1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, seq_bits; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 seq_bits = sizeof(u64) * 8 + 3; 515 while (l_size) { 516 l_size >>= 1; 517 seq_bits -= 1; 518 } 519 520 if (seq_bits != le32_to_cpu(ra->seq_num_bits)) 521 return false; 522 523 /* The log page data offset and record header length must be quad-aligned. */ 524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 526 return false; 527 528 return true; 529 } 530 531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 532 bool usa_error) 533 { 534 u16 ro = le16_to_cpu(rhdr->ra_off); 535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 536 u16 ra_len = le16_to_cpu(ra->ra_len); 537 const struct CLIENT_REC *ca; 538 u32 i; 539 540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 541 return false; 542 543 /* Find the start of the client array. */ 544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 545 546 /* 547 * Start with the free list. 548 * Check that all the clients are valid and that there isn't a cycle. 549 * Do the in-use list on the second pass. 550 */ 551 for (i = 0; i < 2; i++) { 552 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 553 bool first_client = true; 554 u16 clients = le16_to_cpu(ra->log_clients); 555 556 while (client_idx != LFS_NO_CLIENT) { 557 const struct CLIENT_REC *cr; 558 559 if (!clients || 560 client_idx >= le16_to_cpu(ra->log_clients)) 561 return false; 562 563 clients -= 1; 564 cr = ca + client_idx; 565 566 client_idx = le16_to_cpu(cr->next_client); 567 568 if (first_client) { 569 first_client = false; 570 if (cr->prev_client != LFS_NO_CLIENT_LE) 571 return false; 572 } 573 } 574 } 575 576 return true; 577 } 578 579 /* 580 * remove_client 581 * 582 * Remove a client record from a client record list an restart area. 583 */ 584 static inline void remove_client(struct CLIENT_REC *ca, 585 const struct CLIENT_REC *cr, __le16 *head) 586 { 587 if (cr->prev_client == LFS_NO_CLIENT_LE) 588 *head = cr->next_client; 589 else 590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 591 592 if (cr->next_client != LFS_NO_CLIENT_LE) 593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 594 } 595 596 /* 597 * add_client - Add a client record to the start of a list. 598 */ 599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 600 { 601 struct CLIENT_REC *cr = ca + index; 602 603 cr->prev_client = LFS_NO_CLIENT_LE; 604 cr->next_client = *head; 605 606 if (*head != LFS_NO_CLIENT_LE) 607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 608 609 *head = cpu_to_le16(index); 610 } 611 612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 613 { 614 __le32 *e; 615 u32 bprt; 616 u16 rsize = t ? le16_to_cpu(t->size) : 0; 617 618 if (!c) { 619 if (!t || !t->total) 620 return NULL; 621 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 622 } else { 623 e = Add2Ptr(c, rsize); 624 } 625 626 /* Loop until we hit the first one allocated, or the end of the list. */ 627 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 628 e = Add2Ptr(e, rsize)) { 629 if (*e == RESTART_ENTRY_ALLOCATED_LE) 630 return e; 631 } 632 return NULL; 633 } 634 635 /* 636 * find_dp - Search for a @vcn in Dirty Page Table. 637 */ 638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 639 u32 target_attr, u64 vcn) 640 { 641 __le32 ta = cpu_to_le32(target_attr); 642 struct DIR_PAGE_ENTRY *dp = NULL; 643 644 while ((dp = enum_rstbl(dptbl, dp))) { 645 u64 dp_vcn = le64_to_cpu(dp->vcn); 646 647 if (dp->target_attr == ta && vcn >= dp_vcn && 648 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 649 return dp; 650 } 651 } 652 return NULL; 653 } 654 655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 656 { 657 if (use_default) 658 page_size = DefaultLogPageSize; 659 660 /* Round the file size down to a system page boundary. */ 661 *l_size &= ~(page_size - 1); 662 663 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 664 if (*l_size < (MinLogRecordPages + 2) * page_size) 665 return 0; 666 667 return page_size; 668 } 669 670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 671 u32 bytes_per_attr_entry) 672 { 673 u16 t16; 674 675 if (bytes < sizeof(struct LOG_REC_HDR)) 676 return false; 677 if (!tr) 678 return false; 679 680 if ((tr - sizeof(struct RESTART_TABLE)) % 681 sizeof(struct TRANSACTION_ENTRY)) 682 return false; 683 684 if (le16_to_cpu(lr->redo_off) & 7) 685 return false; 686 687 if (le16_to_cpu(lr->undo_off) & 7) 688 return false; 689 690 if (lr->target_attr) 691 goto check_lcns; 692 693 if (is_target_required(le16_to_cpu(lr->redo_op))) 694 return false; 695 696 if (is_target_required(le16_to_cpu(lr->undo_op))) 697 return false; 698 699 check_lcns: 700 if (!lr->lcns_follow) 701 goto check_length; 702 703 t16 = le16_to_cpu(lr->target_attr); 704 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 705 return false; 706 707 check_length: 708 if (bytes < lrh_length(lr)) 709 return false; 710 711 return true; 712 } 713 714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 715 { 716 u32 ts; 717 u32 i, off; 718 u16 rsize = le16_to_cpu(rt->size); 719 u16 ne = le16_to_cpu(rt->used); 720 u32 ff = le32_to_cpu(rt->first_free); 721 u32 lf = le32_to_cpu(rt->last_free); 722 723 ts = rsize * ne + sizeof(struct RESTART_TABLE); 724 725 if (!rsize || rsize > bytes || 726 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 727 le16_to_cpu(rt->total) > ne || ff > ts - sizeof(__le32) || 728 lf > ts - sizeof(__le32) || 729 (ff && ff < sizeof(struct RESTART_TABLE)) || 730 (lf && lf < sizeof(struct RESTART_TABLE))) { 731 return false; 732 } 733 734 /* 735 * Verify each entry is either allocated or points 736 * to a valid offset the table. 737 */ 738 for (i = 0; i < ne; i++) { 739 off = le32_to_cpu(*(__le32 *)Add2Ptr( 740 rt, i * rsize + sizeof(struct RESTART_TABLE))); 741 742 if (off != RESTART_ENTRY_ALLOCATED && off && 743 (off < sizeof(struct RESTART_TABLE) || 744 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 745 return false; 746 } 747 } 748 749 /* 750 * Walk through the list headed by the first entry to make 751 * sure none of the entries are currently being used. 752 */ 753 for (off = ff; off;) { 754 if (off == RESTART_ENTRY_ALLOCATED) 755 return false; 756 757 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 758 759 if (off > ts - sizeof(__le32)) 760 return false; 761 } 762 763 return true; 764 } 765 766 /* 767 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 768 */ 769 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 770 { 771 __le32 *e; 772 u32 lf = le32_to_cpu(rt->last_free); 773 __le32 off_le = cpu_to_le32(off); 774 775 e = Add2Ptr(rt, off); 776 777 if (off < le32_to_cpu(rt->free_goal)) { 778 *e = rt->first_free; 779 rt->first_free = off_le; 780 if (!lf) 781 rt->last_free = off_le; 782 } else { 783 if (lf) 784 *(__le32 *)Add2Ptr(rt, lf) = off_le; 785 else 786 rt->first_free = off_le; 787 788 rt->last_free = off_le; 789 *e = 0; 790 } 791 792 le16_sub_cpu(&rt->total, 1); 793 } 794 795 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 796 { 797 __le32 *e, *last_free; 798 u32 off; 799 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 800 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 801 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 802 803 if (!t) 804 return NULL; 805 806 t->size = cpu_to_le16(esize); 807 t->used = cpu_to_le16(used); 808 t->free_goal = cpu_to_le32(~0u); 809 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 810 t->last_free = cpu_to_le32(lf); 811 812 e = (__le32 *)(t + 1); 813 last_free = Add2Ptr(t, lf); 814 815 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 816 e = Add2Ptr(e, esize), off += esize) { 817 *e = cpu_to_le32(off); 818 } 819 return t; 820 } 821 822 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 823 u32 add, u32 free_goal) 824 { 825 u16 esize = le16_to_cpu(tbl->size); 826 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 827 u32 used = le16_to_cpu(tbl->used); 828 struct RESTART_TABLE *rt; 829 830 rt = init_rsttbl(esize, used + add); 831 if (!rt) 832 return NULL; 833 834 memcpy(rt + 1, tbl + 1, esize * used); 835 836 rt->free_goal = free_goal == ~0u ? 837 cpu_to_le32(~0u) : 838 cpu_to_le32(sizeof(struct RESTART_TABLE) + 839 free_goal * esize); 840 841 if (tbl->first_free) { 842 rt->first_free = tbl->first_free; 843 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 844 } else { 845 rt->first_free = osize; 846 } 847 848 rt->total = tbl->total; 849 850 kfree(tbl); 851 return rt; 852 } 853 854 /* 855 * alloc_rsttbl_idx 856 * 857 * Allocate an index from within a previously initialized Restart Table. 858 */ 859 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 860 { 861 u32 off; 862 __le32 *e; 863 struct RESTART_TABLE *t = *tbl; 864 865 if (!t->first_free) { 866 *tbl = t = extend_rsttbl(t, 16, ~0u); 867 if (!t) 868 return NULL; 869 } 870 871 off = le32_to_cpu(t->first_free); 872 873 /* Dequeue this entry and zero it. */ 874 e = Add2Ptr(t, off); 875 876 t->first_free = *e; 877 878 memset(e, 0, le16_to_cpu(t->size)); 879 880 *e = RESTART_ENTRY_ALLOCATED_LE; 881 882 /* If list is going empty, then we fix the last_free as well. */ 883 if (!t->first_free) 884 t->last_free = 0; 885 886 le16_add_cpu(&t->total, 1); 887 888 return Add2Ptr(t, off); 889 } 890 891 /* 892 * alloc_rsttbl_from_idx 893 * 894 * Allocate a specific index from within a previously initialized Restart Table. 895 */ 896 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 897 { 898 u32 off; 899 __le32 *e; 900 struct RESTART_TABLE *rt = *tbl; 901 u32 bytes = bytes_per_rt(rt); 902 u16 esize = le16_to_cpu(rt->size); 903 904 /* If the entry is not the table, we will have to extend the table. */ 905 if (vbo >= bytes) { 906 /* 907 * Extend the size by computing the number of entries between 908 * the existing size and the desired index and adding 1 to that. 909 */ 910 u32 bytes2idx = vbo - bytes; 911 912 /* 913 * There should always be an integral number of entries 914 * being added. Now extend the table. 915 */ 916 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 917 if (!rt) 918 return NULL; 919 } 920 921 /* See if the entry is already allocated, and just return if it is. */ 922 e = Add2Ptr(rt, vbo); 923 924 if (*e == RESTART_ENTRY_ALLOCATED_LE) 925 return e; 926 927 /* 928 * Walk through the table, looking for the entry we're 929 * interested and the previous entry. 930 */ 931 off = le32_to_cpu(rt->first_free); 932 e = Add2Ptr(rt, off); 933 934 if (off == vbo) { 935 /* this is a match */ 936 rt->first_free = *e; 937 goto skip_looking; 938 } 939 940 /* 941 * Need to walk through the list looking for the predecessor 942 * of our entry. 943 */ 944 for (;;) { 945 /* Remember the entry just found */ 946 u32 last_off = off; 947 __le32 *last_e = e; 948 949 /* Should never run of entries. */ 950 951 /* Lookup up the next entry the list. */ 952 off = le32_to_cpu(*last_e); 953 e = Add2Ptr(rt, off); 954 955 /* If this is our match we are done. */ 956 if (off == vbo) { 957 *last_e = *e; 958 959 /* 960 * If this was the last entry, we update that 961 * table as well. 962 */ 963 if (le32_to_cpu(rt->last_free) == off) 964 rt->last_free = cpu_to_le32(last_off); 965 break; 966 } 967 } 968 969 skip_looking: 970 /* If the list is now empty, we fix the last_free as well. */ 971 if (!rt->first_free) 972 rt->last_free = 0; 973 974 /* Zero this entry. */ 975 memset(e, 0, esize); 976 *e = RESTART_ENTRY_ALLOCATED_LE; 977 978 le16_add_cpu(&rt->total, 1); 979 980 return e; 981 } 982 983 struct restart_info { 984 u64 last_lsn; 985 struct RESTART_HDR *r_page; 986 u32 vbo; 987 bool chkdsk_was_run; 988 bool valid_page; 989 bool initialized; 990 bool restart; 991 }; 992 993 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 994 995 #define NTFSLOG_WRAPPED 0x00000001 996 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 997 #define NTFSLOG_NO_LAST_LSN 0x00000004 998 #define NTFSLOG_REUSE_TAIL 0x00000010 999 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 1000 1001 /* Helper struct to work with NTFS $LogFile. */ 1002 struct ntfs_log { 1003 struct ntfs_inode *ni; 1004 1005 u32 l_size; 1006 u32 orig_file_size; 1007 u32 sys_page_size; 1008 u32 sys_page_mask; 1009 u32 page_size; 1010 u32 page_mask; // page_size - 1 1011 u8 page_bits; 1012 struct RECORD_PAGE_HDR *one_page_buf; 1013 1014 struct RESTART_TABLE *open_attr_tbl; 1015 u32 transaction_id; 1016 u32 clst_per_page; 1017 1018 u32 first_page; 1019 u32 next_page; 1020 u32 ra_off; 1021 u32 data_off; 1022 u32 restart_size; 1023 u32 data_size; 1024 u16 record_header_len; 1025 u64 seq_num; 1026 u32 seq_num_bits; 1027 u32 file_data_bits; 1028 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1029 1030 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1031 u32 ra_size; /* The usable size of the restart area. */ 1032 1033 /* 1034 * If true, then the in-memory restart area is to be written 1035 * to the first position on the disk. 1036 */ 1037 bool init_ra; 1038 bool set_dirty; /* True if we need to set dirty flag. */ 1039 1040 u64 oldest_lsn; 1041 1042 u32 oldest_lsn_off; 1043 u64 last_lsn; 1044 1045 u32 total_avail; 1046 u32 total_avail_pages; 1047 u32 total_undo_commit; 1048 u32 max_current_avail; 1049 u32 current_avail; 1050 u32 reserved; 1051 1052 short major_ver; 1053 short minor_ver; 1054 1055 u32 l_flags; /* See NTFSLOG_XXX */ 1056 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1057 1058 struct CLIENT_ID client_id; 1059 u32 client_undo_commit; 1060 1061 struct restart_info rst_info, rst_info2; 1062 }; 1063 1064 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1065 { 1066 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1067 1068 return vbo; 1069 } 1070 1071 /* Compute the offset in the log file of the next log page. */ 1072 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1073 { 1074 off = (off & ~log->sys_page_mask) + log->page_size; 1075 return off >= log->l_size ? log->first_page : off; 1076 } 1077 1078 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1079 { 1080 return (((u32)lsn) << 3) & log->page_mask; 1081 } 1082 1083 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1084 { 1085 return (off >> 3) + (Seq << log->file_data_bits); 1086 } 1087 1088 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1089 { 1090 return lsn >= log->oldest_lsn && 1091 lsn <= le64_to_cpu(log->ra->current_lsn); 1092 } 1093 1094 static inline u32 hdr_file_off(struct ntfs_log *log, 1095 struct RECORD_PAGE_HDR *hdr) 1096 { 1097 if (log->major_ver < 2) 1098 return le64_to_cpu(hdr->rhdr.lsn); 1099 1100 return le32_to_cpu(hdr->file_off); 1101 } 1102 1103 static inline u64 base_lsn(struct ntfs_log *log, 1104 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1105 { 1106 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1107 u64 ret = (((h_lsn >> log->file_data_bits) + 1108 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1109 << log->file_data_bits) + 1110 ((((is_log_record_end(hdr) && 1111 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? 1112 le16_to_cpu(hdr->record_hdr.next_record_off) : 1113 log->page_size) + 1114 lsn) >> 1115 3); 1116 1117 return ret; 1118 } 1119 1120 static inline bool verify_client_lsn(struct ntfs_log *log, 1121 const struct CLIENT_REC *client, u64 lsn) 1122 { 1123 return lsn >= le64_to_cpu(client->oldest_lsn) && 1124 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1125 } 1126 1127 static int read_log_page(struct ntfs_log *log, u32 vbo, 1128 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1129 { 1130 int err = 0; 1131 u32 page_idx = vbo >> log->page_bits; 1132 u32 page_off = vbo & log->page_mask; 1133 u32 bytes = log->page_size - page_off; 1134 void *to_free = NULL; 1135 u32 page_vbo = page_idx << log->page_bits; 1136 struct RECORD_PAGE_HDR *page_buf; 1137 struct ntfs_inode *ni = log->ni; 1138 bool bBAAD; 1139 1140 if (vbo >= log->l_size) 1141 return -EINVAL; 1142 1143 if (!