1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, seq_bits; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 seq_bits = sizeof(u64) * 8 + 3; 515 while (l_size) { 516 l_size >>= 1; 517 seq_bits -= 1; 518 } 519 520 if (seq_bits != ra->seq_num_bits) 521 return false; 522 523 /* The log page data offset and record header length must be quad-aligned. */ 524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 526 return false; 527 528 return true; 529 } 530 531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 532 bool usa_error) 533 { 534 u16 ro = le16_to_cpu(rhdr->ra_off); 535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 536 u16 ra_len = le16_to_cpu(ra->ra_len); 537 const struct CLIENT_REC *ca; 538 u32 i; 539 540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 541 return false; 542 543 /* Find the start of the client array. */ 544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 545 546 /* 547 * Start with the free list. 548 * Check that all the clients are valid and that there isn't a cycle. 549 * Do the in-use list on the second pass. 550 */ 551 for (i = 0; i < 2; i++) { 552 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 553 bool first_client = true; 554 u16 clients = le16_to_cpu(ra->log_clients); 555 556 while (client_idx != LFS_NO_CLIENT) { 557 const struct CLIENT_REC *cr; 558 559 if (!clients || 560 client_idx >= le16_to_cpu(ra->log_clients)) 561 return false; 562 563 clients -= 1; 564 cr = ca + client_idx; 565 566 client_idx = le16_to_cpu(cr->next_client); 567 568 if (first_client) { 569 first_client = false; 570 if (cr->prev_client != LFS_NO_CLIENT_LE) 571 return false; 572 } 573 } 574 } 575 576 return true; 577 } 578 579 /* 580 * remove_client 581 * 582 * Remove a client record from a client record list an restart area. 583 */ 584 static inline void remove_client(struct CLIENT_REC *ca, 585 const struct CLIENT_REC *cr, __le16 *head) 586 { 587 if (cr->prev_client == LFS_NO_CLIENT_LE) 588 *head = cr->next_client; 589 else 590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 591 592 if (cr->next_client != LFS_NO_CLIENT_LE) 593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 594 } 595 596 /* 597 * add_client - Add a client record to the start of a list. 598 */ 599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 600 { 601 struct CLIENT_REC *cr = ca + index; 602 603 cr->prev_client = LFS_NO_CLIENT_LE; 604 cr->next_client = *head; 605 606 if (*head != LFS_NO_CLIENT_LE) 607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 608 609 *head = cpu_to_le16(index); 610 } 611 612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 613 { 614 __le32 *e; 615 u32 bprt; 616 u16 rsize = t ? le16_to_cpu(t->size) : 0; 617 618 if (!c) { 619 if (!t || !t->total) 620 return NULL; 621 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 622 } else { 623 e = Add2Ptr(c, rsize); 624 } 625 626 /* Loop until we hit the first one allocated, or the end of the list. */ 627 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 628 e = Add2Ptr(e, rsize)) { 629 if (*e == RESTART_ENTRY_ALLOCATED_LE) 630 return e; 631 } 632 return NULL; 633 } 634 635 /* 636 * find_dp - Search for a @vcn in Dirty Page Table. 637 */ 638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 639 u32 target_attr, u64 vcn) 640 { 641 __le32 ta = cpu_to_le32(target_attr); 642 struct DIR_PAGE_ENTRY *dp = NULL; 643 644 while ((dp = enum_rstbl(dptbl, dp))) { 645 u64 dp_vcn = le64_to_cpu(dp->vcn); 646 647 if (dp->target_attr == ta && vcn >= dp_vcn && 648 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 649 return dp; 650 } 651 } 652 return NULL; 653 } 654 655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 656 { 657 if (use_default) 658 page_size = DefaultLogPageSize; 659 660 /* Round the file size down to a system page boundary. */ 661 *l_size &= ~(page_size - 1); 662 663 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 664 if (*l_size < (MinLogRecordPages + 2) * page_size) 665 return 0; 666 667 return page_size; 668 } 669 670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 671 u32 bytes_per_attr_entry) 672 { 673 u16 t16; 674 675 if (bytes < sizeof(struct LOG_REC_HDR)) 676 return false; 677 if (!tr) 678 return false; 679 680 if ((tr - sizeof(struct RESTART_TABLE)) % 681 sizeof(struct TRANSACTION_ENTRY)) 682 return false; 683 684 if (le16_to_cpu(lr->redo_off) & 7) 685 return false; 686 687 if (le16_to_cpu(lr->undo_off) & 7) 688 return false; 689 690 if (lr->target_attr) 691 goto check_lcns; 692 693 if (is_target_required(le16_to_cpu(lr->redo_op))) 694 return false; 695 696 if (is_target_required(le16_to_cpu(lr->undo_op))) 697 return false; 698 699 check_lcns: 700 if (!lr->lcns_follow) 701 goto check_length; 702 703 t16 = le16_to_cpu(lr->target_attr); 704 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 705 return false; 706 707 check_length: 708 if (bytes < lrh_length(lr)) 709 return false; 710 711 return true; 712 } 713 714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 715 { 716 u32 ts; 717 u32 i, off; 718 u16 rsize = le16_to_cpu(rt->size); 719 u16 ne = le16_to_cpu(rt->used); 720 u32 ff = le32_to_cpu(rt->first_free); 721 u32 lf = le32_to_cpu(rt->last_free); 722 723 ts = rsize * ne + sizeof(struct RESTART_TABLE); 724 725 if (!rsize || rsize > bytes || 726 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 727 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || 728 (ff && ff < sizeof(struct RESTART_TABLE)) || 729 (lf && lf < sizeof(struct RESTART_TABLE))) { 730 return false; 731 } 732 733 /* 734 * Verify each entry is either allocated or points 735 * to a valid offset the table. 736 */ 737 for (i = 0; i < ne; i++) { 738 off = le32_to_cpu(*(__le32 *)Add2Ptr( 739 rt, i * rsize + sizeof(struct RESTART_TABLE))); 740 741 if (off != RESTART_ENTRY_ALLOCATED && off && 742 (off < sizeof(struct RESTART_TABLE) || 743 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 744 return false; 745 } 746 } 747 748 /* 749 * Walk through the list headed by the first entry to make 750 * sure none of the entries are currently being used. 751 */ 752 for (off = ff; off;) { 753 if (off == RESTART_ENTRY_ALLOCATED) 754 return false; 755 756 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 757 } 758 759 return true; 760 } 761 762 /* 763 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 764 */ 765 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 766 { 767 __le32 *e; 768 u32 lf = le32_to_cpu(rt->last_free); 769 __le32 off_le = cpu_to_le32(off); 770 771 e = Add2Ptr(rt, off); 772 773 if (off < le32_to_cpu(rt->free_goal)) { 774 *e = rt->first_free; 775 rt->first_free = off_le; 776 if (!lf) 777 rt->last_free = off_le; 778 } else { 779 if (lf) 780 *(__le32 *)Add2Ptr(rt, lf) = off_le; 781 else 782 rt->first_free = off_le; 783 784 rt->last_free = off_le; 785 *e = 0; 786 } 787 788 le16_sub_cpu(&rt->total, 1); 789 } 790 791 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 792 { 793 __le32 *e, *last_free; 794 u32 off; 795 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 796 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 797 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 798 799 if (!t) 800 return NULL; 801 802 t->size = cpu_to_le16(esize); 803 t->used = cpu_to_le16(used); 804 t->free_goal = cpu_to_le32(~0u); 805 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 806 t->last_free = cpu_to_le32(lf); 807 808 e = (__le32 *)(t + 1); 809 last_free = Add2Ptr(t, lf); 810 811 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 812 e = Add2Ptr(e, esize), off += esize) { 813 *e = cpu_to_le32(off); 814 } 815 return t; 816 } 817 818 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 819 u32 add, u32 free_goal) 820 { 821 u16 esize = le16_to_cpu(tbl->size); 822 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 823 u32 used = le16_to_cpu(tbl->used); 824 struct RESTART_TABLE *rt; 825 826 rt = init_rsttbl(esize, used + add); 827 if (!rt) 828 return NULL; 829 830 memcpy(rt + 1, tbl + 1, esize * used); 831 832 rt->free_goal = free_goal == ~0u ? 833 cpu_to_le32(~0u) : 834 cpu_to_le32(sizeof(struct RESTART_TABLE) + 835 free_goal * esize); 836 837 if (tbl->first_free) { 838 rt->first_free = tbl->first_free; 839 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 840 } else { 841 rt->first_free = osize; 842 } 843 844 rt->total = tbl->total; 845 846 kfree(tbl); 847 return rt; 848 } 849 850 /* 851 * alloc_rsttbl_idx 852 * 853 * Allocate an index from within a previously initialized Restart Table. 854 */ 855 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 856 { 857 u32 off; 858 __le32 *e; 859 struct RESTART_TABLE *t = *tbl; 860 861 if (!t->first_free) { 862 *tbl = t = extend_rsttbl(t, 16, ~0u); 863 if (!t) 864 return NULL; 865 } 866 867 off = le32_to_cpu(t->first_free); 868 869 /* Dequeue this entry and zero it. */ 870 e = Add2Ptr(t, off); 871 872 t->first_free = *e; 873 874 memset(e, 0, le16_to_cpu(t->size)); 875 876 *e = RESTART_ENTRY_ALLOCATED_LE; 877 878 /* If list is going empty, then we fix the last_free as well. */ 879 if (!t->first_free) 880 t->last_free = 0; 881 882 le16_add_cpu(&t->total, 1); 883 884 return Add2Ptr(t, off); 885 } 886 887 /* 888 * alloc_rsttbl_from_idx 889 * 890 * Allocate a specific index from within a previously initialized Restart Table. 891 */ 892 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 893 { 894 u32 off; 895 __le32 *e; 896 struct RESTART_TABLE *rt = *tbl; 897 u32 bytes = bytes_per_rt(rt); 898 u16 esize = le16_to_cpu(rt->size); 899 900 /* If the entry is not the table, we will have to extend the table. */ 901 if (vbo >= bytes) { 902 /* 903 * Extend the size by computing the number of entries between 904 * the existing size and the desired index and adding 1 to that. 905 */ 906 u32 bytes2idx = vbo - bytes; 907 908 /* 909 * There should always be an integral number of entries 910 * being added. Now extend the table. 911 */ 912 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 913 if (!rt) 914 return NULL; 915 } 916 917 /* See if the entry is already allocated, and just return if it is. */ 918 e = Add2Ptr(rt, vbo); 919 920 if (*e == RESTART_ENTRY_ALLOCATED_LE) 921 return e; 922 923 /* 924 * Walk through the table, looking for the entry we're 925 * interested and the previous entry. 926 */ 927 off = le32_to_cpu(rt->first_free); 928 e = Add2Ptr(rt, off); 929 930 if (off == vbo) { 931 /* this is a match */ 932 rt->first_free = *e; 933 goto skip_looking; 934 } 935 936 /* 937 * Need to walk through the list looking for the predecessor 938 * of our entry. 939 */ 940 for (;;) { 941 /* Remember the entry just found */ 942 u32 last_off = off; 943 __le32 *last_e = e; 944 945 /* Should never run of entries. */ 946 947 /* Lookup up the next entry the list. */ 948 off = le32_to_cpu(*last_e); 949 e = Add2Ptr(rt, off); 950 951 /* If this is our match we are done. */ 952 if (off == vbo) { 953 *last_e = *e; 954 955 /* 956 * If this was the last entry, we update that 957 * table as well. 958 */ 959 if (le32_to_cpu(rt->last_free) == off) 960 rt->last_free = cpu_to_le32(last_off); 961 break; 962 } 963 } 964 965 skip_looking: 966 /* If the list is now empty, we fix the last_free as well. */ 967 if (!rt->first_free) 968 rt->last_free = 0; 969 970 /* Zero this entry. */ 971 memset(e, 0, esize); 972 *e = RESTART_ENTRY_ALLOCATED_LE; 973 974 le16_add_cpu(&rt->total, 1); 975 976 return e; 977 } 978 979 struct restart_info { 980 u64 last_lsn; 981 struct RESTART_HDR *r_page; 982 u32 vbo; 983 bool chkdsk_was_run; 984 bool valid_page; 985 bool initialized; 986 bool restart; 987 }; 988 989 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 990 991 #define NTFSLOG_WRAPPED 0x00000001 992 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 993 #define NTFSLOG_NO_LAST_LSN 0x00000004 994 #define NTFSLOG_REUSE_TAIL 0x00000010 995 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 996 997 /* Helper struct to work with NTFS $LogFile. */ 998 struct ntfs_log { 999 struct ntfs_inode *ni; 1000 1001 u32 l_size; 1002 u32 orig_file_size; 1003 u32 sys_page_size; 1004 u32 sys_page_mask; 1005 u32 page_size; 1006 u32 page_mask; // page_size - 1 1007 u8 page_bits; 1008 struct RECORD_PAGE_HDR *one_page_buf; 1009 1010 struct RESTART_TABLE *open_attr_tbl; 1011 u32 transaction_id; 1012 u32 clst_per_page; 1013 1014 u32 first_page; 1015 u32 next_page; 1016 u32 ra_off; 1017 u32 data_off; 1018 u32 restart_size; 1019 u32 data_size; 1020 u16 record_header_len; 1021 u64 seq_num; 1022 u32 seq_num_bits; 1023 u32 file_data_bits; 1024 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1025 1026 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1027 u32 ra_size; /* The usable size of the restart area. */ 1028 1029 /* 1030 * If true, then the in-memory restart area is to be written 1031 * to the first position on the disk. 1032 */ 1033 bool init_ra; 1034 bool set_dirty; /* True if we need to set dirty flag. */ 1035 1036 u64 oldest_lsn; 1037 1038 u32 oldest_lsn_off; 1039 u64 last_lsn; 1040 1041 u32 total_avail; 1042 u32 total_avail_pages; 1043 u32 total_undo_commit; 1044 u32 max_current_avail; 1045 u32 current_avail; 1046 u32 reserved; 1047 1048 short major_ver; 1049 short minor_ver; 1050 1051 u32 l_flags; /* See NTFSLOG_XXX */ 1052 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1053 1054 struct CLIENT_ID client_id; 1055 u32 client_undo_commit; 1056 1057 struct restart_info rst_info, rst_info2; 1058 }; 1059 1060 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1061 { 1062 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1063 1064 return vbo; 1065 } 1066 1067 /* Compute the offset in the log file of the next log page. */ 1068 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1069 { 1070 off = (off & ~log->sys_page_mask) + log->page_size; 1071 return off >= log->l_size ? log->first_page : off; 1072 } 1073 1074 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1075 { 1076 return (((u32)lsn) << 3) & log->page_mask; 1077 } 1078 1079 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1080 { 1081 return (off >> 3) + (Seq << log->file_data_bits); 1082 } 1083 1084 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1085 { 1086 return lsn >= log->oldest_lsn && 1087 lsn <= le64_to_cpu(log->ra->current_lsn); 1088 } 1089 1090 static inline u32 hdr_file_off(struct ntfs_log *log, 1091 struct RECORD_PAGE_HDR *hdr) 1092 { 1093 if (log->major_ver < 2) 1094 return le64_to_cpu(hdr->rhdr.lsn); 1095 1096 return le32_to_cpu(hdr->file_off); 1097 } 1098 1099 static inline u64 base_lsn(struct ntfs_log *log, 1100 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1101 { 1102 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1103 u64 ret = (((h_lsn >> log->file_data_bits) + 1104 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1105 << log->file_data_bits) + 1106 ((((is_log_record_end(hdr) && 1107 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? 1108 le16_to_cpu(hdr->record_hdr.next_record_off) : 1109 log->page_size) + 1110 lsn) >> 1111 3); 1112 1113 return ret; 1114 } 1115 1116 static inline bool verify_client_lsn(struct ntfs_log *log, 1117 const struct CLIENT_REC *client, u64 lsn) 1118 { 1119 return lsn >= le64_to_cpu(client->oldest_lsn) && 1120 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1121 } 1122 1123 static int read_log_page(struct ntfs_log *log, u32 vbo, 1124 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1125 { 1126 int err = 0; 1127 u32 page_idx = vbo >> log->page_bits; 1128 u32 page_off = vbo & log->page_mask; 1129 u32 bytes = log->page_size - page_off; 1130 void *to_free = NULL; 1131 u32 page_vbo = page_idx << log->page_bits; 1132 struct RECORD_PAGE_HDR *page_buf; 1133 struct ntfs_inode *ni = log->ni; 1134 bool bBAAD; 1135 1136 if (vbo >= log->l_size) 1137 return -EINVAL; 1138 1139 if (!