * Allocate a specific index from within a previously initialized Restart Table. 889 */ 890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 891 { 892 u32 off; 893 __le32 *e; 894 struct RESTART_TABLE *rt = *tbl; 895 u32 bytes = bytes_per_rt(rt); 896 u16 esize = le16_to_cpu(rt->size); 897 898 /* If the entry is not the table, we will have to extend the table. */ 899 if (vbo >= bytes) { 900 /* 901 * Extend the size by computing the number of entries between 902 * the existing size and the desired index and adding 1 to that. 903 */ 904 u32 bytes2idx = vbo - bytes; 905 906 /* 907 * There should always be an integral number of entries 908 * being added. Now extend the table. 909 */ 910 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 911 if (!rt) 912 return NULL; 913 } 914 915 /* See if the entry is already allocated, and just return if it is. */ 916 e = Add2Ptr(rt, vbo); 917 918 if (*e == RESTART_ENTRY_ALLOCATED_LE) 919 return e; 920 921 /* 922 * Walk through the table, looking for the entry we're 923 * interested and the previous entry. 924 */ 925 off = le32_to_cpu(rt->first_free); 926 e = Add2Ptr(rt, off); 927 928 if (off == vbo) { 929 /* this is a match */ 930 rt->first_free = *e; 931 goto skip_looking; 932 } 933 934 /* 935 * Need to walk through the list looking for the predecessor 936 * of our entry. 937 */ 938 for (;;) { 939 /* Remember the entry just found */ 940 u32 last_off = off; 941 __le32 *last_e = e; 942 943 /* Should never run of entries. */ 944 945 /* Lookup up the next entry the list. */ 946 off = le32_to_cpu(*last_e); 947 e = Add2Ptr(rt, off); 948 949 /* If this is our match we are done. */ 950 if (off == vbo) { 951 *last_e = *e; 952 953 /* 954 * If this was the last entry, we update that 955 * table as well. 956 */ 957 if (le32_to_cpu(rt->last_free) == off) 958 rt->last_free = cpu_to_le32(last_off); 959 break; 960 } 961 } 962 963 skip_looking: 964 /* If the list is now empty, we fix the last_free as well. */ 965 if (!rt->first_free) 966 rt->last_free = 0; 967 968 /* Zero this entry. */ 969 memset(e, 0, esize); 970 *e = RESTART_ENTRY_ALLOCATED_LE; 971 972 le16_add_cpu(&rt->total, 1); 973 974 return e; 975 } 976 977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 978 979 #define NTFSLOG_WRAPPED 0x00000001 980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 981 #define NTFSLOG_NO_LAST_LSN 0x00000004 982 #define NTFSLOG_REUSE_TAIL 0x00000010 983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 984 985 /* Helper struct to work with NTFS $LogFile. */ 986 struct ntfs_log { 987 struct ntfs_inode *ni; 988 989 u32 l_size; 990 u32 sys_page_size; 991 u32 sys_page_mask; 992 u32 page_size; 993 u32 page_mask; // page_size - 1 994 u8 page_bits; 995 struct RECORD_PAGE_HDR *one_page_buf; 996 997 struct RESTART_TABLE *open_attr_tbl; 998 u32 transaction_id; 999 u32 clst_per_page; 1000 1001 u32 first_page; 1002 u32 next_page; 1003 u32 ra_off; 1004 u32 data_off; 1005 u32 restart_size; 1006 u32 data_size; 1007 u16 record_header_len; 1008 u64 seq_num; 1009 u32 seq_num_bits; 1010 u32 file_data_bits; 1011 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1012 1013 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1014 u32 ra_size; /* The usable size of the restart area. */ 1015 1016 /* 1017 * If true, then the in-memory restart area is to be written 1018 * to the first position on the disk. 1019 */ 1020 bool init_ra; 1021 bool set_dirty; /* True if we need to set dirty flag. */ 1022 1023 u64 oldest_lsn; 1024 1025 u32 oldest_lsn_off; 1026 u64 last_lsn; 1027 1028 u32 total_avail; 1029 u32 total_avail_pages; 1030 u32 total_undo_commit; 1031 u32 max_current_avail; 1032 u32 current_avail; 1033 u32 reserved; 1034 1035 short major_ver; 1036 short minor_ver; 1037 1038 u32 l_flags; /* See NTFSLOG_XXX */ 1039 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1040 1041 struct CLIENT_ID client_id; 1042 u32 client_undo_commit; 1043 }; 1044 1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1046 { 1047 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1048 1049 return vbo; 1050 } 1051 1052 /* Compute the offset in the log file of the next log page. */ 1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1054 { 1055 off = (off & ~log->sys_page_mask) + log->page_size; 1056 return off >= log->l_size ? log->first_page : off; 1057 } 1058 1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1060 { 1061 return (((u32)lsn) << 3) & log->page_mask; 1062 } 1063 1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1065 { 1066 return (off >> 3) + (Seq << log->file_data_bits); 1067 } 1068 1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1070 { 1071 return lsn >= log->oldest_lsn && 1072 lsn <= le64_to_cpu(log->ra->current_lsn); 1073 } 1074 1075 static inline u32 hdr_file_off(struct ntfs_log *log, 1076 struct RECORD_PAGE_HDR *hdr) 1077 { 1078 if (log->major_ver < 2) 1079 return le64_to_cpu(hdr->rhdr.lsn); 1080 1081 return le32_to_cpu(hdr->file_off); 1082 } 1083 1084 static inline u64 base_lsn(struct ntfs_log *log, 1085 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1086 { 1087 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1088 u64 ret = (((h_lsn >> log->file_data_bits) + 1089 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1090 << log->file_data_bits) + 1091 ((((is_log_record_end(hdr) && 1092 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) 1093 ? le16_to_cpu(hdr->record_hdr.next_record_off) 1094 : log->page_size) + 1095 lsn) >> 1096 3); 1097 1098 return ret; 1099 } 1100 1101 static inline bool verify_client_lsn(struct ntfs_log *log, 1102 const struct CLIENT_REC *client, u64 lsn) 1103 { 1104 return lsn >= le64_to_cpu(client->oldest_lsn) && 1105 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1106 } 1107 1108 struct restart_info { 1109 u64 last_lsn; 1110 struct RESTART_HDR *r_page; 1111 u32 vbo; 1112 bool chkdsk_was_run; 1113 bool valid_page; 1114 bool initialized; 1115 bool restart; 1116 }; 1117 1118 static int read_log_page(struct ntfs_log *log, u32 vbo, 1119 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1120 { 1121 int err = 0; 1122 u32 page_idx = vbo >> log->page_bits; 1123 u32 page_off = vbo & log->page_mask; 1124 u32 bytes = log->page_size - page_off; 1125 void *to_free = NULL; 1126 u32 page_vbo = page_idx << log->page_bits; 1127 struct RECORD_PAGE_HDR *page_buf; 1128 struct ntfs_inode *ni = log->ni; 1129 bool bBAAD; 1130 1131 if (vbo >= log->l_size) 1132 return -EINVAL; 1133 1134 if (!*buffer) { 1135 to_free = kmalloc(bytes, GFP_NOFS); 1136 if (!to_free) 1137 return -ENOMEM; 1138 *buffer = to_free; 1139 } 1140 1141 page_buf = page_off ? log->one_page_buf : *buffer; 1142 1143 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1144 log->page_size, NULL); 1145 if (err) 1146 goto out; 1147 1148 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1149 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1150 1151 if (page_buf != *buffer) 1152 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1153 1154 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1155 1156 if (usa_error) 1157 *usa_error = bBAAD; 1158 /* Check that the update sequence array for this page is valid */ 1159 /* If we don't allow errors, raise an error status */ 1160 else if (bBAAD) 1161 err = -EINVAL; 1162 1163 out: 1164 if (err && to_free) { 1165 kfree(to_free); 1166 *buffer = NULL; 1167 } 1168 1169 return err; 1170 } 1171 1172 /* 1173 * log_read_rst 1174 * 1175 * It walks through 512 blocks of the file looking for a valid 1176 * restart page header. It will stop the first time we find a 1177 * valid page header. 1178 */ 1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first, 1180 struct restart_info *info) 1181 { 1182 u32 skip, vbo; 1183 struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS); 1184 1185 if (!r_page) 1186 return -ENOMEM; 1187 1188 /* Determine which restart area we are looking for. */ 1189 if (first) { 1190 vbo = 0; 1191 skip = 512; 1192 } else { 1193 vbo = 512; 1194 skip = 0; 1195 } 1196 1197 /* Loop continuously until we succeed. */ 1198 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) { 1199 bool usa_error; 1200 u32 sys_page_size; 1201 bool brst, bchk; 1202 struct RESTART_AREA *ra; 1203 1204 /* Read a page header at the current offset. */ 1205 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1206 &usa_error)) { 1207 /* Ignore any errors. */ 1208 continue; 1209 } 1210 1211 /* Exit if the signature is a log record page. */ 1212 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1213 info->initialized = true; 1214 break; 1215 } 1216 1217 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1218 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1219 1220 if (!bchk && !brst) { 1221 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1222 /* 1223 * Remember if the signature does not 1224 * indicate uninitialized file. 1225 */ 1226 info->initialized = true; 1227 } 1228 continue; 1229 } 1230 1231 ra = NULL; 1232 info->valid_page = false; 1233 info->initialized = true; 1234 info->vbo = vbo; 1235 1236 /* Let's check the restart area if this is a valid page. */ 1237 if (!is_rst_page_hdr_valid(vbo, r_page)) 1238 goto check_result; 1239 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1240 1241 if (!is_rst_area_valid(r_page)) 1242 goto check_result; 1243 1244 /* 1245 * We have a valid restart page header and restart area. 1246 * If chkdsk was run or we have no clients then we have 1247 * no more checking to do. 1248 */ 1249 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1250 info->valid_page = true; 1251 goto check_result; 1252 } 1253 1254 /* Read the entire restart area. */ 1255 sys_page_size = le32_to_cpu(r_page->sys_page_size); 1256 if (DefaultLogPageSize != sys_page_size) { 1257 kfree(r_page); 1258 r_page = kzalloc(sys_page_size, GFP_NOFS); 1259 if (!r_page) 1260 return -ENOMEM; 1261 1262 if (read_log_page(log, vbo, 1263 (struct RECORD_PAGE_HDR **)&r_page, 1264 &usa_error)) { 1265 /* Ignore any errors. */ 1266 kfree(r_page); 1267 r_page = NULL; 1268 continue; 1269 } 1270 } 1271 1272 if (is_client_area_valid(r_page, usa_error)) { 1273 info->valid_page = true; 1274 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1275 } 1276 1277 check_result: 1278 /* 1279 * If chkdsk was run then update the caller's 1280 * values and return. 1281 */ 1282 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1283 info->chkdsk_was_run = true; 1284 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1285 info->restart = true; 1286 info->r_page = r_page; 1287 return 0; 1288 } 1289 1290 /* 1291 * If we have a valid page then copy the values 1292 * we need from it. 1293 */ 1294 if (info->valid_page) { 1295 info->last_lsn = le64_to_cpu(ra->current_lsn); 1296 info->restart = true; 1297 info->r_page = r_page; 1298 return 0; 1299 } 1300 } 1301 1302 kfree(r_page); 1303 1304 return 0; 1305 } 1306 1307 /* 1308 * Ilog_init_pg_hdr - Init @log from restart page header. 1309 */ 1310 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size, 1311 u32 page_size, u16 major_ver, u16 minor_ver) 1312 { 1313 log->sys_page_size = sys_page_size; 1314 log->sys_page_mask = sys_page_size - 1; 1315 log->page_size = page_size; 1316 log->page_mask = page_size - 1; 1317 log->page_bits = blksize_bits(page_size); 1318 1319 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1320 if (!log->clst_per_page) 1321 log->clst_per_page = 1; 1322 1323 log->first_page = major_ver >= 2 1324 ? 0x22 * page_size 1325 : ((sys_page_size << 1) + (page_size << 1)); 1326 log->major_ver = major_ver; 1327 log->minor_ver = minor_ver; 1328 } 1329 1330 /* 1331 * log_create - Init @log in cases when we don't have a restart area to use. 1332 */ 1333 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn, 1334 u32 open_log_count, bool wrapped, bool use_multi_page) 1335 { 1336 log->l_size = l_size; 1337 /* All file offsets must be quadword aligned. */ 1338 log->file_data_bits = blksize_bits(l_size) - 3; 1339 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1340 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1341 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1342 log->next_page = log->first_page; 1343 log->oldest_lsn = log->seq_num << log->file_data_bits; 1344 log->oldest_lsn_off = 0; 1345 log->last_lsn = log->oldest_lsn; 1346 1347 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1348 1349 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1350 if (wrapped) 1351 log->l_flags |= NTFSLOG_WRAPPED; 1352 1353 if (use_multi_page) 1354 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1355 1356 /* Compute the log page values. */ 1357 log->data_off = ALIGN( 1358 offsetof(struct RECORD_PAGE_HDR, fixups) + 1359 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1360 8); 1361 log->data_size = log->page_size - log->data_off; 1362 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1363 1364 /* Remember the different page sizes for reservation. */ 1365 log->reserved = log->data_size - log->record_header_len; 1366 1367 /* Compute the restart page values. */ 1368 log->ra_off = ALIGN( 1369 offsetof(struct RESTART_HDR, fixups) + 1370 sizeof(short) * 1371 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1372 8); 1373 log->restart_size = log->sys_page_size - log->ra_off; 1374 log->ra_size = struct_size(log->ra, clients, 1); 1375 log->current_openlog_count = open_log_count; 1376 1377 /* 1378 * The total available log file space is the number of 1379 * log file pages times the space available on each page. 1380 */ 1381 log->total_avail_pages = log->l_size - log->first_page; 1382 log->total_avail = log->total_avail_pages >> log->page_bits; 1383 1384 /* 1385 * We assume that we can't use the end of the page less than 1386 * the file record size. 1387 * Then we won't need to reserve more than the caller asks for. 1388 */ 1389 log->max_current_avail = log->total_avail * log->reserved; 1390 log->total_avail = log->total_avail * log->data_size; 1391 log->current_avail = log->max_current_avail; 1392 } 1393 1394 /* 1395 * log_create_ra - Fill a restart area from the values stored in @log. 1396 */ 1397 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1398 { 1399 struct CLIENT_REC *cr; 1400 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1401 1402 if (!ra) 1403 return NULL; 1404 1405 ra->current_lsn = cpu_to_le64(log->last_lsn); 1406 ra->log_clients = cpu_to_le16(1); 1407 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1408 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1409 ra->flags = RESTART_SINGLE_PAGE_IO; 1410 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1411 ra->ra_len = cpu_to_le16(log->ra_size); 1412 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1413 ra->l_size = cpu_to_le64(log->l_size); 1414 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1415 ra->data_off = cpu_to_le16(log->data_off); 1416 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1417 1418 cr = ra->clients; 1419 1420 cr->prev_client = LFS_NO_CLIENT_LE; 1421 cr->next_client = LFS_NO_CLIENT_LE; 1422 1423 return ra; 1424 } 1425 1426 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1427 { 1428 u32 base_vbo = lsn << 3; 1429 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1430 u32 page_off = base_vbo & log->page_mask; 1431 u32 tail = log->page_size - page_off; 1432 1433 page_off -= 1; 1434 1435 /* Add the length of the header. */ 1436 data_len += log->record_header_len; 1437 1438 /* 1439 * If this lsn is contained this log page we are done. 1440 * Otherwise we need to walk through several log pages. 