*buffer) { 1144 to_free = kmalloc(log->page_size, GFP_NOFS); 1145 if (!to_free) 1146 return -ENOMEM; 1147 *buffer = to_free; 1148 } 1149 1150 page_buf = page_off ? log->one_page_buf : *buffer; 1151 1152 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1153 log->page_size, NULL); 1154 if (err) 1155 goto out; 1156 1157 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1158 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1159 1160 if (page_buf != *buffer) 1161 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1162 1163 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1164 1165 if (usa_error) 1166 *usa_error = bBAAD; 1167 /* Check that the update sequence array for this page is valid */ 1168 /* If we don't allow errors, raise an error status */ 1169 else if (bBAAD) 1170 err = -EINVAL; 1171 1172 out: 1173 if (err && to_free) { 1174 kfree(to_free); 1175 *buffer = NULL; 1176 } 1177 1178 return err; 1179 } 1180 1181 /* 1182 * log_read_rst 1183 * 1184 * It walks through 512 blocks of the file looking for a valid 1185 * restart page header. It will stop the first time we find a 1186 * valid page header. 1187 */ 1188 static int log_read_rst(struct ntfs_log *log, bool first, 1189 struct restart_info *info) 1190 { 1191 u32 skip; 1192 u64 vbo; 1193 struct RESTART_HDR *r_page = NULL; 1194 1195 /* Determine which restart area we are looking for. */ 1196 if (first) { 1197 vbo = 0; 1198 skip = 512; 1199 } else { 1200 vbo = 512; 1201 skip = 0; 1202 } 1203 1204 /* Loop continuously until we succeed. */ 1205 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) { 1206 bool usa_error; 1207 bool brst, bchk; 1208 struct RESTART_AREA *ra; 1209 1210 /* Read a page header at the current offset. */ 1211 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1212 &usa_error)) { 1213 /* Ignore any errors. */ 1214 continue; 1215 } 1216 1217 /* Exit if the signature is a log record page. */ 1218 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1219 info->initialized = true; 1220 break; 1221 } 1222 1223 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1224 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1225 1226 if (!bchk && !brst) { 1227 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1228 /* 1229 * Remember if the signature does not 1230 * indicate uninitialized file. 1231 */ 1232 info->initialized = true; 1233 } 1234 continue; 1235 } 1236 1237 ra = NULL; 1238 info->valid_page = false; 1239 info->initialized = true; 1240 info->vbo = vbo; 1241 1242 /* Let's check the restart area if this is a valid page. */ 1243 if (!is_rst_page_hdr_valid(vbo, r_page)) 1244 goto check_result; 1245 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1246 1247 if (!is_rst_area_valid(r_page)) 1248 goto check_result; 1249 1250 /* 1251 * We have a valid restart page header and restart area. 1252 * If chkdsk was run or we have no clients then we have 1253 * no more checking to do. 1254 */ 1255 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1256 info->valid_page = true; 1257 goto check_result; 1258 } 1259 1260 if (is_client_area_valid(r_page, usa_error)) { 1261 info->valid_page = true; 1262 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1263 } 1264 1265 check_result: 1266 /* 1267 * If chkdsk was run then update the caller's 1268 * values and return. 1269 */ 1270 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1271 info->chkdsk_was_run = true; 1272 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1273 info->restart = true; 1274 info->r_page = r_page; 1275 return 0; 1276 } 1277 1278 /* 1279 * If we have a valid page then copy the values 1280 * we need from it. 1281 */ 1282 if (info->valid_page) { 1283 info->last_lsn = le64_to_cpu(ra->current_lsn); 1284 info->restart = true; 1285 info->r_page = r_page; 1286 return 0; 1287 } 1288 } 1289 1290 kfree(r_page); 1291 1292 return 0; 1293 } 1294 1295 /* 1296 * Ilog_init_pg_hdr - Init @log from restart page header. 1297 */ 1298 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver) 1299 { 1300 log->sys_page_size = log->page_size; 1301 log->sys_page_mask = log->page_mask; 1302 1303 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1304 if (!log->clst_per_page) 1305 log->clst_per_page = 1; 1306 1307 log->first_page = major_ver >= 2 ? 0x22 * log->page_size : 1308 4 * log->page_size; 1309 log->major_ver = major_ver; 1310 log->minor_ver = minor_ver; 1311 } 1312 1313 /* 1314 * log_create - Init @log in cases when we don't have a restart area to use. 1315 */ 1316 static void log_create(struct ntfs_log *log, const u64 last_lsn, 1317 u32 open_log_count, bool wrapped, bool use_multi_page) 1318 { 1319 /* All file offsets must be quadword aligned. */ 1320 log->file_data_bits = blksize_bits(log->l_size) - 3; 1321 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1322 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1323 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1324 log->next_page = log->first_page; 1325 log->oldest_lsn = log->seq_num << log->file_data_bits; 1326 log->oldest_lsn_off = 0; 1327 log->last_lsn = log->oldest_lsn; 1328 1329 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1330 1331 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1332 if (wrapped) 1333 log->l_flags |= NTFSLOG_WRAPPED; 1334 1335 if (use_multi_page) 1336 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1337 1338 /* Compute the log page values. */ 1339 log->data_off = ALIGN( 1340 offsetof(struct RECORD_PAGE_HDR, fixups) + 1341 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1342 8); 1343 log->data_size = log->page_size - log->data_off; 1344 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1345 1346 /* Remember the different page sizes for reservation. */ 1347 log->reserved = log->data_size - log->record_header_len; 1348 1349 /* Compute the restart page values. */ 1350 log->ra_off = ALIGN( 1351 offsetof(struct RESTART_HDR, fixups) + 1352 sizeof(short) * 1353 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1354 8); 1355 log->restart_size = log->sys_page_size - log->ra_off; 1356 log->ra_size = struct_size(log->ra, clients, 1); 1357 log->current_openlog_count = open_log_count; 1358 1359 /* 1360 * The total available log file space is the number of 1361 * log file pages times the space available on each page. 1362 */ 1363 log->total_avail_pages = log->l_size - log->first_page; 1364 log->total_avail = log->total_avail_pages >> log->page_bits; 1365 1366 /* 1367 * We assume that we can't use the end of the page less than 1368 * the file record size. 1369 * Then we won't need to reserve more than the caller asks for. 1370 */ 1371 log->max_current_avail = log->total_avail * log->reserved; 1372 log->total_avail = log->total_avail * log->data_size; 1373 log->current_avail = log->max_current_avail; 1374 } 1375 1376 /* 1377 * log_create_ra - Fill a restart area from the values stored in @log. 1378 */ 1379 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1380 { 1381 struct CLIENT_REC *cr; 1382 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1383 1384 if (!ra) 1385 return NULL; 1386 1387 ra->current_lsn = cpu_to_le64(log->last_lsn); 1388 ra->log_clients = cpu_to_le16(1); 1389 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1390 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1391 ra->flags = RESTART_SINGLE_PAGE_IO; 1392 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1393 ra->ra_len = cpu_to_le16(log->ra_size); 1394 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1395 ra->l_size = cpu_to_le64(log->l_size); 1396 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1397 ra->data_off = cpu_to_le16(log->data_off); 1398 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1399 1400 cr = ra->clients; 1401 1402 cr->prev_client = LFS_NO_CLIENT_LE; 1403 cr->next_client = LFS_NO_CLIENT_LE; 1404 1405 return ra; 1406 } 1407 1408 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1409 { 1410 u32 base_vbo = lsn << 3; 1411 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1412 u32 page_off = base_vbo & log->page_mask; 1413 u32 tail = log->page_size - page_off; 1414 1415 page_off -= 1; 1416 1417 /* Add the length of the header. */ 1418 data_len += log->record_header_len; 1419 1420 /* 1421 * If this lsn is contained this log page we are done. 1422 * Otherwise we need to walk through several log pages. 1423 */ 1424 if (data_len > tail) { 1425 data_len -= tail; 1426 tail = log->data_size; 1427 page_off = log->data_off - 1; 1428 1429 for (;;) { 1430 final_log_off = next_page_off(log, final_log_off); 1431 1432 /* 1433 * We are done if the remaining bytes 1434 * fit on this page. 1435 */ 1436 if (data_len <= tail) 1437 break; 1438 data_len -= tail; 1439 } 1440 } 1441 1442 /* 1443 * We add the remaining bytes to our starting position on this page 1444 * and then add that value to the file offset of this log page. 1445 */ 1446 return final_log_off + data_len + page_off; 1447 } 1448 1449 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1450 u64 *lsn) 1451 { 1452 int err; 1453 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1454 u32 vbo = lsn_to_vbo(log, this_lsn); 1455 u32 end = 1456 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1457 u32 hdr_off = end & ~log->sys_page_mask; 1458 u64 seq = this_lsn >> log->file_data_bits; 1459 struct RECORD_PAGE_HDR *page = NULL; 1460 1461 /* Remember if we wrapped. */ 1462 if (end <= vbo) 1463 seq += 1; 1464 1465 /* Log page header for this page. */ 1466 err = read_log_page(log, hdr_off, &page, NULL); 1467 if (err) 1468 return err; 1469 1470 /* 1471 * If the lsn we were given was not the last lsn on this page, 1472 * then the starting offset for the next lsn is on a quad word 1473 * boundary following the last file offset for the current lsn. 1474 * Otherwise the file offset is the start of the data on the next page. 1475 */ 1476 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1477 /* If we wrapped, we need to increment the sequence number. */ 1478 hdr_off = next_page_off(log, hdr_off); 1479 if (hdr_off == log->first_page) 1480 seq += 1; 1481 1482 vbo = hdr_off + log->data_off; 1483 } else { 1484 vbo = ALIGN(end, 8); 1485 } 1486 1487 /* Compute the lsn based on the file offset and the sequence count. */ 1488 *lsn = vbo_to_lsn(log, vbo, seq); 1489 1490 /* 1491 * If this lsn is within the legal range for the file, we return true. 1492 * Otherwise false indicates that there are no more lsn's. 1493 */ 1494 if (!is_lsn_in_file(log, *lsn)) 1495 *lsn = 0; 1496 1497 kfree(page); 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * current_log_avail - Calculate the number of bytes available for log records. 1504 */ 1505 static u32 current_log_avail(struct ntfs_log *log) 1506 { 1507 u32 oldest_off, next_free_off, free_bytes; 1508 1509 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1510 /* The entire file is available. */ 1511 return log->max_current_avail; 1512 } 1513 1514 /* 1515 * If there is a last lsn the restart area then we know that we will 1516 * have to compute the free range. 1517 * If there is no oldest lsn then start at the first page of the file. 1518 */ 1519 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? 1520 log->first_page : 1521 (log->oldest_lsn_off & ~log->sys_page_mask); 1522 1523 /* 1524 * We will use the next log page offset to compute the next free page. 1525 * If we are going to reuse this page go to the next page. 1526 * If we are at the first page then use the end of the file. 1527 */ 1528 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? 1529 log->next_page + log->page_size : 1530 log->next_page == log->first_page ? log->l_size : 1531 log->next_page; 1532 1533 /* If the two offsets are the same then there is no available space. */ 1534 if (oldest_off == next_free_off) 1535 return 0; 1536 /* 1537 * If the free offset follows the oldest offset then subtract 1538 * this range from the total available pages. 1539 */ 1540 free_bytes = 1541 oldest_off < next_free_off ? 1542 log->total_avail_pages - (next_free_off - oldest_off) : 1543 oldest_off - next_free_off; 1544 1545 free_bytes >>= log->page_bits; 1546 return free_bytes * log->reserved; 1547 } 1548 1549 static bool check_subseq_log_page(struct ntfs_log *log, 1550 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1551 u64 seq) 1552 { 1553 u64 lsn_seq; 1554 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1555 u64 lsn = le64_to_cpu(rhdr->lsn); 1556 1557 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1558 return false; 1559 1560 /* 1561 * If the last lsn on the page occurs was written after the page 1562 * that caused the original error then we have a fatal error. 1563 */ 1564 lsn_seq = lsn >> log->file_data_bits; 1565 1566 /* 1567 * If the sequence number for the lsn the page is equal or greater 1568 * than lsn we expect, then this is a subsequent write. 1569 */ 1570 return lsn_seq >= seq || 1571 (lsn_seq == seq - 1 && log->first_page == vbo && 1572 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1573 } 1574 1575 /* 1576 * last_log_lsn 1577 * 1578 * Walks through the log pages for a file, searching for the 1579 * last log page written to the file. 1580 */ 1581 static int last_log_lsn(struct ntfs_log *log) 1582 { 1583 int err; 1584 bool usa_error = false; 1585 bool replace_page = false; 1586 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1587 bool wrapped_file, wrapped; 1588 1589 u32 page_cnt = 1, page_pos = 1; 1590 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1591 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1592 u32 first_file_off = 0, second_file_off = 0; 1593 u32 part_io_count = 0; 1594 u32 tails = 0; 1595 u32 this_off, curpage_off, nextpage_off, remain_pages; 1596 1597 u64 expected_seq, seq_base = 0, lsn_base = 0; 1598 u64 best_lsn, best_lsn1, best_lsn2; 1599 u64 lsn_cur, lsn1, lsn2; 1600 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1601 1602 u16 cur_pos, best_page_pos; 1603 1604 struct RECORD_PAGE_HDR *page = NULL; 1605 struct RECORD_PAGE_HDR *tst_page = NULL; 1606 struct RECORD_PAGE_HDR *first_tail = NULL; 1607 struct RECORD_PAGE_HDR *second_tail = NULL; 1608 struct RECORD_PAGE_HDR *tail_page = NULL; 1609 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1610 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1611 struct RECORD_PAGE_HDR *page_bufs = NULL; 1612 struct RECORD_PAGE_HDR *best_page; 1613 1614 if (log->major_ver >= 2) { 1615 final_off = 0x02 * log->page_size; 1616 second_off = 0x12 * log->page_size; 1617 1618 // 0x10 == 0x12 - 0x2 1619 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1620 if (!page_bufs) 1621 return -ENOMEM; 1622 } else { 1623 second_off = log->first_page - log->page_size; 1624 final_off = second_off - log->page_size; 1625 } 1626 1627 next_tail: 1628 /* Read second tail page (at pos 3/0x12000). */ 1629 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1630 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1631 kfree(second_tail); 1632 second_tail = NULL; 1633 second_file_off = 0; 1634 lsn2 = 0; 1635 } else { 1636 second_file_off = hdr_file_off(log, second_tail); 1637 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1638 } 1639 1640 /* Read first tail page (at pos 2/0x2000). */ 1641 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1642 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1643 kfree(first_tail); 1644 first_tail = NULL; 1645 first_file_off = 0; 1646 lsn1 = 0; 1647 } else { 1648 first_file_off = hdr_file_off(log, first_tail); 1649 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1650 } 1651 1652 if (log->major_ver < 2) { 1653 int best_page; 1654 1655 first_tail_prev = first_tail; 1656 final_off_prev = first_file_off; 1657 second_tail_prev = second_tail; 1658 second_off_prev = second_file_off; 1659 tails = 1; 1660 1661 if (!first_tail && !second_tail) 1662 goto tail_read; 1663 1664 if (first_tail && second_tail) 1665 best_page = lsn1 < lsn2 ? 