1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) 80 : NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) 95 : NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec)) 106 ni_delete_all(ni); 107 108 al_destroy(ni); 109 110 for (node = rb_first(&ni->mi_tree); node;) { 111 struct rb_node *next = rb_next(node); 112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 113 114 rb_erase(node, &ni->mi_tree); 115 mi_put(mi); 116 node = next; 117 } 118 119 /* Bad inode always has mode == S_IFREG. */ 120 if (ni->ni_flags & NI_FLAG_DIR) 121 indx_clear(&ni->dir); 122 else { 123 run_close(&ni->file.run); 124 #ifdef CONFIG_NTFS3_LZX_XPRESS 125 if (ni->file.offs_page) { 126 /* On-demand allocated page for offsets. */ 127 put_page(ni->file.offs_page); 128 ni->file.offs_page = NULL; 129 } 130 #endif 131 } 132 133 mi_clear(&ni->mi); 134 } 135 136 /* 137 * ni_load_mi_ex - Find mft_inode by record number. 138 */ 139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 140 { 141 int err; 142 struct mft_inode *r; 143 144 r = ni_find_mi(ni, rno); 145 if (r) 146 goto out; 147 148 err = mi_get(ni->mi.sbi, rno, &r); 149 if (err) 150 return err; 151 152 ni_add_mi(ni, r); 153 154 out: 155 if (mi) 156 *mi = r; 157 return 0; 158 } 159 160 /* 161 * ni_load_mi - Load mft_inode corresponded list_entry. 162 */ 163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 164 struct mft_inode **mi) 165 { 166 CLST rno; 167 168 if (!le) { 169 *mi = &ni->mi; 170 return 0; 171 } 172 173 rno = ino_get(&le->ref); 174 if (rno == ni->mi.rno) { 175 *mi = &ni->mi; 176 return 0; 177 } 178 return ni_load_mi_ex(ni, rno, mi); 179 } 180 181 /* 182 * ni_find_attr 183 * 184 * Return: Attribute and record this attribute belongs to. 185 */ 186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 188 const __le16 *name, u8 name_len, const CLST *vcn, 189 struct mft_inode **mi) 190 { 191 struct ATTR_LIST_ENTRY *le; 192 struct mft_inode *m; 193 194 if (!ni->attr_list.size || 195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 196 if (le_o) 197 *le_o = NULL; 198 if (mi) 199 *mi = &ni->mi; 200 201 /* Look for required attribute in primary record. */ 202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 203 } 204 205 /* First look for list entry of required type. */ 206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 207 if (!le) 208 return NULL; 209 210 if (le_o) 211 *le_o = le; 212 213 /* Load record that contains this attribute. */ 214 if (ni_load_mi(ni, le, &m)) 215 return NULL; 216 217 /* Look for required attribute. */ 218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 219 220 if (!attr) 221 goto out; 222 223 if (!attr->non_res) { 224 if (vcn && *vcn) 225 goto out; 226 } else if (!vcn) { 227 if (attr->nres.svcn) 228 goto out; 229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 230 *vcn > le64_to_cpu(attr->nres.evcn)) { 231 goto out; 232 } 233 234 if (mi) 235 *mi = m; 236 return attr; 237 238 out: 239 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 240 return NULL; 241 } 242 243 /* 244 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 245 */ 246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 247 struct ATTR_LIST_ENTRY **le, 248 struct mft_inode **mi) 249 { 250 struct mft_inode *mi2; 251 struct ATTR_LIST_ENTRY *le2; 252 253 /* Do we have an attribute list? */ 254 if (!ni->attr_list.size) { 255 *le = NULL; 256 if (mi) 257 *mi = &ni->mi; 258 /* Enum attributes in primary record. */ 259 return mi_enum_attr(&ni->mi, attr); 260 } 261 262 /* Get next list entry. */ 263 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 264 if (!le2) 265 return NULL; 266 267 /* Load record that contains the required attribute. */ 268 if (ni_load_mi(ni, le2, &mi2)) 269 return NULL; 270 271 if (mi) 272 *mi = mi2; 273 274 /* Find attribute in loaded record. */ 275 return rec_find_attr_le(mi2, le2); 276 } 277 278 /* 279 * ni_load_attr - Load attribute that contains given VCN. 280 */ 281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 282 const __le16 *name, u8 name_len, CLST vcn, 283 struct mft_inode **pmi) 284 { 285 struct ATTR_LIST_ENTRY *le; 286 struct ATTRIB *attr; 287 struct mft_inode *mi; 288 struct ATTR_LIST_ENTRY *next; 289 290 if (!ni->attr_list.size) { 291 if (pmi) 292 *pmi = &ni->mi; 293 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 294 } 295 296 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 297 if (!le) 298 return NULL; 299 300 /* 301 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 302 * So to find the ATTRIB segment that contains 'vcn' we should 303 * enumerate some entries. 