*buffer) { 1140 to_free = kmalloc(log->page_size, GFP_NOFS); 1141 if (!to_free) 1142 return -ENOMEM; 1143 *buffer = to_free; 1144 } 1145 1146 page_buf = page_off ? log->one_page_buf : *buffer; 1147 1148 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1149 log->page_size, NULL); 1150 if (err) 1151 goto out; 1152 1153 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1154 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1155 1156 if (page_buf != *buffer) 1157 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1158 1159 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1160 1161 if (usa_error) 1162 *usa_error = bBAAD; 1163 /* Check that the update sequence array for this page is valid */ 1164 /* If we don't allow errors, raise an error status */ 1165 else if (bBAAD) 1166 err = -EINVAL; 1167 1168 out: 1169 if (err && to_free) { 1170 kfree(to_free); 1171 *buffer = NULL; 1172 } 1173 1174 return err; 1175 } 1176 1177 /* 1178 * log_read_rst 1179 * 1180 * It walks through 512 blocks of the file looking for a valid 1181 * restart page header. It will stop the first time we find a 1182 * valid page header. 1183 */ 1184 static int log_read_rst(struct ntfs_log *log, bool first, 1185 struct restart_info *info) 1186 { 1187 u32 skip, vbo; 1188 struct RESTART_HDR *r_page = NULL; 1189 1190 /* Determine which restart area we are looking for. */ 1191 if (first) { 1192 vbo = 0; 1193 skip = 512; 1194 } else { 1195 vbo = 512; 1196 skip = 0; 1197 } 1198 1199 /* Loop continuously until we succeed. */ 1200 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) { 1201 bool usa_error; 1202 bool brst, bchk; 1203 struct RESTART_AREA *ra; 1204 1205 /* Read a page header at the current offset. */ 1206 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1207 &usa_error)) { 1208 /* Ignore any errors. */ 1209 continue; 1210 } 1211 1212 /* Exit if the signature is a log record page. */ 1213 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1214 info->initialized = true; 1215 break; 1216 } 1217 1218 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1219 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1220 1221 if (!bchk && !brst) { 1222 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1223 /* 1224 * Remember if the signature does not 1225 * indicate uninitialized file. 1226 */ 1227 info->initialized = true; 1228 } 1229 continue; 1230 } 1231 1232 ra = NULL; 1233 info->valid_page = false; 1234 info->initialized = true; 1235 info->vbo = vbo; 1236 1237 /* Let's check the restart area if this is a valid page. */ 1238 if (!is_rst_page_hdr_valid(vbo, r_page)) 1239 goto check_result; 1240 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1241 1242 if (!is_rst_area_valid(r_page)) 1243 goto check_result; 1244 1245 /* 1246 * We have a valid restart page header and restart area. 1247 * If chkdsk was run or we have no clients then we have 1248 * no more checking to do. 1249 */ 1250 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1251 info->valid_page = true; 1252 goto check_result; 1253 } 1254 1255 if (is_client_area_valid(r_page, usa_error)) { 1256 info->valid_page = true; 1257 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1258 } 1259 1260 check_result: 1261 /* 1262 * If chkdsk was run then update the caller's 1263 * values and return. 1264 */ 1265 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1266 info->chkdsk_was_run = true; 1267 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1268 info->restart = true; 1269 info->r_page = r_page; 1270 return 0; 1271 } 1272 1273 /* 1274 * If we have a valid page then copy the values 1275 * we need from it. 1276 */ 1277 if (info->valid_page) { 1278 info->last_lsn = le64_to_cpu(ra->current_lsn); 1279 info->restart = true; 1280 info->r_page = r_page; 1281 return 0; 1282 } 1283 } 1284 1285 kfree(r_page); 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * Ilog_init_pg_hdr - Init @log from restart page header. 1292 */ 1293 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver) 1294 { 1295 log->sys_page_size = log->page_size; 1296 log->sys_page_mask = log->page_mask; 1297 1298 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1299 if (!log->clst_per_page) 1300 log->clst_per_page = 1; 1301 1302 log->first_page = major_ver >= 2 ? 0x22 * log->page_size : 1303 4 * log->page_size; 1304 log->major_ver = major_ver; 1305 log->minor_ver = minor_ver; 1306 } 1307 1308 /* 1309 * log_create - Init @log in cases when we don't have a restart area to use. 1310 */ 1311 static void log_create(struct ntfs_log *log, const u64 last_lsn, 1312 u32 open_log_count, bool wrapped, bool use_multi_page) 1313 { 1314 /* All file offsets must be quadword aligned. */ 1315 log->file_data_bits = blksize_bits(log->l_size) - 3; 1316 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1317 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1318 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1319 log->next_page = log->first_page; 1320 log->oldest_lsn = log->seq_num << log->file_data_bits; 1321 log->oldest_lsn_off = 0; 1322 log->last_lsn = log->oldest_lsn; 1323 1324 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1325 1326 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1327 if (wrapped) 1328 log->l_flags |= NTFSLOG_WRAPPED; 1329 1330 if (use_multi_page) 1331 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1332 1333 /* Compute the log page values. */ 1334 log->data_off = ALIGN( 1335 offsetof(struct RECORD_PAGE_HDR, fixups) + 1336 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1337 8); 1338 log->data_size = log->page_size - log->data_off; 1339 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1340 1341 /* Remember the different page sizes for reservation. */ 1342 log->reserved = log->data_size - log->record_header_len; 1343 1344 /* Compute the restart page values. */ 1345 log->ra_off = ALIGN( 1346 offsetof(struct RESTART_HDR, fixups) + 1347 sizeof(short) * 1348 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1349 8); 1350 log->restart_size = log->sys_page_size - log->ra_off; 1351 log->ra_size = struct_size(log->ra, clients, 1); 1352 log->current_openlog_count = open_log_count; 1353 1354 /* 1355 * The total available log file space is the number of 1356 * log file pages times the space available on each page. 1357 */ 1358 log->total_avail_pages = log->l_size - log->first_page; 1359 log->total_avail = log->total_avail_pages >> log->page_bits; 1360 1361 /* 1362 * We assume that we can't use the end of the page less than 1363 * the file record size. 1364 * Then we won't need to reserve more than the caller asks for. 1365 */ 1366 log->max_current_avail = log->total_avail * log->reserved; 1367 log->total_avail = log->total_avail * log->data_size; 1368 log->current_avail = log->max_current_avail; 1369 } 1370 1371 /* 1372 * log_create_ra - Fill a restart area from the values stored in @log. 1373 */ 1374 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1375 { 1376 struct CLIENT_REC *cr; 1377 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1378 1379 if (!ra) 1380 return NULL; 1381 1382 ra->current_lsn = cpu_to_le64(log->last_lsn); 1383 ra->log_clients = cpu_to_le16(1); 1384 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1385 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1386 ra->flags = RESTART_SINGLE_PAGE_IO; 1387 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1388 ra->ra_len = cpu_to_le16(log->ra_size); 1389 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1390 ra->l_size = cpu_to_le64(log->l_size); 1391 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1392 ra->data_off = cpu_to_le16(log->data_off); 1393 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1394 1395 cr = ra->clients; 1396 1397 cr->prev_client = LFS_NO_CLIENT_LE; 1398 cr->next_client = LFS_NO_CLIENT_LE; 1399 1400 return ra; 1401 } 1402 1403 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1404 { 1405 u32 base_vbo = lsn << 3; 1406 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1407 u32 page_off = base_vbo & log->page_mask; 1408 u32 tail = log->page_size - page_off; 1409 1410 page_off -= 1; 1411 1412 /* Add the length of the header. */ 1413 data_len += log->record_header_len; 1414 1415 /* 1416 * If this lsn is contained this log page we are done. 1417 * Otherwise we need to walk through several log pages. 1418 */ 1419 if (data_len > tail) { 1420 data_len -= tail; 1421 tail = log->data_size; 1422 page_off = log->data_off - 1; 1423 1424 for (;;) { 1425 final_log_off = next_page_off(log, final_log_off); 1426 1427 /* 1428 * We are done if the remaining bytes 1429 * fit on this page. 1430 */ 1431 if (data_len <= tail) 1432 break; 1433 data_len -= tail; 1434 } 1435 } 1436 1437 /* 1438 * We add the remaining bytes to our starting position on this page 1439 * and then add that value to the file offset of this log page. 1440 */ 1441 return final_log_off + data_len + page_off; 1442 } 1443 1444 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1445 u64 *lsn) 1446 { 1447 int err; 1448 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1449 u32 vbo = lsn_to_vbo(log, this_lsn); 1450 u32 end = 1451 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1452 u32 hdr_off = end & ~log->sys_page_mask; 1453 u64 seq = this_lsn >> log->file_data_bits; 1454 struct RECORD_PAGE_HDR *page = NULL; 1455 1456 /* Remember if we wrapped. */ 1457 if (end <= vbo) 1458 seq += 1; 1459 1460 /* Log page header for this page. */ 1461 err = read_log_page(log, hdr_off, &page, NULL); 1462 if (err) 1463 return err; 1464 1465 /* 1466 * If the lsn we were given was not the last lsn on this page, 1467 * then the starting offset for the next lsn is on a quad word 1468 * boundary following the last file offset for the current lsn. 1469 * Otherwise the file offset is the start of the data on the next page. 1470 */ 1471 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1472 /* If we wrapped, we need to increment the sequence number. */ 1473 hdr_off = next_page_off(log, hdr_off); 1474 if (hdr_off == log->first_page) 1475 seq += 1; 1476 1477 vbo = hdr_off + log->data_off; 1478 } else { 1479 vbo = ALIGN(end, 8); 1480 } 1481 1482 /* Compute the lsn based on the file offset and the sequence count. */ 1483 *lsn = vbo_to_lsn(log, vbo, seq); 1484 1485 /* 1486 * If this lsn is within the legal range for the file, we return true. 1487 * Otherwise false indicates that there are no more lsn's. 1488 */ 1489 if (!is_lsn_in_file(log, *lsn)) 1490 *lsn = 0; 1491 1492 kfree(page); 1493 1494 return 0; 1495 } 1496 1497 /* 1498 * current_log_avail - Calculate the number of bytes available for log records. 1499 */ 1500 static u32 current_log_avail(struct ntfs_log *log) 1501 { 1502 u32 oldest_off, next_free_off, free_bytes; 1503 1504 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1505 /* The entire file is available. */ 1506 return log->max_current_avail; 1507 } 1508 1509 /* 1510 * If there is a last lsn the restart area then we know that we will 1511 * have to compute the free range. 1512 * If there is no oldest lsn then start at the first page of the file. 1513 */ 1514 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? 1515 log->first_page : 1516 (log->oldest_lsn_off & ~log->sys_page_mask); 1517 1518 /* 1519 * We will use the next log page offset to compute the next free page. 1520 * If we are going to reuse this page go to the next page. 1521 * If we are at the first page then use the end of the file. 1522 */ 1523 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? 1524 log->next_page + log->page_size : 1525 log->next_page == log->first_page ? log->l_size : 1526 log->next_page; 1527 1528 /* If the two offsets are the same then there is no available space. */ 1529 if (oldest_off == next_free_off) 1530 return 0; 1531 /* 1532 * If the free offset follows the oldest offset then subtract 1533 * this range from the total available pages. 1534 */ 1535 free_bytes = 1536 oldest_off < next_free_off ? 1537 log->total_avail_pages - (next_free_off - oldest_off) : 1538 oldest_off - next_free_off; 1539 1540 free_bytes >>= log->page_bits; 1541 return free_bytes * log->reserved; 1542 } 1543 1544 static bool check_subseq_log_page(struct ntfs_log *log, 1545 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1546 u64 seq) 1547 { 1548 u64 lsn_seq; 1549 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1550 u64 lsn = le64_to_cpu(rhdr->lsn); 1551 1552 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1553 return false; 1554 1555 /* 1556 * If the last lsn on the page occurs was written after the page 1557 * that caused the original error then we have a fatal error. 1558 */ 1559 lsn_seq = lsn >> log->file_data_bits; 1560 1561 /* 1562 * If the sequence number for the lsn the page is equal or greater 1563 * than lsn we expect, then this is a subsequent write. 1564 */ 1565 return lsn_seq >= seq || 1566 (lsn_seq == seq - 1 && log->first_page == vbo && 1567 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1568 } 1569 1570 /* 1571 * last_log_lsn 1572 * 1573 * Walks through the log pages for a file, searching for the 1574 * last log page written to the file. 1575 */ 1576 static int last_log_lsn(struct ntfs_log *log) 1577 { 1578 int err; 1579 bool usa_error = false; 1580 bool replace_page = false; 1581 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1582 bool wrapped_file, wrapped; 1583 1584 u32 page_cnt = 1, page_pos = 1; 1585 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1586 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1587 u32 first_file_off = 0, second_file_off = 0; 1588 u32 part_io_count = 0; 1589 u32 tails = 0; 1590 u32 this_off, curpage_off, nextpage_off, remain_pages; 1591 1592 u64 expected_seq, seq_base = 0, lsn_base = 0; 1593 u64 best_lsn, best_lsn1, best_lsn2; 1594 u64 lsn_cur, lsn1, lsn2; 1595 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1596 1597 u16 cur_pos, best_page_pos; 1598 1599 struct RECORD_PAGE_HDR *page = NULL; 1600 struct RECORD_PAGE_HDR *tst_page = NULL; 1601 struct RECORD_PAGE_HDR *first_tail = NULL; 1602 struct RECORD_PAGE_HDR *second_tail = NULL; 1603 struct RECORD_PAGE_HDR *tail_page = NULL; 1604 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1605 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1606 struct RECORD_PAGE_HDR *page_bufs = NULL; 1607 struct RECORD_PAGE_HDR *best_page; 1608 1609 if (log->major_ver >= 2) { 1610 final_off = 0x02 * log->page_size; 1611 second_off = 0x12 * log->page_size; 1612 1613 // 0x10 == 0x12 - 0x2 1614 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1615 if (!page_bufs) 1616 return -ENOMEM; 1617 } else { 1618 second_off = log->first_page - log->page_size; 1619 final_off = second_off - log->page_size; 1620 } 1621 1622 next_tail: 1623 /* Read second tail page (at pos 3/0x12000). */ 1624 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1625 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1626 kfree(second_tail); 1627 second_tail = NULL; 1628 second_file_off = 0; 1629 lsn2 = 0; 1630 } else { 1631 second_file_off = hdr_file_off(log, second_tail); 1632 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1633 } 1634 1635 /* Read first tail page (at pos 2/0x2000). */ 1636 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1637 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1638 kfree(first_tail); 1639 first_tail = NULL; 1640 first_file_off = 0; 1641 lsn1 = 0; 1642 } else { 1643 first_file_off = hdr_file_off(log, first_tail); 1644 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1645 } 1646 1647 if (log->major_ver < 2) { 1648 int best_page; 1649 1650 first_tail_prev = first_tail; 1651 final_off_prev = first_file_off; 1652 second_tail_prev = second_tail; 1653 second_off_prev = second_file_off; 1654 tails = 1; 1655 1656 if (!first_tail && !second_tail) 1657 goto tail_read; 1658 1659 if (first_tail && second_tail) 1660 best_page = lsn1 < lsn2 ? 