1441 */ 1442 if (data_len > tail) { 1443 data_len -= tail; 1444 tail = log->data_size; 1445 page_off = log->data_off - 1; 1446 1447 for (;;) { 1448 final_log_off = next_page_off(log, final_log_off); 1449 1450 /* 1451 * We are done if the remaining bytes 1452 * fit on this page. 1453 */ 1454 if (data_len <= tail) 1455 break; 1456 data_len -= tail; 1457 } 1458 } 1459 1460 /* 1461 * We add the remaining bytes to our starting position on this page 1462 * and then add that value to the file offset of this log page. 1463 */ 1464 return final_log_off + data_len + page_off; 1465 } 1466 1467 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1468 u64 *lsn) 1469 { 1470 int err; 1471 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1472 u32 vbo = lsn_to_vbo(log, this_lsn); 1473 u32 end = 1474 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1475 u32 hdr_off = end & ~log->sys_page_mask; 1476 u64 seq = this_lsn >> log->file_data_bits; 1477 struct RECORD_PAGE_HDR *page = NULL; 1478 1479 /* Remember if we wrapped. */ 1480 if (end <= vbo) 1481 seq += 1; 1482 1483 /* Log page header for this page. */ 1484 err = read_log_page(log, hdr_off, &page, NULL); 1485 if (err) 1486 return err; 1487 1488 /* 1489 * If the lsn we were given was not the last lsn on this page, 1490 * then the starting offset for the next lsn is on a quad word 1491 * boundary following the last file offset for the current lsn. 1492 * Otherwise the file offset is the start of the data on the next page. 1493 */ 1494 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1495 /* If we wrapped, we need to increment the sequence number. */ 1496 hdr_off = next_page_off(log, hdr_off); 1497 if (hdr_off == log->first_page) 1498 seq += 1; 1499 1500 vbo = hdr_off + log->data_off; 1501 } else { 1502 vbo = ALIGN(end, 8); 1503 } 1504 1505 /* Compute the lsn based on the file offset and the sequence count. */ 1506 *lsn = vbo_to_lsn(log, vbo, seq); 1507 1508 /* 1509 * If this lsn is within the legal range for the file, we return true. 1510 * Otherwise false indicates that there are no more lsn's. 1511 */ 1512 if (!is_lsn_in_file(log, *lsn)) 1513 *lsn = 0; 1514 1515 kfree(page); 1516 1517 return 0; 1518 } 1519 1520 /* 1521 * current_log_avail - Calculate the number of bytes available for log records. 1522 */ 1523 static u32 current_log_avail(struct ntfs_log *log) 1524 { 1525 u32 oldest_off, next_free_off, free_bytes; 1526 1527 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1528 /* The entire file is available. */ 1529 return log->max_current_avail; 1530 } 1531 1532 /* 1533 * If there is a last lsn the restart area then we know that we will 1534 * have to compute the free range. 1535 * If there is no oldest lsn then start at the first page of the file. 1536 */ 1537 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) 1538 ? log->first_page 1539 : (log->oldest_lsn_off & ~log->sys_page_mask); 1540 1541 /* 1542 * We will use the next log page offset to compute the next free page. 1543 * If we are going to reuse this page go to the next page. 1544 * If we are at the first page then use the end of the file. 1545 */ 1546 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) 1547 ? log->next_page + log->page_size 1548 : log->next_page == log->first_page 1549 ? log->l_size 1550 : log->next_page; 1551 1552 /* If the two offsets are the same then there is no available space. */ 1553 if (oldest_off == next_free_off) 1554 return 0; 1555 /* 1556 * If the free offset follows the oldest offset then subtract 1557 * this range from the total available pages. 1558 */ 1559 free_bytes = 1560 oldest_off < next_free_off 1561 ? log->total_avail_pages - (next_free_off - oldest_off) 1562 : oldest_off - next_free_off; 1563 1564 free_bytes >>= log->page_bits; 1565 return free_bytes * log->reserved; 1566 } 1567 1568 static bool check_subseq_log_page(struct ntfs_log *log, 1569 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1570 u64 seq) 1571 { 1572 u64 lsn_seq; 1573 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1574 u64 lsn = le64_to_cpu(rhdr->lsn); 1575 1576 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1577 return false; 1578 1579 /* 1580 * If the last lsn on the page occurs was written after the page 1581 * that caused the original error then we have a fatal error. 1582 */ 1583 lsn_seq = lsn >> log->file_data_bits; 1584 1585 /* 1586 * If the sequence number for the lsn the page is equal or greater 1587 * than lsn we expect, then this is a subsequent write. 1588 */ 1589 return lsn_seq >= seq || 1590 (lsn_seq == seq - 1 && log->first_page == vbo && 1591 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1592 } 1593 1594 /* 1595 * last_log_lsn 1596 * 1597 * Walks through the log pages for a file, searching for the 1598 * last log page written to the file. 1599 */ 1600 static int last_log_lsn(struct ntfs_log *log) 1601 { 1602 int err; 1603 bool usa_error = false; 1604 bool replace_page = false; 1605 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1606 bool wrapped_file, wrapped; 1607 1608 u32 page_cnt = 1, page_pos = 1; 1609 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1610 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1611 u32 first_file_off = 0, second_file_off = 0; 1612 u32 part_io_count = 0; 1613 u32 tails = 0; 1614 u32 this_off, curpage_off, nextpage_off, remain_pages; 1615 1616 u64 expected_seq, seq_base = 0, lsn_base = 0; 1617 u64 best_lsn, best_lsn1, best_lsn2; 1618 u64 lsn_cur, lsn1, lsn2; 1619 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1620 1621 u16 cur_pos, best_page_pos; 1622 1623 struct RECORD_PAGE_HDR *page = NULL; 1624 struct RECORD_PAGE_HDR *tst_page = NULL; 1625 struct RECORD_PAGE_HDR *first_tail = NULL; 1626 struct RECORD_PAGE_HDR *second_tail = NULL; 1627 struct RECORD_PAGE_HDR *tail_page = NULL; 1628 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1629 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1630 struct RECORD_PAGE_HDR *page_bufs = NULL; 1631 struct RECORD_PAGE_HDR *best_page; 1632 1633 if (log->major_ver >= 2) { 1634 final_off = 0x02 * log->page_size; 1635 second_off = 0x12 * log->page_size; 1636 1637 // 0x10 == 0x12 - 0x2 1638 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1639 if (!page_bufs) 1640 return -ENOMEM; 1641 } else { 1642 second_off = log->first_page - log->page_size; 1643 final_off = second_off - log->page_size; 1644 } 1645 1646 next_tail: 1647 /* Read second tail page (at pos 3/0x12000). */ 1648 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1649 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1650 kfree(second_tail); 1651 second_tail = NULL; 1652 second_file_off = 0; 1653 lsn2 = 0; 1654 } else { 1655 second_file_off = hdr_file_off(log, second_tail); 1656 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1657 } 1658 1659 /* Read first tail page (at pos 2/0x2000). */ 1660 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1661 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1662 kfree(first_tail); 1663 first_tail = NULL; 1664 first_file_off = 0; 1665 lsn1 = 0; 1666 } else { 1667 first_file_off = hdr_file_off(log, first_tail); 1668 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1669 } 1670 1671 if (log->major_ver < 2) { 1672 int best_page; 1673 1674 first_tail_prev = first_tail; 1675 final_off_prev = first_file_off; 1676 second_tail_prev = second_tail; 1677 second_off_prev = second_file_off; 1678 tails = 1; 1679 1680 if (!first_tail && !second_tail) 1681 goto tail_read; 1682 1683 if (first_tail && second_tail) 1684 best_page = lsn1 < lsn2 ? 1 : 0; 1685 else if (first_tail) 1686 best_page = 0; 1687 else 1688 best_page = 1; 1689 1690 page_off = best_page ? second_file_off : first_file_off; 1691 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1692 goto tail_read; 1693 } 1694 1695 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1696 best_lsn2 = 1697 second_tail ? base_lsn(log, second_tail, second_file_off) : 0; 1698 1699 if (first_tail && second_tail) { 1700 if (best_lsn1 > best_lsn2) { 1701 best_lsn = best_lsn1; 1702 best_page = first_tail; 1703 this_off = first_file_off; 1704 } else { 1705 best_lsn = best_lsn2; 1706 best_page = second_tail; 1707 this_off = second_file_off; 1708 } 1709 } else if (first_tail) { 1710 best_lsn = best_lsn1; 1711 best_page = first_tail; 1712 this_off = first_file_off; 1713 } else if (second_tail) { 1714 best_lsn = best_lsn2; 1715 best_page = second_tail; 1716 this_off = second_file_off; 1717 } else { 1718 goto tail_read; 1719 } 1720 1721 best_page_pos = le16_to_cpu(best_page->page_pos); 1722 1723 if (!tails) { 1724 if (best_page_pos == page_pos) { 1725 seq_base = best_lsn >> log->file_data_bits; 1726 saved_off = page_off = le32_to_cpu(best_page->file_off); 1727 lsn_base = best_lsn; 1728 1729 memmove(page_bufs, best_page, log->page_size); 1730 1731 page_cnt = le16_to_cpu(best_page->page_count); 1732 if (page_cnt > 1) 1733 page_pos += 1; 1734 1735 tails = 1; 1736 } 1737 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1738 saved_off + log->page_size == this_off && 1739 lsn_base < best_lsn && 1740 (page_pos != page_cnt || best_page_pos == page_pos || 1741 best_page_pos == 1) && 1742 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1743 u16 bppc = le16_to_cpu(best_page->page_count); 1744 1745 saved_off += log->page_size; 1746 lsn_base = best_lsn; 1747 1748 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1749 log->page_size); 1750 1751 tails += 1; 1752 1753 if (best_page_pos != bppc) { 1754 page_cnt = bppc; 1755 page_pos = best_page_pos; 1756 1757 if (page_cnt > 1) 1758 page_pos += 1; 1759 } else { 1760 page_pos = page_cnt = 1; 1761 } 1762 } else { 1763 kfree(first_tail); 1764 kfree(second_tail); 1765 goto tail_read; 1766 } 1767 1768 kfree(first_tail_prev); 1769 first_tail_prev = first_tail; 1770 final_off_prev = first_file_off; 1771 first_tail = NULL; 1772 1773 kfree(second_tail_prev); 1774 second_tail_prev = second_tail; 1775 second_off_prev = second_file_off; 1776 second_tail = NULL; 1777 1778 final_off += log->page_size; 1779 second_off += log->page_size; 1780 1781 if (tails < 0x10) 1782 goto next_tail; 1783 tail_read: 1784 first_tail = first_tail_prev; 1785 final_off = final_off_prev; 1786 1787 second_tail = second_tail_prev; 1788 second_off = second_off_prev; 1789 1790 page_cnt = page_pos = 1; 1791 1792 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) 1793 : log->next_page; 1794 1795 wrapped_file = 1796 curpage_off == log->first_page && 1797 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1798 1799 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1800 1801 nextpage_off = curpage_off; 1802 1803 next_page: 1804 tail_page = NULL; 1805 /* Read the next log page. */ 1806 err = read_log_page(log, curpage_off, &page, &usa_error); 1807 1808 /* Compute the next log page offset the file. */ 1809 nextpage_off = next_page_off(log, curpage_off); 1810 wrapped = nextpage_off == log->first_page; 1811 1812 if (tails > 1) { 1813 struct RECORD_PAGE_HDR *cur_page = 1814 Add2Ptr(page_bufs, curpage_off - page_off); 1815 1816 if (curpage_off == saved_off) { 1817 tail_page = cur_page; 1818 goto use_tail_page; 1819 } 1820 1821 if (page_off > curpage_off || curpage_off >= saved_off) 1822 goto use_tail_page; 1823 1824 if (page_off1) 1825 goto use_cur_page; 1826 1827 if (!err && !usa_error && 1828 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1829 cur_page->rhdr.lsn == page->rhdr.lsn && 1830 cur_page->record_hdr.next_record_off == 1831 page->record_hdr.next_record_off && 1832 ((page_pos == page_cnt && 1833 le16_to_cpu(page->page_pos) == 1) || 1834 (page_pos != page_cnt && 1835 le16_to_cpu(page->page_pos) == page_pos + 1 && 1836 le16_to_cpu(page->page_count) == page_cnt))) { 1837 cur_page = NULL; 1838 goto use_tail_page; 1839 } 1840 1841 page_off1 = page_off; 1842 1843 use_cur_page: 1844 1845 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1846 1847 if (last_ok_lsn != 1848 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1849 ((lsn_cur >> log->file_data_bits) + 1850 ((curpage_off < 1851 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) 1852 ? 1 1853 : 0)) != expected_seq) { 1854 goto check_tail; 1855 } 1856 1857 if (!is_log_record_end(cur_page)) { 1858 tail_page = NULL; 1859 last_ok_lsn = lsn_cur; 1860 goto next_page_1; 1861 } 1862 1863 log->seq_num = expected_seq; 1864 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1865 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1866 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1867 1868 if (log->record_header_len <= 1869 log->page_size - 1870 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1871 log->l_flags |= NTFSLOG_REUSE_TAIL; 1872 log->next_page = curpage_off; 1873 } else { 1874 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1875 log->next_page = nextpage_off; 1876 } 1877 1878 if (wrapped_file) 1879 log->l_flags |= NTFSLOG_WRAPPED; 1880 1881 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1882 goto next_page_1; 1883 } 1884 1885 /* 1886 * If we are at the expected first page of a transfer check to see 1887 * if either tail copy is at this offset. 