304 */ 305 if (vcn) { 306 for (;; le = next) { 307 next = al_find_ex(ni, le, type, name, name_len, NULL); 308 if (!next || le64_to_cpu(next->vcn) > vcn) 309 break; 310 } 311 } 312 313 if (ni_load_mi(ni, le, &mi)) 314 return NULL; 315 316 if (pmi) 317 *pmi = mi; 318 319 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 320 if (!attr) 321 return NULL; 322 323 if (!attr->non_res) 324 return attr; 325 326 if (le64_to_cpu(attr->nres.svcn) <= vcn && 327 vcn <= le64_to_cpu(attr->nres.evcn)) 328 return attr; 329 330 return NULL; 331 } 332 333 /* 334 * ni_load_all_mi - Load all subrecords. 335 */ 336 int ni_load_all_mi(struct ntfs_inode *ni) 337 { 338 int err; 339 struct ATTR_LIST_ENTRY *le; 340 341 if (!ni->attr_list.size) 342 return 0; 343 344 le = NULL; 345 346 while ((le = al_enumerate(ni, le))) { 347 CLST rno = ino_get(&le->ref); 348 349 if (rno == ni->mi.rno) 350 continue; 351 352 err = ni_load_mi_ex(ni, rno, NULL); 353 if (err) 354 return err; 355 } 356 357 return 0; 358 } 359 360 /* 361 * ni_add_subrecord - Allocate + format + attach a new subrecord. 362 */ 363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 364 { 365 struct mft_inode *m; 366 367 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 368 if (!m) 369 return false; 370 371 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 372 mi_put(m); 373 return false; 374 } 375 376 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 377 378 ni_add_mi(ni, m); 379 *mi = m; 380 return true; 381 } 382 383 /* 384 * ni_remove_attr - Remove all attributes for the given type/name/id. 385 */ 386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 387 const __le16 *name, size_t name_len, bool base_only, 388 const __le16 *id) 389 { 390 int err; 391 struct ATTRIB *attr; 392 struct ATTR_LIST_ENTRY *le; 393 struct mft_inode *mi; 394 u32 type_in; 395 int diff; 396 397 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 398 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 399 if (!attr) 400 return -ENOENT; 401 402 mi_remove_attr(ni, &ni->mi, attr); 403 return 0; 404 } 405 406 type_in = le32_to_cpu(type); 407 le = NULL; 408 409 for (;;) { 410 le = al_enumerate(ni, le); 411 if (!le) 412 return 0; 413 414 next_le2: 415 diff = le32_to_cpu(le->type) - type_in; 416 if (diff < 0) 417 continue; 418 419 if (diff > 0) 420 return 0; 421 422 if (le->name_len != name_len) 423 continue; 424 425 if (name_len && 426 memcmp(le_name(le), name, name_len * sizeof(short))) 427 continue; 428 429 if (id && le->id != *id) 430 continue; 431 err = ni_load_mi(ni, le, &mi); 432 if (err) 433 return err; 434 435 al_remove_le(ni, le); 436 437 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 438 if (!attr) 439 return -ENOENT; 440 441 mi_remove_attr(ni, mi, attr); 442 443 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 444 return 0; 445 goto next_le2; 446 } 447 } 448 449 /* 450 * ni_ins_new_attr - Insert the attribute into record. 451 * 452 * Return: Not full constructed attribute or NULL if not possible to create. 453 */ 454 static struct ATTRIB * 455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 456 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 457 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 458 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 459 { 460 int err; 461 struct ATTRIB *attr; 462 bool le_added = false; 463 struct MFT_REF ref; 464 465 mi_get_ref(mi, &ref); 466 467 if (type != ATTR_LIST && !le && ni->attr_list.size) { 468 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 469 &ref, &le); 470 if (err) { 471 /* No memory or no space. */ 472 return ERR_PTR(err); 473 } 474 le_added = true; 475 476 /* 477 * al_add_le -> attr_set_size (list) -> ni_expand_list 478 * which moves some attributes out of primary record 479 * this means that name may point into moved memory 480 * reinit 'name' from le. 481 */ 482 name = le->name; 483 } 484 485 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 486 if (!attr) { 487 if (le_added) 488 al_remove_le(ni, le); 489 return NULL; 490 } 491 492 if (type == ATTR_LIST) { 493 /* Attr list is not in list entry array. */ 494 goto out; 495 } 496 497 if (!le) 498 goto out; 499 500 /* Update ATTRIB Id and record reference. */ 501 le->id = attr->id; 502 ni->attr_list.dirty = true; 503 le->ref = ref; 504 505 out: 506 if (ins_le) 507 *ins_le = le; 508 return attr; 509 } 510 511 /* 512 * ni_repack 513 * 514 * Random write access to sparsed