1 : 0; 1661 else if (first_tail) 1662 best_page = 0; 1663 else 1664 best_page = 1; 1665 1666 page_off = best_page ? second_file_off : first_file_off; 1667 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1668 goto tail_read; 1669 } 1670 1671 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1672 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : 1673 0; 1674 1675 if (first_tail && second_tail) { 1676 if (best_lsn1 > best_lsn2) { 1677 best_lsn = best_lsn1; 1678 best_page = first_tail; 1679 this_off = first_file_off; 1680 } else { 1681 best_lsn = best_lsn2; 1682 best_page = second_tail; 1683 this_off = second_file_off; 1684 } 1685 } else if (first_tail) { 1686 best_lsn = best_lsn1; 1687 best_page = first_tail; 1688 this_off = first_file_off; 1689 } else if (second_tail) { 1690 best_lsn = best_lsn2; 1691 best_page = second_tail; 1692 this_off = second_file_off; 1693 } else { 1694 goto tail_read; 1695 } 1696 1697 best_page_pos = le16_to_cpu(best_page->page_pos); 1698 1699 if (!tails) { 1700 if (best_page_pos == page_pos) { 1701 seq_base = best_lsn >> log->file_data_bits; 1702 saved_off = page_off = le32_to_cpu(best_page->file_off); 1703 lsn_base = best_lsn; 1704 1705 memmove(page_bufs, best_page, log->page_size); 1706 1707 page_cnt = le16_to_cpu(best_page->page_count); 1708 if (page_cnt > 1) 1709 page_pos += 1; 1710 1711 tails = 1; 1712 } 1713 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1714 saved_off + log->page_size == this_off && 1715 lsn_base < best_lsn && 1716 (page_pos != page_cnt || best_page_pos == page_pos || 1717 best_page_pos == 1) && 1718 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1719 u16 bppc = le16_to_cpu(best_page->page_count); 1720 1721 saved_off += log->page_size; 1722 lsn_base = best_lsn; 1723 1724 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1725 log->page_size); 1726 1727 tails += 1; 1728 1729 if (best_page_pos != bppc) { 1730 page_cnt = bppc; 1731 page_pos = best_page_pos; 1732 1733 if (page_cnt > 1) 1734 page_pos += 1; 1735 } else { 1736 page_pos = page_cnt = 1; 1737 } 1738 } else { 1739 kfree(first_tail); 1740 kfree(second_tail); 1741 goto tail_read; 1742 } 1743 1744 kfree(first_tail_prev); 1745 first_tail_prev = first_tail; 1746 final_off_prev = first_file_off; 1747 first_tail = NULL; 1748 1749 kfree(second_tail_prev); 1750 second_tail_prev = second_tail; 1751 second_off_prev = second_file_off; 1752 second_tail = NULL; 1753 1754 final_off += log->page_size; 1755 second_off += log->page_size; 1756 1757 if (tails < 0x10) 1758 goto next_tail; 1759 tail_read: 1760 first_tail = first_tail_prev; 1761 final_off = final_off_prev; 1762 1763 second_tail = second_tail_prev; 1764 second_off = second_off_prev; 1765 1766 page_cnt = page_pos = 1; 1767 1768 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : 1769 log->next_page; 1770 1771 wrapped_file = 1772 curpage_off == log->first_page && 1773 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1774 1775 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1776 1777 nextpage_off = curpage_off; 1778 1779 next_page: 1780 tail_page = NULL; 1781 /* Read the next log page. */ 1782 err = read_log_page(log, curpage_off, &page, &usa_error); 1783 1784 /* Compute the next log page offset the file. */ 1785 nextpage_off = next_page_off(log, curpage_off); 1786 wrapped = nextpage_off == log->first_page; 1787 1788 if (tails > 1) { 1789 struct RECORD_PAGE_HDR *cur_page = 1790 Add2Ptr(page_bufs, curpage_off - page_off); 1791 1792 if (curpage_off == saved_off) { 1793 tail_page = cur_page; 1794 goto use_tail_page; 1795 } 1796 1797 if (page_off > curpage_off || curpage_off >= saved_off) 1798 goto use_tail_page; 1799 1800 if (page_off1) 1801 goto use_cur_page; 1802 1803 if (!err && !usa_error && 1804 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1805 cur_page->rhdr.lsn == page->rhdr.lsn && 1806 cur_page->record_hdr.next_record_off == 1807 page->record_hdr.next_record_off && 1808 ((page_pos == page_cnt && 1809 le16_to_cpu(page->page_pos) == 1) || 1810 (page_pos != page_cnt && 1811 le16_to_cpu(page->page_pos) == page_pos + 1 && 1812 le16_to_cpu(page->page_count) == page_cnt))) { 1813 cur_page = NULL; 1814 goto use_tail_page; 1815 } 1816 1817 page_off1 = page_off; 1818 1819 use_cur_page: 1820 1821 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1822 1823 if (last_ok_lsn != 1824 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1825 ((lsn_cur >> log->file_data_bits) + 1826 ((curpage_off < 1827 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? 1828 1 : 1829 0)) != expected_seq) { 1830 goto check_tail; 1831 } 1832 1833 if (!is_log_record_end(cur_page)) { 1834 tail_page = NULL; 1835 last_ok_lsn = lsn_cur; 1836 goto next_page_1; 1837 } 1838 1839 log->seq_num = expected_seq; 1840 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1841 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1842 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1843 1844 if (log->record_header_len <= 1845 log->page_size - 1846 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1847 log->l_flags |= NTFSLOG_REUSE_TAIL; 1848 log->next_page = curpage_off; 1849 } else { 1850 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1851 log->next_page = nextpage_off; 1852 } 1853 1854 if (wrapped_file) 1855 log->l_flags |= NTFSLOG_WRAPPED; 1856 1857 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1858 goto next_page_1; 1859 } 1860 1861 /* 1862 * If we are at the expected first page of a transfer check to see 1863 * if either tail copy is at this offset. 1864 * If this page is the last page of a transfer, check if we wrote 1865 * a subsequent tail copy. 1866 */ 1867 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1868 /* 1869 * Check if the offset matches either the first or second 1870 * tail copy. It is possible it will match both. 1871 */ 1872 if (curpage_off == final_off) 1873 tail_page = first_tail; 1874 1875 /* 1876 * If we already matched on the first page then 1877 * check the ending lsn's. 1878 */ 1879 if (curpage_off == second_off) { 1880 if (!tail_page || 1881 (second_tail && 1882 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1883 le64_to_cpu(first_tail->record_hdr 1884 .last_end_lsn))) { 1885 tail_page = second_tail; 1886 } 1887 } 1888 } 1889 1890 use_tail_page: 1891 if (tail_page) { 1892 /* We have a candidate for a tail copy. */ 1893 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1894 1895 if (last_ok_lsn < lsn_cur) { 1896 /* 1897 * If the sequence number is not expected, 1898 * then don't use the tail copy. 1899 */ 1900 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1901 tail_page = NULL; 1902 } else if (last_ok_lsn > lsn_cur) { 1903 /* 1904 * If the last lsn is greater than the one on 1905 * this page then forget this tail. 1906 */ 1907 tail_page = NULL; 1908 } 1909 } 1910 1911 /* 1912 *If we have an error on the current page, 1913 * we will break of this loop. 1914 */ 1915 if (err || usa_error) 1916 goto check_tail; 1917 1918 /* 1919 * Done if the last lsn on this page doesn't match the previous known 1920 * last lsn or the sequence number is not expected. 1921 */ 1922 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1923 if (last_ok_lsn != lsn_cur && 1924 expected_seq != (lsn_cur >> log->file_data_bits)) { 1925 goto check_tail; 1926 } 1927 1928 /* 1929 * Check that the page position and page count values are correct. 1930 * If this is the first page of a transfer the position must be 1 1931 * and the count will be unknown. 1932 */ 1933 if (page_cnt == page_pos) { 1934 if (page->page_pos != cpu_to_le16(1) && 1935 (!reuse_page || page->page_pos != page->page_count)) { 1936 /* 1937 * If the current page is the first page we are 1938 * looking at and we are reusing this page then 1939 * it can be either the first or last page of a 1940 * transfer. Otherwise it can only be the first. 1941 */ 1942 goto check_tail; 1943 } 1944 } else if (le16_to_cpu(page->page_count) != page_cnt || 1945 le16_to_cpu(page->page_pos) != page_pos + 1) { 1946 /* 1947 * The page position better be 1 more than the last page 1948 * position and the page count better match. 1949 */ 1950 goto check_tail; 1951 } 1952 1953 /* 1954 * We have a valid page the file and may have a valid page 1955 * the tail copy area. 1956 * If the tail page was written after the page the file then 1957 * break of the loop. 1958 */ 1959 if (tail_page && 1960 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1961 /* Remember if we will replace the page. */ 1962 replace_page = true; 1963 goto check_tail; 1964 } 1965 1966 tail_page = NULL; 1967 1968 if (is_log_record_end(page)) { 1969 /* 1970 * Since we have read this page we know the sequence number 1971 * is the same as our expected value. 1972 */ 1973 log->seq_num = expected_seq; 1974 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1975 log->ra->current_lsn = page->record_hdr.last_end_lsn; 1976 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1977 1978 /* 1979 * If there is room on this page for another header then 1980 * remember we want to reuse the page. 1981 */ 1982 if (log->record_header_len <= 1983 log->page_size - 1984 le16_to_cpu(page->record_hdr.next_record_off)) { 1985 log->l_flags |= NTFSLOG_REUSE_TAIL; 1986 log->next_page = curpage_off; 1987 } else { 1988 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1989 log->next_page = nextpage_off; 1990 } 1991 1992 /* Remember if we wrapped the log file. */ 1993 if (wrapped_file) 1994 log->l_flags |= NTFSLOG_WRAPPED; 1995 } 1996 1997 /* 1998 * Remember the last page count and position. 1999 * Also remember the last known lsn. 2000 */ 2001 page_cnt = le16_to_cpu(page->page_count); 2002 page_pos = le16_to_cpu(page->page_pos); 2003 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2004 2005 next_page_1: 2006 2007 if (wrapped) { 2008 expected_seq += 1; 2009 wrapped_file = 1; 2010 } 2011 2012 curpage_off = nextpage_off; 2013 kfree(page); 2014 page = NULL; 2015 reuse_page = 0; 2016 goto next_page; 2017 2018 check_tail: 2019 if (tail_page) { 2020 log->seq_num = expected_seq; 2021 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2022 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2023 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2024 2025 if (log->page_size - 2026 le16_to_cpu( 2027 tail_page->record_hdr.next_record_off) >= 2028 log->record_header_len) { 2029 log->l_flags |= NTFSLOG_REUSE_TAIL; 2030 log->next_page = curpage_off; 2031 } else { 2032 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2033 log->next_page = nextpage_off; 2034 } 2035 2036 if (wrapped) 2037 log->l_flags |= NTFSLOG_WRAPPED; 2038 } 2039 2040 /* Remember that the partial IO will start at the next page. */ 2041 second_off = nextpage_off; 2042 2043 /* 2044 * If the next page is the first page of the file then update 2045 * the sequence number for log records which begon the next page. 2046 */ 2047 if (wrapped) 2048 expected_seq += 1; 2049 2050 /* 2051 * If we have a tail copy or are performing single page I/O we can 2052 * immediately look at the next page. 2053 */ 2054 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2055 page_cnt = 2; 2056 page_pos = 1; 2057 goto check_valid; 2058 } 2059 2060 if (page_pos != page_cnt) 2061 goto check_valid; 2062 /* 2063 * If the next page causes us to wrap to the beginning of the log 2064 * file then we know which page to check next. 2065 */ 2066 if (wrapped) { 2067 page_cnt = 2; 2068 page_pos = 1; 2069 goto check_valid; 2070 } 2071 2072 cur_pos = 2; 2073 2074 next_test_page: 2075 kfree(tst_page); 2076 tst_page = NULL; 2077 2078 /* Walk through the file, reading log pages. */ 2079 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2080 2081 /* 2082 * If we get a USA error then assume that we correctly found 2083 * the end of the original transfer. 2084 */ 2085 if (usa_error) 2086 goto file_is_valid; 2087 2088 /* 2089 * If we were able to read the page, we examine it to see if it 2090 * is the same or different Io block. 2091 */ 2092 if (err) 2093 goto next_test_page_1; 2094 2095 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2096 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2097 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2098 page_pos = le16_to_cpu(tst_page->page_pos); 2099 goto check_valid; 2100 } else { 2101 goto file_is_valid; 2102 } 2103 2104 next_test_page_1: 2105 2106 nextpage_off = next_page_off(log, curpage_off); 2107 wrapped = nextpage_off == log->first_page; 2108 2109 if (wrapped) { 2110 expected_seq += 1; 2111 page_cnt = 2; 2112 page_pos = 1; 2113 } 2114 2115 cur_pos += 1; 2116 part_io_count += 1; 2117 if (!wrapped) 2118 goto next_test_page; 2119 2120 check_valid: 2121 /* Skip over the remaining pages this transfer. */ 2122 remain_pages = page_cnt - page_pos - 1; 2123 part_io_count += remain_pages; 2124 2125 while (remain_pages--) { 2126 nextpage_off = next_page_off(log, curpage_off); 2127 wrapped = nextpage_off == log->first_page; 2128 2129 if (wrapped) 2130 expected_seq += 1; 2131 } 2132 2133 /* Call our routine to check this log page. */ 2134 kfree(tst_page); 2135 tst_page = NULL; 2136 2137 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2138 if (!err && !usa_error && 2139 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2140 err = -EINVAL; 2141 goto out; 2142 } 2143 2144 file_is_valid: 2145 2146 /* We have a valid file. */ 2147 if (page_off1 || tail_page) { 2148 struct RECORD_PAGE_HDR *tmp_page; 2149 2150 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2151 err = -EROFS; 2152 goto out; 2153 } 2154 2155 if (page_off1) { 2156 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2157 tails -= (page_off1 - page_off) / log->page_size; 2158 if (!tail_page) 2159 tails -= 1; 2160 } else { 2161 tmp_page = tail_page; 2162 tails = 1; 2163 } 2164 2165 while (tails--) { 2166 u64 off = hdr_file_off(log, tmp_page); 2167 2168 if (!page) { 2169 page = kmalloc(log->page_size, GFP_NOFS); 2170 if (!page) { 2171 err = -ENOMEM; 2172 goto out; 2173 } 2174 } 2175 2176 /* 2177 * Correct page and copy the data from this page 2178 * into it and flush it to disk. 2179 */ 2180 memcpy(page, tmp_page, log->page_size); 2181 2182 /* Fill last flushed lsn value flush the page. */ 2183 if (log->major_ver < 2) 2184 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2185 else 2186 page->file_off = 0; 2187 2188 page->page_pos = page->page_count = cpu_to_le16(1); 2189 2190 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2191 2192 err = ntfs_sb_write_run(log->ni->mi.sbi, 2193 &log->ni->file.run, off, page, 2194 log->page_size, 0); 2195 2196 if (err) 2197 goto out; 2198 2199 if (part_io_count && second_off == off) { 2200 second_off += log->page_size; 2201 part_io_count -= 1; 2202 } 2203 2204 tmp_page = Add2Ptr(tmp_page, log->page_size); 2205 } 2206 } 2207 2208 if (part_io_count) { 2209 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2210 err = -EROFS; 2211 goto out; 2212 } 2213 } 2214 2215 out: 2216 kfree(second_tail); 2217 kfree(first_tail); 2218 kfree(page); 2219 kfree(tst_page); 2220 kfree(page_bufs); 2221 2222 return err; 2223 } 2224 2225 /* 2226 * read_log_rec_buf - Copy a log record from the file to a buffer. 