1888 * If this page is the last page of a transfer, check if we wrote 1889 * a subsequent tail copy. 1890 */ 1891 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1892 /* 1893 * Check if the offset matches either the first or second 1894 * tail copy. It is possible it will match both. 1895 */ 1896 if (curpage_off == final_off) 1897 tail_page = first_tail; 1898 1899 /* 1900 * If we already matched on the first page then 1901 * check the ending lsn's. 1902 */ 1903 if (curpage_off == second_off) { 1904 if (!tail_page || 1905 (second_tail && 1906 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1907 le64_to_cpu(first_tail->record_hdr 1908 .last_end_lsn))) { 1909 tail_page = second_tail; 1910 } 1911 } 1912 } 1913 1914 use_tail_page: 1915 if (tail_page) { 1916 /* We have a candidate for a tail copy. */ 1917 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1918 1919 if (last_ok_lsn < lsn_cur) { 1920 /* 1921 * If the sequence number is not expected, 1922 * then don't use the tail copy. 1923 */ 1924 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1925 tail_page = NULL; 1926 } else if (last_ok_lsn > lsn_cur) { 1927 /* 1928 * If the last lsn is greater than the one on 1929 * this page then forget this tail. 1930 */ 1931 tail_page = NULL; 1932 } 1933 } 1934 1935 /* 1936 *If we have an error on the current page, 1937 * we will break of this loop. 1938 */ 1939 if (err || usa_error) 1940 goto check_tail; 1941 1942 /* 1943 * Done if the last lsn on this page doesn't match the previous known 1944 * last lsn or the sequence number is not expected. 1945 */ 1946 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1947 if (last_ok_lsn != lsn_cur && 1948 expected_seq != (lsn_cur >> log->file_data_bits)) { 1949 goto check_tail; 1950 } 1951 1952 /* 1953 * Check that the page position and page count values are correct. 1954 * If this is the first page of a transfer the position must be 1 1955 * and the count will be unknown. 1956 */ 1957 if (page_cnt == page_pos) { 1958 if (page->page_pos != cpu_to_le16(1) && 1959 (!reuse_page || page->page_pos != page->page_count)) { 1960 /* 1961 * If the current page is the first page we are 1962 * looking at and we are reusing this page then 1963 * it can be either the first or last page of a 1964 * transfer. Otherwise it can only be the first. 1965 */ 1966 goto check_tail; 1967 } 1968 } else if (le16_to_cpu(page->page_count) != page_cnt || 1969 le16_to_cpu(page->page_pos) != page_pos + 1) { 1970 /* 1971 * The page position better be 1 more than the last page 1972 * position and the page count better match. 1973 */ 1974 goto check_tail; 1975 } 1976 1977 /* 1978 * We have a valid page the file and may have a valid page 1979 * the tail copy area. 1980 * If the tail page was written after the page the file then 1981 * break of the loop. 1982 */ 1983 if (tail_page && 1984 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1985 /* Remember if we will replace the page. */ 1986 replace_page = true; 1987 goto check_tail; 1988 } 1989 1990 tail_page = NULL; 1991 1992 if (is_log_record_end(page)) { 1993 /* 1994 * Since we have read this page we know the sequence number 1995 * is the same as our expected value. 1996 */ 1997 log->seq_num = expected_seq; 1998 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1999 log->ra->current_lsn = page->record_hdr.last_end_lsn; 2000 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2001 2002 /* 2003 * If there is room on this page for another header then 2004 * remember we want to reuse the page. 2005 */ 2006 if (log->record_header_len <= 2007 log->page_size - 2008 le16_to_cpu(page->record_hdr.next_record_off)) { 2009 log->l_flags |= NTFSLOG_REUSE_TAIL; 2010 log->next_page = curpage_off; 2011 } else { 2012 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2013 log->next_page = nextpage_off; 2014 } 2015 2016 /* Remember if we wrapped the log file. */ 2017 if (wrapped_file) 2018 log->l_flags |= NTFSLOG_WRAPPED; 2019 } 2020 2021 /* 2022 * Remember the last page count and position. 2023 * Also remember the last known lsn. 2024 */ 2025 page_cnt = le16_to_cpu(page->page_count); 2026 page_pos = le16_to_cpu(page->page_pos); 2027 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2028 2029 next_page_1: 2030 2031 if (wrapped) { 2032 expected_seq += 1; 2033 wrapped_file = 1; 2034 } 2035 2036 curpage_off = nextpage_off; 2037 kfree(page); 2038 page = NULL; 2039 reuse_page = 0; 2040 goto next_page; 2041 2042 check_tail: 2043 if (tail_page) { 2044 log->seq_num = expected_seq; 2045 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2046 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2047 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2048 2049 if (log->page_size - 2050 le16_to_cpu( 2051 tail_page->record_hdr.next_record_off) >= 2052 log->record_header_len) { 2053 log->l_flags |= NTFSLOG_REUSE_TAIL; 2054 log->next_page = curpage_off; 2055 } else { 2056 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2057 log->next_page = nextpage_off; 2058 } 2059 2060 if (wrapped) 2061 log->l_flags |= NTFSLOG_WRAPPED; 2062 } 2063 2064 /* Remember that the partial IO will start at the next page. */ 2065 second_off = nextpage_off; 2066 2067 /* 2068 * If the next page is the first page of the file then update 2069 * the sequence number for log records which begon the next page. 2070 */ 2071 if (wrapped) 2072 expected_seq += 1; 2073 2074 /* 2075 * If we have a tail copy or are performing single page I/O we can 2076 * immediately look at the next page. 2077 */ 2078 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2079 page_cnt = 2; 2080 page_pos = 1; 2081 goto check_valid; 2082 } 2083 2084 if (page_pos != page_cnt) 2085 goto check_valid; 2086 /* 2087 * If the next page causes us to wrap to the beginning of the log 2088 * file then we know which page to check next. 2089 */ 2090 if (wrapped) { 2091 page_cnt = 2; 2092 page_pos = 1; 2093 goto check_valid; 2094 } 2095 2096 cur_pos = 2; 2097 2098 next_test_page: 2099 kfree(tst_page); 2100 tst_page = NULL; 2101 2102 /* Walk through the file, reading log pages. */ 2103 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2104 2105 /* 2106 * If we get a USA error then assume that we correctly found 2107 * the end of the original transfer. 2108 */ 2109 if (usa_error) 2110 goto file_is_valid; 2111 2112 /* 2113 * If we were able to read the page, we examine it to see if it 2114 * is the same or different Io block. 2115 */ 2116 if (err) 2117 goto next_test_page_1; 2118 2119 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2120 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2121 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2122 page_pos = le16_to_cpu(tst_page->page_pos); 2123 goto check_valid; 2124 } else { 2125 goto file_is_valid; 2126 } 2127 2128 next_test_page_1: 2129 2130 nextpage_off = next_page_off(log, curpage_off); 2131 wrapped = nextpage_off == log->first_page; 2132 2133 if (wrapped) { 2134 expected_seq += 1; 2135 page_cnt = 2; 2136 page_pos = 1; 2137 } 2138 2139 cur_pos += 1; 2140 part_io_count += 1; 2141 if (!wrapped) 2142 goto next_test_page; 2143 2144 check_valid: 2145 /* Skip over the remaining pages this transfer. */ 2146 remain_pages = page_cnt - page_pos - 1; 2147 part_io_count += remain_pages; 2148 2149 while (remain_pages--) { 2150 nextpage_off = next_page_off(log, curpage_off); 2151 wrapped = nextpage_off == log->first_page; 2152 2153 if (wrapped) 2154 expected_seq += 1; 2155 } 2156 2157 /* Call our routine to check this log page. */ 2158 kfree(tst_page); 2159 tst_page = NULL; 2160 2161 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2162 if (!err && !usa_error && 2163 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2164 err = -EINVAL; 2165 goto out; 2166 } 2167 2168 file_is_valid: 2169 2170 /* We have a valid file. */ 2171 if (page_off1 || tail_page) { 2172 struct RECORD_PAGE_HDR *tmp_page; 2173 2174 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2175 err = -EROFS; 2176 goto out; 2177 } 2178 2179 if (page_off1) { 2180 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2181 tails -= (page_off1 - page_off) / log->page_size; 2182 if (!tail_page) 2183 tails -= 1; 2184 } else { 2185 tmp_page = tail_page; 2186 tails = 1; 2187 } 2188 2189 while (tails--) { 2190 u64 off = hdr_file_off(log, tmp_page); 2191 2192 if (!page) { 2193 page = kmalloc(log->page_size, GFP_NOFS); 2194 if (!page) 2195 return -ENOMEM; 2196 } 2197 2198 /* 2199 * Correct page and copy the data from this page 2200 * into it and flush it to disk. 2201 */ 2202 memcpy(page, tmp_page, log->page_size); 2203 2204 /* Fill last flushed lsn value flush the page. */ 2205 if (log->major_ver < 2) 2206 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2207 else 2208 page->file_off = 0; 2209 2210 page->page_pos = page->page_count = cpu_to_le16(1); 2211 2212 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2213 2214 err = ntfs_sb_write_run(log->ni->mi.sbi, 2215 &log->ni->file.run, off, page, 2216 log->page_size, 0); 2217 2218 if (err) 2219 goto out; 2220 2221 if (part_io_count && second_off == off) { 2222 second_off += log->page_size; 2223 part_io_count -= 1; 2224 } 2225 2226 tmp_page = Add2Ptr(tmp_page, log->page_size); 2227 } 2228 } 2229 2230 if (part_io_count) { 2231 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2232 err = -EROFS; 2233 goto out; 2234 } 2235 } 2236 2237 out: 2238 kfree(second_tail); 2239 kfree(first_tail); 2240 kfree(page); 2241 kfree(tst_page); 2242 kfree(page_bufs); 2243 2244 return err; 2245 } 2246 2247 /* 2248 * read_log_rec_buf - Copy a log record from the file to a buffer. 2249 * 2250 * The log record may span several log pages and may even wrap the file. 2251 */ 2252 static int read_log_rec_buf(struct ntfs_log *log, 2253 const struct LFS_RECORD_HDR *rh, void *buffer) 2254 { 2255 int err; 2256 struct RECORD_PAGE_HDR *ph = NULL; 2257 u64 lsn = le64_to_cpu(rh->this_lsn); 2258 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2259 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2260 u32 data_len = le32_to_cpu(rh->client_data_len); 2261 2262 /* 2263 * While there are more bytes to transfer, 2264 * we continue to attempt to perform the read. 2265 */ 2266 for (;;) { 2267 bool usa_error; 2268 u32 tail = log->page_size - off; 2269 2270 if (tail >= data_len) 2271 tail = data_len; 2272 2273 data_len -= tail; 2274 2275 err = read_log_page(log, vbo, &ph, &usa_error); 2276 if (err) 2277 goto out; 2278 2279 /* 2280 * The last lsn on this page better be greater or equal 2281 * to the lsn we are copying. 2282 */ 2283 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2284 err = -EINVAL; 2285 goto out; 2286 } 2287 2288 memcpy(buffer, Add2Ptr(ph, off), tail); 2289 2290 /* If there are no more bytes to transfer, we exit the loop. */ 2291 if (!data_len) { 2292 if (!is_log_record_end(ph) || 2293 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2294 err = -EINVAL; 2295 goto out; 2296 } 2297 break; 2298 } 2299 2300 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2301 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2302 err = -EINVAL; 2303 goto out; 2304 } 2305 2306 vbo = next_page_off(log, vbo); 2307 off = log->data_off; 2308 2309 /* 2310 * Adjust our pointer the user's buffer to transfer 2311 * the next block to. 2312 */ 2313 buffer = Add2Ptr(buffer, tail); 2314 } 2315 2316 out: 2317 kfree(ph); 2318 return err; 2319 } 2320 2321 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2322 u64 *lsn) 2323 { 2324 int err; 2325 struct LFS_RECORD_HDR *rh = NULL; 2326 const struct CLIENT_REC *cr = 2327 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2328 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2329 u32 len; 2330 struct NTFS_RESTART *rst; 2331 2332 *lsn = 0; 2333 *rst_ = NULL; 2334 2335 /* If the client doesn't have a restart area, go ahead and exit now. */ 2336 if (!lsnc) 2337 return 0; 2338 2339 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2340 (struct RECORD_PAGE_HDR **)&rh, NULL); 2341 if (err) 2342 return err; 2343 2344 rst = NULL; 2345 lsnr = le64_to_cpu(rh->this_lsn); 2346 2347 if (lsnc != lsnr) { 2348 /* If the lsn values don't match, then the disk is corrupt. */ 2349 err = -EINVAL; 2350 goto out; 2351 } 2352 2353 *lsn = lsnr; 2354 len = le32_to_cpu(rh->client_data_len); 2355 2356 if (!len) { 2357 err = 0; 2358 goto out; 2359 } 2360 2361 if (len < sizeof(struct NTFS_RESTART)) { 2362 err = -EINVAL; 2363 goto out; 2364 } 2365 2366 rst = kmalloc(len, GFP_NOFS); 2367 if (!rst) { 2368 err = -ENOMEM; 2369 goto out; 2370 } 2371 2372 /* Copy the data into the 'rst' buffer. */ 2373 err = read_log_rec_buf(log, rh, rst); 2374 if (err) 2375 goto out; 2376 2377 *rst_ = rst; 2378 rst = NULL; 2379 2380 out: 2381 kfree(rh); 2382 kfree(rst); 2383 2384 return err; 2385 } 2386 2387 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2388 { 2389 int err; 2390 struct LFS_RECORD_HDR *rh = lcb->lrh; 2391 u32 rec_len, len; 2392 2393 /* Read the record header for this lsn. */ 2394 if (!rh) { 2395 err = read_log_page(log, lsn_to_vbo(log, lsn), 2396 (struct RECORD_PAGE_HDR **)&rh, NULL); 2397 2398 lcb->lrh = rh; 2399 if (err) 2400 return err; 2401 } 2402 2403 /* 2404 * If the lsn the log record doesn't match the desired 2405 * lsn then the disk is corrupt. 2406 */ 2407 if (lsn != le64_to_cpu(rh->this_lsn)) 2408 return -EINVAL; 2409 2410 len = le32_to_cpu(rh->client_data_len); 2411 2412 /* 2413 * Check that the length field isn't greater than the total 2414 * available space the log file. 2415 */ 2416 rec_len = len + log->record_header_len; 2417 if (rec_len >= log->total_avail) 2418 return -EINVAL; 2419 2420 /* 2421 * If the entire log record is on this log page, 2422 * put a pointer to the log record the context block. 2423 */ 2424 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2425 void *lr = kmalloc(len, GFP_NOFS); 2426 2427 if (!lr) 2428 return -ENOMEM; 2429 2430 lcb->log_rec = lr; 2431 lcb->alloc = true; 2432 2433 /* Copy the data into the buffer returned. */ 2434 err = read_log_rec_buf(log, rh, lr); 2435 if (err) 2436 return err; 2437 } else { 2438 /* If beyond the end of the current page -> an error. */ 2439 u32 page_off = lsn_to_page_off(log, lsn); 2440 2441 if (page_off + len + log->record_header_len > log->page_size) 2442 return -EINVAL; 2443 2444 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2445 lcb->alloc = false; 2446 } 2447 2448 return 0; 2449 } 2450 2451 /* 2452 * read_log_rec_lcb - Init the query operation. 