1 : 0; 1666 else if (first_tail) 1667 best_page = 0; 1668 else 1669 best_page = 1; 1670 1671 page_off = best_page ? second_file_off : first_file_off; 1672 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1673 goto tail_read; 1674 } 1675 1676 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1677 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : 1678 0; 1679 1680 if (first_tail && second_tail) { 1681 if (best_lsn1 > best_lsn2) { 1682 best_lsn = best_lsn1; 1683 best_page = first_tail; 1684 this_off = first_file_off; 1685 } else { 1686 best_lsn = best_lsn2; 1687 best_page = second_tail; 1688 this_off = second_file_off; 1689 } 1690 } else if (first_tail) { 1691 best_lsn = best_lsn1; 1692 best_page = first_tail; 1693 this_off = first_file_off; 1694 } else if (second_tail) { 1695 best_lsn = best_lsn2; 1696 best_page = second_tail; 1697 this_off = second_file_off; 1698 } else { 1699 goto tail_read; 1700 } 1701 1702 best_page_pos = le16_to_cpu(best_page->page_pos); 1703 1704 if (!tails) { 1705 if (best_page_pos == page_pos) { 1706 seq_base = best_lsn >> log->file_data_bits; 1707 saved_off = page_off = le32_to_cpu(best_page->file_off); 1708 lsn_base = best_lsn; 1709 1710 memmove(page_bufs, best_page, log->page_size); 1711 1712 page_cnt = le16_to_cpu(best_page->page_count); 1713 if (page_cnt > 1) 1714 page_pos += 1; 1715 1716 tails = 1; 1717 } 1718 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1719 saved_off + log->page_size == this_off && 1720 lsn_base < best_lsn && 1721 (page_pos != page_cnt || best_page_pos == page_pos || 1722 best_page_pos == 1) && 1723 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1724 u16 bppc = le16_to_cpu(best_page->page_count); 1725 1726 saved_off += log->page_size; 1727 lsn_base = best_lsn; 1728 1729 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1730 log->page_size); 1731 1732 tails += 1; 1733 1734 if (best_page_pos != bppc) { 1735 page_cnt = bppc; 1736 page_pos = best_page_pos; 1737 1738 if (page_cnt > 1) 1739 page_pos += 1; 1740 } else { 1741 page_pos = page_cnt = 1; 1742 } 1743 } else { 1744 kfree(first_tail); 1745 kfree(second_tail); 1746 goto tail_read; 1747 } 1748 1749 kfree(first_tail_prev); 1750 first_tail_prev = first_tail; 1751 final_off_prev = first_file_off; 1752 first_tail = NULL; 1753 1754 kfree(second_tail_prev); 1755 second_tail_prev = second_tail; 1756 second_off_prev = second_file_off; 1757 second_tail = NULL; 1758 1759 final_off += log->page_size; 1760 second_off += log->page_size; 1761 1762 if (tails < 0x10) 1763 goto next_tail; 1764 tail_read: 1765 first_tail = first_tail_prev; 1766 final_off = final_off_prev; 1767 1768 second_tail = second_tail_prev; 1769 second_off = second_off_prev; 1770 1771 page_cnt = page_pos = 1; 1772 1773 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : 1774 log->next_page; 1775 1776 wrapped_file = 1777 curpage_off == log->first_page && 1778 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1779 1780 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1781 1782 nextpage_off = curpage_off; 1783 1784 next_page: 1785 tail_page = NULL; 1786 /* Read the next log page. */ 1787 err = read_log_page(log, curpage_off, &page, &usa_error); 1788 1789 /* Compute the next log page offset the file. */ 1790 nextpage_off = next_page_off(log, curpage_off); 1791 wrapped = nextpage_off == log->first_page; 1792 1793 if (tails > 1) { 1794 struct RECORD_PAGE_HDR *cur_page = 1795 Add2Ptr(page_bufs, curpage_off - page_off); 1796 1797 if (curpage_off == saved_off) { 1798 tail_page = cur_page; 1799 goto use_tail_page; 1800 } 1801 1802 if (page_off > curpage_off || curpage_off >= saved_off) 1803 goto use_tail_page; 1804 1805 if (page_off1) 1806 goto use_cur_page; 1807 1808 if (!err && !usa_error && 1809 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1810 cur_page->rhdr.lsn == page->rhdr.lsn && 1811 cur_page->record_hdr.next_record_off == 1812 page->record_hdr.next_record_off && 1813 ((page_pos == page_cnt && 1814 le16_to_cpu(page->page_pos) == 1) || 1815 (page_pos != page_cnt && 1816 le16_to_cpu(page->page_pos) == page_pos + 1 && 1817 le16_to_cpu(page->page_count) == page_cnt))) { 1818 cur_page = NULL; 1819 goto use_tail_page; 1820 } 1821 1822 page_off1 = page_off; 1823 1824 use_cur_page: 1825 1826 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1827 1828 if (last_ok_lsn != 1829 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1830 ((lsn_cur >> log->file_data_bits) + 1831 ((curpage_off < 1832 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? 1833 1 : 1834 0)) != expected_seq) { 1835 goto check_tail; 1836 } 1837 1838 if (!is_log_record_end(cur_page)) { 1839 tail_page = NULL; 1840 last_ok_lsn = lsn_cur; 1841 goto next_page_1; 1842 } 1843 1844 log->seq_num = expected_seq; 1845 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1846 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1847 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1848 1849 if (log->record_header_len <= 1850 log->page_size - 1851 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1852 log->l_flags |= NTFSLOG_REUSE_TAIL; 1853 log->next_page = curpage_off; 1854 } else { 1855 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1856 log->next_page = nextpage_off; 1857 } 1858 1859 if (wrapped_file) 1860 log->l_flags |= NTFSLOG_WRAPPED; 1861 1862 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1863 goto next_page_1; 1864 } 1865 1866 /* 1867 * If we are at the expected first page of a transfer check to see 1868 * if either tail copy is at this offset. 1869 * If this page is the last page of a transfer, check if we wrote 1870 * a subsequent tail copy. 1871 */ 1872 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1873 /* 1874 * Check if the offset matches either the first or second 1875 * tail copy. It is possible it will match both. 1876 */ 1877 if (curpage_off == final_off) 1878 tail_page = first_tail; 1879 1880 /* 1881 * If we already matched on the first page then 1882 * check the ending lsn's. 1883 */ 1884 if (curpage_off == second_off) { 1885 if (!tail_page || 1886 (second_tail && 1887 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1888 le64_to_cpu(first_tail->record_hdr 1889 .last_end_lsn))) { 1890 tail_page = second_tail; 1891 } 1892 } 1893 } 1894 1895 use_tail_page: 1896 if (tail_page) { 1897 /* We have a candidate for a tail copy. */ 1898 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1899 1900 if (last_ok_lsn < lsn_cur) { 1901 /* 1902 * If the sequence number is not expected, 1903 * then don't use the tail copy. 1904 */ 1905 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1906 tail_page = NULL; 1907 } else if (last_ok_lsn > lsn_cur) { 1908 /* 1909 * If the last lsn is greater than the one on 1910 * this page then forget this tail. 1911 */ 1912 tail_page = NULL; 1913 } 1914 } 1915 1916 /* 1917 *If we have an error on the current page, 1918 * we will break of this loop. 1919 */ 1920 if (err || usa_error) 1921 goto check_tail; 1922 1923 /* 1924 * Done if the last lsn on this page doesn't match the previous known 1925 * last lsn or the sequence number is not expected. 1926 */ 1927 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1928 if (last_ok_lsn != lsn_cur && 1929 expected_seq != (lsn_cur >> log->file_data_bits)) { 1930 goto check_tail; 1931 } 1932 1933 /* 1934 * Check that the page position and page count values are correct. 1935 * If this is the first page of a transfer the position must be 1 1936 * and the count will be unknown. 1937 */ 1938 if (page_cnt == page_pos) { 1939 if (page->page_pos != cpu_to_le16(1) && 1940 (!reuse_page || page->page_pos != page->page_count)) { 1941 /* 1942 * If the current page is the first page we are 1943 * looking at and we are reusing this page then 1944 * it can be either the first or last page of a 1945 * transfer. Otherwise it can only be the first. 1946 */ 1947 goto check_tail; 1948 } 1949 } else if (le16_to_cpu(page->page_count) != page_cnt || 1950 le16_to_cpu(page->page_pos) != page_pos + 1) { 1951 /* 1952 * The page position better be 1 more than the last page 1953 * position and the page count better match. 1954 */ 1955 goto check_tail; 1956 } 1957 1958 /* 1959 * We have a valid page the file and may have a valid page 1960 * the tail copy area. 1961 * If the tail page was written after the page the file then 1962 * break of the loop. 1963 */ 1964 if (tail_page && 1965 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1966 /* Remember if we will replace the page. */ 1967 replace_page = true; 1968 goto check_tail; 1969 } 1970 1971 tail_page = NULL; 1972 1973 if (is_log_record_end(page)) { 1974 /* 1975 * Since we have read this page we know the sequence number 1976 * is the same as our expected value. 1977 */ 1978 log->seq_num = expected_seq; 1979 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1980 log->ra->current_lsn = page->record_hdr.last_end_lsn; 1981 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1982 1983 /* 1984 * If there is room on this page for another header then 1985 * remember we want to reuse the page. 1986 */ 1987 if (log->record_header_len <= 1988 log->page_size - 1989 le16_to_cpu(page->record_hdr.next_record_off)) { 1990 log->l_flags |= NTFSLOG_REUSE_TAIL; 1991 log->next_page = curpage_off; 1992 } else { 1993 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1994 log->next_page = nextpage_off; 1995 } 1996 1997 /* Remember if we wrapped the log file. */ 1998 if (wrapped_file) 1999 log->l_flags |= NTFSLOG_WRAPPED; 2000 } 2001 2002 /* 2003 * Remember the last page count and position. 2004 * Also remember the last known lsn. 2005 */ 2006 page_cnt = le16_to_cpu(page->page_count); 2007 page_pos = le16_to_cpu(page->page_pos); 2008 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2009 2010 next_page_1: 2011 2012 if (wrapped) { 2013 expected_seq += 1; 2014 wrapped_file = 1; 2015 } 2016 2017 curpage_off = nextpage_off; 2018 kfree(page); 2019 page = NULL; 2020 reuse_page = 0; 2021 goto next_page; 2022 2023 check_tail: 2024 if (tail_page) { 2025 log->seq_num = expected_seq; 2026 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2027 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2028 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2029 2030 if (log->page_size - 2031 le16_to_cpu( 2032 tail_page->record_hdr.next_record_off) >= 2033 log->record_header_len) { 2034 log->l_flags |= NTFSLOG_REUSE_TAIL; 2035 log->next_page = curpage_off; 2036 } else { 2037 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2038 log->next_page = nextpage_off; 2039 } 2040 2041 if (wrapped) 2042 log->l_flags |= NTFSLOG_WRAPPED; 2043 } 2044 2045 /* Remember that the partial IO will start at the next page. */ 2046 second_off = nextpage_off; 2047 2048 /* 2049 * If the next page is the first page of the file then update 2050 * the sequence number for log records which begon the next page. 2051 */ 2052 if (wrapped) 2053 expected_seq += 1; 2054 2055 /* 2056 * If we have a tail copy or are performing single page I/O we can 2057 * immediately look at the next page. 2058 */ 2059 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2060 page_cnt = 2; 2061 page_pos = 1; 2062 goto check_valid; 2063 } 2064 2065 if (page_pos != page_cnt) 2066 goto check_valid; 2067 /* 2068 * If the next page causes us to wrap to the beginning of the log 2069 * file then we know which page to check next. 2070 */ 2071 if (wrapped) { 2072 page_cnt = 2; 2073 page_pos = 1; 2074 goto check_valid; 2075 } 2076 2077 cur_pos = 2; 2078 2079 next_test_page: 2080 kfree(tst_page); 2081 tst_page = NULL; 2082 2083 /* Walk through the file, reading log pages. */ 2084 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2085 2086 /* 2087 * If we get a USA error then assume that we correctly found 2088 * the end of the original transfer. 2089 */ 2090 if (usa_error) 2091 goto file_is_valid; 2092 2093 /* 2094 * If we were able to read the page, we examine it to see if it 2095 * is the same or different Io block. 2096 */ 2097 if (err) 2098 goto next_test_page_1; 2099 2100 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2101 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2102 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2103 page_pos = le16_to_cpu(tst_page->page_pos); 2104 goto check_valid; 2105 } else { 2106 goto file_is_valid; 2107 } 2108 2109 next_test_page_1: 2110 2111 nextpage_off = next_page_off(log, curpage_off); 2112 wrapped = nextpage_off == log->first_page; 2113 2114 if (wrapped) { 2115 expected_seq += 1; 2116 page_cnt = 2; 2117 page_pos = 1; 2118 } 2119 2120 cur_pos += 1; 2121 part_io_count += 1; 2122 if (!wrapped) 2123 goto next_test_page; 2124 2125 check_valid: 2126 /* Skip over the remaining pages this transfer. */ 2127 remain_pages = page_cnt - page_pos - 1; 2128 part_io_count += remain_pages; 2129 2130 while (remain_pages--) { 2131 nextpage_off = next_page_off(log, curpage_off); 2132 wrapped = nextpage_off == log->first_page; 2133 2134 if (wrapped) 2135 expected_seq += 1; 2136 } 2137 2138 /* Call our routine to check this log page. */ 2139 kfree(tst_page); 2140 tst_page = NULL; 2141 2142 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2143 if (!err && !usa_error && 2144 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2145 err = -EINVAL; 2146 goto out; 2147 } 2148 2149 file_is_valid: 2150 2151 /* We have a valid file. */ 2152 if (page_off1 || tail_page) { 2153 struct RECORD_PAGE_HDR *tmp_page; 2154 2155 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2156 err = -EROFS; 2157 goto out; 2158 } 2159 2160 if (page_off1) { 2161 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2162 tails -= (page_off1 - page_off) / log->page_size; 2163 if (!tail_page) 2164 tails -= 1; 2165 } else { 2166 tmp_page = tail_page; 2167 tails = 1; 2168 } 2169 2170 while (tails--) { 2171 u64 off = hdr_file_off(log, tmp_page); 2172 2173 if (!page) { 2174 page = kmalloc(log->page_size, GFP_NOFS); 2175 if (!page) { 2176 err = -ENOMEM; 2177 goto out; 2178 } 2179 } 2180 2181 /* 2182 * Correct page and copy the data from this page 2183 * into it and flush it to disk. 2184 */ 2185 memcpy(page, tmp_page, log->page_size); 2186 2187 /* Fill last flushed lsn value flush the page. */ 2188 if (log->major_ver < 2) 2189 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2190 else 2191 page->file_off = 0; 2192 2193 page->page_pos = page->page_count = cpu_to_le16(1); 2194 2195 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2196 2197 err = ntfs_sb_write_run(log->ni->mi.sbi, 2198 &log->ni->file.run, off, page, 2199 log->page_size, 0); 2200 2201 if (err) 2202 goto out; 2203 2204 if (part_io_count && second_off == off) { 2205 second_off += log->page_size; 2206 part_io_count -= 1; 2207 } 2208 2209 tmp_page = Add2Ptr(tmp_page, log->page_size); 2210 } 2211 } 2212 2213 if (part_io_count) { 2214 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2215 err = -EROFS; 2216 goto out; 2217 } 2218 } 2219 2220 out: 2221 kfree(second_tail); 2222 kfree(first_tail); 2223 kfree(page); 2224 kfree(tst_page); 2225 kfree(page_bufs); 2226 2227 return err; 2228 } 2229 2230 /* 2231 * read_log_rec_buf - Copy a log record from the file to a buffer. 