2227 * 2228 * The log record may span several log pages and may even wrap the file. 2229 */ 2230 static int read_log_rec_buf(struct ntfs_log *log, 2231 const struct LFS_RECORD_HDR *rh, void *buffer) 2232 { 2233 int err; 2234 struct RECORD_PAGE_HDR *ph = NULL; 2235 u64 lsn = le64_to_cpu(rh->this_lsn); 2236 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2237 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2238 u32 data_len = le32_to_cpu(rh->client_data_len); 2239 2240 /* 2241 * While there are more bytes to transfer, 2242 * we continue to attempt to perform the read. 2243 */ 2244 for (;;) { 2245 bool usa_error; 2246 u32 tail = log->page_size - off; 2247 2248 if (tail >= data_len) 2249 tail = data_len; 2250 2251 data_len -= tail; 2252 2253 err = read_log_page(log, vbo, &ph, &usa_error); 2254 if (err) 2255 goto out; 2256 2257 /* 2258 * The last lsn on this page better be greater or equal 2259 * to the lsn we are copying. 2260 */ 2261 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2262 err = -EINVAL; 2263 goto out; 2264 } 2265 2266 memcpy(buffer, Add2Ptr(ph, off), tail); 2267 2268 /* If there are no more bytes to transfer, we exit the loop. */ 2269 if (!data_len) { 2270 if (!is_log_record_end(ph) || 2271 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2272 err = -EINVAL; 2273 goto out; 2274 } 2275 break; 2276 } 2277 2278 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2279 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2280 err = -EINVAL; 2281 goto out; 2282 } 2283 2284 vbo = next_page_off(log, vbo); 2285 off = log->data_off; 2286 2287 /* 2288 * Adjust our pointer the user's buffer to transfer 2289 * the next block to. 2290 */ 2291 buffer = Add2Ptr(buffer, tail); 2292 } 2293 2294 out: 2295 kfree(ph); 2296 return err; 2297 } 2298 2299 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2300 u64 *lsn) 2301 { 2302 int err; 2303 struct LFS_RECORD_HDR *rh = NULL; 2304 const struct CLIENT_REC *cr = 2305 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2306 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2307 u32 len; 2308 struct NTFS_RESTART *rst; 2309 2310 *lsn = 0; 2311 *rst_ = NULL; 2312 2313 /* If the client doesn't have a restart area, go ahead and exit now. */ 2314 if (!lsnc) 2315 return 0; 2316 2317 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2318 (struct RECORD_PAGE_HDR **)&rh, NULL); 2319 if (err) 2320 return err; 2321 2322 rst = NULL; 2323 lsnr = le64_to_cpu(rh->this_lsn); 2324 2325 if (lsnc != lsnr) { 2326 /* If the lsn values don't match, then the disk is corrupt. */ 2327 err = -EINVAL; 2328 goto out; 2329 } 2330 2331 *lsn = lsnr; 2332 len = le32_to_cpu(rh->client_data_len); 2333 2334 if (!len) { 2335 err = 0; 2336 goto out; 2337 } 2338 2339 if (len < sizeof(struct NTFS_RESTART)) { 2340 err = -EINVAL; 2341 goto out; 2342 } 2343 2344 rst = kmalloc(len, GFP_NOFS); 2345 if (!rst) { 2346 err = -ENOMEM; 2347 goto out; 2348 } 2349 2350 /* Copy the data into the 'rst' buffer. */ 2351 err = read_log_rec_buf(log, rh, rst); 2352 if (err) 2353 goto out; 2354 2355 *rst_ = rst; 2356 rst = NULL; 2357 2358 out: 2359 kfree(rh); 2360 kfree(rst); 2361 2362 return err; 2363 } 2364 2365 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2366 { 2367 int err; 2368 struct LFS_RECORD_HDR *rh = lcb->lrh; 2369 u32 rec_len, len; 2370 2371 /* Read the record header for this lsn. */ 2372 if (!rh) { 2373 err = read_log_page(log, lsn_to_vbo(log, lsn), 2374 (struct RECORD_PAGE_HDR **)&rh, NULL); 2375 2376 lcb->lrh = rh; 2377 if (err) 2378 return err; 2379 } 2380 2381 /* 2382 * If the lsn the log record doesn't match the desired 2383 * lsn then the disk is corrupt. 2384 */ 2385 if (lsn != le64_to_cpu(rh->this_lsn)) 2386 return -EINVAL; 2387 2388 len = le32_to_cpu(rh->client_data_len); 2389 2390 /* 2391 * Check that the length field isn't greater than the total 2392 * available space the log file. 2393 */ 2394 rec_len = len + log->record_header_len; 2395 if (rec_len >= log->total_avail) 2396 return -EINVAL; 2397 2398 /* 2399 * If the entire log record is on this log page, 2400 * put a pointer to the log record the context block. 2401 */ 2402 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2403 void *lr = kmalloc(len, GFP_NOFS); 2404 2405 if (!lr) 2406 return -ENOMEM; 2407 2408 lcb->log_rec = lr; 2409 lcb->alloc = true; 2410 2411 /* Copy the data into the buffer returned. */ 2412 err = read_log_rec_buf(log, rh, lr); 2413 if (err) 2414 return err; 2415 } else { 2416 /* If beyond the end of the current page -> an error. */ 2417 u32 page_off = lsn_to_page_off(log, lsn); 2418 2419 if (page_off + len + log->record_header_len > log->page_size) 2420 return -EINVAL; 2421 2422 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2423 lcb->alloc = false; 2424 } 2425 2426 return 0; 2427 } 2428 2429 /* 2430 * read_log_rec_lcb - Init the query operation. 2431 */ 2432 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2433 struct lcb **lcb_) 2434 { 2435 int err; 2436 const struct CLIENT_REC *cr; 2437 struct lcb *lcb; 2438 2439 switch (ctx_mode) { 2440 case lcb_ctx_undo_next: 2441 case lcb_ctx_prev: 2442 case lcb_ctx_next: 2443 break; 2444 default: 2445 return -EINVAL; 2446 } 2447 2448 /* Check that the given lsn is the legal range for this client. */ 2449 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2450 2451 if (!verify_client_lsn(log, cr, lsn)) 2452 return -EINVAL; 2453 2454 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2455 if (!lcb) 2456 return -ENOMEM; 2457 lcb->client = log->client_id; 2458 lcb->ctx_mode = ctx_mode; 2459 2460 /* Find the log record indicated by the given lsn. */ 2461 err = find_log_rec(log, lsn, lcb); 2462 if (err) 2463 goto out; 2464 2465 *lcb_ = lcb; 2466 return 0; 2467 2468 out: 2469 lcb_put(lcb); 2470 *lcb_ = NULL; 2471 return err; 2472 } 2473 2474 /* 2475 * find_client_next_lsn 2476 * 2477 * Attempt to find the next lsn to return to a client based on the context mode. 2478 */ 2479 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2480 { 2481 int err; 2482 u64 next_lsn; 2483 struct LFS_RECORD_HDR *hdr; 2484 2485 hdr = lcb->lrh; 2486 *lsn = 0; 2487 2488 if (lcb_ctx_next != lcb->ctx_mode) 2489 goto check_undo_next; 2490 2491 /* Loop as long as another lsn can be found. */ 2492 for (;;) { 2493 u64 current_lsn; 2494 2495 err = next_log_lsn(log, hdr, ¤t_lsn); 2496 if (err) 2497 goto out; 2498 2499 if (!current_lsn) 2500 break; 2501 2502 if (hdr != lcb->lrh) 2503 kfree(hdr); 2504 2505 hdr = NULL; 2506 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2507 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2508 if (err) 2509 goto out; 2510 2511 if (memcmp(&hdr->client, &lcb->client, 2512 sizeof(struct CLIENT_ID))) { 2513 /*err = -EINVAL; */ 2514 } else if (LfsClientRecord == hdr->record_type) { 2515 kfree(lcb->lrh); 2516 lcb->lrh = hdr; 2517 *lsn = current_lsn; 2518 return 0; 2519 } 2520 } 2521 2522 out: 2523 if (hdr != lcb->lrh) 2524 kfree(hdr); 2525 return err; 2526 2527 check_undo_next: 2528 if (lcb_ctx_undo_next == lcb->ctx_mode) 2529 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2530 else if (lcb_ctx_prev == lcb->ctx_mode) 2531 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2532 else 2533 return 0; 2534 2535 if (!next_lsn) 2536 return 0; 2537 2538 if (!verify_client_lsn( 2539 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2540 next_lsn)) 2541 return 0; 2542 2543 hdr = NULL; 2544 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2545 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2546 if (err) 2547 return err; 2548 kfree(lcb->lrh); 2549 lcb->lrh = hdr; 2550 2551 *lsn = next_lsn; 2552 2553 return 0; 2554 } 2555 2556 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2557 { 2558 int err; 2559 2560 err = find_client_next_lsn(log, lcb, lsn); 2561 if (err) 2562 return err; 2563 2564 if (!*lsn) 2565 return 0; 2566 2567 if (lcb->alloc) 2568 kfree(lcb->log_rec); 2569 2570 lcb->log_rec = NULL; 2571 lcb->alloc = false; 2572 kfree(lcb->lrh); 2573 lcb->lrh = NULL; 2574 2575 return find_log_rec(log, *lsn, lcb); 2576 } 2577 2578 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2579 { 2580 __le16 mask; 2581 u32 min_de, de_off, used, total; 2582 const struct NTFS_DE *e; 2583 2584 if (hdr_has_subnode(hdr)) { 2585 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2586 mask = NTFS_IE_HAS_SUBNODES; 2587 } else { 2588 min_de = sizeof(struct NTFS_DE); 2589 mask = 0; 2590 } 2591 2592 de_off = le32_to_cpu(hdr->de_off); 2593 used = le32_to_cpu(hdr->used); 2594 total = le32_to_cpu(hdr->total); 2595 2596 if (de_off > bytes - min_de || used > bytes || total > bytes || 2597 de_off + min_de > used || used > total) { 2598 return false; 2599 } 2600 2601 e = Add2Ptr(hdr, de_off); 2602 for (;;) { 2603 u16 esize = le16_to_cpu(e->size); 2604 struct NTFS_DE *next = Add2Ptr(e, esize); 2605 2606 if (esize < min_de || PtrOffset(hdr, next) > used || 2607 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2608 return false; 2609 } 2610 2611 if (de_is_last(e)) 2612 break; 2613 2614 e = next; 2615 } 2616 2617 return true; 2618 } 2619 2620 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2621 { 2622 u16 fo; 2623 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2624 2625 if (r->sign != NTFS_INDX_SIGNATURE) 2626 return false; 2627 2628 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2629 2630 if (le16_to_cpu(r->fix_off) > fo) 2631 return false; 2632 2633 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2634 return false; 2635 2636 return check_index_header(&ib->ihdr, 2637 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2638 } 2639 2640 static inline bool check_index_root(const struct ATTRIB *attr, 2641 struct ntfs_sb_info *sbi) 2642 { 2643 bool ret; 2644 const struct INDEX_ROOT *root = resident_data(attr); 2645 u8 index_bits = le32_to_cpu(root->index_block_size) >= 2646 sbi->cluster_size ? 2647 sbi->cluster_bits : 2648 SECTOR_SHIFT; 2649 u8 block_clst = root->index_block_clst; 2650 2651 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2652 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2653 (root->type == ATTR_NAME && 2654 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2655 (le32_to_cpu(root->index_block_size) != 2656 (block_clst << index_bits)) || 2657 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2658 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2659 block_clst != 0x40 && block_clst != 0x80)) { 2660 return false; 2661 } 2662 2663 ret = check_index_header(&root->ihdr, 2664 le32_to_cpu(attr->res.data_size) - 2665 offsetof(struct INDEX_ROOT, ihdr)); 2666 return ret; 2667 } 2668 2669 static inline bool check_attr(const struct MFT_REC *rec, 2670 const struct ATTRIB *attr, 2671 struct ntfs_sb_info *sbi) 2672 { 2673 u32 asize = le32_to_cpu(attr->size); 2674 u32 rsize = 0; 2675 u64 dsize, svcn, evcn; 2676 u16 run_off; 2677 2678 /* Check the fixed part of the attribute record header. */ 2679 if (asize >= sbi->record_size || 2680 asize + PtrOffset(rec, attr) >= sbi->record_size || 2681 (attr->name_len && 2682 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2683 asize)) { 2684 return false; 2685 } 2686 2687 /* Check the attribute fields. */ 2688 switch (attr->non_res) { 2689 case 0: 2690 rsize = le32_to_cpu(attr->res.data_size); 2691 if (rsize >= asize || 2692 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2693 return false; 2694 } 2695 break; 2696 2697 case 1: 2698 dsize = le64_to_cpu(attr->nres.data_size); 2699 svcn = le64_to_cpu(attr->nres.svcn); 2700 evcn = le64_to_cpu(attr->nres.evcn); 2701 run_off = le16_to_cpu(attr->nres.run_off); 2702 2703 if (svcn > evcn + 1 || run_off >= asize || 2704 le64_to_cpu(attr->nres.valid_size) > dsize || 2705 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2706 return false; 2707 } 2708 2709 if (run_off > asize) 2710 return false; 2711 2712 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2713 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2714 return false; 2715 } 2716 2717 return true; 2718 2719 default: 2720 return false; 2721 } 2722 2723 switch (attr->type) { 2724 case ATTR_NAME: 2725 if (fname_full_size(Add2Ptr( 2726 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2727 return false; 2728 } 2729 break; 2730 2731 case ATTR_ROOT: 2732 return check_index_root(attr, sbi); 2733 2734 case ATTR_STD: 2735 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2736 rsize != sizeof(struct ATTR_STD_INFO)) { 2737 return false; 2738 } 2739 break; 2740 2741 case ATTR_LIST: 2742 case ATTR_ID: 2743 case ATTR_SECURE: 2744 case ATTR_LABEL: 2745 case ATTR_VOL_INFO: 2746 case ATTR_DATA: 2747 case ATTR_ALLOC: 2748 case ATTR_BITMAP: 2749 case ATTR_REPARSE: 2750 case ATTR_EA_INFO: 2751 case ATTR_EA: 2752 case ATTR_PROPERTYSET: 2753 case ATTR_LOGGED_UTILITY_STREAM: 2754 break; 2755 2756 default: 2757 return false; 2758 } 2759 2760 return true; 2761 } 2762 2763 static inline bool check_file_record(const struct MFT_REC *rec, 2764 const struct MFT_REC *rec2, 2765 struct ntfs_sb_info *sbi) 2766 { 2767 const struct ATTRIB *attr; 2768 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2769 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2770 u16 ao = le16_to_cpu(rec->attr_off); 2771 u32 rs = sbi->record_size; 2772 2773 /* Check the file record header for consistency. */ 2774 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2775 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2776 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2777 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2778 le32_to_cpu(rec->total) != rs) { 2779 return false; 2780 } 2781 2782 /* Loop to check all of the attributes. */ 2783 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2784 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2785 if (check_attr(rec, attr, sbi)) 2786 continue; 2787 return false; 2788 } 2789 2790 return true; 2791 } 2792 2793 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2794 const u64 *rlsn) 2795 { 2796 u64 lsn; 2797 2798 if (!rlsn) 2799 return true; 2800 2801 lsn = le64_to_cpu(hdr->lsn); 2802 2803 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2804 return false; 2805 2806 if (*rlsn > lsn) 2807 return true; 2808 2809 return false; 2810 } 2811 2812 static inline bool check_if_attr(const struct MFT_REC *rec, 2813 const struct LOG_REC_HDR *lrh) 2814 { 2815 u16 ro = le16_to_cpu(lrh->record_off); 2816 u16 o = le16_to_cpu(rec->attr_off); 2817 const struct ATTRIB *attr = Add2Ptr(rec, o); 2818 2819 while (o < ro) { 2820 u32 asize; 2821 2822 if (attr->type == ATTR_END) 2823 break; 2824 2825 asize = le32_to_cpu(attr->size); 2826 if (!asize) 2827 break; 2828 2829 o += asize; 2830 attr = Add2Ptr(attr, asize); 2831 } 2832 2833 return o == ro; 2834 } 2835 2836 static inline bool check_if_index_root(const struct MFT_REC *rec, 2837 const struct LOG_REC_HDR *lrh) 2838 { 2839 u16 ro = le16_to_cpu(lrh->record_off); 2840 u16 o = le16_to_cpu(rec->attr_off); 2841 const struct ATTRIB *attr = Add2Ptr(rec, o); 2842 2843 while (o < ro) { 2844 u32 asize; 2845 2846 if (attr->type == ATTR_END) 2847 break; 2848 2849 asize = le32_to_cpu(attr->size); 2850 if (!asize) 2851 break; 2852 2853 o += asize; 2854 attr = Add2Ptr(attr, asize); 2855 } 2856 2857 return o == ro && attr->type == ATTR_ROOT; 2858 } 2859 2860 static inline bool check_if_root_index(const struct ATTRIB *attr, 2861 const struct INDEX_HDR *hdr, 2862 const struct LOG_REC_HDR *lrh) 2863 { 2864 u16 ao = le16_to_cpu(lrh->attr_off); 2865 u32 de_off = le32_to_cpu(hdr->de_off); 2866 u32 o = PtrOffset(attr, hdr) + de_off; 2867 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2868 u32 asize = le32_to_cpu(attr->size); 2869 2870 while (o < ao) { 2871 u16 esize; 2872 2873 if (o >= asize) 2874 break; 2875 2876 esize = le16_to_cpu(e->size); 2877 if (!esize) 2878 break; 2879 2880 o += esize; 2881 e = Add2Ptr(e, esize); 2882 } 2883 2884 return o == ao; 2885 } 2886 2887 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2888 u32 attr_off) 2889 { 2890 u32 de_off = le32_to_cpu(hdr->de_off); 2891 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2892 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2893 u32 used = le32_to_cpu(hdr->used); 2894 2895 while (o < attr_off) { 2896 u16 esize; 2897 2898 if (de_off >= used) 2899 break; 2900 2901 esize = le16_to_cpu(e->size); 2902 if (!esize) 2903 break; 2904 2905 o += esize; 2906 de_off += esize; 2907 e = Add2Ptr(e, esize); 2908 } 2909 2910 return o == attr_off; 2911 } 2912 2913 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2914 u32 nsize) 2915 { 2916 u32 asize = le32_to_cpu(attr->size); 2917 int dsize = nsize - asize; 2918 u8 *next = Add2Ptr(attr, asize); 2919 u32 used = le32_to_cpu(rec->used); 2920 2921 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2922 2923 rec->used = cpu_to_le32(used + dsize); 2924 attr->size = cpu_to_le32(nsize); 2925 } 2926 2927 struct OpenAttr { 2928 struct ATTRIB *attr; 2929 struct runs_tree *run1; 2930 struct runs_tree run0; 2931 struct ntfs_inode *ni; 2932 // CLST rno; 2933 }; 2934 2935 /* 2936 * cmp_type_and_name 2937 * 2938 * Return: 0 if 'attr' has the same type and name. 2939 */ 2940 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2941 const struct ATTRIB *a2) 2942 { 2943 return a1->type != a2->type || a1->name_len != a2->name_len || 2944 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2945 a1->name_len * sizeof(short))); 2946 } 2947 2948 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2949 const struct ATTRIB *attr, CLST rno) 2950 { 2951 struct OPEN_ATTR_ENRTY *oe = NULL; 2952 2953 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2954 struct OpenAttr *op_attr; 2955 2956 if (ino_get(&oe->ref) != rno) 2957 continue; 2958 2959 op_attr = (struct OpenAttr *)oe->ptr; 2960 if (!cmp_type_and_name(op_attr->attr, attr)) 2961 return op_attr; 2962 } 2963 return NULL; 2964 } 2965 2966 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2967 enum ATTR_TYPE type, u64 size, 2968 const u16 *name, size_t name_len, 2969 __le16 flags) 2970 { 2971 struct ATTRIB *attr; 2972 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2973 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2974 u32 asize = name_size + 2975 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2976 2977 attr = kzalloc(asize, GFP_NOFS); 2978 if (!attr) 2979 return NULL; 2980 2981 attr->type = type; 2982 attr->size = cpu_to_le32(asize); 2983 attr->flags = flags; 2984 attr->non_res = 1; 2985 attr->name_len = name_len; 2986 2987 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 2988 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 2989 attr->nres.data_size = cpu_to_le64(size); 2990 attr->nres.valid_size = attr->nres.data_size; 2991 if (is_ext) { 2992 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 2993 if (is_attr_compressed(attr)) 2994 attr->nres.c_unit = COMPRESSION_UNIT; 2995 2996 attr->nres.run_off = 2997 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 2998 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 2999 name_len * sizeof(short)); 3000 } else { 3001 attr->name_off = SIZEOF_NONRESIDENT_LE; 3002 attr->nres.run_off = 3003 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3004 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3005 name_len * sizeof(short)); 3006 } 3007 3008 return attr; 3009 } 3010 3011 /* 3012 * do_action - Common routine for the Redo and Undo Passes. 3013 * @rlsn: If it is NULL then undo. 3014 */ 3015 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3016 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3017 u32 dlen, u32 rec_len, const u64 *rlsn) 3018 { 3019 int err = 0; 3020 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3021 struct inode *inode = NULL, *inode_parent; 3022 struct mft_inode *mi = NULL, *mi2_child = NULL; 3023 CLST rno = 0, rno_base = 0; 3024 struct INDEX_BUFFER *ib = NULL; 3025 struct MFT_REC *rec = NULL; 3026 struct ATTRIB *attr = NULL, *attr2; 3027 struct INDEX_HDR *hdr; 3028 struct INDEX_ROOT *root; 3029 struct NTFS_DE *e, *e1, *e2; 3030 struct NEW_ATTRIBUTE_SIZES *new_sz; 3031 struct ATTR_FILE_NAME *fname; 3032 struct OpenAttr *oa, *oa2; 3033 u32 nsize, t32, asize, used, esize, off, bits; 3034 u16 id, id2; 3035 u32 record_size = sbi->record_size; 3036 u64 t64; 3037 u16 roff = le16_to_cpu(lrh->record_off); 3038 u16 aoff = le16_to_cpu(lrh->attr_off); 3039 u64 lco = 0; 3040 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3041 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3042 u64 vbo = cbo + tvo; 3043 void *buffer_le = NULL; 3044 u32 bytes = 0; 3045 bool a_dirty = false; 3046 u16 data_off; 3047 3048 oa = oe->ptr; 3049 3050 /* Big switch to prepare. */ 3051 switch (op) { 3052 /* ============================================================ 3053 * Process MFT records, as described by the current log record. 3054 * ============================================================ 3055 */ 3056 case InitializeFileRecordSegment: 3057 case DeallocateFileRecordSegment: 3058 case WriteEndOfFileRecordSegment: 3059 case CreateAttribute: 3060 case DeleteAttribute: 3061 case UpdateResidentValue: 3062 case UpdateMappingPairs: 3063 case SetNewAttributeSizes: 3064 case AddIndexEntryRoot: 3065 case DeleteIndexEntryRoot: 3066 case SetIndexEntryVcnRoot: 3067 case UpdateFileNameRoot: 3068 case UpdateRecordDataRoot: 3069 case ZeroEndOfFileRecord: 3070 rno = vbo >> sbi->record_bits; 3071 inode = ilookup(sbi->sb, rno); 3072 if (inode) { 3073 mi = &ntfs_i(inode)->mi; 3074 } else if (op == InitializeFileRecordSegment) { 3075 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3076 if (!mi) 3077 return -ENOMEM; 3078 err = mi_format_new(mi, sbi, rno, 0, false); 3079 if (err) 3080 goto out; 3081 } else { 3082 /* Read from disk. */ 3083 err = mi_get(sbi, rno, &mi); 3084 if (err) 3085 return err; 3086 } 3087 rec = mi->mrec; 3088 3089 if (op == DeallocateFileRecordSegment) 3090 goto skip_load_parent; 3091 3092 if (InitializeFileRecordSegment != op) { 3093 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3094 goto dirty_vol; 3095 if (!check_lsn(&rec->rhdr, rlsn)) 3096 goto out; 3097 if (!check_file_record(rec, NULL, sbi)) 3098 goto dirty_vol; 3099 attr = Add2Ptr(rec, roff); 3100 } 3101 3102 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3103 rno_base = rno; 3104 goto skip_load_parent; 3105 } 3106 3107 rno_base = ino_get(&rec->parent_ref); 3108 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3109 if (IS_ERR(inode_parent)) 3110 goto skip_load_parent; 3111 3112 if (is_bad_inode(inode_parent)) { 3113 iput(inode_parent); 3114 goto skip_load_parent; 3115 } 3116 3117 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3118 iput(inode_parent); 3119 } else { 3120 if (mi2_child->mrec != mi->mrec) 3121 memcpy(mi2_child->mrec, mi->mrec, 3122 sbi->record_size); 3123 3124 if (inode) 3125 iput(inode); 3126 else if (mi) 3127 mi_put(mi); 3128 3129 inode = inode_parent; 3130 mi = mi2_child; 3131 rec = mi2_child->mrec; 3132 attr = Add2Ptr(rec, roff); 3133 } 3134 3135 skip_load_parent: 3136 inode_parent = NULL; 3137 break; 3138 3139 /* 3140 * Process attributes, as described by the current log record. 3141 */ 3142 case UpdateNonresidentValue: 3143 case AddIndexEntryAllocation: 3144 case DeleteIndexEntryAllocation: 3145 case WriteEndOfIndexBuffer: 3146 case SetIndexEntryVcnAllocation: 3147 case UpdateFileNameAllocation: 3148 case SetBitsInNonresidentBitMap: 3149 case ClearBitsInNonresidentBitMap: 3150 case UpdateRecordDataAllocation: 3151 attr = oa->attr; 3152 bytes = UpdateNonresidentValue == op ? dlen : 0; 3153 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3154 3155 if (attr->type == ATTR_ALLOC) { 3156 t32 = le32_to_cpu(oe->bytes_per_index); 3157 if (bytes < t32) 3158 bytes = t32; 3159 } 3160 3161 if (!bytes) 3162 bytes = lco - cbo; 3163 3164 bytes += roff; 3165 if (attr->type == ATTR_ALLOC) 3166 bytes = (bytes + 511) & ~511; // align 3167 3168 buffer_le = kmalloc(bytes, GFP_NOFS); 3169 if (!buffer_le) 3170 return -ENOMEM; 3171 3172 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3173 NULL); 3174 if (err) 3175 goto out; 3176 3177 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3178 ntfs_fix_post_read(buffer_le, bytes, false); 3179 break; 3180 3181 default: 3182 WARN_ON(1); 3183 } 3184 3185 /* Big switch to do operation. */ 3186 switch (op) { 3187 case InitializeFileRecordSegment: 3188 if (roff + dlen > record_size) 3189 goto dirty_vol; 3190 3191 memcpy(Add2Ptr(rec, roff), data, dlen); 3192 mi->dirty = true; 3193 break; 3194 3195 case DeallocateFileRecordSegment: 3196 clear_rec_inuse(rec); 3197 le16_add_cpu(&rec->seq, 1); 3198 mi->dirty = true; 3199 break; 3200 3201 case WriteEndOfFileRecordSegment: 3202 attr2 = (struct ATTRIB *)data; 3203 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3204 goto dirty_vol; 3205 3206 memmove(attr, attr2, dlen); 3207 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3208 3209 mi->dirty = true; 3210 break; 3211 3212 case CreateAttribute: 3213 attr2 = (struct ATTRIB *)data; 3214 asize = le32_to_cpu(attr2->size); 3215 used = le32_to_cpu(rec->used); 3216 3217 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3218 !IS_ALIGNED(asize, 8) || 3219 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3220 dlen > record_size - used) { 3221 goto dirty_vol; 3222 } 3223 3224 memmove(Add2Ptr(attr, asize), attr, used - roff); 3225 memcpy(attr, attr2, asize); 3226 3227 rec->used = cpu_to_le32(used + asize); 3228 id = le16_to_cpu(rec->next_attr_id); 3229 id2 = le16_to_cpu(attr2->id); 3230 if (id <= id2) 3231 rec->next_attr_id = cpu_to_le16(id2 + 1); 3232 if (is_attr_indexed(attr)) 3233 le16_add_cpu(&rec->hard_links, 1); 3234 3235 oa2 = find_loaded_attr(log, attr, rno_base); 3236 if (oa2) { 3237 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3238 GFP_NOFS); 3239 if (p2) { 3240 // run_close(oa2->run1); 3241 kfree(oa2->attr); 3242 oa2->attr = p2; 3243 } 3244 } 3245 3246 mi->dirty = true; 3247 break; 3248 3249 case DeleteAttribute: 3250 asize = le32_to_cpu(attr->size); 3251 used = le32_to_cpu(rec->used); 3252 3253 if (!check_if_attr(rec, lrh)) 3254 goto dirty_vol; 3255 3256 rec->used = cpu_to_le32(used - asize); 3257 if (is_attr_indexed(attr)) 3258 le16_add_cpu(&rec->hard_links, -1); 3259 3260 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3261 3262 mi->dirty = true; 3263 break; 3264 3265 case UpdateResidentValue: 3266 nsize = aoff + dlen; 3267 3268 if (!check_if_attr(rec, lrh)) 3269 goto dirty_vol; 3270 3271 asize = le32_to_cpu(attr->size); 3272 used = le32_to_cpu(rec->used); 3273 3274 if (lrh->redo_len == lrh->undo_len) { 3275 if (nsize > asize) 3276 goto dirty_vol; 3277 goto move_data; 3278 } 3279 3280 if (nsize > asize && nsize - asize > record_size - used) 3281 goto dirty_vol; 3282 3283 nsize = ALIGN(nsize, 8); 3284 data_off = le16_to_cpu(attr->res.data_off); 3285 3286 if (nsize < asize) { 3287 memmove(Add2Ptr(attr, aoff), data, dlen); 3288 data = NULL; // To skip below memmove(). 3289 } 3290 3291 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3292 used - le16_to_cpu(lrh->record_off) - asize); 3293 3294 rec->used = cpu_to_le32(used + nsize - asize); 3295 attr->size = cpu_to_le32(nsize); 3296 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3297 3298 move_data: 3299 if (data) 3300 memmove(Add2Ptr(attr, aoff), data, dlen); 3301 3302 oa2 = find_loaded_attr(log, attr, rno_base); 3303 if (oa2) { 3304 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3305 GFP_NOFS); 3306 if (p2) { 3307 // run_close(&oa2->run0); 3308 oa2->run1 = &oa2->run0; 3309 kfree(oa2->attr); 3310 oa2->attr = p2; 3311 } 3312 } 3313 3314 mi->dirty = true; 3315 break; 3316 3317 case UpdateMappingPairs: 3318 nsize = aoff + dlen; 3319 asize = le32_to_cpu(attr->size); 3320 used = le32_to_cpu(rec->used); 3321 3322 if (!check_if_attr(rec, lrh) || !attr->non_res || 3323 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3324 (nsize > asize && nsize - asize > record_size - used)) { 3325 goto dirty_vol; 3326 } 3327 3328 nsize = ALIGN(nsize, 8); 3329 3330 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3331 used - le16_to_cpu(lrh->record_off) - asize); 3332 rec->used = cpu_to_le32(used + nsize - asize); 3333 attr->size = cpu_to_le32(nsize); 3334 memmove(Add2Ptr(attr, aoff), data, dlen); 3335 3336 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3337 attr_run(attr), &t64)) { 3338 goto dirty_vol; 3339 } 3340 3341 attr->nres.evcn = cpu_to_le64(t64); 3342 oa2 = find_loaded_attr(log, attr, rno_base); 3343 if (oa2 && oa2->attr->non_res) 3344 oa2->attr->nres.evcn = attr->nres.evcn; 3345 3346 mi->dirty = true; 3347 break; 3348 3349 case SetNewAttributeSizes: 3350 new_sz = data; 3351 if (!check_if_attr(rec, lrh) || !attr->non_res) 3352 goto dirty_vol; 3353 3354 attr->nres.alloc_size = new_sz->alloc_size; 3355 attr->nres.data_size = new_sz->data_size; 3356 attr->nres.valid_size = new_sz->valid_size; 3357 3358 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3359 attr->nres.total_size = new_sz->total_size; 3360 3361 oa2 = find_loaded_attr(log, attr, rno_base); 3362 if (oa2) { 3363 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3364 GFP_NOFS); 3365 if (p2) { 3366 kfree(oa2->attr); 3367 oa2->attr = p2; 3368 } 3369 } 3370 mi->dirty = true; 3371 break; 3372 3373 case AddIndexEntryRoot: 3374 e = (struct NTFS_DE *)data; 3375 esize = le16_to_cpu(e->size); 3376 root = resident_data(attr); 3377 hdr = &root->ihdr; 3378 used = le32_to_cpu(hdr->used); 3379 3380 if (!check_if_index_root(rec, lrh) || 3381 !check_if_root_index(attr, hdr, lrh) || 3382 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3383 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3384 goto dirty_vol; 3385 } 3386 3387 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3388 3389 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3390 3391 memmove(Add2Ptr(e1, esize), e1, 3392 PtrOffset(e1, Add2Ptr(hdr, used))); 3393 memmove(e1, e, esize); 3394 3395 le32_add_cpu(&attr->res.data_size, esize); 3396 hdr->used = cpu_to_le32(used + esize); 3397 le32_add_cpu(&hdr->total, esize); 3398 3399 mi->dirty = true; 3400 break; 3401 3402 case DeleteIndexEntryRoot: 3403 root = resident_data(attr); 3404 hdr = &root->ihdr; 3405 used = le32_to_cpu(hdr->used); 3406 3407 if (!check_if_index_root(rec, lrh) || 3408 !check_if_root_index(attr, hdr, lrh)) { 3409 goto dirty_vol; 3410 } 3411 3412 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3413 esize = le16_to_cpu(e1->size); 3414 e2 = Add2Ptr(e1, esize); 3415 3416 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3417 3418 le32_sub_cpu(&attr->res.data_size, esize); 3419 hdr->used = cpu_to_le32(used - esize); 3420 le32_sub_cpu(&hdr->total, esize); 3421 3422 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3423 3424 mi->dirty = true; 3425 break; 3426 3427 case