2453 */ 2454 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2455 struct lcb **lcb_) 2456 { 2457 int err; 2458 const struct CLIENT_REC *cr; 2459 struct lcb *lcb; 2460 2461 switch (ctx_mode) { 2462 case lcb_ctx_undo_next: 2463 case lcb_ctx_prev: 2464 case lcb_ctx_next: 2465 break; 2466 default: 2467 return -EINVAL; 2468 } 2469 2470 /* Check that the given lsn is the legal range for this client. */ 2471 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2472 2473 if (!verify_client_lsn(log, cr, lsn)) 2474 return -EINVAL; 2475 2476 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2477 if (!lcb) 2478 return -ENOMEM; 2479 lcb->client = log->client_id; 2480 lcb->ctx_mode = ctx_mode; 2481 2482 /* Find the log record indicated by the given lsn. */ 2483 err = find_log_rec(log, lsn, lcb); 2484 if (err) 2485 goto out; 2486 2487 *lcb_ = lcb; 2488 return 0; 2489 2490 out: 2491 lcb_put(lcb); 2492 *lcb_ = NULL; 2493 return err; 2494 } 2495 2496 /* 2497 * find_client_next_lsn 2498 * 2499 * Attempt to find the next lsn to return to a client based on the context mode. 2500 */ 2501 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2502 { 2503 int err; 2504 u64 next_lsn; 2505 struct LFS_RECORD_HDR *hdr; 2506 2507 hdr = lcb->lrh; 2508 *lsn = 0; 2509 2510 if (lcb_ctx_next != lcb->ctx_mode) 2511 goto check_undo_next; 2512 2513 /* Loop as long as another lsn can be found. */ 2514 for (;;) { 2515 u64 current_lsn; 2516 2517 err = next_log_lsn(log, hdr, ¤t_lsn); 2518 if (err) 2519 goto out; 2520 2521 if (!current_lsn) 2522 break; 2523 2524 if (hdr != lcb->lrh) 2525 kfree(hdr); 2526 2527 hdr = NULL; 2528 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2529 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2530 if (err) 2531 goto out; 2532 2533 if (memcmp(&hdr->client, &lcb->client, 2534 sizeof(struct CLIENT_ID))) { 2535 /*err = -EINVAL; */ 2536 } else if (LfsClientRecord == hdr->record_type) { 2537 kfree(lcb->lrh); 2538 lcb->lrh = hdr; 2539 *lsn = current_lsn; 2540 return 0; 2541 } 2542 } 2543 2544 out: 2545 if (hdr != lcb->lrh) 2546 kfree(hdr); 2547 return err; 2548 2549 check_undo_next: 2550 if (lcb_ctx_undo_next == lcb->ctx_mode) 2551 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2552 else if (lcb_ctx_prev == lcb->ctx_mode) 2553 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2554 else 2555 return 0; 2556 2557 if (!next_lsn) 2558 return 0; 2559 2560 if (!verify_client_lsn( 2561 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2562 next_lsn)) 2563 return 0; 2564 2565 hdr = NULL; 2566 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2567 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2568 if (err) 2569 return err; 2570 kfree(lcb->lrh); 2571 lcb->lrh = hdr; 2572 2573 *lsn = next_lsn; 2574 2575 return 0; 2576 } 2577 2578 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2579 { 2580 int err; 2581 2582 err = find_client_next_lsn(log, lcb, lsn); 2583 if (err) 2584 return err; 2585 2586 if (!*lsn) 2587 return 0; 2588 2589 if (lcb->alloc) 2590 kfree(lcb->log_rec); 2591 2592 lcb->log_rec = NULL; 2593 lcb->alloc = false; 2594 kfree(lcb->lrh); 2595 lcb->lrh = NULL; 2596 2597 return find_log_rec(log, *lsn, lcb); 2598 } 2599 2600 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2601 { 2602 __le16 mask; 2603 u32 min_de, de_off, used, total; 2604 const struct NTFS_DE *e; 2605 2606 if (hdr_has_subnode(hdr)) { 2607 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2608 mask = NTFS_IE_HAS_SUBNODES; 2609 } else { 2610 min_de = sizeof(struct NTFS_DE); 2611 mask = 0; 2612 } 2613 2614 de_off = le32_to_cpu(hdr->de_off); 2615 used = le32_to_cpu(hdr->used); 2616 total = le32_to_cpu(hdr->total); 2617 2618 if (de_off > bytes - min_de || used > bytes || total > bytes || 2619 de_off + min_de > used || used > total) { 2620 return false; 2621 } 2622 2623 e = Add2Ptr(hdr, de_off); 2624 for (;;) { 2625 u16 esize = le16_to_cpu(e->size); 2626 struct NTFS_DE *next = Add2Ptr(e, esize); 2627 2628 if (esize < min_de || PtrOffset(hdr, next) > used || 2629 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2630 return false; 2631 } 2632 2633 if (de_is_last(e)) 2634 break; 2635 2636 e = next; 2637 } 2638 2639 return true; 2640 } 2641 2642 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2643 { 2644 u16 fo; 2645 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2646 2647 if (r->sign != NTFS_INDX_SIGNATURE) 2648 return false; 2649 2650 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2651 2652 if (le16_to_cpu(r->fix_off) > fo) 2653 return false; 2654 2655 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2656 return false; 2657 2658 return check_index_header(&ib->ihdr, 2659 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2660 } 2661 2662 static inline bool check_index_root(const struct ATTRIB *attr, 2663 struct ntfs_sb_info *sbi) 2664 { 2665 bool ret; 2666 const struct INDEX_ROOT *root = resident_data(attr); 2667 u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size 2668 ? sbi->cluster_bits 2669 : SECTOR_SHIFT; 2670 u8 block_clst = root->index_block_clst; 2671 2672 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2673 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2674 (root->type == ATTR_NAME && 2675 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2676 (le32_to_cpu(root->index_block_size) != 2677 (block_clst << index_bits)) || 2678 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2679 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2680 block_clst != 0x40 && block_clst != 0x80)) { 2681 return false; 2682 } 2683 2684 ret = check_index_header(&root->ihdr, 2685 le32_to_cpu(attr->res.data_size) - 2686 offsetof(struct INDEX_ROOT, ihdr)); 2687 return ret; 2688 } 2689 2690 static inline bool check_attr(const struct MFT_REC *rec, 2691 const struct ATTRIB *attr, 2692 struct ntfs_sb_info *sbi) 2693 { 2694 u32 asize = le32_to_cpu(attr->size); 2695 u32 rsize = 0; 2696 u64 dsize, svcn, evcn; 2697 u16 run_off; 2698 2699 /* Check the fixed part of the attribute record header. */ 2700 if (asize >= sbi->record_size || 2701 asize + PtrOffset(rec, attr) >= sbi->record_size || 2702 (attr->name_len && 2703 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2704 asize)) { 2705 return false; 2706 } 2707 2708 /* Check the attribute fields. */ 2709 switch (attr->non_res) { 2710 case 0: 2711 rsize = le32_to_cpu(attr->res.data_size); 2712 if (rsize >= asize || 2713 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2714 return false; 2715 } 2716 break; 2717 2718 case 1: 2719 dsize = le64_to_cpu(attr->nres.data_size); 2720 svcn = le64_to_cpu(attr->nres.svcn); 2721 evcn = le64_to_cpu(attr->nres.evcn); 2722 run_off = le16_to_cpu(attr->nres.run_off); 2723 2724 if (svcn > evcn + 1 || run_off >= asize || 2725 le64_to_cpu(attr->nres.valid_size) > dsize || 2726 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2727 return false; 2728 } 2729 2730 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2731 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2732 return false; 2733 } 2734 2735 return true; 2736 2737 default: 2738 return false; 2739 } 2740 2741 switch (attr->type) { 2742 case ATTR_NAME: 2743 if (fname_full_size(Add2Ptr( 2744 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2745 return false; 2746 } 2747 break; 2748 2749 case ATTR_ROOT: 2750 return check_index_root(attr, sbi); 2751 2752 case ATTR_STD: 2753 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2754 rsize != sizeof(struct ATTR_STD_INFO)) { 2755 return false; 2756 } 2757 break; 2758 2759 case ATTR_LIST: 2760 case ATTR_ID: 2761 case ATTR_SECURE: 2762 case ATTR_LABEL: 2763 case ATTR_VOL_INFO: 2764 case ATTR_DATA: 2765 case ATTR_ALLOC: 2766 case ATTR_BITMAP: 2767 case ATTR_REPARSE: 2768 case ATTR_EA_INFO: 2769 case ATTR_EA: 2770 case ATTR_PROPERTYSET: 2771 case ATTR_LOGGED_UTILITY_STREAM: 2772 break; 2773 2774 default: 2775 return false; 2776 } 2777 2778 return true; 2779 } 2780 2781 static inline bool check_file_record(const struct MFT_REC *rec, 2782 const struct MFT_REC *rec2, 2783 struct ntfs_sb_info *sbi) 2784 { 2785 const struct ATTRIB *attr; 2786 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2787 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2788 u16 ao = le16_to_cpu(rec->attr_off); 2789 u32 rs = sbi->record_size; 2790 2791 /* Check the file record header for consistency. */ 2792 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2793 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2794 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2795 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2796 le32_to_cpu(rec->total) != rs) { 2797 return false; 2798 } 2799 2800 /* Loop to check all of the attributes. */ 2801 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2802 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2803 if (check_attr(rec, attr, sbi)) 2804 continue; 2805 return false; 2806 } 2807 2808 return true; 2809 } 2810 2811 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2812 const u64 *rlsn) 2813 { 2814 u64 lsn; 2815 2816 if (!rlsn) 2817 return true; 2818 2819 lsn = le64_to_cpu(hdr->lsn); 2820 2821 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2822 return false; 2823 2824 if (*rlsn > lsn) 2825 return true; 2826 2827 return false; 2828 } 2829 2830 static inline bool check_if_attr(const struct MFT_REC *rec, 2831 const struct LOG_REC_HDR *lrh) 2832 { 2833 u16 ro = le16_to_cpu(lrh->record_off); 2834 u16 o = le16_to_cpu(rec->attr_off); 2835 const struct ATTRIB *attr = Add2Ptr(rec, o); 2836 2837 while (o < ro) { 2838 u32 asize; 2839 2840 if (attr->type == ATTR_END) 2841 break; 2842 2843 asize = le32_to_cpu(attr->size); 2844 if (!asize) 2845 break; 2846 2847 o += asize; 2848 attr = Add2Ptr(attr, asize); 2849 } 2850 2851 return o == ro; 2852 } 2853 2854 static inline bool check_if_index_root(const struct MFT_REC *rec, 2855 const struct LOG_REC_HDR *lrh) 2856 { 2857 u16 ro = le16_to_cpu(lrh->record_off); 2858 u16 o = le16_to_cpu(rec->attr_off); 2859 const struct ATTRIB *attr = Add2Ptr(rec, o); 2860 2861 while (o < ro) { 2862 u32 asize; 2863 2864 if (attr->type == ATTR_END) 2865 break; 2866 2867 asize = le32_to_cpu(attr->size); 2868 if (!asize) 2869 break; 2870 2871 o += asize; 2872 attr = Add2Ptr(attr, asize); 2873 } 2874 2875 return o == ro && attr->type == ATTR_ROOT; 2876 } 2877 2878 static inline bool check_if_root_index(const struct ATTRIB *attr, 2879 const struct INDEX_HDR *hdr, 2880 const struct LOG_REC_HDR *lrh) 2881 { 2882 u16 ao = le16_to_cpu(lrh->attr_off); 2883 u32 de_off = le32_to_cpu(hdr->de_off); 2884 u32 o = PtrOffset(attr, hdr) + de_off; 2885 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2886 u32 asize = le32_to_cpu(attr->size); 2887 2888 while (o < ao) { 2889 u16 esize; 2890 2891 if (o >= asize) 2892 break; 2893 2894 esize = le16_to_cpu(e->size); 2895 if (!esize) 2896 break; 2897 2898 o += esize; 2899 e = Add2Ptr(e, esize); 2900 } 2901 2902 return o == ao; 2903 } 2904 2905 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2906 u32 attr_off) 2907 { 2908 u32 de_off = le32_to_cpu(hdr->de_off); 2909 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2910 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2911 u32 used = le32_to_cpu(hdr->used); 2912 2913 while (o < attr_off) { 2914 u16 esize; 2915 2916 if (de_off >= used) 2917 break; 2918 2919 esize = le16_to_cpu(e->size); 2920 if (!esize) 2921 break; 2922 2923 o += esize; 2924 de_off += esize; 2925 e = Add2Ptr(e, esize); 2926 } 2927 2928 return o == attr_off; 2929 } 2930 2931 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2932 u32 nsize) 2933 { 2934 u32 asize = le32_to_cpu(attr->size); 2935 int dsize = nsize - asize; 2936 u8 *next = Add2Ptr(attr, asize); 2937 u32 used = le32_to_cpu(rec->used); 2938 2939 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2940 2941 rec->used = cpu_to_le32(used + dsize); 2942 attr->size = cpu_to_le32(nsize); 2943 } 2944 2945 struct OpenAttr { 2946 struct ATTRIB *attr; 2947 struct runs_tree *run1; 2948 struct runs_tree run0; 2949 struct ntfs_inode *ni; 2950 // CLST rno; 2951 }; 2952 2953 /* 2954 * cmp_type_and_name 2955 * 2956 * Return: 0 if 'attr' has the same type and name. 2957 */ 2958 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2959 const struct ATTRIB *a2) 2960 { 2961 return a1->type != a2->type || a1->name_len != a2->name_len || 2962 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2963 a1->name_len * sizeof(short))); 2964 } 2965 2966 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2967 const struct ATTRIB *attr, CLST rno) 2968 { 2969 struct OPEN_ATTR_ENRTY *oe = NULL; 2970 2971 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2972 struct OpenAttr *op_attr; 2973 2974 if (ino_get(&oe->ref) != rno) 2975 continue; 2976 2977 op_attr = (struct OpenAttr *)oe->ptr; 2978 if (!cmp_type_and_name(op_attr->attr, attr)) 2979 return op_attr; 2980 } 2981 return NULL; 2982 } 2983 2984 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2985 enum ATTR_TYPE type, u64 size, 2986 const u16 *name, size_t name_len, 2987 __le16 flags) 2988 { 2989 struct ATTRIB *attr; 2990 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2991 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2992 u32 asize = name_size + 2993 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2994 2995 attr = kzalloc(asize, GFP_NOFS); 2996 if (!attr) 2997 return NULL; 2998 2999 attr->type = type; 3000 attr->size = cpu_to_le32(asize); 3001 attr->flags = flags; 3002 attr->non_res = 1; 3003 attr->name_len = name_len; 3004 3005 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 3006 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 3007 attr->nres.data_size = cpu_to_le64(size); 3008 attr->nres.valid_size = attr->nres.data_size; 3009 if (is_ext) { 3010 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 3011 if (is_attr_compressed(attr)) 3012 attr->nres.c_unit = COMPRESSION_UNIT; 3013 3014 attr->nres.run_off = 3015 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 3016 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 3017 name_len * sizeof(short)); 3018 } else { 3019 attr->name_off = SIZEOF_NONRESIDENT_LE; 3020 attr->nres.run_off = 3021 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3022 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3023 name_len * sizeof(short)); 3024 } 3025 3026 return attr; 3027 } 3028 3029 /* 3030 * do_action - Common routine for the Redo and Undo Passes. 