2232 * 2233 * The log record may span several log pages and may even wrap the file. 2234 */ 2235 static int read_log_rec_buf(struct ntfs_log *log, 2236 const struct LFS_RECORD_HDR *rh, void *buffer) 2237 { 2238 int err; 2239 struct RECORD_PAGE_HDR *ph = NULL; 2240 u64 lsn = le64_to_cpu(rh->this_lsn); 2241 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2242 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2243 u32 data_len = le32_to_cpu(rh->client_data_len); 2244 2245 /* 2246 * While there are more bytes to transfer, 2247 * we continue to attempt to perform the read. 2248 */ 2249 for (;;) { 2250 bool usa_error; 2251 u32 tail = log->page_size - off; 2252 2253 if (tail >= data_len) 2254 tail = data_len; 2255 2256 data_len -= tail; 2257 2258 err = read_log_page(log, vbo, &ph, &usa_error); 2259 if (err) 2260 goto out; 2261 2262 /* 2263 * The last lsn on this page better be greater or equal 2264 * to the lsn we are copying. 2265 */ 2266 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2267 err = -EINVAL; 2268 goto out; 2269 } 2270 2271 memcpy(buffer, Add2Ptr(ph, off), tail); 2272 2273 /* If there are no more bytes to transfer, we exit the loop. */ 2274 if (!data_len) { 2275 if (!is_log_record_end(ph) || 2276 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2277 err = -EINVAL; 2278 goto out; 2279 } 2280 break; 2281 } 2282 2283 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2284 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2285 err = -EINVAL; 2286 goto out; 2287 } 2288 2289 vbo = next_page_off(log, vbo); 2290 off = log->data_off; 2291 2292 /* 2293 * Adjust our pointer the user's buffer to transfer 2294 * the next block to. 2295 */ 2296 buffer = Add2Ptr(buffer, tail); 2297 } 2298 2299 out: 2300 kfree(ph); 2301 return err; 2302 } 2303 2304 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2305 u64 *lsn) 2306 { 2307 int err; 2308 struct LFS_RECORD_HDR *rh = NULL; 2309 const struct CLIENT_REC *cr = 2310 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2311 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2312 u32 len; 2313 struct NTFS_RESTART *rst; 2314 2315 *lsn = 0; 2316 *rst_ = NULL; 2317 2318 /* If the client doesn't have a restart area, go ahead and exit now. */ 2319 if (!lsnc) 2320 return 0; 2321 2322 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2323 (struct RECORD_PAGE_HDR **)&rh, NULL); 2324 if (err) 2325 return err; 2326 2327 rst = NULL; 2328 lsnr = le64_to_cpu(rh->this_lsn); 2329 2330 if (lsnc != lsnr) { 2331 /* If the lsn values don't match, then the disk is corrupt. */ 2332 err = -EINVAL; 2333 goto out; 2334 } 2335 2336 *lsn = lsnr; 2337 len = le32_to_cpu(rh->client_data_len); 2338 2339 if (!len) { 2340 err = 0; 2341 goto out; 2342 } 2343 2344 if (len < sizeof(struct NTFS_RESTART)) { 2345 err = -EINVAL; 2346 goto out; 2347 } 2348 2349 rst = kmalloc(len, GFP_NOFS); 2350 if (!rst) { 2351 err = -ENOMEM; 2352 goto out; 2353 } 2354 2355 /* Copy the data into the 'rst' buffer. */ 2356 err = read_log_rec_buf(log, rh, rst); 2357 if (err) 2358 goto out; 2359 2360 *rst_ = rst; 2361 rst = NULL; 2362 2363 out: 2364 kfree(rh); 2365 kfree(rst); 2366 2367 return err; 2368 } 2369 2370 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2371 { 2372 int err; 2373 struct LFS_RECORD_HDR *rh = lcb->lrh; 2374 u32 rec_len, len; 2375 2376 /* Read the record header for this lsn. */ 2377 if (!rh) { 2378 err = read_log_page(log, lsn_to_vbo(log, lsn), 2379 (struct RECORD_PAGE_HDR **)&rh, NULL); 2380 2381 lcb->lrh = rh; 2382 if (err) 2383 return err; 2384 } 2385 2386 /* 2387 * If the lsn the log record doesn't match the desired 2388 * lsn then the disk is corrupt. 2389 */ 2390 if (lsn != le64_to_cpu(rh->this_lsn)) 2391 return -EINVAL; 2392 2393 len = le32_to_cpu(rh->client_data_len); 2394 2395 /* 2396 * Check that the length field isn't greater than the total 2397 * available space the log file. 2398 */ 2399 rec_len = len + log->record_header_len; 2400 if (rec_len >= log->total_avail) 2401 return -EINVAL; 2402 2403 /* 2404 * If the entire log record is on this log page, 2405 * put a pointer to the log record the context block. 2406 */ 2407 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2408 void *lr = kmalloc(len, GFP_NOFS); 2409 2410 if (!lr) 2411 return -ENOMEM; 2412 2413 lcb->log_rec = lr; 2414 lcb->alloc = true; 2415 2416 /* Copy the data into the buffer returned. */ 2417 err = read_log_rec_buf(log, rh, lr); 2418 if (err) 2419 return err; 2420 } else { 2421 /* If beyond the end of the current page -> an error. */ 2422 u32 page_off = lsn_to_page_off(log, lsn); 2423 2424 if (page_off + len + log->record_header_len > log->page_size) 2425 return -EINVAL; 2426 2427 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2428 lcb->alloc = false; 2429 } 2430 2431 return 0; 2432 } 2433 2434 /* 2435 * read_log_rec_lcb - Init the query operation. 2436 */ 2437 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2438 struct lcb **lcb_) 2439 { 2440 int err; 2441 const struct CLIENT_REC *cr; 2442 struct lcb *lcb; 2443 2444 switch (ctx_mode) { 2445 case lcb_ctx_undo_next: 2446 case lcb_ctx_prev: 2447 case lcb_ctx_next: 2448 break; 2449 default: 2450 return -EINVAL; 2451 } 2452 2453 /* Check that the given lsn is the legal range for this client. */ 2454 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2455 2456 if (!verify_client_lsn(log, cr, lsn)) 2457 return -EINVAL; 2458 2459 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2460 if (!lcb) 2461 return -ENOMEM; 2462 lcb->client = log->client_id; 2463 lcb->ctx_mode = ctx_mode; 2464 2465 /* Find the log record indicated by the given lsn. */ 2466 err = find_log_rec(log, lsn, lcb); 2467 if (err) 2468 goto out; 2469 2470 *lcb_ = lcb; 2471 return 0; 2472 2473 out: 2474 lcb_put(lcb); 2475 *lcb_ = NULL; 2476 return err; 2477 } 2478 2479 /* 2480 * find_client_next_lsn 2481 * 2482 * Attempt to find the next lsn to return to a client based on the context mode. 2483 */ 2484 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2485 { 2486 int err; 2487 u64 next_lsn; 2488 struct LFS_RECORD_HDR *hdr; 2489 2490 hdr = lcb->lrh; 2491 *lsn = 0; 2492 2493 if (lcb_ctx_next != lcb->ctx_mode) 2494 goto check_undo_next; 2495 2496 /* Loop as long as another lsn can be found. */ 2497 for (;;) { 2498 u64 current_lsn; 2499 2500 err = next_log_lsn(log, hdr, ¤t_lsn); 2501 if (err) 2502 goto out; 2503 2504 if (!current_lsn) 2505 break; 2506 2507 if (hdr != lcb->lrh) 2508 kfree(hdr); 2509 2510 hdr = NULL; 2511 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2512 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2513 if (err) 2514 goto out; 2515 2516 if (memcmp(&hdr->client, &lcb->client, 2517 sizeof(struct CLIENT_ID))) { 2518 /*err = -EINVAL; */ 2519 } else if (LfsClientRecord == hdr->record_type) { 2520 kfree(lcb->lrh); 2521 lcb->lrh = hdr; 2522 *lsn = current_lsn; 2523 return 0; 2524 } 2525 } 2526 2527 out: 2528 if (hdr != lcb->lrh) 2529 kfree(hdr); 2530 return err; 2531 2532 check_undo_next: 2533 if (lcb_ctx_undo_next == lcb->ctx_mode) 2534 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2535 else if (lcb_ctx_prev == lcb->ctx_mode) 2536 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2537 else 2538 return 0; 2539 2540 if (!next_lsn) 2541 return 0; 2542 2543 if (!verify_client_lsn( 2544 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2545 next_lsn)) 2546 return 0; 2547 2548 hdr = NULL; 2549 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2550 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2551 if (err) 2552 return err; 2553 kfree(lcb->lrh); 2554 lcb->lrh = hdr; 2555 2556 *lsn = next_lsn; 2557 2558 return 0; 2559 } 2560 2561 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2562 { 2563 int err; 2564 2565 err = find_client_next_lsn(log, lcb, lsn); 2566 if (err) 2567 return err; 2568 2569 if (!*lsn) 2570 return 0; 2571 2572 if (lcb->alloc) 2573 kfree(lcb->log_rec); 2574 2575 lcb->log_rec = NULL; 2576 lcb->alloc = false; 2577 kfree(lcb->lrh); 2578 lcb->lrh = NULL; 2579 2580 return find_log_rec(log, *lsn, lcb); 2581 } 2582 2583 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2584 { 2585 __le16 mask; 2586 u32 min_de, de_off, used, total; 2587 const struct NTFS_DE *e; 2588 2589 if (hdr_has_subnode(hdr)) { 2590 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2591 mask = NTFS_IE_HAS_SUBNODES; 2592 } else { 2593 min_de = sizeof(struct NTFS_DE); 2594 mask = 0; 2595 } 2596 2597 de_off = le32_to_cpu(hdr->de_off); 2598 used = le32_to_cpu(hdr->used); 2599 total = le32_to_cpu(hdr->total); 2600 2601 if (de_off > bytes - min_de || used > bytes || total > bytes || 2602 de_off + min_de > used || used > total) { 2603 return false; 2604 } 2605 2606 e = Add2Ptr(hdr, de_off); 2607 for (;;) { 2608 u16 esize = le16_to_cpu(e->size); 2609 struct NTFS_DE *next = Add2Ptr(e, esize); 2610 2611 if (esize < min_de || PtrOffset(hdr, next) > used || 2612 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2613 return false; 2614 } 2615 2616 if (de_is_last(e)) 2617 break; 2618 2619 e = next; 2620 } 2621 2622 return true; 2623 } 2624 2625 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2626 { 2627 u16 fo; 2628 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2629 2630 if (r->sign != NTFS_INDX_SIGNATURE) 2631 return false; 2632 2633 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2634 2635 if (le16_to_cpu(r->fix_off) > fo) 2636 return false; 2637 2638 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2639 return false; 2640 2641 return check_index_header(&ib->ihdr, 2642 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2643 } 2644 2645 static inline bool check_index_root(const struct ATTRIB *attr, 2646 struct ntfs_sb_info *sbi) 2647 { 2648 bool ret; 2649 const struct INDEX_ROOT *root = resident_data(attr); 2650 u8 index_bits = le32_to_cpu(root->index_block_size) >= 2651 sbi->cluster_size ? 2652 sbi->cluster_bits : 2653 SECTOR_SHIFT; 2654 u8 block_clst = root->index_block_clst; 2655 2656 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2657 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2658 (root->type == ATTR_NAME && 2659 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2660 (le32_to_cpu(root->index_block_size) != 2661 (block_clst << index_bits)) || 2662 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2663 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2664 block_clst != 0x40 && block_clst != 0x80)) { 2665 return false; 2666 } 2667 2668 ret = check_index_header(&root->ihdr, 2669 le32_to_cpu(attr->res.data_size) - 2670 offsetof(struct INDEX_ROOT, ihdr)); 2671 return ret; 2672 } 2673 2674 static inline bool check_attr(const struct MFT_REC *rec, 2675 const struct ATTRIB *attr, 2676 struct ntfs_sb_info *sbi) 2677 { 2678 u32 asize = le32_to_cpu(attr->size); 2679 u32 rsize = 0; 2680 u64 dsize, svcn, evcn; 2681 u16 run_off; 2682 2683 /* Check the fixed part of the attribute record header. */ 2684 if (asize >= sbi->record_size || 2685 asize + PtrOffset(rec, attr) >= sbi->record_size || 2686 (attr->name_len && 2687 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2688 asize)) { 2689 return false; 2690 } 2691 2692 /* Check the attribute fields. */ 2693 switch (attr->non_res) { 2694 case 0: 2695 rsize = le32_to_cpu(attr->res.data_size); 2696 if (rsize >= asize || 2697 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2698 return false; 2699 } 2700 break; 2701 2702 case 1: 2703 dsize = le64_to_cpu(attr->nres.data_size); 2704 svcn = le64_to_cpu(attr->nres.svcn); 2705 evcn = le64_to_cpu(attr->nres.evcn); 2706 run_off = le16_to_cpu(attr->nres.run_off); 2707 2708 if (svcn > evcn + 1 || run_off >= asize || 2709 le64_to_cpu(attr->nres.valid_size) > dsize || 2710 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2711 return false; 2712 } 2713 2714 if (run_off > asize) 2715 return false; 2716 2717 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2718 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2719 return false; 2720 } 2721 2722 return true; 2723 2724 default: 2725 return false; 2726 } 2727 2728 switch (attr->type) { 2729 case ATTR_NAME: 2730 if (fname_full_size(Add2Ptr( 2731 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2732 return false; 2733 } 2734 break; 2735 2736 case ATTR_ROOT: 2737 return check_index_root(attr, sbi); 2738 2739 case ATTR_STD: 2740 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2741 rsize != sizeof(struct ATTR_STD_INFO)) { 2742 return false; 2743 } 2744 break; 2745 2746 case ATTR_LIST: 2747 case ATTR_ID: 2748 case ATTR_SECURE: 2749 case ATTR_LABEL: 2750 case ATTR_VOL_INFO: 2751 case ATTR_DATA: 2752 case ATTR_ALLOC: 2753 case ATTR_BITMAP: 2754 case ATTR_REPARSE: 2755 case ATTR_EA_INFO: 2756 case ATTR_EA: 2757 case ATTR_PROPERTYSET: 2758 case ATTR_LOGGED_UTILITY_STREAM: 2759 break; 2760 2761 default: 2762 return false; 2763 } 2764 2765 return true; 2766 } 2767 2768 static inline bool check_file_record(const struct MFT_REC *rec, 2769 const struct MFT_REC *rec2, 2770 struct ntfs_sb_info *sbi) 2771 { 2772 const struct ATTRIB *attr; 2773 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2774 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2775 u16 ao = le16_to_cpu(rec->attr_off); 2776 u32 rs = sbi->record_size; 2777 2778 /* Check the file record header for consistency. */ 2779 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2780 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2781 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2782 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2783 le32_to_cpu(rec->total) != rs) { 2784 return false; 2785 } 2786 2787 /* Loop to check all of the attributes. */ 2788 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2789 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2790 if (check_attr(rec, attr, sbi)) 2791 continue; 2792 return false; 2793 } 2794 2795 return true; 2796 } 2797 2798 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2799 const u64 *rlsn) 2800 { 2801 u64 lsn; 2802 2803 if (!rlsn) 2804 return true; 2805 2806 lsn = le64_to_cpu(hdr->lsn); 2807 2808 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2809 return false; 2810 2811 if (*rlsn > lsn) 2812 return true; 2813 2814 return false; 2815 } 2816 2817 static inline bool check_if_attr(const struct MFT_REC *rec, 2818 const struct LOG_REC_HDR *lrh) 2819 { 2820 u16 ro = le16_to_cpu(lrh->record_off); 2821 u16 o = le16_to_cpu(rec->attr_off); 2822 const struct ATTRIB *attr = Add2Ptr(rec, o); 2823 2824 while (o < ro) { 2825 u32 asize; 2826 2827 if (attr->type == ATTR_END) 2828 break; 2829 2830 asize = le32_to_cpu(attr->size); 2831 if (!asize) 2832 break; 2833 2834 o += asize; 2835 attr = Add2Ptr(attr, asize); 2836 } 2837 2838 return o == ro; 2839 } 2840 2841 static inline bool check_if_index_root(const struct MFT_REC *rec, 2842 const struct LOG_REC_HDR *lrh) 2843 { 2844 u16 ro = le16_to_cpu(lrh->record_off); 2845 u16 o = le16_to_cpu(rec->attr_off); 2846 const struct ATTRIB *attr = Add2Ptr(rec, o); 2847 2848 while (o < ro) { 2849 u32 asize; 2850 2851 if (attr->type == ATTR_END) 2852 break; 2853 2854 asize = le32_to_cpu(attr->size); 2855 if (!asize) 2856 break; 2857 2858 o += asize; 2859 attr = Add2Ptr(attr, asize); 2860 } 2861 2862 return o == ro && attr->type == ATTR_ROOT; 2863 } 2864 2865 static inline bool check_if_root_index(const struct ATTRIB *attr, 2866 const struct INDEX_HDR *hdr, 2867 const struct LOG_REC_HDR *lrh) 2868 { 2869 u16 ao = le16_to_cpu(lrh->attr_off); 2870 u32 de_off = le32_to_cpu(hdr->de_off); 2871 u32 o = PtrOffset(attr, hdr) + de_off; 2872 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2873 u32 asize = le32_to_cpu(attr->size); 2874 2875 while (o < ao) { 2876 u16 esize; 2877 2878 if (o >= asize) 2879 break; 2880 2881 esize = le16_to_cpu(e->size); 2882 if (!esize) 2883 break; 2884 2885 o += esize; 2886 e = Add2Ptr(e, esize); 2887 } 2888 2889 return o == ao; 2890 } 2891 2892 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2893 u32 attr_off) 2894 { 2895 u32 de_off = le32_to_cpu(hdr->de_off); 2896 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2897 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2898 u32 used = le32_to_cpu(hdr->used); 2899 2900 while (o < attr_off) { 2901 u16 esize; 2902 2903 if (de_off >= used) 2904 break; 2905 2906 esize = le16_to_cpu(e->size); 2907 if (!esize) 2908 break; 2909 2910 o += esize; 2911 de_off += esize; 2912 e = Add2Ptr(e, esize); 2913 } 2914 2915 return o == attr_off; 2916 } 2917 2918 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2919 u32 nsize) 2920 { 2921 u32 asize = le32_to_cpu(attr->size); 2922 int dsize = nsize - asize; 2923 u8 *next = Add2Ptr(attr, asize); 2924 u32 used = le32_to_cpu(rec->used); 2925 2926 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2927 2928 rec->used = cpu_to_le32(used + dsize); 2929 attr->size = cpu_to_le32(nsize); 2930 } 2931 2932 struct OpenAttr { 2933 struct ATTRIB *attr; 2934 struct runs_tree *run1; 2935 struct runs_tree run0; 2936 struct ntfs_inode *ni; 2937 // CLST rno; 2938 }; 2939 2940 /* 2941 * cmp_type_and_name 2942 * 2943 * Return: 0 if 'attr' has the same type and name. 2944 */ 2945 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2946 const struct ATTRIB *a2) 2947 { 2948 return a1->type != a2->type || a1->name_len != a2->name_len || 2949 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2950 a1->name_len * sizeof(short))); 2951 } 2952 2953 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2954 const struct ATTRIB *attr, CLST rno) 2955 { 2956 struct OPEN_ATTR_ENRTY *oe = NULL; 2957 2958 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2959 struct OpenAttr *op_attr; 2960 2961 if (ino_get(&oe->ref) != rno) 2962 continue; 2963 2964 op_attr = (struct OpenAttr *)oe->ptr; 2965 if (!cmp_type_and_name(op_attr->attr, attr)) 2966 return op_attr; 2967 } 2968 return NULL; 2969 } 2970 2971 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2972 enum ATTR_TYPE type, u64 size, 2973 const u16 *name, size_t name_len, 2974 __le16 flags) 2975 { 2976 struct ATTRIB *attr; 2977 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2978 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2979 u32 asize = name_size + 2980 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2981 2982 attr = kzalloc(asize, GFP_NOFS); 2983 if (!attr) 2984 return NULL; 2985 2986 attr->type = type; 2987 attr->size = cpu_to_le32(asize); 2988 attr->flags = flags; 2989 attr->non_res = 1; 2990 attr->name_len = name_len; 2991 2992 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 2993 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 2994 attr->nres.data_size = cpu_to_le64(size); 2995 attr->nres.valid_size = attr->nres.data_size; 2996 if (is_ext) { 2997 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 2998 if (is_attr_compressed(attr)) 2999 attr->nres.c_unit = NTFS_LZNT_CUNIT; 3000 3001 attr->nres.run_off = 3002 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 3003 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 3004 name_len * sizeof(short)); 3005 } else { 3006 attr->name_off = SIZEOF_NONRESIDENT_LE; 3007 attr->nres.run_off = 3008 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3009 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3010 name_len * sizeof(short)); 3011 } 3012 3013 return attr; 3014 } 3015 3016 /* 3017 * do_action - Common routine for the Redo and Undo Passes. 3018 * @rlsn: If it is NULL then undo. 3019 */ 3020 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3021 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3022 u32 dlen, u32 rec_len, const u64 *rlsn) 3023 { 3024 int err = 0; 3025 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3026 struct inode *inode = NULL, *inode_parent; 3027 struct mft_inode *mi = NULL, *mi2_child = NULL; 3028 CLST rno = 0, rno_base = 0; 3029 struct INDEX_BUFFER *ib = NULL; 3030 struct MFT_REC *rec = NULL; 3031 struct ATTRIB *attr = NULL, *attr2; 3032 struct INDEX_HDR *hdr; 3033 struct INDEX_ROOT *root; 3034 struct NTFS_DE *e, *e1, *e2; 3035 struct NEW_ATTRIBUTE_SIZES *new_sz; 3036 struct ATTR_FILE_NAME *fname; 3037 struct OpenAttr *oa, *oa2; 3038 u32 nsize, t32, asize, used, esize, off, bits; 3039 u16 id, id2; 3040 u32 record_size = sbi->record_size; 3041 u64 t64; 3042 u16 roff = le16_to_cpu(lrh->record_off); 3043 u16 aoff = le16_to_cpu(lrh->attr_off); 3044 u64 lco = 0; 3045 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3046 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3047 u64 vbo = cbo + tvo; 3048 void *buffer_le = NULL; 3049 u32 bytes = 0; 3050 bool a_dirty = false; 3051 u16 data_off; 3052 3053 oa = oe->ptr; 3054 3055 /* Big switch to prepare. */ 3056 switch (op) { 3057 /* ============================================================ 3058 * Process MFT records, as described by the current log record. 3059 * ============================================================ 3060 */ 3061 case InitializeFileRecordSegment: 3062 case DeallocateFileRecordSegment: 3063 case WriteEndOfFileRecordSegment: 3064 case CreateAttribute: 3065 case DeleteAttribute: 3066 case UpdateResidentValue: 3067 case UpdateMappingPairs: 3068 case SetNewAttributeSizes: 3069 case AddIndexEntryRoot: 3070 case DeleteIndexEntryRoot: 3071 case SetIndexEntryVcnRoot: 3072 case UpdateFileNameRoot: 3073 case UpdateRecordDataRoot: 3074 case ZeroEndOfFileRecord: 3075 rno = vbo >> sbi->record_bits; 3076 inode = ilookup(sbi->sb, rno); 3077 if (inode) { 3078 mi = &ntfs_i(inode)->mi; 3079 } else if (op == InitializeFileRecordSegment) { 3080 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3081 if (!mi) 3082 return -ENOMEM; 3083 err = mi_format_new(mi, sbi, rno, 0, false); 3084 if (err) 3085 goto out; 3086 } else { 3087 /* Read from disk. */ 3088 err = mi_get(sbi, rno, &mi); 3089 if (err) 3090 return err; 3091 } 3092 rec = mi->mrec; 3093 3094 if (op == DeallocateFileRecordSegment) 3095 goto skip_load_parent; 3096 3097 if (InitializeFileRecordSegment != op) { 3098 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3099 goto dirty_vol; 3100 if (!check_lsn(&rec->rhdr, rlsn)) 3101 goto out; 3102 if (!check_file_record(rec, NULL, sbi)) 3103 goto dirty_vol; 3104 attr = Add2Ptr(rec, roff); 3105 } 3106 3107 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3108 rno_base = rno; 3109 goto skip_load_parent; 3110 } 3111 3112 rno_base = ino_get(&rec->parent_ref); 3113 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3114 if (IS_ERR(inode_parent)) 3115 goto skip_load_parent; 3116 3117 if (is_bad_inode(inode_parent)) { 3118 iput(inode_parent); 3119 goto skip_load_parent; 3120 } 3121 3122 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3123 iput(inode_parent); 3124 } else { 3125 if (mi2_child->mrec != mi->mrec) 3126 memcpy(mi2_child->mrec, mi->mrec, 3127 sbi->record_size); 3128 3129 if (inode) 3130 iput(inode); 3131 else if (mi) 3132 mi_put(mi); 3133 3134 inode = inode_parent; 3135 mi = mi2_child; 3136 rec = mi2_child->mrec; 3137 attr = Add2Ptr(rec, roff); 3138 } 3139 3140 skip_load_parent: 3141 inode_parent = NULL; 3142 break; 3143 3144 /* 3145 * Process attributes, as described by the current log record. 3146 */ 3147 case UpdateNonresidentValue: 3148 case AddIndexEntryAllocation: 3149 case DeleteIndexEntryAllocation: 3150 case WriteEndOfIndexBuffer: 3151 case SetIndexEntryVcnAllocation: 3152 case UpdateFileNameAllocation: 3153 case SetBitsInNonresidentBitMap: 3154 case ClearBitsInNonresidentBitMap: 3155 case UpdateRecordDataAllocation: 3156 attr = oa->attr; 3157 bytes = UpdateNonresidentValue == op ? dlen : 0; 3158 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3159 3160 if (attr->type == ATTR_ALLOC) { 3161 t32 = le32_to_cpu(oe->bytes_per_index); 3162 if (bytes < t32) 3163 bytes = t32; 3164 } 3165 3166 if (!bytes) 3167 bytes = lco - cbo; 3168 3169 bytes += roff; 3170 if (attr->type == ATTR_ALLOC) 3171 bytes = (bytes + 511) & ~511; // align 3172 3173 buffer_le = kmalloc(bytes, GFP_NOFS); 3174 if (!buffer_le) 3175 return -ENOMEM; 3176 3177 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3178 NULL); 3179 if (err) 3180 goto out; 3181 3182 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3183 ntfs_fix_post_read(buffer_le, bytes, false); 3184 break; 3185 3186 default: 3187 WARN_ON(1); 3188 } 3189 3190 /* Big switch to do operation. */ 3191 switch (op) { 3192 case InitializeFileRecordSegment: 3193 if (roff + dlen > record_size) 3194 goto dirty_vol; 3195 3196 memcpy(Add2Ptr(rec, roff), data, dlen); 3197 mi->dirty = true; 3198 break; 3199 3200 case DeallocateFileRecordSegment: 3201 clear_rec_inuse(rec); 3202 le16_add_cpu(&rec->seq, 1); 3203 mi->dirty = true; 3204 break; 3205 3206 case WriteEndOfFileRecordSegment: 3207 attr2 = (struct ATTRIB *)data; 3208 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3209 goto dirty_vol; 3210 3211 memmove(attr, attr2, dlen); 3212 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3213 3214 mi->dirty = true; 3215 break; 3216 3217 case CreateAttribute: 3218 attr2 = (struct ATTRIB *)data; 3219 asize = le32_to_cpu(attr2->size); 3220 used = le32_to_cpu(rec->used); 3221 3222 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3223 !IS_ALIGNED(asize, 8) || 3224 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3225 dlen > record_size - used) { 3226 goto dirty_vol; 3227 } 3228 3229 memmove(Add2Ptr(attr, asize), attr, used - roff); 3230 memcpy(attr, attr2, asize); 3231 3232 rec->used = cpu_to_le32(used + asize); 3233 id = le16_to_cpu(rec->next_attr_id); 3234 id2 = le16_to_cpu(attr2->id); 3235 if (id <= id2) 3236 rec->next_attr_id = cpu_to_le16(id2 + 1); 3237 if (is_attr_indexed(attr)) 3238 le16_add_cpu(&rec->hard_links, 1); 3239 3240 oa2 = find_loaded_attr(log, attr, rno_base); 3241 if (oa2) { 3242 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3243 GFP_NOFS); 3244 if (p2) { 3245 // run_close(oa2->run1); 3246 kfree(oa2->attr); 3247 oa2->attr = p2; 3248 } 3249 } 3250 3251 mi->dirty = true; 3252 break; 3253 3254 case DeleteAttribute: 3255 asize = le32_to_cpu(attr->size); 3256 used = le32_to_cpu(rec->used); 3257 3258 if (!check_if_attr(rec, lrh)) 3259 goto dirty_vol; 3260 3261 rec->used = cpu_to_le32(used - asize); 3262 if (is_attr_indexed(attr)) 3263 le16_add_cpu(&rec->hard_links, -1); 3264 3265 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3266 3267 mi->dirty = true; 3268 break; 3269 3270 case UpdateResidentValue: 3271 nsize = aoff + dlen; 3272 3273 if (!check_if_attr(rec, lrh)) 3274 goto dirty_vol; 3275 3276 asize = le32_to_cpu(attr->size); 3277 used = le32_to_cpu(rec->used); 3278 3279 if (lrh->redo_len == lrh->undo_len) { 3280 if (nsize > asize) 3281 goto dirty_vol; 3282 goto move_data; 3283 } 3284 3285 if (nsize > asize && nsize - asize > record_size - used) 3286 goto dirty_vol; 3287 3288 nsize = ALIGN(nsize, 8); 3289 data_off = le16_to_cpu(attr->res.data_off); 3290 3291 if (nsize < asize) { 3292 memmove(Add2Ptr(attr, aoff), data, dlen); 3293 data = NULL; // To skip below memmove(). 3294 } 3295 3296 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3297 used - le16_to_cpu(lrh->record_off) - asize); 3298 3299 rec->used = cpu_to_le32(used + nsize - asize); 3300 attr->size = cpu_to_le32(nsize); 3301 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3302 3303 move_data: 3304 if (data) 3305 memmove(Add2Ptr(attr, aoff), data, dlen); 3306 3307 oa2 = find_loaded_attr(log, attr, rno_base); 3308 if (oa2) { 3309 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3310 GFP_NOFS); 3311 if (p2) { 3312 // run_close(&oa2->run0); 3313 oa2->run1 = &oa2->run0; 3314 kfree(oa2->attr); 3315 oa2->attr = p2; 3316 } 3317 } 3318 3319 mi->dirty = true; 3320 break; 3321 3322 case UpdateMappingPairs: 3323 nsize = aoff + dlen; 3324 asize = le32_to_cpu(attr->size); 3325 used = le32_to_cpu(rec->used); 3326 3327 if (!check_if_attr(rec, lrh) || !attr->non_res || 3328 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3329 (nsize > asize && nsize - asize > record_size - used)) { 3330 goto dirty_vol; 3331 } 3332 3333 nsize = ALIGN(nsize, 8); 3334 3335 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3336 used - le16_to_cpu(lrh->record_off) - asize); 3337 rec->used = cpu_to_le32(used + nsize - asize); 3338 attr->size = cpu_to_le32(nsize); 3339 memmove(Add2Ptr(attr, aoff), data, dlen); 3340 3341 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3342 attr_run(attr), &t64)) { 3343 goto dirty_vol; 3344 } 3345 3346 attr->nres.evcn = cpu_to_le64(t64); 3347 oa2 = find_loaded_attr(log, attr, rno_base); 3348 if (oa2 && oa2->attr->non_res) 3349 oa2->attr->nres.evcn = attr->nres.evcn; 3350 3351 mi->dirty = true; 3352 break; 3353 3354 case SetNewAttributeSizes: 3355 new_sz = data; 3356 if (!check_if_attr(rec, lrh) || !attr->non_res) 3357 goto dirty_vol; 3358 3359 attr->nres.alloc_size = new_sz->alloc_size; 3360 attr->nres.data_size = new_sz->data_size; 3361 attr->nres.valid_size = new_sz->valid_size; 3362 3363 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3364 attr->nres.total_size = new_sz->total_size; 3365 3366 oa2 = find_loaded_attr(log, attr, rno_base); 3367 if (oa2) { 3368 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3369 GFP_NOFS); 3370 if (p2) { 3371 kfree(oa2->attr); 3372 oa2->attr = p2; 3373 } 3374 } 3375 mi->dirty = true; 3376 break; 3377 3378 case AddIndexEntryRoot: 3379 e = (struct NTFS_DE *)data; 3380 esize = le16_to_cpu(e->size); 3381 root = resident_data(attr); 3382 hdr = &root->ihdr; 3383 used = le32_to_cpu(hdr->used); 3384 3385 if (!check_if_index_root(rec, lrh) || 3386 !check_if_root_index(attr, hdr, lrh) || 3387 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3388 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3389 goto dirty_vol; 3390 } 3391 3392 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3393 3394 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3395 3396 memmove(Add2Ptr(e1, esize), e1, 3397 PtrOffset(e1, Add2Ptr(hdr, used))); 3398 memmove(e1, e, esize); 3399 3400 le32_add_cpu(&attr->res.data_size, esize); 3401 hdr->used = cpu_to_le32(used + esize); 3402 le32_add_cpu(&hdr->total, esize); 3403 3404 mi->dirty = true; 3405 break; 3406 3407 case DeleteIndexEntryRoot: 3408 root = resident_data(attr); 3409 hdr = &root->ihdr; 3410 used = le32_to_cpu(hdr->used); 3411 3412 if (!check_if_index_root(rec, lrh) || 3413 !check_if_root_index(attr, hdr, lrh)) { 3414 goto dirty_vol; 3415 } 3416 3417 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3418 esize = le16_to_cpu(e1->size); 3419 e2 = Add2Ptr(e1, esize); 3420 3421 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3422 3423 le32_sub_cpu(&attr->res.data_size, esize); 3424 hdr->used = cpu_to_le32(used - esize); 3425 le32_sub_cpu(&hdr->total, esize); 3426 3427 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3428 3429 mi->dirty = true; 3430 break; 3431 3432 case SetIndexEntryVcnRoot: 3433 root = resident_data(attr); 3434 hdr = &root->ihdr; 3435 3436 if (!check_if_index_root(rec, lrh) || 3437 !check_if_root_index(attr, hdr, lrh)) { 3438 goto dirty_vol; 3439 } 3440 3441 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3442 3443 de_set_vbn_le(e, *(__le64 *)data); 3444 mi->dirty = true; 3445 break; 3446 3447 case UpdateFileNameRoot: 3448 root = resident_data(attr); 3449 hdr = &root->ihdr; 3450 3451 if (!check_if_index_root(rec, lrh) || 3452 !check_if_root_index(attr, hdr, lrh)) { 3453 goto dirty_vol; 3454 } 3455 3456 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3457 fname = (struct ATTR_FILE_NAME *)(e + 1); 3458 memmove(&fname->dup, data, sizeof(fname->dup)); // 3459 mi->dirty = true; 3460 break; 3461 3462 case UpdateRecordDataRoot: 3463 root = resident_data(attr); 3464 hdr = &root->ihdr; 3465 3466 if (!check_if_index_root(rec, lrh) || 3467 !check_if_root_index(attr, hdr, lrh)) { 3468 goto dirty_vol; 3469 } 3470 3471 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3472 3473 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3474 3475 mi->dirty = true; 3476 break; 3477 3478 case ZeroEndOfFileRecord: 3479 if (roff + dlen > record_size) 3480 goto dirty_vol; 3481 3482 memset(attr, 0, dlen); 3483 mi->dirty = true; 3484 break; 3485 3486 case UpdateNonresidentValue: 3487 if (lco < cbo + roff + dlen) 3488 goto dirty_vol; 3489 3490 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3491 3492 a_dirty = true; 3493 if (attr->type == ATTR_ALLOC) 3494 ntfs_fix_pre_write(buffer_le, bytes); 3495 break; 3496 3497 case AddIndexEntryAllocation: 3498 ib = Add2Ptr(buffer_le, roff); 3499 hdr = &ib->ihdr; 3500 e = data; 3501 esize = le16_to_cpu(e->size); 3502 e1 = Add2Ptr(ib, aoff); 3503 3504 if (is_baad(&ib->rhdr)) 3505 goto dirty_vol; 3506 if (!check_lsn(&ib->rhdr, rlsn)) 3507 goto out; 3508 3509 used = le32_to_cpu(hdr->used); 3510 3511 if (!check_index_buffer(ib, bytes) || 3512 !check_if_alloc_index(hdr, aoff) || 3513 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3514 used + esize > le32_to_cpu(hdr->total)) { 3515 goto dirty_vol; 3516 } 3517 3518 memmove(Add2Ptr(e1, esize), e1, 3519 PtrOffset(e1, Add2Ptr(hdr, used))); 3520 memcpy(e1, e, esize); 3521 3522 hdr->used = cpu_to_le32(used + esize); 3523 3524 a_dirty = true; 3525 3526 ntfs_fix_pre_write(&ib->rhdr, bytes); 3527 break; 3528 3529 case DeleteIndexEntryAllocation: 3530 ib = Add2Ptr(buffer_le, roff); 3531 hdr = &ib->ihdr; 3532 e = Add2Ptr(ib, aoff); 3533 esize = le16_to_cpu(e->size); 3534 3535 if (is_baad(&ib->rhdr)) 3536 goto dirty_vol; 3537 if (!check_lsn(&ib->rhdr, rlsn)) 3538 goto out; 3539 3540 if (!check_index_buffer(ib, bytes) || 3541 !check_if_alloc_index(hdr, aoff)) { 3542 goto dirty_vol; 3543 } 3544 3545 e1 = Add2Ptr(e, esize); 3546 nsize = esize; 3547 used = le32_to_cpu(hdr->used); 3548 3549 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3550 3551 hdr->used = cpu_to_le32(used - nsize); 3552 3553 a_dirty = true; 3554 3555 ntfs_fix_pre_write(&ib->rhdr, bytes); 3556 break; 3557 3558 case WriteEndOfIndexBuffer: 3559 ib = Add2Ptr(buffer_le, roff); 3560 hdr = &ib->ihdr; 3561 e = Add2Ptr(ib, aoff); 3562 3563 if (is_baad(&ib->rhdr)) 3564 goto dirty_vol; 3565 if (!check_lsn(&ib->rhdr, rlsn)) 3566 goto out; 3567 if (!check_index_buffer(ib, bytes) || 3568 !check_if_alloc_index(hdr, aoff) || 3569 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3570 le32_to_cpu(hdr->total)) { 3571 goto dirty_vol; 3572 } 3573 3574 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3575 memmove(e, data, dlen); 3576 3577 a_dirty = true; 3578 ntfs_fix_pre_write(&ib->rhdr, bytes); 3579 break; 3580 3581 case SetIndexEntryVcnAllocation: 3582 ib = Add2Ptr(buffer_le, roff); 3583 hdr = &ib->ihdr; 3584 e = Add2Ptr(ib, aoff); 3585 3586 if (is_baad(&ib->rhdr)) 3587 goto dirty_vol; 3588 3589 if (!check_lsn(&ib->rhdr, rlsn)) 3590 goto out; 3591 if (!check_index_buffer(ib, bytes) || 3592 !check_if_alloc_index(hdr, aoff)) { 3593 goto dirty_vol; 3594 } 3595 3596 de_set_vbn_le(e, *(__le64 *)data); 3597 3598 a_dirty = true; 3599 ntfs_fix_pre_write(&ib->rhdr, bytes); 3600 break; 3601 3602 case UpdateFileNameAllocation: 3603 ib = Add2Ptr(buffer_le, roff); 3604 hdr = &ib->ihdr; 3605 e = Add2Ptr(ib, aoff); 3606 3607 if (is_baad(&ib->rhdr)) 3608 goto dirty_vol; 3609 3610 if (!check_lsn(&ib->rhdr, rlsn)) 3611 goto out; 3612 if (!check_index_buffer(ib, bytes) || 3613 !check_if_alloc_index(hdr, aoff)) { 3614 goto dirty_vol; 3615 } 3616 3617 fname = (struct ATTR_FILE_NAME *)(e + 1); 3618 memmove(&fname->dup, data, sizeof(fname->dup)); 3619 3620 a_dirty = true; 3621 ntfs_fix_pre_write(&ib->rhdr, bytes); 3622 break; 3623 3624 case SetBitsInNonresidentBitMap: 3625 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3626 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3627 3628 if (cbo + (off + 7) / 8 > lco || 3629 cbo + ((off + bits + 7) / 8) > lco) { 3630 goto dirty_vol; 3631 } 3632 3633 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); 3634 a_dirty = true; 3635 break; 3636 3637 case ClearBitsInNonresidentBitMap: 3638 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3639 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3640 3641 if (cbo + (off + 7) / 8 > lco || 3642 cbo + ((off + bits + 7) / 8) > lco) { 3643 goto dirty_vol; 3644 } 3645 3646 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); 3647 a_dirty = true; 3648 break; 3649 3650 case UpdateRecordDataAllocation: 3651 ib = Add2Ptr(buffer_le, roff); 3652 hdr = &ib->ihdr; 3653 e = Add2Ptr(ib, aoff); 3654 3655 if (is_baad(&ib->rhdr)) 3656 goto dirty_vol; 3657 3658 if (!check_lsn(&ib->rhdr, rlsn)) 3659 goto out; 3660 if (!check_index_buffer(ib, bytes) || 3661 !check_if_alloc_index(hdr, aoff)) { 3662 goto dirty_vol; 3663 } 3664 3665 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3666 3667 a_dirty = true; 3668 ntfs_fix_pre_write(&ib->rhdr, bytes); 3669 break; 3670 3671 default: 3672 WARN_ON(1); 3673 } 3674 3675 if (rlsn) { 3676 __le64 t64 = cpu_to_le64(*rlsn); 3677 3678 if (rec) 3679 rec->rhdr.lsn = t64; 3680 if (ib) 3681 ib->rhdr.lsn = t64; 3682 } 3683 3684 if (mi && mi->dirty) { 3685 err = mi_write(mi, 0); 3686 if (err) 3687 goto out; 3688 } 3689 3690 if (a_dirty) { 3691 attr = oa->attr; 3692 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 3693 0); 3694 if (err) 3695 goto out; 3696 } 3697 3698 out: 3699 3700 if (inode) 3701 iput(inode); 3702 else if (mi != mi2_child) 3703 mi_put(mi); 3704 3705 kfree(buffer_le); 3706 3707 return err; 3708 3709 dirty_vol: 3710 log->set_dirty = true; 3711 goto out; 3712 } 3713 3714 /* 3715 * log_replay - Replays log and empties it. 3716 * 3717 * This function is called during mount operation. 3718 * It replays log and empties it. 3719 * Initialized is set false if logfile contains '-1'. 3720 */ 3721 int log_replay(struct ntfs_inode *ni, bool *initialized) 3722 { 3723 int err; 3724 struct ntfs_sb_info *sbi = ni->mi.sbi; 3725 struct ntfs_log *log; 3726 3727 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0; 3728 struct ATTR_NAME_ENTRY *attr_names = NULL; 3729 u32 attr_names_bytes = 0; 3730 u32 oatbl_bytes = 0; 3731 struct RESTART_TABLE *dptbl = NULL; 3732 struct RESTART_TABLE *trtbl = NULL; 3733 const struct RESTART_TABLE *rt; 3734 struct RESTART_TABLE *oatbl = NULL; 3735 struct inode *inode; 3736 struct OpenAttr *oa; 3737 struct ntfs_inode *ni_oe; 3738 struct ATTRIB *attr = NULL; 3739 u64 size, vcn, undo_next_lsn; 3740 CLST rno, lcn, lcn0, len0, clen; 3741 void *data; 3742 struct NTFS_RESTART *rst = NULL; 3743 struct lcb *lcb = NULL; 3744 struct OPEN_ATTR_ENRTY *oe; 3745 struct ATTR_NAME_ENTRY *ane; 3746 struct TRANSACTION_ENTRY *tr; 3747 struct DIR_PAGE_ENTRY *dp; 3748 u32 i, bytes_per_attr_entry; 3749 u32 vbo, tail, off, dlen; 3750 u32 saved_len, rec_len, transact_id; 3751 bool use_second_page; 3752 struct RESTART_AREA *ra2, *ra = NULL; 3753 struct CLIENT_REC *ca, *cr; 3754 __le16 client; 3755 struct RESTART_HDR *rh; 3756 const struct LFS_RECORD_HDR *frh; 3757 const struct LOG_REC_HDR *lrh; 3758 bool is_mapped; 3759 bool is_ro = sb_rdonly(sbi->sb); 3760 u64 t64; 3761 u16 t16; 3762 u32 t32; 3763 3764 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3765 if (!log) 3766 return -ENOMEM; 3767 3768 log->ni = ni; 3769 log->l_size = log->orig_file_size = ni->vfs_inode.i_size; 3770 3771 /* Get the size of page. NOTE: To replay we can use default page. */ 3772 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3773 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true); 3774 #else 3775 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false); 3776 #endif 3777 if (!log->page_size) { 3778 err = -EINVAL; 3779 goto out; 3780 } 3781 3782 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS); 3783 if (!log->one_page_buf) { 3784 err = -ENOMEM; 3785 goto out; 3786 } 3787 3788 log->page_mask = log->page_size - 1; 3789 log->page_bits = blksize_bits(log->page_size); 3790 3791 /* Look for a restart area on the disk. */ 3792 err = log_read_rst(log, true, &log->rst_info); 3793 if (err) 3794 goto out; 3795 3796 /* remember 'initialized' */ 3797 *initialized = log->rst_info.initialized; 3798 3799 if (!log->rst_info.restart) { 3800 if (log->rst_info.initialized) { 3801 /* No restart area but the file is not initialized. */ 3802 err = -EINVAL; 3803 goto out; 3804 } 3805 3806 log_init_pg_hdr(log, 1, 1); 3807 log_create(log, 0, get_random_u32(), false, false); 3808 3809 ra = log_create_ra(log); 3810 if (!ra) { 3811 err = -ENOMEM; 3812 goto out; 3813 } 3814 log->ra = ra; 3815 log->init_ra = true; 3816 3817 goto process_log; 3818 } 3819 3820 /* 3821 * If the restart offset above wasn't zero then we won't 3822 * look for a second restart. 3823 */ 3824 if (log->rst_info.vbo) 3825 goto check_restart_area; 3826 3827 err = log_read_rst(log, false, &log->rst_info2); 3828 if (err) 3829 goto out; 3830 3831 /* Determine which restart area to use. */ 3832 if (!log->rst_info2.restart || 3833 log->rst_info2.last_lsn <= log->rst_info.last_lsn) 3834 goto use_first_page; 3835 3836 use_second_page = true; 3837 3838 if (log->rst_info.chkdsk_was_run && 3839 log->page_size != log->rst_info.vbo) { 3840 struct RECORD_PAGE_HDR *sp = NULL; 3841 bool usa_error; 3842 3843 if (!read_log_page(log, log->page_size, &sp, &usa_error) && 3844 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3845 use_second_page = false; 3846 } 3847 kfree(sp); 3848 } 3849 3850 if (use_second_page) { 3851 kfree(log->rst_info.r_page); 3852 memcpy(&log->rst_info, &log->rst_info2, 3853 sizeof(struct restart_info)); 3854 log->rst_info2.r_page = NULL; 3855 } 3856 3857 use_first_page: 3858 kfree(log->rst_info2.r_page); 3859 3860 check_restart_area: 3861 /* 3862 * If the restart area is at offset 0, we want 3863 * to write the second restart area first. 3864 */ 3865 log->init_ra = !!log->rst_info.vbo; 3866 3867 /* If we have a valid page then grab a pointer to the restart area. */ 3868 ra2 = log->rst_info.valid_page ? 3869 Add2Ptr(log->rst_info.r_page, 3870 le16_to_cpu(log->rst_info.r_page->ra_off)) : 3871 NULL; 3872 3873 if (log->rst_info.chkdsk_was_run || 3874 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3875 bool wrapped = false; 3876 bool use_multi_page = false; 3877 u32 open_log_count; 3878 3879 /* Do some checks based on whether we have a valid log page. */ 3880 open_log_count = log->rst_info.valid_page ? 3881 le32_to_cpu(ra2->open_log_count) : 3882 get_random_u32(); 3883 3884 log_init_pg_hdr(log, 1, 1); 3885 3886 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped, 3887 use_multi_page); 3888 3889 ra = log_create_ra(log); 3890 if (!ra) { 3891 err = -ENOMEM; 3892 goto out; 3893 } 3894 log->ra = ra; 3895 3896 /* Put the restart areas and initialize 3897 * the log file as required. 3898 */ 3899 goto process_log; 3900 } 3901 3902 if (!ra2) { 3903 err = -EINVAL; 3904 goto out; 3905 } 3906 3907 /* 3908 * If the log page or the system page sizes have changed, we can't 3909 * use the log file. We must use the system page size instead of the 3910 * default size if there is not a clean shutdown. 3911 */ 3912 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size); 3913 if (log->page_size != t32) { 3914 log->l_size = log->orig_file_size; 3915 log->page_size = norm_file_page(t32, &log->l_size, 3916 t32 == DefaultLogPageSize); 3917 } 3918 3919 if (log->page_size != t32 || 3920 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) { 3921 err = -EINVAL; 3922 goto out; 3923 } 3924 3925 log->page_mask = log->page_size - 1; 3926 log->page_bits = blksize_bits(log->page_size); 3927 3928 /* If the file size has shrunk then we won't mount it. */ 3929 if (log->l_size < le64_to_cpu(ra2->l_size)) { 3930 err = -EINVAL; 3931 goto out; 3932 } 3933 3934 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver), 3935 le16_to_cpu(log->rst_info.r_page->minor_ver)); 3936 3937 log->l_size = le64_to_cpu(ra2->l_size); 3938 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3939 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3940 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3941 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3942 log->seq_num = log->last_lsn >> log->file_data_bits; 3943 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off); 3944 log->restart_size = log->sys_page_size - log->ra_off; 3945 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3946 log->ra_size = le16_to_cpu(ra2->ra_len); 3947 log->data_off = le16_to_cpu(ra2->data_off); 3948 log->data_size = log->page_size - log->data_off; 3949 log->reserved = log->data_size - log->record_header_len; 3950 3951 vbo = lsn_to_vbo(log, log->last_lsn); 3952 3953 if (vbo < log->first_page) { 3954 /* This is a pseudo lsn. */ 3955 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3956 log->next_page = log->first_page; 3957 goto find_oldest; 3958 } 3959 3960 /* Find the end of this log record. */ 3961 off = final_log_off(log, log->last_lsn, 3962 le32_to_cpu(ra2->last_lsn_data_len)); 3963 3964 /* If we wrapped the file then increment the sequence number. */ 3965 if (off <= vbo) { 3966 log->seq_num += 1; 3967 log->l_flags |= NTFSLOG_WRAPPED; 3968 } 3969 3970 /* Now compute the next log page to use. */ 3971 vbo &= ~log->sys_page_mask; 3972 tail = log->page_size - (off & log->page_mask) - 1; 3973 3974 /* 3975 *If we can fit another log record on the page, 3976 * move back a page the log file. 3977 */ 3978 if (tail >= log->record_header_len) { 3979 log->l_flags |= NTFSLOG_REUSE_TAIL; 3980 log->next_page = vbo; 3981 } else { 3982 log->next_page = next_page_off(log, vbo); 3983 } 3984 3985 find_oldest: 3986 /* 3987 * Find the oldest client lsn. Use the last 3988 * flushed lsn as a starting point. 