SetIndexEntryVcnRoot: 3428 root = resident_data(attr); 3429 hdr = &root->ihdr; 3430 3431 if (!check_if_index_root(rec, lrh) || 3432 !check_if_root_index(attr, hdr, lrh)) { 3433 goto dirty_vol; 3434 } 3435 3436 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3437 3438 de_set_vbn_le(e, *(__le64 *)data); 3439 mi->dirty = true; 3440 break; 3441 3442 case UpdateFileNameRoot: 3443 root = resident_data(attr); 3444 hdr = &root->ihdr; 3445 3446 if (!check_if_index_root(rec, lrh) || 3447 !check_if_root_index(attr, hdr, lrh)) { 3448 goto dirty_vol; 3449 } 3450 3451 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3452 fname = (struct ATTR_FILE_NAME *)(e + 1); 3453 memmove(&fname->dup, data, sizeof(fname->dup)); // 3454 mi->dirty = true; 3455 break; 3456 3457 case UpdateRecordDataRoot: 3458 root = resident_data(attr); 3459 hdr = &root->ihdr; 3460 3461 if (!check_if_index_root(rec, lrh) || 3462 !check_if_root_index(attr, hdr, lrh)) { 3463 goto dirty_vol; 3464 } 3465 3466 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3467 3468 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3469 3470 mi->dirty = true; 3471 break; 3472 3473 case ZeroEndOfFileRecord: 3474 if (roff + dlen > record_size) 3475 goto dirty_vol; 3476 3477 memset(attr, 0, dlen); 3478 mi->dirty = true; 3479 break; 3480 3481 case UpdateNonresidentValue: 3482 if (lco < cbo + roff + dlen) 3483 goto dirty_vol; 3484 3485 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3486 3487 a_dirty = true; 3488 if (attr->type == ATTR_ALLOC) 3489 ntfs_fix_pre_write(buffer_le, bytes); 3490 break; 3491 3492 case AddIndexEntryAllocation: 3493 ib = Add2Ptr(buffer_le, roff); 3494 hdr = &ib->ihdr; 3495 e = data; 3496 esize = le16_to_cpu(e->size); 3497 e1 = Add2Ptr(ib, aoff); 3498 3499 if (is_baad(&ib->rhdr)) 3500 goto dirty_vol; 3501 if (!check_lsn(&ib->rhdr, rlsn)) 3502 goto out; 3503 3504 used = le32_to_cpu(hdr->used); 3505 3506 if (!check_index_buffer(ib, bytes) || 3507 !check_if_alloc_index(hdr, aoff) || 3508 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3509 used + esize > le32_to_cpu(hdr->total)) { 3510 goto dirty_vol; 3511 } 3512 3513 memmove(Add2Ptr(e1, esize), e1, 3514 PtrOffset(e1, Add2Ptr(hdr, used))); 3515 memcpy(e1, e, esize); 3516 3517 hdr->used = cpu_to_le32(used + esize); 3518 3519 a_dirty = true; 3520 3521 ntfs_fix_pre_write(&ib->rhdr, bytes); 3522 break; 3523 3524 case DeleteIndexEntryAllocation: 3525 ib = Add2Ptr(buffer_le, roff); 3526 hdr = &ib->ihdr; 3527 e = Add2Ptr(ib, aoff); 3528 esize = le16_to_cpu(e->size); 3529 3530 if (is_baad(&ib->rhdr)) 3531 goto dirty_vol; 3532 if (!check_lsn(&ib->rhdr, rlsn)) 3533 goto out; 3534 3535 if (!check_index_buffer(ib, bytes) || 3536 !check_if_alloc_index(hdr, aoff)) { 3537 goto dirty_vol; 3538 } 3539 3540 e1 = Add2Ptr(e, esize); 3541 nsize = esize; 3542 used = le32_to_cpu(hdr->used); 3543 3544 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3545 3546 hdr->used = cpu_to_le32(used - nsize); 3547 3548 a_dirty = true; 3549 3550 ntfs_fix_pre_write(&ib->rhdr, bytes); 3551 break; 3552 3553 case WriteEndOfIndexBuffer: 3554 ib = Add2Ptr(buffer_le, roff); 3555 hdr = &ib->ihdr; 3556 e = Add2Ptr(ib, aoff); 3557 3558 if (is_baad(&ib->rhdr)) 3559 goto dirty_vol; 3560 if (!check_lsn(&ib->rhdr, rlsn)) 3561 goto out; 3562 if (!check_index_buffer(ib, bytes) || 3563 !check_if_alloc_index(hdr, aoff) || 3564 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3565 le32_to_cpu(hdr->total)) { 3566 goto dirty_vol; 3567 } 3568 3569 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3570 memmove(e, data, dlen); 3571 3572 a_dirty = true; 3573 ntfs_fix_pre_write(&ib->rhdr, bytes); 3574 break; 3575 3576 case SetIndexEntryVcnAllocation: 3577 ib = Add2Ptr(buffer_le, roff); 3578 hdr = &ib->ihdr; 3579 e = Add2Ptr(ib, aoff); 3580 3581 if (is_baad(&ib->rhdr)) 3582 goto dirty_vol; 3583 3584 if (!check_lsn(&ib->rhdr, rlsn)) 3585 goto out; 3586 if (!check_index_buffer(ib, bytes) || 3587 !check_if_alloc_index(hdr, aoff)) { 3588 goto dirty_vol; 3589 } 3590 3591 de_set_vbn_le(e, *(__le64 *)data); 3592 3593 a_dirty = true; 3594 ntfs_fix_pre_write(&ib->rhdr, bytes); 3595 break; 3596 3597 case UpdateFileNameAllocation: 3598 ib = Add2Ptr(buffer_le, roff); 3599 hdr = &ib->ihdr; 3600 e = Add2Ptr(ib, aoff); 3601 3602 if (is_baad(&ib->rhdr)) 3603 goto dirty_vol; 3604 3605 if (!check_lsn(&ib->rhdr, rlsn)) 3606 goto out; 3607 if (!check_index_buffer(ib, bytes) || 3608 !check_if_alloc_index(hdr, aoff)) { 3609 goto dirty_vol; 3610 } 3611 3612 fname = (struct ATTR_FILE_NAME *)(e + 1); 3613 memmove(&fname->dup, data, sizeof(fname->dup)); 3614 3615 a_dirty = true; 3616 ntfs_fix_pre_write(&ib->rhdr, bytes); 3617 break; 3618 3619 case SetBitsInNonresidentBitMap: 3620 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3621 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3622 3623 if (cbo + (off + 7) / 8 > lco || 3624 cbo + ((off + bits + 7) / 8) > lco) { 3625 goto dirty_vol; 3626 } 3627 3628 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); 3629 a_dirty = true; 3630 break; 3631 3632 case ClearBitsInNonresidentBitMap: 3633 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3634 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3635 3636 if (cbo + (off + 7) / 8 > lco || 3637 cbo + ((off + bits + 7) / 8) > lco) { 3638 goto dirty_vol; 3639 } 3640 3641 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); 3642 a_dirty = true; 3643 break; 3644 3645 case UpdateRecordDataAllocation: 3646 ib = Add2Ptr(buffer_le, roff); 3647 hdr = &ib->ihdr; 3648 e = Add2Ptr(ib, aoff); 3649 3650 if (is_baad(&ib->rhdr)) 3651 goto dirty_vol; 3652 3653 if (!check_lsn(&ib->rhdr, rlsn)) 3654 goto out; 3655 if (!check_index_buffer(ib, bytes) || 3656 !check_if_alloc_index(hdr, aoff)) { 3657 goto dirty_vol; 3658 } 3659 3660 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3661 3662 a_dirty = true; 3663 ntfs_fix_pre_write(&ib->rhdr, bytes); 3664 break; 3665 3666 default: 3667 WARN_ON(1); 3668 } 3669 3670 if (rlsn) { 3671 __le64 t64 = cpu_to_le64(*rlsn); 3672 3673 if (rec) 3674 rec->rhdr.lsn = t64; 3675 if (ib) 3676 ib->rhdr.lsn = t64; 3677 } 3678 3679 if (mi && mi->dirty) { 3680 err = mi_write(mi, 0); 3681 if (err) 3682 goto out; 3683 } 3684 3685 if (a_dirty) { 3686 attr = oa->attr; 3687 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 3688 0); 3689 if (err) 3690 goto out; 3691 } 3692 3693 out: 3694 3695 if (inode) 3696 iput(inode); 3697 else if (mi != mi2_child) 3698 mi_put(mi); 3699 3700 kfree(buffer_le); 3701 3702 return err; 3703 3704 dirty_vol: 3705 log->set_dirty = true; 3706 goto out; 3707 } 3708 3709 /* 3710 * log_replay - Replays log and empties it. 3711 * 3712 * This function is called during mount operation. 3713 * It replays log and empties it. 3714 * Initialized is set false if logfile contains '-1'. 3715 */ 3716 int log_replay(struct ntfs_inode *ni, bool *initialized) 3717 { 3718 int err; 3719 struct ntfs_sb_info *sbi = ni->mi.sbi; 3720 struct ntfs_log *log; 3721 3722 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0; 3723 struct ATTR_NAME_ENTRY *attr_names = NULL; 3724 struct RESTART_TABLE *dptbl = NULL; 3725 struct RESTART_TABLE *trtbl = NULL; 3726 const struct RESTART_TABLE *rt; 3727 struct RESTART_TABLE *oatbl = NULL; 3728 struct inode *inode; 3729 struct OpenAttr *oa; 3730 struct ntfs_inode *ni_oe; 3731 struct ATTRIB *attr = NULL; 3732 u64 size, vcn, undo_next_lsn; 3733 CLST rno, lcn, lcn0, len0, clen; 3734 void *data; 3735 struct NTFS_RESTART *rst = NULL; 3736 struct lcb *lcb = NULL; 3737 struct OPEN_ATTR_ENRTY *oe; 3738 struct TRANSACTION_ENTRY *tr; 3739 struct DIR_PAGE_ENTRY *dp; 3740 u32 i, bytes_per_attr_entry; 3741 u32 vbo, tail, off, dlen; 3742 u32 saved_len, rec_len, transact_id; 3743 bool use_second_page; 3744 struct RESTART_AREA *ra2, *ra = NULL; 3745 struct CLIENT_REC *ca, *cr; 3746 __le16 client; 3747 struct RESTART_HDR *rh; 3748 const struct LFS_RECORD_HDR *frh; 3749 const struct LOG_REC_HDR *lrh; 3750 bool is_mapped; 3751 bool is_ro = sb_rdonly(sbi->sb); 3752 u64 t64; 3753 u16 t16; 3754 u32 t32; 3755 3756 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3757 if (!log) 3758 return -ENOMEM; 3759 3760 log->ni = ni; 3761 log->l_size = log->orig_file_size = ni->vfs_inode.i_size; 3762 3763 /* Get the size of page. NOTE: To replay we can use default page. */ 3764 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3765 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true); 3766 #else 3767 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false); 3768 #endif 3769 if (!log->page_size) { 3770 err = -EINVAL; 3771 goto out; 3772 } 3773 3774 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS); 3775 if (!log->one_page_buf) { 3776 err = -ENOMEM; 3777 goto out; 3778 } 3779 3780 log->page_mask = log->page_size - 1; 3781 log->page_bits = blksize_bits(log->page_size); 3782 3783 /* Look for a restart area on the disk. */ 3784 err = log_read_rst(log, true, &log->rst_info); 3785 if (err) 3786 goto out; 3787 3788 /* remember 'initialized' */ 3789 *initialized = log->rst_info.initialized; 3790 3791 if (!log->rst_info.restart) { 3792 if (log->rst_info.initialized) { 3793 /* No restart area but the file is not initialized. */ 3794 err = -EINVAL; 3795 goto out; 3796 } 3797 3798 log_init_pg_hdr(log, 1, 1); 3799 log_create(log, 0, get_random_u32(), false, false); 3800 3801 ra = log_create_ra(log); 3802 if (!ra) { 3803 err = -ENOMEM; 3804 goto out; 3805 } 3806 log->ra = ra; 3807 log->init_ra = true; 3808 3809 goto process_log; 3810 } 3811 3812 /* 3813 * If the restart offset above wasn't zero then we won't 3814 * look for a second restart. 3815 */ 3816 if (log->rst_info.vbo) 3817 goto check_restart_area; 3818 3819 err = log_read_rst(log, false, &log->rst_info2); 3820 if (err) 3821 goto out; 3822 3823 /* Determine which restart area to use. */ 3824 if (!log->rst_info2.restart || 3825 log->rst_info2.last_lsn <= log->rst_info.last_lsn) 3826 goto use_first_page; 3827 3828 use_second_page = true; 3829 3830 if (log->rst_info.chkdsk_was_run && 3831 log->page_size != log->rst_info.vbo) { 3832 struct RECORD_PAGE_HDR *sp = NULL; 3833 bool usa_error; 3834 3835 if (!read_log_page(log, log->page_size, &sp, &usa_error) && 3836 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3837 use_second_page = false; 3838 } 3839 kfree(sp); 3840 } 3841 3842 if (use_second_page) { 3843 kfree(log->rst_info.r_page); 3844 memcpy(&log->rst_info, &log->rst_info2, 3845 sizeof(struct restart_info)); 3846 log->rst_info2.r_page = NULL; 3847 } 3848 3849 use_first_page: 3850 kfree(log->rst_info2.r_page); 3851 3852 check_restart_area: 3853 /* 3854 * If the restart area is at offset 0, we want 3855 * to write the second restart area first. 3856 */ 3857 log->init_ra = !!log->rst_info.vbo; 3858 3859 /* If we have a valid page then grab a pointer to the restart area. */ 3860 ra2 = log->rst_info.valid_page ? 3861 Add2Ptr(log->rst_info.r_page, 3862 le16_to_cpu(log->rst_info.r_page->ra_off)) : 3863 NULL; 3864 3865 if (log->rst_info.chkdsk_was_run || 3866 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3867 bool wrapped = false; 3868 bool use_multi_page = false; 3869 u32 open_log_count; 3870 3871 /* Do some checks based on whether we have a valid log page. */ 3872 open_log_count = log->rst_info.valid_page ? 3873 le32_to_cpu(ra2->open_log_count) : 3874 get_random_u32(); 3875 3876 log_init_pg_hdr(log, 1, 1); 3877 3878 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped, 3879 use_multi_page); 3880 3881 ra = log_create_ra(log); 3882 if (!ra) { 3883 err = -ENOMEM; 3884 goto out; 3885 } 3886 log->ra = ra; 3887 3888 /* Put the restart areas and initialize 3889 * the log file as required. 3890 */ 3891 goto process_log; 3892 } 3893 3894 if (!ra2) { 3895 err = -EINVAL; 3896 goto out; 3897 } 3898 3899 /* 3900 * If the log page or the system page sizes have changed, we can't 3901 * use the log file. We must use the system page size instead of the 3902 * default size if there is not a clean shutdown. 3903 */ 3904 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size); 3905 if (log->page_size != t32) { 3906 log->l_size = log->orig_file_size; 3907 log->page_size = norm_file_page(t32, &log->l_size, 3908 t32 == DefaultLogPageSize); 3909 } 3910 3911 if (log->page_size != t32 || 3912 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) { 3913 err = -EINVAL; 3914 goto out; 3915 } 3916 3917 /* If the file size has shrunk then we won't mount it. */ 3918 if (log->l_size < le64_to_cpu(ra2->l_size)) { 3919 err = -EINVAL; 3920 goto out; 3921 } 3922 3923 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver), 3924 le16_to_cpu(log->rst_info.r_page->minor_ver)); 3925 3926 log->l_size = le64_to_cpu(ra2->l_size); 3927 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3928 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3929 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3930 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3931 log->seq_num = log->last_lsn >> log->file_data_bits; 3932 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off); 3933 log->restart_size = log->sys_page_size - log->ra_off; 3934 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3935 log->ra_size = le16_to_cpu(ra2->ra_len); 3936 log->data_off = le16_to_cpu(ra2->data_off); 3937 log->data_size = log->page_size - log->data_off; 3938 log->reserved = log->data_size - log->record_header_len; 3939 3940 vbo = lsn_to_vbo(log, log->last_lsn); 3941 3942 if (vbo < log->first_page) { 3943 /* This is a pseudo lsn. */ 3944 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3945 log->next_page = log->first_page; 3946 goto find_oldest; 3947 } 3948 3949 /* Find the end of this log record. */ 3950 off = final_log_off(log, log->last_lsn, 3951 le32_to_cpu(ra2->last_lsn_data_len)); 3952 3953 /* If we wrapped the file then increment the sequence number. */ 3954 if (off <= vbo) { 3955 log->seq_num += 1; 3956 log->l_flags |= NTFSLOG_WRAPPED; 3957 } 3958 3959 /* Now compute the next log page to use. */ 3960 vbo &= ~log->sys_page_mask; 3961 tail = log->page_size - (off & log->page_mask) - 1; 3962 3963 /* 3964 *If we can fit another log record on the page, 3965 * move back a page the log file. 3966 */ 3967 if (tail >= log->record_header_len) { 3968 log->l_flags |= NTFSLOG_REUSE_TAIL; 3969 log->next_page = vbo; 3970 } else { 3971 log->next_page = next_page_off(log, vbo); 3972 } 3973 3974 find_oldest: 3975 /* 3976 * Find the oldest client lsn. Use the last 3977 * flushed lsn as a starting point. 