3031 * @rlsn: If it is NULL then undo. 3032 */ 3033 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3034 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3035 u32 dlen, u32 rec_len, const u64 *rlsn) 3036 { 3037 int err = 0; 3038 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3039 struct inode *inode = NULL, *inode_parent; 3040 struct mft_inode *mi = NULL, *mi2_child = NULL; 3041 CLST rno = 0, rno_base = 0; 3042 struct INDEX_BUFFER *ib = NULL; 3043 struct MFT_REC *rec = NULL; 3044 struct ATTRIB *attr = NULL, *attr2; 3045 struct INDEX_HDR *hdr; 3046 struct INDEX_ROOT *root; 3047 struct NTFS_DE *e, *e1, *e2; 3048 struct NEW_ATTRIBUTE_SIZES *new_sz; 3049 struct ATTR_FILE_NAME *fname; 3050 struct OpenAttr *oa, *oa2; 3051 u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits; 3052 u16 id, id2; 3053 u32 record_size = sbi->record_size; 3054 u64 t64; 3055 u16 roff = le16_to_cpu(lrh->record_off); 3056 u16 aoff = le16_to_cpu(lrh->attr_off); 3057 u64 lco = 0; 3058 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3059 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3060 u64 vbo = cbo + tvo; 3061 void *buffer_le = NULL; 3062 u32 bytes = 0; 3063 bool a_dirty = false; 3064 u16 data_off; 3065 3066 oa = oe->ptr; 3067 3068 /* Big switch to prepare. */ 3069 switch (op) { 3070 /* ============================================================ 3071 * Process MFT records, as described by the current log record. 3072 * ============================================================ 3073 */ 3074 case InitializeFileRecordSegment: 3075 case DeallocateFileRecordSegment: 3076 case WriteEndOfFileRecordSegment: 3077 case CreateAttribute: 3078 case DeleteAttribute: 3079 case UpdateResidentValue: 3080 case UpdateMappingPairs: 3081 case SetNewAttributeSizes: 3082 case AddIndexEntryRoot: 3083 case DeleteIndexEntryRoot: 3084 case SetIndexEntryVcnRoot: 3085 case UpdateFileNameRoot: 3086 case UpdateRecordDataRoot: 3087 case ZeroEndOfFileRecord: 3088 rno = vbo >> sbi->record_bits; 3089 inode = ilookup(sbi->sb, rno); 3090 if (inode) { 3091 mi = &ntfs_i(inode)->mi; 3092 } else if (op == InitializeFileRecordSegment) { 3093 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3094 if (!mi) 3095 return -ENOMEM; 3096 err = mi_format_new(mi, sbi, rno, 0, false); 3097 if (err) 3098 goto out; 3099 } else { 3100 /* Read from disk. */ 3101 err = mi_get(sbi, rno, &mi); 3102 if (err) 3103 return err; 3104 } 3105 rec = mi->mrec; 3106 3107 if (op == DeallocateFileRecordSegment) 3108 goto skip_load_parent; 3109 3110 if (InitializeFileRecordSegment != op) { 3111 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3112 goto dirty_vol; 3113 if (!check_lsn(&rec->rhdr, rlsn)) 3114 goto out; 3115 if (!check_file_record(rec, NULL, sbi)) 3116 goto dirty_vol; 3117 attr = Add2Ptr(rec, roff); 3118 } 3119 3120 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3121 rno_base = rno; 3122 goto skip_load_parent; 3123 } 3124 3125 rno_base = ino_get(&rec->parent_ref); 3126 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3127 if (IS_ERR(inode_parent)) 3128 goto skip_load_parent; 3129 3130 if (is_bad_inode(inode_parent)) { 3131 iput(inode_parent); 3132 goto skip_load_parent; 3133 } 3134 3135 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3136 iput(inode_parent); 3137 } else { 3138 if (mi2_child->mrec != mi->mrec) 3139 memcpy(mi2_child->mrec, mi->mrec, 3140 sbi->record_size); 3141 3142 if (inode) 3143 iput(inode); 3144 else if (mi) 3145 mi_put(mi); 3146 3147 inode = inode_parent; 3148 mi = mi2_child; 3149 rec = mi2_child->mrec; 3150 attr = Add2Ptr(rec, roff); 3151 } 3152 3153 skip_load_parent: 3154 inode_parent = NULL; 3155 break; 3156 3157 /* 3158 * Process attributes, as described by the current log record. 3159 */ 3160 case UpdateNonresidentValue: 3161 case AddIndexEntryAllocation: 3162 case DeleteIndexEntryAllocation: 3163 case WriteEndOfIndexBuffer: 3164 case SetIndexEntryVcnAllocation: 3165 case UpdateFileNameAllocation: 3166 case SetBitsInNonresidentBitMap: 3167 case ClearBitsInNonresidentBitMap: 3168 case UpdateRecordDataAllocation: 3169 attr = oa->attr; 3170 bytes = UpdateNonresidentValue == op ? dlen : 0; 3171 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3172 3173 if (attr->type == ATTR_ALLOC) { 3174 t32 = le32_to_cpu(oe->bytes_per_index); 3175 if (bytes < t32) 3176 bytes = t32; 3177 } 3178 3179 if (!bytes) 3180 bytes = lco - cbo; 3181 3182 bytes += roff; 3183 if (attr->type == ATTR_ALLOC) 3184 bytes = (bytes + 511) & ~511; // align 3185 3186 buffer_le = kmalloc(bytes, GFP_NOFS); 3187 if (!buffer_le) 3188 return -ENOMEM; 3189 3190 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3191 NULL); 3192 if (err) 3193 goto out; 3194 3195 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3196 ntfs_fix_post_read(buffer_le, bytes, false); 3197 break; 3198 3199 default: 3200 WARN_ON(1); 3201 } 3202 3203 /* Big switch to do operation. */ 3204 switch (op) { 3205 case InitializeFileRecordSegment: 3206 if (roff + dlen > record_size) 3207 goto dirty_vol; 3208 3209 memcpy(Add2Ptr(rec, roff), data, dlen); 3210 mi->dirty = true; 3211 break; 3212 3213 case DeallocateFileRecordSegment: 3214 clear_rec_inuse(rec); 3215 le16_add_cpu(&rec->seq, 1); 3216 mi->dirty = true; 3217 break; 3218 3219 case WriteEndOfFileRecordSegment: 3220 attr2 = (struct ATTRIB *)data; 3221 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3222 goto dirty_vol; 3223 3224 memmove(attr, attr2, dlen); 3225 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3226 3227 mi->dirty = true; 3228 break; 3229 3230 case CreateAttribute: 3231 attr2 = (struct ATTRIB *)data; 3232 asize = le32_to_cpu(attr2->size); 3233 used = le32_to_cpu(rec->used); 3234 3235 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3236 !IS_ALIGNED(asize, 8) || 3237 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3238 dlen > record_size - used) { 3239 goto dirty_vol; 3240 } 3241 3242 memmove(Add2Ptr(attr, asize), attr, used - roff); 3243 memcpy(attr, attr2, asize); 3244 3245 rec->used = cpu_to_le32(used + asize); 3246 id = le16_to_cpu(rec->next_attr_id); 3247 id2 = le16_to_cpu(attr2->id); 3248 if (id <= id2) 3249 rec->next_attr_id = cpu_to_le16(id2 + 1); 3250 if (is_attr_indexed(attr)) 3251 le16_add_cpu(&rec->hard_links, 1); 3252 3253 oa2 = find_loaded_attr(log, attr, rno_base); 3254 if (oa2) { 3255 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3256 GFP_NOFS); 3257 if (p2) { 3258 // run_close(oa2->run1); 3259 kfree(oa2->attr); 3260 oa2->attr = p2; 3261 } 3262 } 3263 3264 mi->dirty = true; 3265 break; 3266 3267 case DeleteAttribute: 3268 asize = le32_to_cpu(attr->size); 3269 used = le32_to_cpu(rec->used); 3270 3271 if (!check_if_attr(rec, lrh)) 3272 goto dirty_vol; 3273 3274 rec->used = cpu_to_le32(used - asize); 3275 if (is_attr_indexed(attr)) 3276 le16_add_cpu(&rec->hard_links, -1); 3277 3278 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3279 3280 mi->dirty = true; 3281 break; 3282 3283 case UpdateResidentValue: 3284 nsize = aoff + dlen; 3285 3286 if (!check_if_attr(rec, lrh)) 3287 goto dirty_vol; 3288 3289 asize = le32_to_cpu(attr->size); 3290 used = le32_to_cpu(rec->used); 3291 3292 if (lrh->redo_len == lrh->undo_len) { 3293 if (nsize > asize) 3294 goto dirty_vol; 3295 goto move_data; 3296 } 3297 3298 if (nsize > asize && nsize - asize > record_size - used) 3299 goto dirty_vol; 3300 3301 nsize = ALIGN(nsize, 8); 3302 data_off = le16_to_cpu(attr->res.data_off); 3303 3304 if (nsize < asize) { 3305 memmove(Add2Ptr(attr, aoff), data, dlen); 3306 data = NULL; // To skip below memmove(). 3307 } 3308 3309 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3310 used - le16_to_cpu(lrh->record_off) - asize); 3311 3312 rec->used = cpu_to_le32(used + nsize - asize); 3313 attr->size = cpu_to_le32(nsize); 3314 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3315 3316 move_data: 3317 if (data) 3318 memmove(Add2Ptr(attr, aoff), data, dlen); 3319 3320 oa2 = find_loaded_attr(log, attr, rno_base); 3321 if (oa2) { 3322 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3323 GFP_NOFS); 3324 if (p2) { 3325 // run_close(&oa2->run0); 3326 oa2->run1 = &oa2->run0; 3327 kfree(oa2->attr); 3328 oa2->attr = p2; 3329 } 3330 } 3331 3332 mi->dirty = true; 3333 break; 3334 3335 case UpdateMappingPairs: 3336 nsize = aoff + dlen; 3337 asize = le32_to_cpu(attr->size); 3338 used = le32_to_cpu(rec->used); 3339 3340 if (!check_if_attr(rec, lrh) || !attr->non_res || 3341 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3342 (nsize > asize && nsize - asize > record_size - used)) { 3343 goto dirty_vol; 3344 } 3345 3346 nsize = ALIGN(nsize, 8); 3347 3348 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3349 used - le16_to_cpu(lrh->record_off) - asize); 3350 rec->used = cpu_to_le32(used + nsize - asize); 3351 attr->size = cpu_to_le32(nsize); 3352 memmove(Add2Ptr(attr, aoff), data, dlen); 3353 3354 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3355 attr_run(attr), &t64)) { 3356 goto dirty_vol; 3357 } 3358 3359 attr->nres.evcn = cpu_to_le64(t64); 3360 oa2 = find_loaded_attr(log, attr, rno_base); 3361 if (oa2 && oa2->attr->non_res) 3362 oa2->attr->nres.evcn = attr->nres.evcn; 3363 3364 mi->dirty = true; 3365 break; 3366 3367 case SetNewAttributeSizes: 3368 new_sz = data; 3369 if (!check_if_attr(rec, lrh) || !attr->non_res) 3370 goto dirty_vol; 3371 3372 attr->nres.alloc_size = new_sz->alloc_size; 3373 attr->nres.data_size = new_sz->data_size; 3374 attr->nres.valid_size = new_sz->valid_size; 3375 3376 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3377 attr->nres.total_size = new_sz->total_size; 3378 3379 oa2 = find_loaded_attr(log, attr, rno_base); 3380 if (oa2) { 3381 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3382 GFP_NOFS); 3383 if (p2) { 3384 kfree(oa2->attr); 3385 oa2->attr = p2; 3386 } 3387 } 3388 mi->dirty = true; 3389 break; 3390 3391 case AddIndexEntryRoot: 3392 e = (struct NTFS_DE *)data; 3393 esize = le16_to_cpu(e->size); 3394 root = resident_data(attr); 3395 hdr = &root->ihdr; 3396 used = le32_to_cpu(hdr->used); 3397 3398 if (!check_if_index_root(rec, lrh) || 3399 !check_if_root_index(attr, hdr, lrh) || 3400 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3401 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3402 goto dirty_vol; 3403 } 3404 3405 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3406 3407 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3408 3409 memmove(Add2Ptr(e1, esize), e1, 3410 PtrOffset(e1, Add2Ptr(hdr, used))); 3411 memmove(e1, e, esize); 3412 3413 le32_add_cpu(&attr->res.data_size, esize); 3414 hdr->used = cpu_to_le32(used + esize); 3415 le32_add_cpu(&hdr->total, esize); 3416 3417 mi->dirty = true; 3418 break; 3419 3420 case DeleteIndexEntryRoot: 3421 root = resident_data(attr); 3422 hdr = &root->ihdr; 3423 used = le32_to_cpu(hdr->used); 3424 3425 if (!check_if_index_root(rec, lrh) || 3426 !check_if_root_index(attr, hdr, lrh)) { 3427 goto dirty_vol; 3428 } 3429 3430 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3431 esize = le16_to_cpu(e1->size); 3432 e2 = Add2Ptr(e1, esize); 3433 3434 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3435 3436 le32_sub_cpu(&attr->res.data_size, esize); 3437 hdr->used = cpu_to_le32(used - esize); 3438 le32_sub_cpu(&hdr->total, esize); 3439 3440 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3441 3442 mi->dirty = true; 3443 break; 3444 3445 case SetIndexEntryVcnRoot: 3446 root = resident_data(attr); 3447 hdr = &root->ihdr; 3448 3449 if (!check_if_index_root(rec, lrh) || 3450 !check_if_root_index(attr, hdr, lrh)) { 3451 goto dirty_vol; 3452 } 3453 3454 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3455 3456 de_set_vbn_le(e, *(__le64 *)data); 3457 mi->dirty = true; 3458 break; 3459 3460 case UpdateFileNameRoot: 3461 root = resident_data(attr); 3462 hdr = &root->ihdr; 3463 3464 if (!check_if_index_root(rec, lrh) || 3465 !check_if_root_index(attr, hdr, lrh)) { 3466 goto dirty_vol; 3467 } 3468 3469 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3470 fname = (struct ATTR_FILE_NAME *)(e + 1); 3471 memmove(&fname->dup, data, sizeof(fname->dup)); // 3472 mi->dirty = true; 3473 break; 3474 3475 case UpdateRecordDataRoot: 3476 root = resident_data(attr); 3477 hdr = &root->ihdr; 3478 3479 if (!check_if_index_root(rec, lrh) || 3480 !check_if_root_index(attr, hdr, lrh)) { 3481 goto dirty_vol; 3482 } 3483 3484 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3485 3486 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3487 3488 mi->dirty = true; 3489 break; 3490 3491 case ZeroEndOfFileRecord: 3492 if (roff + dlen > record_size) 3493 goto dirty_vol; 3494 3495 memset(attr, 0, dlen); 3496 mi->dirty = true; 3497 break; 3498 3499 case UpdateNonresidentValue: 3500 if (lco < cbo + roff + dlen) 3501 goto dirty_vol; 3502 3503 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3504 3505 a_dirty = true; 3506 if (attr->type == ATTR_ALLOC) 3507 ntfs_fix_pre_write(buffer_le, bytes); 3508 break; 3509 3510 case AddIndexEntryAllocation: 3511 ib = Add2Ptr(buffer_le, roff); 3512 hdr = &ib->ihdr; 3513 e = data; 3514 esize = le16_to_cpu(e->size); 3515 e1 = Add2Ptr(ib, aoff); 3516 3517 if (is_baad(&ib->rhdr)) 3518 goto dirty_vol; 3519 if (!check_lsn(&ib->rhdr, rlsn)) 3520 goto out; 3521 3522 used = le32_to_cpu(hdr->used); 3523 3524 if (!check_index_buffer(ib, bytes) || 3525 !check_if_alloc_index(hdr, aoff) || 3526 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3527 used + esize > le32_to_cpu(hdr->total)) { 3528 goto dirty_vol; 3529 } 3530 3531 memmove(Add2Ptr(e1, esize), e1, 3532 PtrOffset(e1, Add2Ptr(hdr, used))); 3533 memcpy(e1, e, esize); 3534 3535 hdr->used = cpu_to_le32(used + esize); 3536 3537 a_dirty = true; 3538 3539 ntfs_fix_pre_write(&ib->rhdr, bytes); 3540 break; 3541 3542 case DeleteIndexEntryAllocation: 3543 ib = Add2Ptr(buffer_le, roff); 3544 hdr = &ib->ihdr; 3545 e = Add2Ptr(ib, aoff); 3546 esize = le16_to_cpu(e->size); 3547 3548 if (is_baad(&ib->rhdr)) 3549 goto dirty_vol; 3550 if (!check_lsn(&ib->rhdr, rlsn)) 3551 goto out; 3552 3553 if (!check_index_buffer(ib, bytes) || 3554 !check_if_alloc_index(hdr, aoff)) { 3555 goto dirty_vol; 3556 } 3557 3558 e1 = Add2Ptr(e, esize); 3559 nsize = esize; 3560 used = le32_to_cpu(hdr->used); 3561 3562 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3563 3564 hdr->used = cpu_to_le32(used - nsize); 3565 3566 a_dirty = true; 3567 3568 ntfs_fix_pre_write(&ib->rhdr, bytes); 3569 break; 3570 3571 case WriteEndOfIndexBuffer: 3572 ib = Add2Ptr(buffer_le, roff); 3573 hdr = &ib->ihdr; 3574 e = Add2Ptr(ib, aoff); 3575 3576 if (is_baad(&ib->rhdr)) 3577 goto dirty_vol; 3578 if (!check_lsn(&ib->rhdr, rlsn)) 3579 goto out; 3580 if (!check_index_buffer(ib, bytes) || 3581 !check_if_alloc_index(hdr, aoff) || 3582 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3583 le32_to_cpu(hdr->total)) { 3584 goto dirty_vol; 3585 } 3586 3587 