3989 */ 3990 log->oldest_lsn = log->last_lsn; 3991 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 3992 ra2->client_idx[1], &log->oldest_lsn); 3993 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 3994 3995 if (log->oldest_lsn_off < log->first_page) 3996 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 3997 3998 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 3999 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 4000 4001 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 4002 log->total_avail_pages = log->l_size - log->first_page; 4003 log->total_avail = log->total_avail_pages >> log->page_bits; 4004 log->max_current_avail = log->total_avail * log->reserved; 4005 log->total_avail = log->total_avail * log->data_size; 4006 4007 log->current_avail = current_log_avail(log); 4008 4009 ra = kzalloc(log->restart_size, GFP_NOFS); 4010 if (!ra) { 4011 err = -ENOMEM; 4012 goto out; 4013 } 4014 log->ra = ra; 4015 4016 t16 = le16_to_cpu(ra2->client_off); 4017 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4018 memcpy(ra, ra2, log->ra_size); 4019 } else { 4020 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4021 memcpy(ra->clients, Add2Ptr(ra2, t16), 4022 le16_to_cpu(ra2->ra_len) - t16); 4023 4024 log->current_openlog_count = get_random_u32(); 4025 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4026 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4027 sizeof(struct CLIENT_REC); 4028 ra->client_off = 4029 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4030 ra->ra_len = cpu_to_le16(log->ra_size); 4031 } 4032 4033 le32_add_cpu(&ra->open_log_count, 1); 4034 4035 /* Now we need to walk through looking for the last lsn. */ 4036 err = last_log_lsn(log); 4037 if (err) 4038 goto out; 4039 4040 log->current_avail = current_log_avail(log); 4041 4042 /* Remember which restart area to write first. */ 4043 log->init_ra = log->rst_info.vbo; 4044 4045 process_log: 4046 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4047 switch ((log->major_ver << 16) + log->minor_ver) { 4048 case 0x10000: 4049 case 0x10001: 4050 case 0x20000: 4051 break; 4052 default: 4053 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4054 log->major_ver, log->minor_ver); 4055 err = -EOPNOTSUPP; 4056 log->set_dirty = true; 4057 goto out; 4058 } 4059 4060 /* One client "NTFS" per logfile. */ 4061 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4062 4063 for (client = ra->client_idx[1];; client = cr->next_client) { 4064 if (client == LFS_NO_CLIENT_LE) { 4065 /* Insert "NTFS" client LogFile. */ 4066 client = ra->client_idx[0]; 4067 if (client == LFS_NO_CLIENT_LE) { 4068 err = -EINVAL; 4069 goto out; 4070 } 4071 4072 t16 = le16_to_cpu(client); 4073 cr = ca + t16; 4074 4075 remove_client(ca, cr, &ra->client_idx[0]); 4076 4077 cr->restart_lsn = 0; 4078 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4079 cr->name_bytes = cpu_to_le32(8); 4080 cr->name[0] = cpu_to_le16('N'); 4081 cr->name[1] = cpu_to_le16('T'); 4082 cr->name[2] = cpu_to_le16('F'); 4083 cr->name[3] = cpu_to_le16('S'); 4084 4085 add_client(ca, t16, &ra->client_idx[1]); 4086 break; 4087 } 4088 4089 cr = ca + le16_to_cpu(client); 4090 4091 if (cpu_to_le32(8) == cr->name_bytes && 4092 cpu_to_le16('N') == cr->name[0] && 4093 cpu_to_le16('T') == cr->name[1] && 4094 cpu_to_le16('F') == cr->name[2] && 4095 cpu_to_le16('S') == cr->name[3]) 4096 break; 4097 } 4098 4099 /* Update the client handle with the client block information. */ 4100 log->client_id.seq_num = cr->seq_num; 4101 log->client_id.client_idx = client; 4102 4103 err = read_rst_area(log, &rst, &checkpt_lsn); 4104 if (err) 4105 goto out; 4106 4107 if (!rst) 4108 goto out; 4109 4110 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4111 4112 if (rst->check_point_start) 4113 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4114 4115 /* Allocate and Read the Transaction Table. */ 4116 if (!rst->transact_table_len) 4117 goto check_dirty_page_table; /* reduce tab pressure. */ 4118 4119 t64 = le64_to_cpu(rst->transact_table_lsn); 4120 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4121 if (err) 4122 goto out; 4123 4124 lrh = lcb->log_rec; 4125 frh = lcb->lrh; 4126 rec_len = le32_to_cpu(frh->client_data_len); 4127 4128 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4129 bytes_per_attr_entry)) { 4130 err = -EINVAL; 4131 goto out; 4132 } 4133 4134 t16 = le16_to_cpu(lrh->redo_off); 4135 4136 rt = Add2Ptr(lrh, t16); 4137 t32 = rec_len - t16; 4138 4139 /* Now check that this is a valid restart table. */ 4140 if (!check_rstbl(rt, t32)) { 4141 err = -EINVAL; 4142 goto out; 4143 } 4144 4145 trtbl = kmemdup(rt, t32, GFP_NOFS); 4146 if (!trtbl) { 4147 err = -ENOMEM; 4148 goto out; 4149 } 4150 4151 lcb_put(lcb); 4152 lcb = NULL; 4153 4154 check_dirty_page_table: 4155 /* The next record back should be the Dirty Pages Table. */ 4156 if (!rst->dirty_pages_len) 4157 goto check_attribute_names; /* reduce tab pressure. */ 4158 4159 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4160 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4161 if (err) 4162 goto out; 4163 4164 lrh = lcb->log_rec; 4165 frh = lcb->lrh; 4166 rec_len = le32_to_cpu(frh->client_data_len); 4167 4168 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4169 bytes_per_attr_entry)) { 4170 err = -EINVAL; 4171 goto out; 4172 } 4173 4174 t16 = le16_to_cpu(lrh->redo_off); 4175 4176 rt = Add2Ptr(lrh, t16); 4177 t32 = rec_len - t16; 4178 4179 /* Now check that this is a valid restart table. */ 4180 if (!check_rstbl(rt, t32)) { 4181 err = -EINVAL; 4182 goto out; 4183 } 4184 4185 dptbl = kmemdup(rt, t32, GFP_NOFS); 4186 if (!dptbl) { 4187 err = -ENOMEM; 4188 goto out; 4189 } 4190 4191 /* Convert Ra version '0' into version '1'. */ 4192 if (rst->major_ver) 4193 goto end_conv_1; /* reduce tab pressure. */ 4194 4195 dp = NULL; 4196 while ((dp = enum_rstbl(dptbl, dp))) { 4197 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4198 // NOTE: Danger. Check for of boundary. 4199 memmove(&dp->vcn, &dp0->vcn_low, 4200 2 * sizeof(u64) + 4201 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4202 } 4203 4204 end_conv_1: 4205 lcb_put(lcb); 4206 lcb = NULL; 4207 4208 /* 4209 * Go through the table and remove the duplicates, 4210 * remembering the oldest lsn values. 4211 */ 4212 if (sbi->cluster_size <= log->page_size) 4213 goto trace_dp_table; /* reduce tab pressure. */ 4214 dp = NULL; 4215 while ((dp = enum_rstbl(dptbl, dp))) { 4216 struct DIR_PAGE_ENTRY *next = dp; 4217 4218 while ((next = enum_rstbl(dptbl, next))) { 4219 if (next->target_attr == dp->target_attr && 4220 next->vcn == dp->vcn) { 4221 if (le64_to_cpu(next->oldest_lsn) < 4222 le64_to_cpu(dp->oldest_lsn)) { 4223 dp->oldest_lsn = next->oldest_lsn; 4224 } 4225 4226 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4227 } 4228 } 4229 } 4230 trace_dp_table: 4231 check_attribute_names: 4232 /* The next record should be the Attribute Names. */ 4233 if (!rst->attr_names_len) 4234 goto check_attr_table; /* reduce tab pressure. */ 4235 4236 t64 = le64_to_cpu(rst->attr_names_lsn); 4237 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4238 if (err) 4239 goto out; 4240 4241 lrh = lcb->log_rec; 4242 frh = lcb->lrh; 4243 rec_len = le32_to_cpu(frh->client_data_len); 4244 4245 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4246 bytes_per_attr_entry)) { 4247 err = -EINVAL; 4248 goto out; 4249 } 4250 4251 t32 = lrh_length(lrh); 4252 attr_names_bytes = rec_len - t32; 4253 4254 attr_names = kmemdup(Add2Ptr(lrh, t32), attr_names_bytes, GFP_NOFS); 4255 if (!attr_names) { 4256 err = -ENOMEM; 4257 goto out; 4258 } 4259 4260 lcb_put(lcb); 4261 lcb = NULL; 4262 4263 check_attr_table: 4264 /* The next record should be the attribute Table. */ 4265 if (!rst->open_attr_len) 4266 goto check_attribute_names2; /* reduce tab pressure. */ 4267 4268 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4269 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4270 if (err) 4271 goto out; 4272 4273 lrh = lcb->log_rec; 4274 frh = lcb->lrh; 4275 rec_len = le32_to_cpu(frh->client_data_len); 4276 4277 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4278 bytes_per_attr_entry)) { 4279 err = -EINVAL; 4280 goto out; 4281 } 4282 4283 t16 = le16_to_cpu(lrh->redo_off); 4284 4285 rt = Add2Ptr(lrh, t16); 4286 oatbl_bytes = rec_len - t16; 4287 4288 if (!check_rstbl(rt, oatbl_bytes)) { 4289 err = -EINVAL; 4290 goto out; 4291 } 4292 4293 oatbl = kmemdup(rt, oatbl_bytes, GFP_NOFS); 4294 if (!oatbl) { 4295 err = -ENOMEM; 4296 goto out; 4297 } 4298 4299 log->open_attr_tbl = oatbl; 4300 4301 /* Clear all of the Attr pointers. */ 4302 oe = NULL; 4303 while ((oe = enum_rstbl(oatbl, oe))) { 4304 if (!rst->major_ver) { 4305 struct OPEN_ATTR_ENRTY_32 oe0; 4306 4307 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4308 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4309 4310 oe->bytes_per_index = oe0.bytes_per_index; 4311 oe->type = oe0.type; 4312 oe->is_dirty_pages = oe0.is_dirty_pages; 4313 oe->name_len = 0; 4314 oe->ref = oe0.ref; 4315 oe->open_record_lsn = oe0.open_record_lsn; 4316 } 4317 4318 oe->is_attr_name = 0; 4319 oe->ptr = NULL; 4320 } 4321 4322 lcb_put(lcb); 4323 lcb = NULL; 4324 4325 check_attribute_names2: 4326 if (attr_names && oatbl) { 4327 off = 0; 4328 for (;;) { 4329 /* Check we can use attribute name entry 'ane'. */ 4330 static_assert(sizeof(*ane) == 4); 4331 if (off + sizeof(*ane) > attr_names_bytes) { 4332 /* just ignore the rest. */ 4333 break; 4334 } 4335 4336 ane = Add2Ptr(attr_names, off); 4337 t16 = le16_to_cpu(ane->off); 4338 if (!t16) { 4339 /* this is the only valid exit. */ 4340 break; 4341 } 4342 4343 /* Check we can use open attribute entry 'oe'. */ 4344 if (t16 + sizeof(*oe) > oatbl_bytes) { 4345 /* just ignore the rest. */ 4346 break; 4347 } 4348 4349 /* TODO: Clear table on exit! */ 4350 oe = Add2Ptr(oatbl, t16); 4351 t16 = le16_to_cpu(ane->name_bytes); 4352 off += t16 + sizeof(*ane); 4353 if (off > attr_names_bytes) { 4354 /* just ignore the rest. */ 4355 break; 4356 } 4357 oe->name_len = t16 / sizeof(short); 4358 oe->ptr = ane->name; 4359 oe->is_attr_name = 2; 4360 } 4361 } 4362 4363 /* 4364 * If the checkpt_lsn is zero, then this is a freshly 4365 * formatted disk and we have no work to do. 4366 */ 4367 if (!checkpt_lsn) { 4368 err = 0; 4369 goto out; 4370 } 4371 4372 if (!oatbl) { 4373 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4374 if (!oatbl) { 4375 err = -ENOMEM; 4376 goto out; 4377 } 4378 } 4379 4380 log->open_attr_tbl = oatbl; 4381 4382 /* Start the analysis pass from the Checkpoint lsn. */ 4383 rec_lsn = checkpt_lsn; 4384 4385 /* Read the first lsn. */ 4386 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4387 if (err) 4388 goto out; 4389 4390 /* Loop to read all subsequent records to the end of the log file. */ 4391 next_log_record_analyze: 4392 err = read_next_log_rec(log, lcb, &rec_lsn); 4393 if (err) 4394 goto out; 4395 4396 if (!rec_lsn) 4397 goto end_log_records_enumerate; 4398 4399 frh = lcb->lrh; 4400 transact_id = le32_to_cpu(frh->transact_id); 4401 rec_len = le32_to_cpu(frh->client_data_len); 4402 lrh = lcb->log_rec; 4403 4404 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4405 err = -EINVAL; 4406 goto out; 4407 } 4408 4409 /* 4410 * The first lsn after the previous lsn remembered 4411 * the checkpoint is the first candidate for the rlsn. 4412 */ 4413 if (!rlsn) 4414 rlsn = rec_lsn; 4415 4416 if (LfsClientRecord != frh->record_type) 4417 goto next_log_record_analyze; 4418 4419 /* 4420 * Now update the Transaction Table for this transaction. If there 4421 * is no entry present or it is unallocated we allocate the entry. 4422 */ 4423 if (!trtbl) { 4424 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4425 INITIAL_NUMBER_TRANSACTIONS); 4426 if (!trtbl) { 4427 err = -ENOMEM; 4428 goto out; 4429 } 4430 } 4431 4432 tr = Add2Ptr(trtbl, transact_id); 4433 4434 if (transact_id >= bytes_per_rt(trtbl) || 4435 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4436 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4437 if (!tr) { 4438 err = -ENOMEM; 4439 goto out; 4440 } 4441 tr->transact_state = TransactionActive; 4442 tr->first_lsn = cpu_to_le64(rec_lsn); 4443 } 4444 4445 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4446 4447 /* 4448 * If this is a compensation log record, then change 4449 * the undo_next_lsn to be the undo_next_lsn of this record. 4450 */ 4451 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4452 tr->undo_next_lsn = frh->client_undo_next_lsn; 4453 4454 /* Dispatch to handle log record depending on type. */ 4455 switch (le16_to_cpu(lrh->redo_op)) { 4456 case InitializeFileRecordSegment: 4457 case DeallocateFileRecordSegment: 4458 case WriteEndOfFileRecordSegment: 4459 case CreateAttribute: 4460 case DeleteAttribute: 4461 case UpdateResidentValue: 4462 case UpdateNonresidentValue: 4463 case UpdateMappingPairs: 4464 case SetNewAttributeSizes: 4465 case AddIndexEntryRoot: 4466 case DeleteIndexEntryRoot: 4467 case AddIndexEntryAllocation: 4468 case DeleteIndexEntryAllocation: 4469 case WriteEndOfIndexBuffer: 4470 case SetIndexEntryVcnRoot: 4471 case SetIndexEntryVcnAllocation: 4472 case UpdateFileNameRoot: 4473 case UpdateFileNameAllocation: 4474 case SetBitsInNonresidentBitMap: 4475 case ClearBitsInNonresidentBitMap: 4476 case UpdateRecordDataRoot: 4477 case UpdateRecordDataAllocation: 4478 case ZeroEndOfFileRecord: 4479 t16 = le16_to_cpu(lrh->target_attr); 4480 t64 = le64_to_cpu(lrh->target_vcn); 4481 dp = find_dp(dptbl, t16, t64); 4482 4483 if (dp) 4484 goto copy_lcns; 4485 4486 /* 4487 * Calculate the number of clusters per page the system 4488 * which wrote the checkpoint, possibly creating the table. 4489 */ 4490 if (dptbl) { 4491 t32 = (le16_to_cpu(dptbl->size) - 4492 sizeof(struct DIR_PAGE_ENTRY)) / 4493 sizeof(u64); 4494 } else { 4495 t32 = log->clst_per_page; 4496 kfree(dptbl); 4497 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4498 32); 4499 if (!dptbl) { 4500 err = -ENOMEM; 4501 goto out; 4502 } 4503 } 4504 4505 dp = alloc_rsttbl_idx(&dptbl); 4506 if (!dp) { 4507 err = -ENOMEM; 4508 goto out; 4509 } 4510 dp->target_attr = cpu_to_le32(t16); 4511 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4512 dp->lcns_follow = cpu_to_le32(t32); 4513 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4514 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4515 4516 copy_lcns: 4517 /* 4518 * Copy the Lcns from the log record into the Dirty Page Entry. 4519 * TODO: For different page size support, must somehow make 4520 * whole routine a loop, case Lcns do not fit below. 4521 */ 4522 t16 = le16_to_cpu(lrh->lcns_follow); 4523 for (i = 0; i < t16; i++) { 4524 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4525 le64_to_cpu(dp->vcn)); 4526 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4527 } 4528 4529 goto next_log_record_analyze; 4530 4531 case DeleteDirtyClusters: { 4532 u32 range_count = 4533 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4534 const struct LCN_RANGE *r = 4535 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4536 4537 /* Loop through all of the Lcn ranges this log record. */ 4538 for (i = 0; i < range_count; i++, r++) { 4539 u64 lcn0 = le64_to_cpu(r->lcn); 4540 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4541 4542 dp = NULL; 4543 while ((dp = enum_rstbl(dptbl, dp))) { 4544 u32 j; 4545 4546 t32 = le32_to_cpu(dp->lcns_follow); 4547 for (j = 0; j < t32; j++) { 4548 t64 = le64_to_cpu(dp->page_lcns[j]); 4549 if (t64 >= lcn0 && t64 <= lcn_e) 4550 dp->page_lcns[j] = 0; 4551 } 4552 } 4553 } 4554 goto next_log_record_analyze; 4555 } 4556 4557 case OpenNonresidentAttribute: 4558 t16 = le16_to_cpu(lrh->target_attr); 4559 if (t16 >= bytes_per_rt(oatbl)) { 4560 /* 4561 * Compute how big the table needs to be. 4562 * Add 10 extra entries for some cushion. 