3978 */ 3979 log->oldest_lsn = log->last_lsn; 3980 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 3981 ra2->client_idx[1], &log->oldest_lsn); 3982 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 3983 3984 if (log->oldest_lsn_off < log->first_page) 3985 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 3986 3987 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 3988 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 3989 3990 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 3991 log->total_avail_pages = log->l_size - log->first_page; 3992 log->total_avail = log->total_avail_pages >> log->page_bits; 3993 log->max_current_avail = log->total_avail * log->reserved; 3994 log->total_avail = log->total_avail * log->data_size; 3995 3996 log->current_avail = current_log_avail(log); 3997 3998 ra = kzalloc(log->restart_size, GFP_NOFS); 3999 if (!ra) { 4000 err = -ENOMEM; 4001 goto out; 4002 } 4003 log->ra = ra; 4004 4005 t16 = le16_to_cpu(ra2->client_off); 4006 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4007 memcpy(ra, ra2, log->ra_size); 4008 } else { 4009 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4010 memcpy(ra->clients, Add2Ptr(ra2, t16), 4011 le16_to_cpu(ra2->ra_len) - t16); 4012 4013 log->current_openlog_count = get_random_u32(); 4014 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4015 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4016 sizeof(struct CLIENT_REC); 4017 ra->client_off = 4018 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4019 ra->ra_len = cpu_to_le16(log->ra_size); 4020 } 4021 4022 le32_add_cpu(&ra->open_log_count, 1); 4023 4024 /* Now we need to walk through looking for the last lsn. */ 4025 err = last_log_lsn(log); 4026 if (err) 4027 goto out; 4028 4029 log->current_avail = current_log_avail(log); 4030 4031 /* Remember which restart area to write first. */ 4032 log->init_ra = log->rst_info.vbo; 4033 4034 process_log: 4035 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4036 switch ((log->major_ver << 16) + log->minor_ver) { 4037 case 0x10000: 4038 case 0x10001: 4039 case 0x20000: 4040 break; 4041 default: 4042 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4043 log->major_ver, log->minor_ver); 4044 err = -EOPNOTSUPP; 4045 log->set_dirty = true; 4046 goto out; 4047 } 4048 4049 /* One client "NTFS" per logfile. */ 4050 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4051 4052 for (client = ra->client_idx[1];; client = cr->next_client) { 4053 if (client == LFS_NO_CLIENT_LE) { 4054 /* Insert "NTFS" client LogFile. */ 4055 client = ra->client_idx[0]; 4056 if (client == LFS_NO_CLIENT_LE) { 4057 err = -EINVAL; 4058 goto out; 4059 } 4060 4061 t16 = le16_to_cpu(client); 4062 cr = ca + t16; 4063 4064 remove_client(ca, cr, &ra->client_idx[0]); 4065 4066 cr->restart_lsn = 0; 4067 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4068 cr->name_bytes = cpu_to_le32(8); 4069 cr->name[0] = cpu_to_le16('N'); 4070 cr->name[1] = cpu_to_le16('T'); 4071 cr->name[2] = cpu_to_le16('F'); 4072 cr->name[3] = cpu_to_le16('S'); 4073 4074 add_client(ca, t16, &ra->client_idx[1]); 4075 break; 4076 } 4077 4078 cr = ca + le16_to_cpu(client); 4079 4080 if (cpu_to_le32(8) == cr->name_bytes && 4081 cpu_to_le16('N') == cr->name[0] && 4082 cpu_to_le16('T') == cr->name[1] && 4083 cpu_to_le16('F') == cr->name[2] && 4084 cpu_to_le16('S') == cr->name[3]) 4085 break; 4086 } 4087 4088 /* Update the client handle with the client block information. */ 4089 log->client_id.seq_num = cr->seq_num; 4090 log->client_id.client_idx = client; 4091 4092 err = read_rst_area(log, &rst, &checkpt_lsn); 4093 if (err) 4094 goto out; 4095 4096 if (!rst) 4097 goto out; 4098 4099 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4100 4101 if (rst->check_point_start) 4102 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4103 4104 /* Allocate and Read the Transaction Table. */ 4105 if (!rst->transact_table_len) 4106 goto check_dirty_page_table; 4107 4108 t64 = le64_to_cpu(rst->transact_table_lsn); 4109 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4110 if (err) 4111 goto out; 4112 4113 lrh = lcb->log_rec; 4114 frh = lcb->lrh; 4115 rec_len = le32_to_cpu(frh->client_data_len); 4116 4117 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4118 bytes_per_attr_entry)) { 4119 err = -EINVAL; 4120 goto out; 4121 } 4122 4123 t16 = le16_to_cpu(lrh->redo_off); 4124 4125 rt = Add2Ptr(lrh, t16); 4126 t32 = rec_len - t16; 4127 4128 /* Now check that this is a valid restart table. */ 4129 if (!check_rstbl(rt, t32)) { 4130 err = -EINVAL; 4131 goto out; 4132 } 4133 4134 trtbl = kmemdup(rt, t32, GFP_NOFS); 4135 if (!trtbl) { 4136 err = -ENOMEM; 4137 goto out; 4138 } 4139 4140 lcb_put(lcb); 4141 lcb = NULL; 4142 4143 check_dirty_page_table: 4144 /* The next record back should be the Dirty Pages Table. */ 4145 if (!rst->dirty_pages_len) 4146 goto check_attribute_names; 4147 4148 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4149 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4150 if (err) 4151 goto out; 4152 4153 lrh = lcb->log_rec; 4154 frh = lcb->lrh; 4155 rec_len = le32_to_cpu(frh->client_data_len); 4156 4157 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4158 bytes_per_attr_entry)) { 4159 err = -EINVAL; 4160 goto out; 4161 } 4162 4163 t16 = le16_to_cpu(lrh->redo_off); 4164 4165 rt = Add2Ptr(lrh, t16); 4166 t32 = rec_len - t16; 4167 4168 /* Now check that this is a valid restart table. */ 4169 if (!check_rstbl(rt, t32)) { 4170 err = -EINVAL; 4171 goto out; 4172 } 4173 4174 dptbl = kmemdup(rt, t32, GFP_NOFS); 4175 if (!dptbl) { 4176 err = -ENOMEM; 4177 goto out; 4178 } 4179 4180 /* Convert Ra version '0' into version '1'. */ 4181 if (rst->major_ver) 4182 goto end_conv_1; 4183 4184 dp = NULL; 4185 while ((dp = enum_rstbl(dptbl, dp))) { 4186 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4187 // NOTE: Danger. Check for of boundary. 4188 memmove(&dp->vcn, &dp0->vcn_low, 4189 2 * sizeof(u64) + 4190 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4191 } 4192 4193 end_conv_1: 4194 lcb_put(lcb); 4195 lcb = NULL; 4196 4197 /* 4198 * Go through the table and remove the duplicates, 4199 * remembering the oldest lsn values. 4200 */ 4201 if (sbi->cluster_size <= log->page_size) 4202 goto trace_dp_table; 4203 4204 dp = NULL; 4205 while ((dp = enum_rstbl(dptbl, dp))) { 4206 struct DIR_PAGE_ENTRY *next = dp; 4207 4208 while ((next = enum_rstbl(dptbl, next))) { 4209 if (next->target_attr == dp->target_attr && 4210 next->vcn == dp->vcn) { 4211 if (le64_to_cpu(next->oldest_lsn) < 4212 le64_to_cpu(dp->oldest_lsn)) { 4213 dp->oldest_lsn = next->oldest_lsn; 4214 } 4215 4216 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4217 } 4218 } 4219 } 4220 trace_dp_table: 4221 check_attribute_names: 4222 /* The next record should be the Attribute Names. */ 4223 if (!rst->attr_names_len) 4224 goto check_attr_table; 4225 4226 t64 = le64_to_cpu(rst->attr_names_lsn); 4227 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4228 if (err) 4229 goto out; 4230 4231 lrh = lcb->log_rec; 4232 frh = lcb->lrh; 4233 rec_len = le32_to_cpu(frh->client_data_len); 4234 4235 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4236 bytes_per_attr_entry)) { 4237 err = -EINVAL; 4238 goto out; 4239 } 4240 4241 t32 = lrh_length(lrh); 4242 rec_len -= t32; 4243 4244 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4245 if (!attr_names) { 4246 err = -ENOMEM; 4247 goto out; 4248 } 4249 4250 lcb_put(lcb); 4251 lcb = NULL; 4252 4253 check_attr_table: 4254 /* The next record should be the attribute Table. */ 4255 if (!rst->open_attr_len) 4256 goto check_attribute_names2; 4257 4258 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4259 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4260 if (err) 4261 goto out; 4262 4263 lrh = lcb->log_rec; 4264 frh = lcb->lrh; 4265 rec_len = le32_to_cpu(frh->client_data_len); 4266 4267 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4268 bytes_per_attr_entry)) { 4269 err = -EINVAL; 4270 goto out; 4271 } 4272 4273 t16 = le16_to_cpu(lrh->redo_off); 4274 4275 rt = Add2Ptr(lrh, t16); 4276 t32 = rec_len - t16; 4277 4278 if (!check_rstbl(rt, t32)) { 4279 err = -EINVAL; 4280 goto out; 4281 } 4282 4283 oatbl = kmemdup(rt, t32, GFP_NOFS); 4284 if (!oatbl) { 4285 err = -ENOMEM; 4286 goto out; 4287 } 4288 4289 log->open_attr_tbl = oatbl; 4290 4291 /* Clear all of the Attr pointers. */ 4292 oe = NULL; 4293 while ((oe = enum_rstbl(oatbl, oe))) { 4294 if (!rst->major_ver) { 4295 struct OPEN_ATTR_ENRTY_32 oe0; 4296 4297 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4298 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4299 4300 oe->bytes_per_index = oe0.bytes_per_index; 4301 oe->type = oe0.type; 4302 oe->is_dirty_pages = oe0.is_dirty_pages; 4303 oe->name_len = 0; 4304 oe->ref = oe0.ref; 4305 oe->open_record_lsn = oe0.open_record_lsn; 4306 } 4307 4308 oe->is_attr_name = 0; 4309 oe->ptr = NULL; 4310 } 4311 4312 lcb_put(lcb); 4313 lcb = NULL; 4314 4315 check_attribute_names2: 4316 if (rst->attr_names_len && oatbl) { 4317 struct ATTR_NAME_ENTRY *ane = attr_names; 4318 while (ane->off) { 4319 /* TODO: Clear table on exit! */ 4320 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); 4321 t16 = le16_to_cpu(ane->name_bytes); 4322 oe->name_len = t16 / sizeof(short); 4323 oe->ptr = ane->name; 4324 oe->is_attr_name = 2; 4325 ane = Add2Ptr(ane, 4326 sizeof(struct ATTR_NAME_ENTRY) + t16); 4327 } 4328 } 4329 4330 /* 4331 * If the checkpt_lsn is zero, then this is a freshly 4332 * formatted disk and we have no work to do. 4333 */ 4334 if (!checkpt_lsn) { 4335 err = 0; 4336 goto out; 4337 } 4338 4339 if (!oatbl) { 4340 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4341 if (!oatbl) { 4342 err = -ENOMEM; 4343 goto out; 4344 } 4345 } 4346 4347 log->open_attr_tbl = oatbl; 4348 4349 /* Start the analysis pass from the Checkpoint lsn. */ 4350 rec_lsn = checkpt_lsn; 4351 4352 /* Read the first lsn. */ 4353 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4354 if (err) 4355 goto out; 4356 4357 /* Loop to read all subsequent records to the end of the log file. */ 4358 next_log_record_analyze: 4359 err = read_next_log_rec(log, lcb, &rec_lsn); 4360 if (err) 4361 goto out; 4362 4363 if (!rec_lsn) 4364 goto end_log_records_enumerate; 4365 4366 frh = lcb->lrh; 4367 transact_id = le32_to_cpu(frh->transact_id); 4368 rec_len = le32_to_cpu(frh->client_data_len); 4369 lrh = lcb->log_rec; 4370 4371 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4372 err = -EINVAL; 4373 goto out; 4374 } 4375 4376 /* 4377 * The first lsn after the previous lsn remembered 4378 * the checkpoint is the first candidate for the rlsn. 4379 */ 4380 if (!rlsn) 4381 rlsn = rec_lsn; 4382 4383 if (LfsClientRecord != frh->record_type) 4384 goto next_log_record_analyze; 4385 4386 /* 4387 * Now update the Transaction Table for this transaction. If there 4388 * is no entry present or it is unallocated we allocate the entry. 4389 */ 4390 if (!trtbl) { 4391 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4392 INITIAL_NUMBER_TRANSACTIONS); 4393 if (!trtbl) { 4394 err = -ENOMEM; 4395 goto out; 4396 } 4397 } 4398 4399 tr = Add2Ptr(trtbl, transact_id); 4400 4401 if (transact_id >= bytes_per_rt(trtbl) || 4402 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4403 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4404 if (!tr) { 4405 err = -ENOMEM; 4406 goto out; 4407 } 4408 tr->transact_state = TransactionActive; 4409 tr->first_lsn = cpu_to_le64(rec_lsn); 4410 } 4411 4412 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4413 4414 /* 4415 * If this is a compensation log record, then change 4416 * the undo_next_lsn to be the undo_next_lsn of this record. 4417 */ 4418 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4419 tr->undo_next_lsn = frh->client_undo_next_lsn; 4420 4421 /* Dispatch to handle log record depending on type. */ 4422 switch (le16_to_cpu(lrh->redo_op)) { 4423 case InitializeFileRecordSegment: 4424 case DeallocateFileRecordSegment: 4425 case WriteEndOfFileRecordSegment: 4426 case CreateAttribute: 4427 case DeleteAttribute: 4428 case UpdateResidentValue: 4429 case UpdateNonresidentValue: 4430 case UpdateMappingPairs: 4431 case SetNewAttributeSizes: 4432 case AddIndexEntryRoot: 4433 case DeleteIndexEntryRoot: 4434 case AddIndexEntryAllocation: 4435 case DeleteIndexEntryAllocation: 4436 case WriteEndOfIndexBuffer: 4437 case SetIndexEntryVcnRoot: 4438 case SetIndexEntryVcnAllocation: 4439 case UpdateFileNameRoot: 4440 case UpdateFileNameAllocation: 4441 case SetBitsInNonresidentBitMap: 4442 case ClearBitsInNonresidentBitMap: 4443 case UpdateRecordDataRoot: 4444 case UpdateRecordDataAllocation: 4445 case ZeroEndOfFileRecord: 4446 t16 = le16_to_cpu(lrh->target_attr); 4447 t64 = le64_to_cpu(lrh->target_vcn); 4448 dp = find_dp(dptbl, t16, t64); 4449 4450 if (dp) 4451 goto copy_lcns; 4452 4453 /* 4454 * Calculate the number of clusters per page the system 4455 * which wrote the checkpoint, possibly creating the table. 4456 */ 4457 if (dptbl) { 4458 t32 = (le16_to_cpu(dptbl->size) - 4459 sizeof(struct DIR_PAGE_ENTRY)) / 4460 sizeof(u64); 4461 } else { 4462 t32 = log->clst_per_page; 4463 kfree(dptbl); 4464 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4465 32); 4466 if (!dptbl) { 4467 err = -ENOMEM; 4468 goto out; 4469 } 4470 } 4471 4472 dp = alloc_rsttbl_idx(&dptbl); 4473 if (!dp) { 4474 err = -ENOMEM; 4475 goto out; 4476 } 4477 dp->target_attr = cpu_to_le32(t16); 4478 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4479 dp->lcns_follow = cpu_to_le32(t32); 4480 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4481 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4482 4483 copy_lcns: 4484 /* 4485 * Copy the Lcns from the log record into the Dirty Page Entry. 4486 * TODO: For different page size support, must somehow make 4487 * whole routine a loop, case Lcns do not fit below. 4488 */ 4489 t16 = le16_to_cpu(lrh->lcns_follow); 4490 for (i = 0; i < t16; i++) { 4491 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4492 le64_to_cpu(dp->vcn)); 4493 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4494 } 4495 4496 goto next_log_record_analyze; 4497 4498 case DeleteDirtyClusters: { 4499 u32 range_count = 4500 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4501 const struct LCN_RANGE *r = 4502 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4503 4504 /* Loop through all of the Lcn ranges this log record. */ 4505 for (i = 0; i < range_count; i++, r++) { 4506 u64 lcn0 = le64_to_cpu(r->lcn); 4507 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4508 4509 dp = NULL; 4510 while ((dp = enum_rstbl(dptbl, dp))) { 4511 u32 j; 4512 4513 t32 = le32_to_cpu(dp->lcns_follow); 4514 for (j = 0; j < t32; j++) { 4515 t64 = le64_to_cpu(dp->page_lcns[j]); 4516 if (t64 >= lcn0 && t64 <= lcn_e) 4517 dp->page_lcns[j] = 0; 4518 } 4519 } 4520 } 4521 goto next_log_record_analyze; 4522 ; 4523 } 4524 4525 case OpenNonresidentAttribute: 4526 t16 = le16_to_cpu(lrh->target_attr); 4527 if (t16 >= bytes_per_rt(oatbl)) { 4528 /* 4529 * Compute how big the table needs to be. 4530 * Add 10 extra entries for some cushion. 4531 */ 4532 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4533 4534 new_e += 10 - le16_to_cpu(oatbl->used); 4535 4536 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4537 log->open_attr_tbl = oatbl; 4538 if (!oatbl) { 4539 err = -ENOMEM; 4540 goto out; 4541 } 4542 } 4543 4544 /* Point to the entry being opened. */ 4545 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4546 log->open_attr_tbl = oatbl; 4547 if (!oe) { 4548 err = -ENOMEM; 4549 goto out; 4550 } 4551 4552 /* Initialize this entry from the log record. */ 4553 t16 = le16_to_cpu(lrh->redo_off); 4554 if (!rst->major_ver) { 4555 /* Convert version '0' into version '1'. */ 4556 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4557 4558 oe->bytes_per_index = oe0->bytes_per_index; 4559 oe->type = oe0->type; 4560 oe->is_dirty_pages = oe0->is_dirty_pages; 4561 oe->name_len = 0; //oe0.name_len; 4562 oe->ref = oe0->ref; 4563 oe->open_record_lsn = oe0->open_record_lsn; 4564 } else { 4565 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4566 } 4567 4568 t16 = le16_to_cpu(lrh->undo_len); 4569 if (t16) { 4570 oe->ptr = kmalloc(t16, GFP_NOFS); 4571 if (!oe->ptr) { 4572 err = -ENOMEM; 4573 goto out; 4574 } 4575 oe->name_len = t16 / sizeof(short); 4576 memcpy(oe->ptr, 4577 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4578 oe->is_attr_name = 1; 4579 } else { 4580 oe->ptr = NULL; 4581 oe->is_attr_name = 0; 4582 } 4583 4584 goto next_log_record_analyze; 4585 4586 case HotFix: 4587 t16 = le16_to_cpu(lrh->target_attr); 4588 t64 = le64_to_cpu(lrh->target_vcn); 4589 dp = find_dp(dptbl, t16, t64); 4590 if (dp) { 4591 size_t j = le64_to_cpu(lrh->target_vcn) - 4592 le64_to_cpu(dp->vcn); 4593 if (dp->page_lcns[j]) 4594 dp->page_lcns[j] = lrh->page_lcns[0]; 4595 } 4596 goto next_log_record_analyze; 4597 4598 case EndTopLevelAction: 4599 tr = Add2Ptr(trtbl, transact_id); 4600 tr->prev_lsn = cpu_to_le64(rec_lsn); 4601 tr->undo_next_lsn = frh->client_undo_next_lsn; 4602 goto next_log_record_analyze; 4603 4604 case PrepareTransaction: 4605 tr = Add2Ptr(trtbl, transact_id); 4606 tr->transact_state = TransactionPrepared; 4607 goto next_log_record_analyze; 4608 4609 case CommitTransaction: 4610 tr = Add2Ptr(trtbl, transact_id); 4611 tr->transact_state = TransactionCommitted; 4612 goto next_log_record_analyze; 4613 4614 case ForgetTransaction: 4615 free_rsttbl_idx(trtbl, transact_id); 4616 goto next_log_record_analyze; 4617 4618 case Noop: 4619 case OpenAttributeTableDump: 4620 case AttributeNamesDump: 4621 case DirtyPageTableDump: 4622 case TransactionTableDump: 4623 /* The following cases require no action the Analysis Pass. */ 4624 goto next_log_record_analyze; 4625 4626 default: 4627 /* 4628 * All codes will be explicitly handled. 