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3588 memmove(e, data, dlen); 3589 3590 a_dirty = true; 3591 ntfs_fix_pre_write(&ib->rhdr, bytes); 3592 break; 3593 3594 case SetIndexEntryVcnAllocation: 3595 ib = Add2Ptr(buffer_le, roff); 3596 hdr = &ib->ihdr; 3597 e = Add2Ptr(ib, aoff); 3598 3599 if (is_baad(&ib->rhdr)) 3600 goto dirty_vol; 3601 3602 if (!check_lsn(&ib->rhdr, rlsn)) 3603 goto out; 3604 if (!check_index_buffer(ib, bytes) || 3605 !check_if_alloc_index(hdr, aoff)) { 3606 goto dirty_vol; 3607 } 3608 3609 de_set_vbn_le(e, *(__le64 *)data); 3610 3611 a_dirty = true; 3612 ntfs_fix_pre_write(&ib->rhdr, bytes); 3613 break; 3614 3615 case UpdateFileNameAllocation: 3616 ib = Add2Ptr(buffer_le, roff); 3617 hdr = &ib->ihdr; 3618 e = Add2Ptr(ib, aoff); 3619 3620 if (is_baad(&ib->rhdr)) 3621 goto dirty_vol; 3622 3623 if (!check_lsn(&ib->rhdr, rlsn)) 3624 goto out; 3625 if (!check_index_buffer(ib, bytes) || 3626 !check_if_alloc_index(hdr, aoff)) { 3627 goto dirty_vol; 3628 } 3629 3630 fname = (struct ATTR_FILE_NAME *)(e + 1); 3631 memmove(&fname->dup, data, sizeof(fname->dup)); 3632 3633 a_dirty = true; 3634 ntfs_fix_pre_write(&ib->rhdr, bytes); 3635 break; 3636 3637 case SetBitsInNonresidentBitMap: 3638 bmp_off = 3639 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3640 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3641 3642 if (cbo + (bmp_off + 7) / 8 > lco || 3643 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { 3644 goto dirty_vol; 3645 } 3646 3647 __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); 3648 a_dirty = true; 3649 break; 3650 3651 case ClearBitsInNonresidentBitMap: 3652 bmp_off = 3653 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3654 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3655 3656 if (cbo + (bmp_off + 7) / 8 > lco || 3657 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { 3658 goto dirty_vol; 3659 } 3660 3661 __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); 3662 a_dirty = true; 3663 break; 3664 3665 case UpdateRecordDataAllocation: 3666 ib = Add2Ptr(buffer_le, roff); 3667 hdr = &ib->ihdr; 3668 e = Add2Ptr(ib, aoff); 3669 3670 if (is_baad(&ib->rhdr)) 3671 goto dirty_vol; 3672 3673 if (!check_lsn(&ib->rhdr, rlsn)) 3674 goto out; 3675 if (!check_index_buffer(ib, bytes) || 3676 !check_if_alloc_index(hdr, aoff)) { 3677 goto dirty_vol; 3678 } 3679 3680 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3681 3682 a_dirty = true; 3683 ntfs_fix_pre_write(&ib->rhdr, bytes); 3684 break; 3685 3686 default: 3687 WARN_ON(1); 3688 } 3689 3690 if (rlsn) { 3691 __le64 t64 = cpu_to_le64(*rlsn); 3692 3693 if (rec) 3694 rec->rhdr.lsn = t64; 3695 if (ib) 3696 ib->rhdr.lsn = t64; 3697 } 3698 3699 if (mi && mi->dirty) { 3700 err = mi_write(mi, 0); 3701 if (err) 3702 goto out; 3703 } 3704 3705 if (a_dirty) { 3706 attr = oa->attr; 3707 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0); 3708 if (err) 3709 goto out; 3710 } 3711 3712 out: 3713 3714 if (inode) 3715 iput(inode); 3716 else if (mi != mi2_child) 3717 mi_put(mi); 3718 3719 kfree(buffer_le); 3720 3721 return err; 3722 3723 dirty_vol: 3724 log->set_dirty = true; 3725 goto out; 3726 } 3727 3728 /* 3729 * log_replay - Replays log and empties it. 3730 * 3731 * This function is called during mount operation. 3732 * It replays log and empties it. 3733 * Initialized is set false if logfile contains '-1'. 3734 */ 3735 int log_replay(struct ntfs_inode *ni, bool *initialized) 3736 { 3737 int err; 3738 struct ntfs_sb_info *sbi = ni->mi.sbi; 3739 struct ntfs_log *log; 3740 3741 struct restart_info rst_info, rst_info2; 3742 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0; 3743 struct ATTR_NAME_ENTRY *attr_names = NULL; 3744 struct ATTR_NAME_ENTRY *ane; 3745 struct RESTART_TABLE *dptbl = NULL; 3746 struct RESTART_TABLE *trtbl = NULL; 3747 const struct RESTART_TABLE *rt; 3748 struct RESTART_TABLE *oatbl = NULL; 3749 struct inode *inode; 3750 struct OpenAttr *oa; 3751 struct ntfs_inode *ni_oe; 3752 struct ATTRIB *attr = NULL; 3753 u64 size, vcn, undo_next_lsn; 3754 CLST rno, lcn, lcn0, len0, clen; 3755 void *data; 3756 struct NTFS_RESTART *rst = NULL; 3757 struct lcb *lcb = NULL; 3758 struct OPEN_ATTR_ENRTY *oe; 3759 struct TRANSACTION_ENTRY *tr; 3760 struct DIR_PAGE_ENTRY *dp; 3761 u32 i, bytes_per_attr_entry; 3762 u32 l_size = ni->vfs_inode.i_size; 3763 u32 orig_file_size = l_size; 3764 u32 page_size, vbo, tail, off, dlen; 3765 u32 saved_len, rec_len, transact_id; 3766 bool use_second_page; 3767 struct RESTART_AREA *ra2, *ra = NULL; 3768 struct CLIENT_REC *ca, *cr; 3769 __le16 client; 3770 struct RESTART_HDR *rh; 3771 const struct LFS_RECORD_HDR *frh; 3772 const struct LOG_REC_HDR *lrh; 3773 bool is_mapped; 3774 bool is_ro = sb_rdonly(sbi->sb); 3775 u64 t64; 3776 u16 t16; 3777 u32 t32; 3778 3779 /* Get the size of page. NOTE: To replay we can use default page. */ 3780 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3781 page_size = norm_file_page(PAGE_SIZE, &l_size, true); 3782 #else 3783 page_size = norm_file_page(PAGE_SIZE, &l_size, false); 3784 #endif 3785 if (!page_size) 3786 return -EINVAL; 3787 3788 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3789 if (!log) 3790 return -ENOMEM; 3791 3792 memset(&rst_info, 0, sizeof(struct restart_info)); 3793 3794 log->ni = ni; 3795 log->l_size = l_size; 3796 log->one_page_buf = kmalloc(page_size, GFP_NOFS); 3797 if (!log->one_page_buf) { 3798 err = -ENOMEM; 3799 goto out; 3800 } 3801 3802 log->page_size = page_size; 3803 log->page_mask = page_size - 1; 3804 log->page_bits = blksize_bits(page_size); 3805 3806 /* Look for a restart area on the disk. */ 3807 err = log_read_rst(log, l_size, true, &rst_info); 3808 if (err) 3809 goto out; 3810 3811 /* remember 'initialized' */ 3812 *initialized = rst_info.initialized; 3813 3814 if (!rst_info.restart) { 3815 if (rst_info.initialized) { 3816 /* No restart area but the file is not initialized. */ 3817 err = -EINVAL; 3818 goto out; 3819 } 3820 3821 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3822 log_create(log, l_size, 0, get_random_u32(), false, false); 3823 3824 log->ra = ra; 3825 3826 ra = log_create_ra(log); 3827 if (!ra) { 3828 err = -ENOMEM; 3829 goto out; 3830 } 3831 log->ra = ra; 3832 log->init_ra = true; 3833 3834 goto process_log; 3835 } 3836 3837 /* 3838 * If the restart offset above wasn't zero then we won't 3839 * look for a second restart. 3840 */ 3841 if (rst_info.vbo) 3842 goto check_restart_area; 3843 3844 memset(&rst_info2, 0, sizeof(struct restart_info)); 3845 err = log_read_rst(log, l_size, false, &rst_info2); 3846 if (err) 3847 goto out; 3848 3849 /* Determine which restart area to use. */ 3850 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn) 3851 goto use_first_page; 3852 3853 use_second_page = true; 3854 3855 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) { 3856 struct RECORD_PAGE_HDR *sp = NULL; 3857 bool usa_error; 3858 3859 if (!read_log_page(log, page_size, &sp, &usa_error) && 3860 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3861 use_second_page = false; 3862 } 3863 kfree(sp); 3864 } 3865 3866 if (use_second_page) { 3867 kfree(rst_info.r_page); 3868 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info)); 3869 rst_info2.r_page = NULL; 3870 } 3871 3872 use_first_page: 3873 kfree(rst_info2.r_page); 3874 3875 check_restart_area: 3876 /* 3877 * If the restart area is at offset 0, we want 3878 * to write the second restart area first. 3879 */ 3880 log->init_ra = !!rst_info.vbo; 3881 3882 /* If we have a valid page then grab a pointer to the restart area. */ 3883 ra2 = rst_info.valid_page 3884 ? Add2Ptr(rst_info.r_page, 3885 le16_to_cpu(rst_info.r_page->ra_off)) 3886 : NULL; 3887 3888 if (rst_info.chkdsk_was_run || 3889 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3890 bool wrapped = false; 3891 bool use_multi_page = false; 3892 u32 open_log_count; 3893 3894 /* Do some checks based on whether we have a valid log page. */ 3895 if (!rst_info.valid_page) { 3896 open_log_count = get_random_u32(); 3897 goto init_log_instance; 3898 } 3899 open_log_count = le32_to_cpu(ra2->open_log_count); 3900 3901 /* 3902 * If the restart page size isn't changing then we want to 3903 * check how much work we need to do. 3904 */ 3905 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size)) 3906 goto init_log_instance; 3907 3908 init_log_instance: 3909 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3910 3911 log_create(log, l_size, rst_info.last_lsn, open_log_count, 3912 wrapped, use_multi_page); 3913 3914 ra = log_create_ra(log); 3915 if (!ra) { 3916 err = -ENOMEM; 3917 goto out; 3918 } 3919 log->ra = ra; 3920 3921 /* Put the restart areas and initialize 3922 * the log file as required. 3923 */ 3924 goto process_log; 3925 } 3926 3927 if (!ra2) { 3928 err = -EINVAL; 3929 goto out; 3930 } 3931 3932 /* 3933 * If the log page or the system page sizes have changed, we can't 3934 * use the log file. We must use the system page size instead of the 3935 * default size if there is not a clean shutdown. 3936 */ 3937 t32 = le32_to_cpu(rst_info.r_page->sys_page_size); 3938 if (page_size != t32) { 3939 l_size = orig_file_size; 3940 page_size = 3941 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize); 3942 } 3943 3944 if (page_size != t32 || 3945 page_size != le32_to_cpu(rst_info.r_page->page_size)) { 3946 err = -EINVAL; 3947 goto out; 3948 } 3949 3950 /* If the file size has shrunk then we won't mount it. */ 3951 if (l_size < le64_to_cpu(ra2->l_size)) { 3952 err = -EINVAL; 3953 goto out; 3954 } 3955 3956 log_init_pg_hdr(log, page_size, page_size, 3957 le16_to_cpu(rst_info.r_page->major_ver), 3958 le16_to_cpu(rst_info.r_page->minor_ver)); 3959 3960 log->l_size = le64_to_cpu(ra2->l_size); 3961 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3962 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3963 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3964 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3965 log->seq_num = log->last_lsn >> log->file_data_bits; 3966 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off); 3967 log->restart_size = log->sys_page_size - log->ra_off; 3968 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3969 log->ra_size = le16_to_cpu(ra2->ra_len); 3970 log->data_off = le16_to_cpu(ra2->data_off); 3971 log->data_size = log->page_size - log->data_off; 3972 log->reserved = log->data_size - log->record_header_len; 3973 3974 vbo = lsn_to_vbo(log, log->last_lsn); 3975 3976 if (vbo < log->first_page) { 3977 /* This is a pseudo lsn. */ 3978 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3979 log->next_page = log->first_page; 3980 goto find_oldest; 3981 } 3982 3983 /* Find the end of this log record. */ 3984 off = final_log_off(log, log->last_lsn, 3985 le32_to_cpu(ra2->last_lsn_data_len)); 3986 3987 /* If we wrapped the file then increment the sequence number. */ 3988 if (off <= vbo) { 3989 log->seq_num += 1; 3990 log->l_flags |= NTFSLOG_WRAPPED; 3991 } 3992 3993 /* Now compute the next log page to use. */ 3994 vbo &= ~log->sys_page_mask; 3995 tail = log->page_size - (off & log->page_mask) - 1; 3996 3997 /* 3998 *If we can fit another log record on the page, 3999 * move back a page the log file. 4000 */ 4001 if (tail >= log->record_header_len) { 4002 log->l_flags |= NTFSLOG_REUSE_TAIL; 4003 log->next_page = vbo; 4004 } else { 4005 log->next_page = next_page_off(log, vbo); 4006 } 4007 4008 find_oldest: 4009 /* 4010 * Find the oldest client lsn. Use the last 4011 * flushed lsn as a starting point. 4012 */ 4013 log->oldest_lsn = log->last_lsn; 4014 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 4015 ra2->client_idx[1], &log->oldest_lsn); 4016 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 4017 4018 if (log->oldest_lsn_off < log->first_page) 4019 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 4020 4021 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 4022 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 4023 4024 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 4025 log->total_avail_pages = log->l_size - log->first_page; 4026 log->total_avail = log->total_avail_pages >> log->page_bits; 4027 log->max_current_avail = log->total_avail * log->reserved; 4028 log->total_avail = log->total_avail * log->data_size; 4029 4030 log->current_avail = current_log_avail(log); 4031 4032 ra = kzalloc(log->restart_size, GFP_NOFS); 4033 if (!ra) { 4034 err = -ENOMEM; 4035 goto out; 4036 } 4037 log->ra = ra; 4038 4039 t16 = le16_to_cpu(ra2->client_off); 4040 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4041 memcpy(ra, ra2, log->ra_size); 4042 } else { 4043 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4044 memcpy(ra->clients, Add2Ptr(ra2, t16), 4045 le16_to_cpu(ra2->ra_len) - t16); 4046 4047 log->current_openlog_count = get_random_u32(); 4048 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4049 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4050 sizeof(struct CLIENT_REC); 4051 ra->client_off = 4052 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4053 ra->ra_len = cpu_to_le16(log->ra_size); 4054 } 4055 4056 le32_add_cpu(&ra->open_log_count, 1); 4057 4058 /* Now we need to walk through looking for the last lsn. */ 4059 err = last_log_lsn(log); 4060 if (err) 4061 goto out; 4062 4063 log->current_avail = current_log_avail(log); 4064 4065 /* Remember which restart area to write first. */ 4066 log->init_ra = rst_info.vbo; 4067 4068 process_log: 4069 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4070 switch ((log->major_ver << 16) + log->minor_ver) { 4071 case 0x10000: 4072 case 0x10001: 4073 case 0x20000: 4074 break; 4075 default: 4076 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4077 log->major_ver, log->minor_ver); 4078 err = -EOPNOTSUPP; 4079 log->set_dirty = true; 4080 goto out; 4081 } 4082 4083 /* One client "NTFS" per logfile. */ 4084 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4085 4086 for (client = ra->client_idx[1];; client = cr->next_client) { 4087 if (client == LFS_NO_CLIENT_LE) { 4088 /* Insert "NTFS" client LogFile. */ 4089 client = ra->client_idx[0]; 4090 if (client == LFS_NO_CLIENT_LE) { 4091 err = -EINVAL; 4092 goto out; 4093 } 4094 4095 t16 = le16_to_cpu(client); 4096 cr = ca + t16; 4097 4098 remove_client(ca, cr, &ra->client_idx[0]); 4099 4100 cr->restart_lsn = 0; 4101 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4102 cr->name_bytes = cpu_to_le32(8); 4103 cr->name[0] = cpu_to_le16('N'); 4104 cr->name[1] = cpu_to_le16('T'); 4105 