4563 */ 4564 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4565 4566 new_e += 10 - le16_to_cpu(oatbl->used); 4567 4568 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4569 log->open_attr_tbl = oatbl; 4570 if (!oatbl) { 4571 err = -ENOMEM; 4572 goto out; 4573 } 4574 } 4575 4576 /* Point to the entry being opened. */ 4577 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4578 log->open_attr_tbl = oatbl; 4579 if (!oe) { 4580 err = -ENOMEM; 4581 goto out; 4582 } 4583 4584 /* Initialize this entry from the log record. */ 4585 t16 = le16_to_cpu(lrh->redo_off); 4586 if (!rst->major_ver) { 4587 /* Convert version '0' into version '1'. */ 4588 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4589 4590 oe->bytes_per_index = oe0->bytes_per_index; 4591 oe->type = oe0->type; 4592 oe->is_dirty_pages = oe0->is_dirty_pages; 4593 oe->name_len = 0; //oe0.name_len; 4594 oe->ref = oe0->ref; 4595 oe->open_record_lsn = oe0->open_record_lsn; 4596 } else { 4597 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4598 } 4599 4600 t16 = le16_to_cpu(lrh->undo_len); 4601 if (t16) { 4602 oe->ptr = kmalloc(t16, GFP_NOFS); 4603 if (!oe->ptr) { 4604 err = -ENOMEM; 4605 goto out; 4606 } 4607 oe->name_len = t16 / sizeof(short); 4608 memcpy(oe->ptr, 4609 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4610 oe->is_attr_name = 1; 4611 } else { 4612 oe->ptr = NULL; 4613 oe->is_attr_name = 0; 4614 } 4615 4616 goto next_log_record_analyze; 4617 4618 case HotFix: 4619 t16 = le16_to_cpu(lrh->target_attr); 4620 t64 = le64_to_cpu(lrh->target_vcn); 4621 dp = find_dp(dptbl, t16, t64); 4622 if (dp) { 4623 size_t j = le64_to_cpu(lrh->target_vcn) - 4624 le64_to_cpu(dp->vcn); 4625 if (dp->page_lcns[j]) 4626 dp->page_lcns[j] = lrh->page_lcns[0]; 4627 } 4628 goto next_log_record_analyze; 4629 4630 case EndTopLevelAction: 4631 tr = Add2Ptr(trtbl, transact_id); 4632 tr->prev_lsn = cpu_to_le64(rec_lsn); 4633 tr->undo_next_lsn = frh->client_undo_next_lsn; 4634 goto next_log_record_analyze; 4635 4636 case PrepareTransaction: 4637 tr = Add2Ptr(trtbl, transact_id); 4638 tr->transact_state = TransactionPrepared; 4639 goto next_log_record_analyze; 4640 4641 case CommitTransaction: 4642 tr = Add2Ptr(trtbl, transact_id); 4643 tr->transact_state = TransactionCommitted; 4644 goto next_log_record_analyze; 4645 4646 case ForgetTransaction: 4647 free_rsttbl_idx(trtbl, transact_id); 4648 goto next_log_record_analyze; 4649 4650 case Noop: 4651 case OpenAttributeTableDump: 4652 case AttributeNamesDump: 4653 case DirtyPageTableDump: 4654 case TransactionTableDump: 4655 /* The following cases require no action the Analysis Pass. */ 4656 goto next_log_record_analyze; 4657 4658 default: 4659 /* 4660 * All codes will be explicitly handled. 4661 * If we see a code we do not expect, then we are trouble. 4662 */ 4663 goto next_log_record_analyze; 4664 } 4665 4666 end_log_records_enumerate: 4667 lcb_put(lcb); 4668 lcb = NULL; 4669 4670 /* 4671 * Scan the Dirty Page Table and Transaction Table for 4672 * the lowest lsn, and return it as the Redo lsn. 4673 */ 4674 dp = NULL; 4675 while ((dp = enum_rstbl(dptbl, dp))) { 4676 t64 = le64_to_cpu(dp->oldest_lsn); 4677 if (t64 && t64 < rlsn) 4678 rlsn = t64; 4679 } 4680 4681 tr = NULL; 4682 while ((tr = enum_rstbl(trtbl, tr))) { 4683 t64 = le64_to_cpu(tr->first_lsn); 4684 if (t64 && t64 < rlsn) 4685 rlsn = t64; 4686 } 4687 4688 /* 4689 * Only proceed if the Dirty Page Table or Transaction 4690 * table are not empty. 4691 */ 4692 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4693 goto end_replay; 4694 4695 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4696 if (is_ro) 4697 goto out; 4698 4699 /* Reopen all of the attributes with dirty pages. */ 4700 oe = NULL; 4701 next_open_attribute: 4702 4703 oe = enum_rstbl(oatbl, oe); 4704 if (!oe) { 4705 err = 0; 4706 dp = NULL; 4707 goto next_dirty_page; 4708 } 4709 4710 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4711 if (!oa) { 4712 err = -ENOMEM; 4713 goto out; 4714 } 4715 4716 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4717 if (IS_ERR(inode)) 4718 goto fake_attr; 4719 4720 if (is_bad_inode(inode)) { 4721 iput(inode); 4722 fake_attr: 4723 if (oa->ni) { 4724 iput(&oa->ni->vfs_inode); 4725 oa->ni = NULL; 4726 } 4727 4728 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4729 oe->name_len, 0); 4730 if (!attr) { 4731 kfree(oa); 4732 err = -ENOMEM; 4733 goto out; 4734 } 4735 oa->attr = attr; 4736 oa->run1 = &oa->run0; 4737 goto final_oe; 4738 } 4739 4740 ni_oe = ntfs_i(inode); 4741 oa->ni = ni_oe; 4742 4743 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4744 NULL, NULL); 4745 4746 if (!attr) 4747 goto fake_attr; 4748 4749 t32 = le32_to_cpu(attr->size); 4750 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4751 if (!oa->attr) 4752 goto fake_attr; 4753 4754 if (!S_ISDIR(inode->i_mode)) { 4755 if (attr->type == ATTR_DATA && !attr->name_len) { 4756 oa->run1 = &ni_oe->file.run; 4757 goto final_oe; 4758 } 4759 } else { 4760 if (attr->type == ATTR_ALLOC && 4761 attr->name_len == ARRAY_SIZE(I30_NAME) && 4762 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4763 oa->run1 = &ni_oe->dir.alloc_run; 4764 goto final_oe; 4765 } 4766 } 4767 4768 if (attr->non_res) { 4769 u16 roff = le16_to_cpu(attr->nres.run_off); 4770 CLST svcn = le64_to_cpu(attr->nres.svcn); 4771 4772 if (roff > t32) { 4773 kfree(oa->attr); 4774 oa->attr = NULL; 4775 goto fake_attr; 4776 } 4777 4778 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4779 le64_to_cpu(attr->nres.evcn), svcn, 4780 Add2Ptr(attr, roff), t32 - roff); 4781 if (err < 0) { 4782 kfree(oa->attr); 4783 oa->attr = NULL; 4784 goto fake_attr; 4785 } 4786 err = 0; 4787 } 4788 oa->run1 = &oa->run0; 4789 attr = oa->attr; 4790 4791 final_oe: 4792 if (oe->is_attr_name == 1) 4793 kfree(oe->ptr); 4794 oe->is_attr_name = 0; 4795 oe->ptr = oa; 4796 oe->name_len = attr->name_len; 4797 4798 goto next_open_attribute; 4799 4800 /* 4801 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4802 * Mapping that we have, and insert it into the appropriate run. 4803 */ 4804 next_dirty_page: 4805 dp = enum_rstbl(dptbl, dp); 4806 if (!dp) 4807 goto do_redo_1; 4808 4809 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4810 4811 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4812 goto next_dirty_page; 4813 4814 oa = oe->ptr; 4815 if (!oa) 4816 goto next_dirty_page; 4817 4818 i = -1; 4819 next_dirty_page_vcn: 4820 i += 1; 4821 if (i >= le32_to_cpu(dp->lcns_follow)) 4822 goto next_dirty_page; 4823 4824 vcn = le64_to_cpu(dp->vcn) + i; 4825 size = (vcn + 1) << sbi->cluster_bits; 4826 4827 if (!dp->page_lcns[i]) 4828 goto next_dirty_page_vcn; 4829 4830 rno = ino_get(&oe->ref); 4831 if (rno <= MFT_REC_MIRR && 4832 size < (MFT_REC_VOL + 1) * sbi->record_size && 4833 oe->type == ATTR_DATA) { 4834 goto next_dirty_page_vcn; 4835 } 4836 4837 lcn = le64_to_cpu(dp->page_lcns[i]); 4838 4839 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4840 lcn0 != lcn) && 4841 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4842 err = -ENOMEM; 4843 goto out; 4844 } 4845 attr = oa->attr; 4846 if (size > le64_to_cpu(attr->nres.alloc_size)) { 4847 attr->nres.valid_size = attr->nres.data_size = 4848 attr->nres.alloc_size = cpu_to_le64(size); 4849 } 4850 goto next_dirty_page_vcn; 4851 4852 do_redo_1: 4853 /* 4854 * Perform the Redo Pass, to restore all of the dirty pages to the same 4855 * contents that they had immediately before the crash. If the dirty 4856 * page table is empty, then we can skip the entire Redo Pass. 4857 */ 4858 if (!dptbl || !dptbl->total) 4859 goto do_undo_action; 4860 4861 rec_lsn = rlsn; 4862 4863 /* 4864 * Read the record at the Redo lsn, before falling 4865 * into common code to handle each record. 4866 */ 4867 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4868 if (err) 4869 goto out; 4870 4871 /* 4872 * Now loop to read all of our log records forwards, until 4873 * we hit the end of the file, cleaning up at the end. 4874 */ 4875 do_action_next: 4876 frh = lcb->lrh; 4877 4878 if (LfsClientRecord != frh->record_type) 4879 goto read_next_log_do_action; 4880 4881 transact_id = le32_to_cpu(frh->transact_id); 4882 rec_len = le32_to_cpu(frh->client_data_len); 4883 lrh = lcb->log_rec; 4884 4885 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4886 err = -EINVAL; 4887 goto out; 4888 } 4889 4890 /* Ignore log records that do not update pages. */ 4891 if (lrh->lcns_follow) 4892 goto find_dirty_page; 4893 4894 goto read_next_log_do_action; 4895 4896 find_dirty_page: 4897 t16 = le16_to_cpu(lrh->target_attr); 4898 t64 = le64_to_cpu(lrh->target_vcn); 4899 dp = find_dp(dptbl, t16, t64); 4900 4901 if (!dp) 4902 goto read_next_log_do_action; 4903 4904 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4905 goto read_next_log_do_action; 4906 4907 t16 = le16_to_cpu(lrh->target_attr); 4908 if (t16 >= bytes_per_rt(oatbl)) { 4909 err = -EINVAL; 4910 goto out; 4911 } 4912 4913 oe = Add2Ptr(oatbl, t16); 4914 4915 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4916 err = -EINVAL; 4917 goto out; 4918 } 4919 4920 oa = oe->ptr; 4921 4922 if (!oa) { 4923 err = -EINVAL; 4924 goto out; 4925 } 4926 attr = oa->attr; 4927 4928 vcn = le64_to_cpu(lrh->target_vcn); 4929 4930 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4931 lcn == SPARSE_LCN) { 4932 goto read_next_log_do_action; 4933 } 4934 4935 /* Point to the Redo data and get its length. */ 4936 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4937 dlen = le16_to_cpu(lrh->redo_len); 4938 4939 /* Shorten length by any Lcns which were deleted. */ 4940 saved_len = dlen; 4941 4942 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4943 size_t j; 4944 u32 alen, voff; 4945 4946 voff = le16_to_cpu(lrh->record_off) + 4947 le16_to_cpu(lrh->attr_off); 4948 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4949 4950 /* If the Vcn question is allocated, we can just get out. */ 4951 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4952 if (dp->page_lcns[j + i - 1]) 4953 break; 4954 4955 if (!saved_len) 4956 saved_len = 1; 4957 4958 /* 4959 * Calculate the allocated space left relative to the 4960 * log record Vcn, after removing this unallocated Vcn. 4961 */ 4962 alen = (i - 1) << sbi->cluster_bits; 4963 4964 /* 4965 * If the update described this log record goes beyond 4966 * the allocated space, then we will have to reduce the length. 4967 */ 4968 if (voff >= alen) 4969 dlen = 0; 4970 else if (voff + dlen > alen) 4971 dlen = alen - voff; 4972 } 4973 4974 /* 4975 * If the resulting dlen from above is now zero, 4976 * we can skip this log record. 4977 */ 4978 if (!dlen && saved_len) 4979 goto read_next_log_do_action; 4980 4981 t16 = le16_to_cpu(lrh->redo_op); 4982 if (can_skip_action(t16)) 4983 goto read_next_log_do_action; 4984 4985 /* Apply the Redo operation a common routine. */ 4986 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4987 if (err) 4988 goto out; 4989 4990 /* Keep reading and looping back until end of file. */ 4991 read_next_log_do_action: 4992 err = read_next_log_rec(log, lcb, &rec_lsn); 4993 if (!err && rec_lsn) 4994 goto do_action_next; 4995 4996 lcb_put(lcb); 4997 lcb = NULL; 4998 4999 do_undo_action: 5000 /* Scan Transaction Table. */ 5001 tr = NULL; 5002 transaction_table_next: 5003 tr = enum_rstbl(trtbl, tr); 5004 if (!tr) 5005 goto undo_action_done; 5006 5007 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 5008 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 5009 goto transaction_table_next; 5010 } 5011 5012 log->transaction_id = PtrOffset(trtbl, tr); 5013 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 5014 5015 /* 5016 * We only have to do anything if the transaction has 5017 * something its undo_next_lsn field. 5018 */ 5019 if (!undo_next_lsn) 5020 goto commit_undo; 5021 5022 /* Read the first record to be undone by this transaction. */ 5023 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5024 if (err) 5025 goto out; 5026 5027 /* 5028 * Now loop to read all of our log records forwards, 5029 * until we hit the end of the file, cleaning up at the end. 5030 */ 5031 undo_action_next: 5032 5033 lrh = lcb->log_rec; 5034 frh = lcb->lrh; 5035 transact_id = le32_to_cpu(frh->transact_id); 5036 rec_len = le32_to_cpu(frh->client_data_len); 5037 5038 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5039 err = -EINVAL; 5040 goto out; 5041 } 5042 5043 if (lrh->undo_op == cpu_to_le16(Noop)) 5044 goto read_next_log_undo_action; 5045 5046 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5047 oa = oe->ptr; 5048 5049 t16 = le16_to_cpu(lrh->lcns_follow); 5050 if (!t16) 5051 goto add_allocated_vcns; 5052 5053 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5054 &lcn, &clen, NULL); 5055 5056 /* 5057 * If the mapping isn't already the table or the mapping 5058 * corresponds to a hole the mapping, we need to make sure 5059 * there is no partial page already memory. 5060 */ 5061 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5062 goto add_allocated_vcns; 5063 5064 vcn = le64_to_cpu(lrh->target_vcn); 5065 vcn &= ~(u64)(log->clst_per_page - 1); 5066 5067 add_allocated_vcns: 5068 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5069 size = (vcn + 1) << sbi->cluster_bits; 5070 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5071 attr = oa->attr; 5072 if (!attr->non_res) { 5073 if (size > le32_to_cpu(attr->res.data_size)) 5074 attr->res.data_size = cpu_to_le32(size); 5075 } else { 5076 if (size > le64_to_cpu(attr->nres.data_size)) 5077 attr->nres.valid_size = attr->nres.data_size = 5078 attr->nres.alloc_size = 5079 cpu_to_le64(size); 5080 } 5081 } 5082 5083 t16 = le16_to_cpu(lrh->undo_op); 5084 if (can_skip_action(t16)) 5085 goto read_next_log_undo_action; 5086 5087 /* Point to the Redo data and get its length. */ 5088 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5089 dlen = le16_to_cpu(lrh->undo_len); 5090 5091 /* It is time to apply the undo action. */ 5092 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5093 5094 read_next_log_undo_action: 5095 /* 5096 * Keep reading and looping back until we have read the 5097 * last record for this transaction. 5098 */ 5099 err = read_next_log_rec(log, lcb, &rec_lsn); 5100 if (err) 5101 goto out; 5102 5103 if (rec_lsn) 5104 goto undo_action_next; 5105 5106 lcb_put(lcb); 5107 lcb = NULL; 5108 5109 commit_undo: 5110 free_rsttbl_idx(trtbl, log->transaction_id); 5111 5112 log->transaction_id = 0; 5113 5114 goto transaction_table_next; 5115 5116 undo_action_done: 5117 5118 ntfs_update_mftmirr(sbi, 0); 5119 5120 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5121 5122 end_replay: 5123 5124 err = 0; 5125 if (is_ro) 5126 goto out; 5127 5128 rh = kzalloc(log->page_size, GFP_NOFS); 5129 if (!rh) { 5130 err = -ENOMEM; 5131 goto out; 5132 } 5133 5134 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5135 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5136 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5137 rh->rhdr.fix_num = cpu_to_le16(t16); 5138 rh->sys_page_size = cpu_to_le32(log->page_size); 5139 rh->page_size = cpu_to_le32(log->page_size); 5140 5141 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5142 8); 5143 rh->ra_off = cpu_to_le16(t16); 5144 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5145 rh->major_ver = cpu_to_le16(1); // 0x1C: 5146 5147 ra2 = Add2Ptr(rh, t16); 5148 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5149 5150 ra2->client_idx[0] = 0; 5151 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5152 ra2->flags = cpu_to_le16(2); 5153 5154 le32_add_cpu(&ra2->open_log_count, 1); 5155 5156 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5157 5158 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5159 if (!err) 5160 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5161 rh, log->page_size, 0); 5162 5163 kfree(rh); 5164 if (err) 5165 goto out; 5166 5167 out: 5168 kfree(rst); 5169 if (lcb) 5170 lcb_put(lcb); 5171 5172 /* 5173 * Scan the Open Attribute Table to close all of 5174 * the open attributes. 5175 */ 5176 oe = NULL; 5177 while ((oe = enum_rstbl(oatbl, oe))) { 5178 rno = ino_get(&oe->ref); 5179 5180 if (oe->is_attr_name == 1) { 5181 kfree(oe->ptr); 5182 oe->ptr = NULL; 5183 continue; 5184 } 5185 5186 if (oe->is_attr_name) 5187 continue; 5188 5189 oa = oe->ptr; 5190 if (!oa) 5191 continue; 5192 5193 run_close(&oa->run0); 5194 kfree(oa->attr); 5195 if (oa->ni) 5196 iput(&oa->ni->vfs_inode); 5197 kfree(oa); 5198 } 5199 5200 kfree(trtbl); 5201 kfree(oatbl); 5202 kfree(dptbl); 5203 kfree(attr_names); 5204 kfree(log->rst_info.r_page); 5205 5206 kfree(ra); 5207 kfree(log->one_page_buf); 5208 5209 if (err) 5210 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5211 5212 if (err == -EROFS) 5213 err = 0; 5214 else if (log->set_dirty) 5215 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5216 5217 kfree(log); 5218 5219 return err; 5220 } 5221