4629 * If we see a code we do not expect, then we are trouble. 4630 */ 4631 goto next_log_record_analyze; 4632 } 4633 4634 end_log_records_enumerate: 4635 lcb_put(lcb); 4636 lcb = NULL; 4637 4638 /* 4639 * Scan the Dirty Page Table and Transaction Table for 4640 * the lowest lsn, and return it as the Redo lsn. 4641 */ 4642 dp = NULL; 4643 while ((dp = enum_rstbl(dptbl, dp))) { 4644 t64 = le64_to_cpu(dp->oldest_lsn); 4645 if (t64 && t64 < rlsn) 4646 rlsn = t64; 4647 } 4648 4649 tr = NULL; 4650 while ((tr = enum_rstbl(trtbl, tr))) { 4651 t64 = le64_to_cpu(tr->first_lsn); 4652 if (t64 && t64 < rlsn) 4653 rlsn = t64; 4654 } 4655 4656 /* 4657 * Only proceed if the Dirty Page Table or Transaction 4658 * table are not empty. 4659 */ 4660 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4661 goto end_reply; 4662 4663 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4664 if (is_ro) 4665 goto out; 4666 4667 /* Reopen all of the attributes with dirty pages. */ 4668 oe = NULL; 4669 next_open_attribute: 4670 4671 oe = enum_rstbl(oatbl, oe); 4672 if (!oe) { 4673 err = 0; 4674 dp = NULL; 4675 goto next_dirty_page; 4676 } 4677 4678 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4679 if (!oa) { 4680 err = -ENOMEM; 4681 goto out; 4682 } 4683 4684 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4685 if (IS_ERR(inode)) 4686 goto fake_attr; 4687 4688 if (is_bad_inode(inode)) { 4689 iput(inode); 4690 fake_attr: 4691 if (oa->ni) { 4692 iput(&oa->ni->vfs_inode); 4693 oa->ni = NULL; 4694 } 4695 4696 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4697 oe->name_len, 0); 4698 if (!attr) { 4699 kfree(oa); 4700 err = -ENOMEM; 4701 goto out; 4702 } 4703 oa->attr = attr; 4704 oa->run1 = &oa->run0; 4705 goto final_oe; 4706 } 4707 4708 ni_oe = ntfs_i(inode); 4709 oa->ni = ni_oe; 4710 4711 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4712 NULL, NULL); 4713 4714 if (!attr) 4715 goto fake_attr; 4716 4717 t32 = le32_to_cpu(attr->size); 4718 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4719 if (!oa->attr) 4720 goto fake_attr; 4721 4722 if (!S_ISDIR(inode->i_mode)) { 4723 if (attr->type == ATTR_DATA && !attr->name_len) { 4724 oa->run1 = &ni_oe->file.run; 4725 goto final_oe; 4726 } 4727 } else { 4728 if (attr->type == ATTR_ALLOC && 4729 attr->name_len == ARRAY_SIZE(I30_NAME) && 4730 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4731 oa->run1 = &ni_oe->dir.alloc_run; 4732 goto final_oe; 4733 } 4734 } 4735 4736 if (attr->non_res) { 4737 u16 roff = le16_to_cpu(attr->nres.run_off); 4738 CLST svcn = le64_to_cpu(attr->nres.svcn); 4739 4740 if (roff > t32) { 4741 kfree(oa->attr); 4742 oa->attr = NULL; 4743 goto fake_attr; 4744 } 4745 4746 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4747 le64_to_cpu(attr->nres.evcn), svcn, 4748 Add2Ptr(attr, roff), t32 - roff); 4749 if (err < 0) { 4750 kfree(oa->attr); 4751 oa->attr = NULL; 4752 goto fake_attr; 4753 } 4754 err = 0; 4755 } 4756 oa->run1 = &oa->run0; 4757 attr = oa->attr; 4758 4759 final_oe: 4760 if (oe->is_attr_name == 1) 4761 kfree(oe->ptr); 4762 oe->is_attr_name = 0; 4763 oe->ptr = oa; 4764 oe->name_len = attr->name_len; 4765 4766 goto next_open_attribute; 4767 4768 /* 4769 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4770 * Mapping that we have, and insert it into the appropriate run. 4771 */ 4772 next_dirty_page: 4773 dp = enum_rstbl(dptbl, dp); 4774 if (!dp) 4775 goto do_redo_1; 4776 4777 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4778 4779 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4780 goto next_dirty_page; 4781 4782 oa = oe->ptr; 4783 if (!oa) 4784 goto next_dirty_page; 4785 4786 i = -1; 4787 next_dirty_page_vcn: 4788 i += 1; 4789 if (i >= le32_to_cpu(dp->lcns_follow)) 4790 goto next_dirty_page; 4791 4792 vcn = le64_to_cpu(dp->vcn) + i; 4793 size = (vcn + 1) << sbi->cluster_bits; 4794 4795 if (!dp->page_lcns[i]) 4796 goto next_dirty_page_vcn; 4797 4798 rno = ino_get(&oe->ref); 4799 if (rno <= MFT_REC_MIRR && 4800 size < (MFT_REC_VOL + 1) * sbi->record_size && 4801 oe->type == ATTR_DATA) { 4802 goto next_dirty_page_vcn; 4803 } 4804 4805 lcn = le64_to_cpu(dp->page_lcns[i]); 4806 4807 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4808 lcn0 != lcn) && 4809 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4810 err = -ENOMEM; 4811 goto out; 4812 } 4813 attr = oa->attr; 4814 if (size > le64_to_cpu(attr->nres.alloc_size)) { 4815 attr->nres.valid_size = attr->nres.data_size = 4816 attr->nres.alloc_size = cpu_to_le64(size); 4817 } 4818 goto next_dirty_page_vcn; 4819 4820 do_redo_1: 4821 /* 4822 * Perform the Redo Pass, to restore all of the dirty pages to the same 4823 * contents that they had immediately before the crash. If the dirty 4824 * page table is empty, then we can skip the entire Redo Pass. 4825 */ 4826 if (!dptbl || !dptbl->total) 4827 goto do_undo_action; 4828 4829 rec_lsn = rlsn; 4830 4831 /* 4832 * Read the record at the Redo lsn, before falling 4833 * into common code to handle each record. 4834 */ 4835 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4836 if (err) 4837 goto out; 4838 4839 /* 4840 * Now loop to read all of our log records forwards, until 4841 * we hit the end of the file, cleaning up at the end. 4842 */ 4843 do_action_next: 4844 frh = lcb->lrh; 4845 4846 if (LfsClientRecord != frh->record_type) 4847 goto read_next_log_do_action; 4848 4849 transact_id = le32_to_cpu(frh->transact_id); 4850 rec_len = le32_to_cpu(frh->client_data_len); 4851 lrh = lcb->log_rec; 4852 4853 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4854 err = -EINVAL; 4855 goto out; 4856 } 4857 4858 /* Ignore log records that do not update pages. */ 4859 if (lrh->lcns_follow) 4860 goto find_dirty_page; 4861 4862 goto read_next_log_do_action; 4863 4864 find_dirty_page: 4865 t16 = le16_to_cpu(lrh->target_attr); 4866 t64 = le64_to_cpu(lrh->target_vcn); 4867 dp = find_dp(dptbl, t16, t64); 4868 4869 if (!dp) 4870 goto read_next_log_do_action; 4871 4872 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4873 goto read_next_log_do_action; 4874 4875 t16 = le16_to_cpu(lrh->target_attr); 4876 if (t16 >= bytes_per_rt(oatbl)) { 4877 err = -EINVAL; 4878 goto out; 4879 } 4880 4881 oe = Add2Ptr(oatbl, t16); 4882 4883 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4884 err = -EINVAL; 4885 goto out; 4886 } 4887 4888 oa = oe->ptr; 4889 4890 if (!oa) { 4891 err = -EINVAL; 4892 goto out; 4893 } 4894 attr = oa->attr; 4895 4896 vcn = le64_to_cpu(lrh->target_vcn); 4897 4898 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4899 lcn == SPARSE_LCN) { 4900 goto read_next_log_do_action; 4901 } 4902 4903 /* Point to the Redo data and get its length. */ 4904 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4905 dlen = le16_to_cpu(lrh->redo_len); 4906 4907 /* Shorten length by any Lcns which were deleted. */ 4908 saved_len = dlen; 4909 4910 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4911 size_t j; 4912 u32 alen, voff; 4913 4914 voff = le16_to_cpu(lrh->record_off) + 4915 le16_to_cpu(lrh->attr_off); 4916 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4917 4918 /* If the Vcn question is allocated, we can just get out. */ 4919 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4920 if (dp->page_lcns[j + i - 1]) 4921 break; 4922 4923 if (!saved_len) 4924 saved_len = 1; 4925 4926 /* 4927 * Calculate the allocated space left relative to the 4928 * log record Vcn, after removing this unallocated Vcn. 4929 */ 4930 alen = (i - 1) << sbi->cluster_bits; 4931 4932 /* 4933 * If the update described this log record goes beyond 4934 * the allocated space, then we will have to reduce the length. 4935 */ 4936 if (voff >= alen) 4937 dlen = 0; 4938 else if (voff + dlen > alen) 4939 dlen = alen - voff; 4940 } 4941 4942 /* 4943 * If the resulting dlen from above is now zero, 4944 * we can skip this log record. 4945 */ 4946 if (!dlen && saved_len) 4947 goto read_next_log_do_action; 4948 4949 t16 = le16_to_cpu(lrh->redo_op); 4950 if (can_skip_action(t16)) 4951 goto read_next_log_do_action; 4952 4953 /* Apply the Redo operation a common routine. */ 4954 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4955 if (err) 4956 goto out; 4957 4958 /* Keep reading and looping back until end of file. */ 4959 read_next_log_do_action: 4960 err = read_next_log_rec(log, lcb, &rec_lsn); 4961 if (!err && rec_lsn) 4962 goto do_action_next; 4963 4964 lcb_put(lcb); 4965 lcb = NULL; 4966 4967 do_undo_action: 4968 /* Scan Transaction Table. */ 4969 tr = NULL; 4970 transaction_table_next: 4971 tr = enum_rstbl(trtbl, tr); 4972 if (!tr) 4973 goto undo_action_done; 4974 4975 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 4976 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 4977 goto transaction_table_next; 4978 } 4979 4980 log->transaction_id = PtrOffset(trtbl, tr); 4981 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 4982 4983 /* 4984 * We only have to do anything if the transaction has 4985 * something its undo_next_lsn field. 4986 */ 4987 if (!undo_next_lsn) 4988 goto commit_undo; 4989 4990 /* Read the first record to be undone by this transaction. */ 4991 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 4992 if (err) 4993 goto out; 4994 4995 /* 4996 * Now loop to read all of our log records forwards, 4997 * until we hit the end of the file, cleaning up at the end. 4998 */ 4999 undo_action_next: 5000 5001 lrh = lcb->log_rec; 5002 frh = lcb->lrh; 5003 transact_id = le32_to_cpu(frh->transact_id); 5004 rec_len = le32_to_cpu(frh->client_data_len); 5005 5006 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5007 err = -EINVAL; 5008 goto out; 5009 } 5010 5011 if (lrh->undo_op == cpu_to_le16(Noop)) 5012 goto read_next_log_undo_action; 5013 5014 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5015 oa = oe->ptr; 5016 5017 t16 = le16_to_cpu(lrh->lcns_follow); 5018 if (!t16) 5019 goto add_allocated_vcns; 5020 5021 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5022 &lcn, &clen, NULL); 5023 5024 /* 5025 * If the mapping isn't already the table or the mapping 5026 * corresponds to a hole the mapping, we need to make sure 5027 * there is no partial page already memory. 5028 */ 5029 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5030 goto add_allocated_vcns; 5031 5032 vcn = le64_to_cpu(lrh->target_vcn); 5033 vcn &= ~(u64)(log->clst_per_page - 1); 5034 5035 add_allocated_vcns: 5036 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5037 size = (vcn + 1) << sbi->cluster_bits; 5038 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5039 attr = oa->attr; 5040 if (!attr->non_res) { 5041 if (size > le32_to_cpu(attr->res.data_size)) 5042 attr->res.data_size = cpu_to_le32(size); 5043 } else { 5044 if (size > le64_to_cpu(attr->nres.data_size)) 5045 attr->nres.valid_size = attr->nres.data_size = 5046 attr->nres.alloc_size = 5047 cpu_to_le64(size); 5048 } 5049 } 5050 5051 t16 = le16_to_cpu(lrh->undo_op); 5052 if (can_skip_action(t16)) 5053 goto read_next_log_undo_action; 5054 5055 /* Point to the Redo data and get its length. */ 5056 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5057 dlen = le16_to_cpu(lrh->undo_len); 5058 5059 /* It is time to apply the undo action. */ 5060 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5061 5062 read_next_log_undo_action: 5063 /* 5064 * Keep reading and looping back until we have read the 5065 * last record for this transaction. 5066 */ 5067 err = read_next_log_rec(log, lcb, &rec_lsn); 5068 if (err) 5069 goto out; 5070 5071 if (rec_lsn) 5072 goto undo_action_next; 5073 5074 lcb_put(lcb); 5075 lcb = NULL; 5076 5077 commit_undo: 5078 free_rsttbl_idx(trtbl, log->transaction_id); 5079 5080 log->transaction_id = 0; 5081 5082 goto transaction_table_next; 5083 5084 undo_action_done: 5085 5086 ntfs_update_mftmirr(sbi, 0); 5087 5088 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5089 5090 end_reply: 5091 5092 err = 0; 5093 if (is_ro) 5094 goto out; 5095 5096 rh = kzalloc(log->page_size, GFP_NOFS); 5097 if (!rh) { 5098 err = -ENOMEM; 5099 goto out; 5100 } 5101 5102 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5103 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5104 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5105 rh->rhdr.fix_num = cpu_to_le16(t16); 5106 rh->sys_page_size = cpu_to_le32(log->page_size); 5107 rh->page_size = cpu_to_le32(log->page_size); 5108 5109 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5110 8); 5111 rh->ra_off = cpu_to_le16(t16); 5112 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5113 rh->major_ver = cpu_to_le16(1); // 0x1C: 5114 5115 ra2 = Add2Ptr(rh, t16); 5116 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5117 5118 ra2->client_idx[0] = 0; 5119 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5120 ra2->flags = cpu_to_le16(2); 5121 5122 le32_add_cpu(&ra2->open_log_count, 1); 5123 5124 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5125 5126 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5127 if (!err) 5128 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5129 rh, log->page_size, 0); 5130 5131 kfree(rh); 5132 if (err) 5133 goto out; 5134 5135 out: 5136 kfree(rst); 5137 if (lcb) 5138 lcb_put(lcb); 5139 5140 /* 5141 * Scan the Open Attribute Table to close all of 5142 * the open attributes. 5143 */ 5144 oe = NULL; 5145 while ((oe = enum_rstbl(oatbl, oe))) { 5146 rno = ino_get(&oe->ref); 5147 5148 if (oe->is_attr_name == 1) { 5149 kfree(oe->ptr); 5150 oe->ptr = NULL; 5151 continue; 5152 } 5153 5154 if (oe->is_attr_name) 5155 continue; 5156 5157 oa = oe->ptr; 5158 if (!oa) 5159 continue; 5160 5161 run_close(&oa->run0); 5162 kfree(oa->attr); 5163 if (oa->ni) 5164 iput(&oa->ni->vfs_inode); 5165 kfree(oa); 5166 } 5167 5168 kfree(trtbl); 5169 kfree(oatbl); 5170 kfree(dptbl); 5171 kfree(attr_names); 5172 kfree(log->rst_info.r_page); 5173 5174 kfree(ra); 5175 kfree(log->one_page_buf); 5176 5177 if (err) 5178 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5179 5180 if (err == -EROFS) 5181 err = 0; 5182 else if (log->set_dirty) 5183 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5184 5185 kfree(log); 5186 5187 return err; 5188 } 5189