cr->name[2] = cpu_to_le16('F'); 4106 cr->name[3] = cpu_to_le16('S'); 4107 4108 add_client(ca, t16, &ra->client_idx[1]); 4109 break; 4110 } 4111 4112 cr = ca + le16_to_cpu(client); 4113 4114 if (cpu_to_le32(8) == cr->name_bytes && 4115 cpu_to_le16('N') == cr->name[0] && 4116 cpu_to_le16('T') == cr->name[1] && 4117 cpu_to_le16('F') == cr->name[2] && 4118 cpu_to_le16('S') == cr->name[3]) 4119 break; 4120 } 4121 4122 /* Update the client handle with the client block information. */ 4123 log->client_id.seq_num = cr->seq_num; 4124 log->client_id.client_idx = client; 4125 4126 err = read_rst_area(log, &rst, &ra_lsn); 4127 if (err) 4128 goto out; 4129 4130 if (!rst) 4131 goto out; 4132 4133 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4134 4135 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4136 if (!checkpt_lsn) 4137 checkpt_lsn = ra_lsn; 4138 4139 /* Allocate and Read the Transaction Table. */ 4140 if (!rst->transact_table_len) 4141 goto check_dirty_page_table; 4142 4143 t64 = le64_to_cpu(rst->transact_table_lsn); 4144 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4145 if (err) 4146 goto out; 4147 4148 lrh = lcb->log_rec; 4149 frh = lcb->lrh; 4150 rec_len = le32_to_cpu(frh->client_data_len); 4151 4152 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4153 bytes_per_attr_entry)) { 4154 err = -EINVAL; 4155 goto out; 4156 } 4157 4158 t16 = le16_to_cpu(lrh->redo_off); 4159 4160 rt = Add2Ptr(lrh, t16); 4161 t32 = rec_len - t16; 4162 4163 /* Now check that this is a valid restart table. */ 4164 if (!check_rstbl(rt, t32)) { 4165 err = -EINVAL; 4166 goto out; 4167 } 4168 4169 trtbl = kmemdup(rt, t32, GFP_NOFS); 4170 if (!trtbl) { 4171 err = -ENOMEM; 4172 goto out; 4173 } 4174 4175 lcb_put(lcb); 4176 lcb = NULL; 4177 4178 check_dirty_page_table: 4179 /* The next record back should be the Dirty Pages Table. */ 4180 if (!rst->dirty_pages_len) 4181 goto check_attribute_names; 4182 4183 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4184 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4185 if (err) 4186 goto out; 4187 4188 lrh = lcb->log_rec; 4189 frh = lcb->lrh; 4190 rec_len = le32_to_cpu(frh->client_data_len); 4191 4192 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4193 bytes_per_attr_entry)) { 4194 err = -EINVAL; 4195 goto out; 4196 } 4197 4198 t16 = le16_to_cpu(lrh->redo_off); 4199 4200 rt = Add2Ptr(lrh, t16); 4201 t32 = rec_len - t16; 4202 4203 /* Now check that this is a valid restart table. */ 4204 if (!check_rstbl(rt, t32)) { 4205 err = -EINVAL; 4206 goto out; 4207 } 4208 4209 dptbl = kmemdup(rt, t32, GFP_NOFS); 4210 if (!dptbl) { 4211 err = -ENOMEM; 4212 goto out; 4213 } 4214 4215 /* Convert Ra version '0' into version '1'. */ 4216 if (rst->major_ver) 4217 goto end_conv_1; 4218 4219 dp = NULL; 4220 while ((dp = enum_rstbl(dptbl, dp))) { 4221 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4222 // NOTE: Danger. Check for of boundary. 4223 memmove(&dp->vcn, &dp0->vcn_low, 4224 2 * sizeof(u64) + 4225 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4226 } 4227 4228 end_conv_1: 4229 lcb_put(lcb); 4230 lcb = NULL; 4231 4232 /* 4233 * Go through the table and remove the duplicates, 4234 * remembering the oldest lsn values. 4235 */ 4236 if (sbi->cluster_size <= log->page_size) 4237 goto trace_dp_table; 4238 4239 dp = NULL; 4240 while ((dp = enum_rstbl(dptbl, dp))) { 4241 struct DIR_PAGE_ENTRY *next = dp; 4242 4243 while ((next = enum_rstbl(dptbl, next))) { 4244 if (next->target_attr == dp->target_attr && 4245 next->vcn == dp->vcn) { 4246 if (le64_to_cpu(next->oldest_lsn) < 4247 le64_to_cpu(dp->oldest_lsn)) { 4248 dp->oldest_lsn = next->oldest_lsn; 4249 } 4250 4251 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4252 } 4253 } 4254 } 4255 trace_dp_table: 4256 check_attribute_names: 4257 /* The next record should be the Attribute Names. */ 4258 if (!rst->attr_names_len) 4259 goto check_attr_table; 4260 4261 t64 = le64_to_cpu(rst->attr_names_lsn); 4262 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4263 if (err) 4264 goto out; 4265 4266 lrh = lcb->log_rec; 4267 frh = lcb->lrh; 4268 rec_len = le32_to_cpu(frh->client_data_len); 4269 4270 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4271 bytes_per_attr_entry)) { 4272 err = -EINVAL; 4273 goto out; 4274 } 4275 4276 t32 = lrh_length(lrh); 4277 rec_len -= t32; 4278 4279 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4280 4281 lcb_put(lcb); 4282 lcb = NULL; 4283 4284 check_attr_table: 4285 /* The next record should be the attribute Table. */ 4286 if (!rst->open_attr_len) 4287 goto check_attribute_names2; 4288 4289 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4290 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4291 if (err) 4292 goto out; 4293 4294 lrh = lcb->log_rec; 4295 frh = lcb->lrh; 4296 rec_len = le32_to_cpu(frh->client_data_len); 4297 4298 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4299 bytes_per_attr_entry)) { 4300 err = -EINVAL; 4301 goto out; 4302 } 4303 4304 t16 = le16_to_cpu(lrh->redo_off); 4305 4306 rt = Add2Ptr(lrh, t16); 4307 t32 = rec_len - t16; 4308 4309 if (!check_rstbl(rt, t32)) { 4310 err = -EINVAL; 4311 goto out; 4312 } 4313 4314 oatbl = kmemdup(rt, t32, GFP_NOFS); 4315 if (!oatbl) { 4316 err = -ENOMEM; 4317 goto out; 4318 } 4319 4320 log->open_attr_tbl = oatbl; 4321 4322 /* Clear all of the Attr pointers. */ 4323 oe = NULL; 4324 while ((oe = enum_rstbl(oatbl, oe))) { 4325 if (!rst->major_ver) { 4326 struct OPEN_ATTR_ENRTY_32 oe0; 4327 4328 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4329 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4330 4331 oe->bytes_per_index = oe0.bytes_per_index; 4332 oe->type = oe0.type; 4333 oe->is_dirty_pages = oe0.is_dirty_pages; 4334 oe->name_len = 0; 4335 oe->ref = oe0.ref; 4336 oe->open_record_lsn = oe0.open_record_lsn; 4337 } 4338 4339 oe->is_attr_name = 0; 4340 oe->ptr = NULL; 4341 } 4342 4343 lcb_put(lcb); 4344 lcb = NULL; 4345 4346 check_attribute_names2: 4347 if (!rst->attr_names_len) 4348 goto trace_attribute_table; 4349 4350 ane = attr_names; 4351 if (!oatbl) 4352 goto trace_attribute_table; 4353 while (ane->off) { 4354 /* TODO: Clear table on exit! */ 4355 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); 4356 t16 = le16_to_cpu(ane->name_bytes); 4357 oe->name_len = t16 / sizeof(short); 4358 oe->ptr = ane->name; 4359 oe->is_attr_name = 2; 4360 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16); 4361 } 4362 4363 trace_attribute_table: 4364 /* 4365 * If the checkpt_lsn is zero, then this is a freshly 4366 * formatted disk and we have no work to do. 4367 */ 4368 if (!checkpt_lsn) { 4369 err = 0; 4370 goto out; 4371 } 4372 4373 if (!oatbl) { 4374 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4375 if (!oatbl) { 4376 err = -ENOMEM; 4377 goto out; 4378 } 4379 } 4380 4381 log->open_attr_tbl = oatbl; 4382 4383 /* Start the analysis pass from the Checkpoint lsn. */ 4384 rec_lsn = checkpt_lsn; 4385 4386 /* Read the first lsn. */ 4387 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4388 if (err) 4389 goto out; 4390 4391 /* Loop to read all subsequent records to the end of the log file. */ 4392 next_log_record_analyze: 4393 err = read_next_log_rec(log, lcb, &rec_lsn); 4394 if (err) 4395 goto out; 4396 4397 if (!rec_lsn) 4398 goto end_log_records_enumerate; 4399 4400 frh = lcb->lrh; 4401 transact_id = le32_to_cpu(frh->transact_id); 4402 rec_len = le32_to_cpu(frh->client_data_len); 4403 lrh = lcb->log_rec; 4404 4405 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4406 err = -EINVAL; 4407 goto out; 4408 } 4409 4410 /* 4411 * The first lsn after the previous lsn remembered 4412 * the checkpoint is the first candidate for the rlsn. 4413 */ 4414 if (!rlsn) 4415 rlsn = rec_lsn; 4416 4417 if (LfsClientRecord != frh->record_type) 4418 goto next_log_record_analyze; 4419 4420 /* 4421 * Now update the Transaction Table for this transaction. If there 4422 * is no entry present or it is unallocated we allocate the entry. 4423 */ 4424 if (!trtbl) { 4425 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4426 INITIAL_NUMBER_TRANSACTIONS); 4427 if (!trtbl) { 4428 err = -ENOMEM; 4429 goto out; 4430 } 4431 } 4432 4433 tr = Add2Ptr(trtbl, transact_id); 4434 4435 if (transact_id >= bytes_per_rt(trtbl) || 4436 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4437 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4438 if (!tr) { 4439 err = -ENOMEM; 4440 goto out; 4441 } 4442 tr->transact_state = TransactionActive; 4443 tr->first_lsn = cpu_to_le64(rec_lsn); 4444 } 4445 4446 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4447 4448 /* 4449 * If this is a compensation log record, then change 4450 * the undo_next_lsn to be the undo_next_lsn of this record. 4451 */ 4452 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4453 tr->undo_next_lsn = frh->client_undo_next_lsn; 4454 4455 /* Dispatch to handle log record depending on type. */ 4456 switch (le16_to_cpu(lrh->redo_op)) { 4457 case InitializeFileRecordSegment: 4458 case DeallocateFileRecordSegment: 4459 case WriteEndOfFileRecordSegment: 4460 case CreateAttribute: 4461 case DeleteAttribute: 4462 case UpdateResidentValue: 4463 case UpdateNonresidentValue: 4464 case UpdateMappingPairs: 4465 case SetNewAttributeSizes: 4466 case AddIndexEntryRoot: 4467 case DeleteIndexEntryRoot: 4468 case AddIndexEntryAllocation: 4469 case DeleteIndexEntryAllocation: 4470 case WriteEndOfIndexBuffer: 4471 case SetIndexEntryVcnRoot: 4472 case SetIndexEntryVcnAllocation: 4473 case UpdateFileNameRoot: 4474 case UpdateFileNameAllocation: 4475 case SetBitsInNonresidentBitMap: 4476 case ClearBitsInNonresidentBitMap: 4477 case UpdateRecordDataRoot: 4478 case UpdateRecordDataAllocation: 4479 case ZeroEndOfFileRecord: 4480 t16 = le16_to_cpu(lrh->target_attr); 4481 t64 = le64_to_cpu(lrh->target_vcn); 4482 dp = find_dp(dptbl, t16, t64); 4483 4484 if (dp) 4485 goto copy_lcns; 4486 4487 /* 4488 * Calculate the number of clusters per page the system 4489 * which wrote the checkpoint, possibly creating the table. 4490 */ 4491 if (dptbl) { 4492 t32 = (le16_to_cpu(dptbl->size) - 4493 sizeof(struct DIR_PAGE_ENTRY)) / 4494 sizeof(u64); 4495 } else { 4496 t32 = log->clst_per_page; 4497 kfree(dptbl); 4498 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4499 32); 4500 if (!dptbl) { 4501 err = -ENOMEM; 4502 goto out; 4503 } 4504 } 4505 4506 dp = alloc_rsttbl_idx(&dptbl); 4507 if (!dp) { 4508 err = -ENOMEM; 4509 goto out; 4510 } 4511 dp->target_attr = cpu_to_le32(t16); 4512 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4513 dp->lcns_follow = cpu_to_le32(t32); 4514 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4515 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4516 4517 copy_lcns: 4518 /* 4519 * Copy the Lcns from the log record into the Dirty Page Entry. 4520 * TODO: For different page size support, must somehow make 4521 * whole routine a loop, case Lcns do not fit below. 4522 */ 4523 t16 = le16_to_cpu(lrh->lcns_follow); 4524 for (i = 0; i < t16; i++) { 4525 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4526 le64_to_cpu(dp->vcn)); 4527 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4528 } 4529 4530 goto next_log_record_analyze; 4531 4532 case DeleteDirtyClusters: { 4533 u32 range_count = 4534 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4535 const struct LCN_RANGE *r = 4536 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4537 4538 /* Loop through all of the Lcn ranges this log record. */ 4539 for (i = 0; i < range_count; i++, r++) { 4540 u64 lcn0 = le64_to_cpu(r->lcn); 4541 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4542 4543 dp = NULL; 4544 while ((dp = enum_rstbl(dptbl, dp))) { 4545 u32 j; 4546 4547 t32 = le32_to_cpu(dp->lcns_follow); 4548 for (j = 0; j < t32; j++) { 4549 t64 = le64_to_cpu(dp->page_lcns[j]); 4550 if (t64 >= lcn0 && t64 <= lcn_e) 4551 dp->page_lcns[j] = 0; 4552 } 4553 } 4554 } 4555 goto next_log_record_analyze; 4556 ; 4557 } 4558 4559 case OpenNonresidentAttribute: 4560 t16 = le16_to_cpu(lrh->target_attr); 4561 if (t16 >= bytes_per_rt(oatbl)) { 4562 /* 4563 * Compute how big the table needs to be. 4564 * Add 10 extra entries for some cushion. 4565 */ 4566 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4567 4568 new_e += 10 - le16_to_cpu(oatbl->used); 4569 4570 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4571 log->open_attr_tbl = oatbl; 4572 if (!oatbl) { 4573 err = -ENOMEM; 4574 goto out; 4575 } 4576 } 4577 4578 /* Point to the entry being opened. */ 4579 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4580 log->open_attr_tbl = oatbl; 4581 if (!oe) { 4582 err = -ENOMEM; 4583 goto out; 4584 } 4585 4586 /* Initialize this entry from the log record. */ 4587 t16 = le16_to_cpu(lrh->redo_off); 4588 if (!rst->major_ver) { 4589 /* Convert version '0' into version '1'. */ 4590 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4591 4592 oe->bytes_per_index = oe0->bytes_per_index; 4593 oe->type = oe0->type; 4594 oe->is_dirty_pages = oe0->is_dirty_pages; 4595 oe->name_len = 0; //oe0.name_len; 4596 oe->ref = oe0->ref; 4597 oe->open_record_lsn = oe0->open_record_lsn; 4598 } else { 4599 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4600 } 4601 4602 t16 = le16_to_cpu(lrh->undo_len); 4603 if (t16) { 4604 oe->ptr = kmalloc(t16, GFP_NOFS); 4605 if (!oe->ptr) { 4606 err = -ENOMEM; 4607 goto out; 4608 } 4609 oe->name_len = t16 / sizeof(short); 4610 memcpy(oe->ptr, 4611 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4612 oe->is_attr_name = 1; 4613 } else { 4614 oe->ptr = NULL; 4615 oe->is_attr_name = 0; 4616 } 4617 4618 goto next_log_record_analyze; 4619 4620 case HotFix: 4621 t16 = le16_to_cpu(lrh->target_attr); 4622 t64 = le64_to_cpu(lrh->target_vcn); 4623 dp = find_dp(dptbl, t16, t64); 4624 if (dp) { 4625 size_t j = le64_to_cpu(lrh->target_vcn) - 4626 le64_to_cpu(dp->vcn); 4627 if (dp->page_lcns[j]) 4628 dp->page_lcns[j] = lrh->page_lcns[0]; 4629 } 4630 goto next_log_record_analyze; 4631 4632 case EndTopLevelAction: 4633 tr = Add2Ptr(trtbl, transact_id); 4634 tr->prev_lsn = cpu_to_le64(rec_lsn); 4635 tr->undo_next_lsn = frh->client_undo_next_lsn; 4636 goto next_log_record_analyze; 4637 4638 case PrepareTransaction: 4639 tr = Add2Ptr(trtbl, transact_id); 4640 tr->transact_state = TransactionPrepared; 4641 goto next_log_record_analyze; 4642 4643 case CommitTransaction: 4644 tr = Add2Ptr(trtbl, transact_id); 4645 tr->transact_state = TransactionCommitted; 4646 goto next_log_record_analyze; 4647 4648 case ForgetTransaction: 4649 free_rsttbl_idx(trtbl, transact_id); 4650 goto next_log_record_analyze; 4651 4652 case Noop: 4653 case OpenAttributeTableDump: 4654 case AttributeNamesDump: 4655 case DirtyPageTableDump: 4656 case TransactionTableDump: 4657 /* The following cases require no action the Analysis Pass. */ 4658 goto next_log_record_analyze; 4659 4660 default: 4661 /* 4662 * All codes will be explicitly handled. 4663 * If we see a code we do not expect, then we are trouble. 4664 */ 4665 goto next_log_record_analyze; 4666 } 4667 4668 end_log_records_enumerate: 4669 lcb_put(lcb); 4670 lcb = NULL; 4671 4672 /* 4673 * Scan the Dirty Page Table and Transaction Table for 4674 * the lowest lsn, and return it as the Redo lsn. 4675 */ 4676 dp = NULL; 4677 while ((dp = enum_rstbl(dptbl, dp))) { 4678 t64 = le64_to_cpu(dp->oldest_lsn); 4679 if (t64 && t64 < rlsn) 4680 rlsn = t64; 4681 } 4682 4683 tr = NULL; 4684 while ((tr = enum_rstbl(trtbl, tr))) { 4685 t64 = le64_to_cpu(tr->first_lsn); 4686 if (t64 && t64 < rlsn) 4687 rlsn = t64; 4688 } 4689 4690 /* 4691 * Only proceed if the Dirty Page Table or Transaction 4692 * table are not empty. 4693 */ 4694 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4695 goto end_reply; 4696 4697 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4698 if (is_ro) 4699 goto out; 4700 4701 /* Reopen all of the attributes with dirty pages. */ 4702 oe = NULL; 4703 next_open_attribute: 4704 4705 oe = enum_rstbl(oatbl, oe); 4706 if (!oe) { 4707 err = 0; 4708 dp = NULL; 4709 goto next_dirty_page; 4710 } 4711 4712 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4713 if (!oa) { 4714 err = -ENOMEM; 4715 goto out; 4716 } 4717 4718 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4719 if (IS_ERR(inode)) 4720 goto fake_attr; 4721 4722 if (is_bad_inode(inode)) { 4723 iput(inode); 4724 fake_attr: 4725 if (oa->ni) { 4726 iput(&oa->ni->vfs_inode); 4727 oa->ni = NULL; 4728 } 4729 4730 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4731 oe->name_len, 0); 4732 if (!attr) { 4733 kfree(oa); 4734 err = -ENOMEM; 4735 goto out; 4736 } 4737 oa->attr = attr; 4738 oa->run1 = &oa->run0; 4739 goto final_oe; 4740 } 4741 4742 ni_oe = ntfs_i(inode); 4743 oa->ni = ni_oe; 4744 4745 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4746 NULL, NULL); 4747 4748 if (!attr) 4749 goto fake_attr; 4750 4751 t32 = le32_to_cpu(attr->size); 4752 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4753 if (!oa->attr) 4754 goto fake_attr; 4755 4756 if (!S_ISDIR(inode->i_mode)) { 4757 if (attr->type == ATTR_DATA && !attr->name_len) { 4758 oa->run1 = &ni_oe->file.run; 4759 goto final_oe; 4760 } 4761 } else { 4762 if (attr->type == ATTR_ALLOC && 4763 attr->name_len == ARRAY_SIZE(I30_NAME) && 4764 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4765 oa->run1 = &ni_oe->dir.alloc_run; 4766 goto final_oe; 4767 } 4768 } 4769 4770 if (attr->non_res) { 4771 u16 roff = le16_to_cpu(attr->nres.run_off); 4772 CLST svcn = le64_to_cpu(attr->nres.svcn); 4773 4774 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4775 le64_to_cpu(attr->nres.evcn), svcn, 4776 Add2Ptr(attr, roff), t32 - roff); 4777 if (err < 0) { 4778 kfree(oa->attr); 4779 oa->attr = NULL; 4780 goto fake_attr; 4781 } 4782 err = 0; 4783 } 4784 oa->run1 = &oa->run0; 4785 attr = oa->attr; 4786 4787 final_oe: 4788 if (oe->is_attr_name == 1) 4789 kfree(oe->ptr); 4790 oe->is_attr_name = 0; 4791 oe->ptr = oa; 4792 oe->name_len = attr->name_len; 4793 4794 goto next_open_attribute; 4795 4796 /* 4797 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4798 * Mapping that we have, and insert it into the appropriate run. 4799 */ 4800 next_dirty_page: 4801 dp = enum_rstbl(dptbl, dp); 4802 if (!dp) 4803 goto do_redo_1; 4804 4805 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4806 4807 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4808 goto next_dirty_page; 4809 4810 oa = oe->ptr; 4811 if (!oa) 4812 goto next_dirty_page; 4813 4814 i = -1; 4815 next_dirty_page_vcn: 4816 i += 1; 4817 if (i >= le32_to_cpu(dp->lcns_follow)) 4818 goto next_dirty_page; 4819 4820 vcn = le64_to_cpu(dp->vcn) + i; 4821 size = (vcn + 1) << sbi->cluster_bits; 4822 4823 if (!dp->page_lcns[i]) 4824 goto next_dirty_page_vcn; 4825 4826 rno = ino_get(&oe->ref); 4827 if (rno <= MFT_REC_MIRR && 4828 size < (MFT_REC_VOL + 1) * sbi->record_size && 4829 oe->type == ATTR_DATA) { 4830 goto next_dirty_page_vcn; 4831 } 4832 4833 lcn = le64_to_cpu(dp->page_lcns[i]); 4834 4835 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4836 lcn0 != lcn) && 4837 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4838 err = -ENOMEM; 4839 goto out; 4840 } 4841 attr = oa->attr; 4842 t64 = le64_to_cpu(attr->nres.alloc_size); 4843 if (size > t64) { 4844 attr->nres.valid_size = attr->nres.data_size = 4845 attr->nres.alloc_size = cpu_to_le64(size); 4846 } 4847 goto next_dirty_page_vcn; 4848 4849 do_redo_1: 4850 /* 4851 * Perform the Redo Pass, to restore all of the dirty pages to the same 4852 * contents that they had immediately before the crash. If the dirty 4853 * page table is empty, then we can skip the entire Redo Pass. 4854 */ 4855 if (!dptbl || !dptbl->total) 4856 goto do_undo_action; 4857 4858 rec_lsn = rlsn; 4859 4860 /* 4861 * Read the record at the Redo lsn, before falling 4862 * into common code to handle each record. 4863 */ 4864 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4865 if (err) 4866 goto out; 4867 4868 /* 4869 * Now loop to read all of our log records forwards, until 4870 * we hit the end of the file, cleaning up at the end. 4871 */ 4872 do_action_next: 4873 frh = lcb->lrh; 4874 4875 if (LfsClientRecord != frh->record_type) 4876 goto read_next_log_do_action; 4877 4878 transact_id = le32_to_cpu(frh->transact_id); 4879 rec_len = le32_to_cpu(frh->client_data_len); 4880 lrh = lcb->log_rec; 4881 4882 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4883 err = -EINVAL; 4884 goto out; 4885 } 4886 4887 /* Ignore log records that do not update pages. */ 4888 if (lrh->lcns_follow) 4889 goto find_dirty_page; 4890 4891 goto read_next_log_do_action; 4892 4893 find_dirty_page: 4894 t16 = le16_to_cpu(lrh->target_attr); 4895 t64 = le64_to_cpu(lrh->target_vcn); 4896 dp = find_dp(dptbl, t16, t64); 4897 4898 if (!dp) 4899 goto read_next_log_do_action; 4900 4901 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4902 goto read_next_log_do_action; 4903 4904 t16 = le16_to_cpu(lrh->target_attr); 4905 if (t16 >= bytes_per_rt(oatbl)) { 4906 err = -EINVAL; 4907 goto out; 4908 } 4909 4910 oe = Add2Ptr(oatbl, t16); 4911 4912 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4913 err = -EINVAL; 4914 goto out; 4915 } 4916 4917 oa = oe->ptr; 4918 4919 if (!oa) { 4920 err = -EINVAL; 4921 goto out; 4922 } 4923 attr = oa->attr; 4924 4925 vcn = le64_to_cpu(lrh->target_vcn); 4926 4927 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4928 lcn == SPARSE_LCN) { 4929 goto read_next_log_do_action; 4930 } 4931 4932 /* Point to the Redo data and get its length. */ 4933 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4934 dlen = le16_to_cpu(lrh->redo_len); 4935 4936 /* Shorten length by any Lcns which were deleted. */ 4937 saved_len = dlen; 4938 4939 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4940 size_t j; 4941 u32 alen, voff; 4942 4943 voff = le16_to_cpu(lrh->record_off) + 4944 le16_to_cpu(lrh->attr_off); 4945 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4946 4947 /* If the Vcn question is allocated, we can just get out. */ 4948 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4949 if (dp->page_lcns[j + i - 1]) 4950 break; 4951 4952 if (!saved_len) 4953 saved_len = 1; 4954 4955 /* 4956 * Calculate the allocated space left relative to the 4957 * log record Vcn, after removing this unallocated Vcn. 4958 */ 4959 alen = (i - 1) << sbi->cluster_bits; 4960 4961 /* 4962 * If the update described this log record goes beyond 4963 * the allocated space, then we will have to reduce the length. 4964 */ 4965 if (voff >= alen) 4966 dlen = 0; 4967 else if (voff + dlen > alen) 4968 dlen = alen - voff; 4969 } 4970 4971 /* 4972 * If the resulting dlen from above is now zero, 4973 * we can skip this log record. 4974 */ 4975 if (!dlen && saved_len) 4976 goto read_next_log_do_action; 4977 4978 t16 = le16_to_cpu(lrh->redo_op); 4979 if (can_skip_action(t16)) 4980 goto read_next_log_do_action; 4981 4982 /* Apply the Redo operation a common routine. */ 4983 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4984 if (err) 4985 goto out; 4986 4987 /* Keep reading and looping back until end of file. */ 4988 read_next_log_do_action: 4989 err = read_next_log_rec(log, lcb, &rec_lsn); 4990 if (!err && rec_lsn) 4991 goto do_action_next; 4992 4993 lcb_put(lcb); 4994 lcb = NULL; 4995 4996 do_undo_action: 4997 /* Scan Transaction Table. */ 4998 tr = NULL; 4999 transaction_table_next: 5000 tr = enum_rstbl(trtbl, tr); 5001 if (!tr) 5002 goto undo_action_done; 5003 5004 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 5005 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 5006 goto transaction_table_next; 5007 } 5008 5009 log->transaction_id = PtrOffset(trtbl, tr); 5010 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 5011 5012 /* 5013 * We only have to do anything if the transaction has 5014 * something its undo_next_lsn field. 5015 */ 5016 if (!undo_next_lsn) 5017 goto commit_undo; 5018 5019 /* Read the first record to be undone by this transaction. */ 5020 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5021 if (err) 5022 goto out; 5023 5024 /* 5025 * Now loop to read all of our log records forwards, 5026 * until we hit the end of the file, cleaning up at the end. 5027 */ 5028 undo_action_next: 5029 5030 lrh = lcb->log_rec; 5031 frh = lcb->lrh; 5032 transact_id = le32_to_cpu(frh->transact_id); 5033 rec_len = le32_to_cpu(frh->client_data_len); 5034 5035 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5036 err = -EINVAL; 5037 goto out; 5038 } 5039 5040 if (lrh->undo_op == cpu_to_le16(Noop)) 5041 goto read_next_log_undo_action; 5042 5043 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5044 oa = oe->ptr; 5045 5046 t16 = le16_to_cpu(lrh->lcns_follow); 5047 if (!t16) 5048 goto add_allocated_vcns; 5049 5050 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5051 &lcn, &clen, NULL); 5052 5053 /* 5054 * If the mapping isn't already the table or the mapping 5055 * corresponds to a hole the mapping, we need to make sure 5056 * there is no partial page already memory. 5057 */ 5058 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5059 goto add_allocated_vcns; 5060 5061 vcn = le64_to_cpu(lrh->target_vcn); 5062 vcn &= ~(u64)(log->clst_per_page - 1); 5063 5064 add_allocated_vcns: 5065 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5066 size = (vcn + 1) << sbi->cluster_bits; 5067 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5068 attr = oa->attr; 5069 if (!attr->non_res) { 5070 if (size > le32_to_cpu(attr->res.data_size)) 5071 attr->res.data_size = cpu_to_le32(size); 5072 } else { 5073 if (size > le64_to_cpu(attr->nres.data_size)) 5074 attr->nres.valid_size = attr->nres.data_size = 5075 attr->nres.alloc_size = 5076 cpu_to_le64(size); 5077 } 5078 } 5079 5080 t16 = le16_to_cpu(lrh->undo_op); 5081 if (can_skip_action(t16)) 5082 goto read_next_log_undo_action; 5083 5084 /* Point to the Redo data and get its length. */ 5085 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5086 dlen = le16_to_cpu(lrh->undo_len); 5087 5088 /* It is time to apply the undo action. */ 5089 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5090 5091 read_next_log_undo_action: 5092 /* 5093 * Keep reading and looping back until we have read the 5094 * last record for this transaction. 5095 */ 5096 err = read_next_log_rec(log, lcb, &rec_lsn); 5097 if (err) 5098 goto out; 5099 5100 if (rec_lsn) 5101 goto undo_action_next; 5102 5103 lcb_put(lcb); 5104 lcb = NULL; 5105 5106 commit_undo: 5107 free_rsttbl_idx(trtbl, log->transaction_id); 5108 5109 log->transaction_id = 0; 5110 5111 goto transaction_table_next; 5112 5113 undo_action_done: 5114 5115 ntfs_update_mftmirr(sbi, 0); 5116 5117 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5118 5119 end_reply: 5120 5121 err = 0; 5122 if (is_ro) 5123 goto out; 5124 5125 rh = kzalloc(log->page_size, GFP_NOFS); 5126 if (!rh) { 5127 err = -ENOMEM; 5128 goto out; 5129 } 5130 5131 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5132 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5133 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5134 rh->rhdr.fix_num = cpu_to_le16(t16); 5135 rh->sys_page_size = cpu_to_le32(log->page_size); 5136 rh->page_size = cpu_to_le32(log->page_size); 5137 5138 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5139 8); 5140 rh->ra_off = cpu_to_le16(t16); 5141 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5142 rh->major_ver = cpu_to_le16(1); // 0x1C: 5143 5144 ra2 = Add2Ptr(rh, t16); 5145 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5146 5147 ra2->client_idx[0] = 0; 5148 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5149 ra2->flags = cpu_to_le16(2); 5150 5151 le32_add_cpu(&ra2->open_log_count, 1); 5152 5153 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5154 5155 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5156 if (!err) 5157 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5158 rh, log->page_size, 0); 5159 5160 kfree(rh); 5161 if (err) 5162 goto out; 5163 5164 out: 5165 kfree(rst); 5166 if (lcb) 5167 lcb_put(lcb); 5168 5169 /* 5170 * Scan the Open Attribute Table to close all of 5171 * the open attributes. 5172 */ 5173 oe = NULL; 5174 while ((oe = enum_rstbl(oatbl, oe))) { 5175 rno = ino_get(&oe->ref); 5176 5177 if (oe->is_attr_name == 1) { 5178 kfree(oe->ptr); 5179 oe->ptr = NULL; 5180 continue; 5181 } 5182 5183 if (oe->is_attr_name) 5184 continue; 5185 5186 oa = oe->ptr; 5187 if (!oa) 5188 continue; 5189 5190 run_close(&oa->run0); 5191 kfree(oa->attr); 5192 if (oa->ni) 5193 iput(&oa->ni->vfs_inode); 5194 kfree(oa); 5195 } 5196 5197 kfree(trtbl); 5198 kfree(oatbl); 5199 kfree(dptbl); 5200 kfree(attr_names); 5201 kfree(rst_info.r_page); 5202 5203 kfree(ra); 5204 kfree(log->one_page_buf); 5205 5206 if (err) 5207 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5208 5209 if (err == -EROFS) 5210 err = 0; 5211 else if (log->set_dirty) 5212 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5213 5214 kfree(log); 5215 5216 return err; 5217 } 5218