or compressed file may result to 515 * not optimized packed runs. 516 * Here is the place to optimize it. 517 */ 518 static int ni_repack(struct ntfs_inode *ni) 519 { 520 int err = 0; 521 struct ntfs_sb_info *sbi = ni->mi.sbi; 522 struct mft_inode *mi, *mi_p = NULL; 523 struct ATTRIB *attr = NULL, *attr_p; 524 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 525 CLST alloc = 0; 526 u8 cluster_bits = sbi->cluster_bits; 527 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 528 u32 roff, rs = sbi->record_size; 529 struct runs_tree run; 530 531 run_init(&run); 532 533 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 534 if (!attr->non_res) 535 continue; 536 537 svcn = le64_to_cpu(attr->nres.svcn); 538 if (svcn != le64_to_cpu(le->vcn)) { 539 err = -EINVAL; 540 break; 541 } 542 543 if (!svcn) { 544 alloc = le64_to_cpu(attr->nres.alloc_size) >> 545 cluster_bits; 546 mi_p = NULL; 547 } else if (svcn != evcn + 1) { 548 err = -EINVAL; 549 break; 550 } 551 552 evcn = le64_to_cpu(attr->nres.evcn); 553 554 if (svcn > evcn + 1) { 555 err = -EINVAL; 556 break; 557 } 558 559 if (!mi_p) { 560 /* Do not try if not enogh free space. */ 561 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 562 continue; 563 564 /* Do not try if last attribute segment. */ 565 if (evcn + 1 == alloc) 566 continue; 567 run_close(&run); 568 } 569 570 roff = le16_to_cpu(attr->nres.run_off); 571 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 572 Add2Ptr(attr, roff), 573 le32_to_cpu(attr->size) - roff); 574 if (err < 0) 575 break; 576 577 if (!mi_p) { 578 mi_p = mi; 579 attr_p = attr; 580 svcn_p = svcn; 581 evcn_p = evcn; 582 le_p = le; 583 err = 0; 584 continue; 585 } 586 587 /* 588 * Run contains data from two records: mi_p and mi 589 * Try to pack in one. 590 */ 591 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 592 if (err) 593 break; 594 595 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 596 597 if (next_svcn >= evcn + 1) { 598 /* We can remove this attribute segment. */ 599 al_remove_le(ni, le); 600 mi_remove_attr(NULL, mi, attr); 601 le = le_p; 602 continue; 603 } 604 605 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 606 mi->dirty = true; 607 ni->attr_list.dirty = true; 608 609 if (evcn + 1 == alloc) { 610 err = mi_pack_runs(mi, attr, &run, 611 evcn + 1 - next_svcn); 612 if (err) 613 break; 614 mi_p = NULL; 615 } else { 616 mi_p = mi; 617 attr_p = attr; 618 svcn_p = next_svcn; 619 evcn_p = evcn; 620 le_p = le; 621 run_truncate_head(&run, next_svcn); 622 } 623 } 624 625 if (err) { 626 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 627 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 628 629 /* Pack loaded but not packed runs. */ 630 if (mi_p) 631 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 632 } 633 634 run_close(&run); 635 return err; 636 } 637 638 /* 639 * ni_try_remove_attr_list 640 * 641 * Can we remove attribute list? 642 * Check the case when primary record contains enough space for all attributes. 643 */ 644 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 645 { 646 int err = 0; 647 struct ntfs_sb_info *sbi = ni->mi.sbi; 648 struct ATTRIB *attr, *attr_list, *attr_ins; 649 struct ATTR_LIST_ENTRY *le; 650 struct mft_inode *mi; 651 u32 asize, free; 652 struct MFT_REF ref; 653 struct MFT_REC *mrec; 654 __le16 id; 655 656 if (!ni->attr_list.dirty) 657 return 0; 658 659 err = ni_repack(ni); 660 if (err) 661 return err; 662 663 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 664 if (!attr_list) 665 return 0; 666 667 asize = le32_to_cpu(attr_list->size); 668 669 /* Free space in primary record without attribute list. */ 670 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 671 mi_get_ref(&ni->mi, &ref); 672 673 le = NULL; 674 while ((le = al_enumerate(ni, le))) { 675 if (!memcmp(&le->ref, &ref, sizeof(ref))) 676 continue; 677 678 if (le->vcn) 679 return 0; 680 681 mi = ni_find_mi(ni, ino_get(&le->ref)); 682 if (!mi) 683 return 0; 684 685 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 686 le->name_len, &le->id); 687 if (!attr) 688 return 0; 689 690 asize = le32_to_cpu(attr->size); 691 if (asize > free) 692 return 0; 693 694 free -= asize; 695 } 696 697 /* Make a copy of primary record to restore if error. */ 698 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 699 if (!mrec) 700 return 0; /* Not critical. */ 701 702 /* It seems that attribute list can be removed from primary record. */ 703 mi_remove_attr(NULL, &ni->mi, attr_list); 704 705 /* 706 * Repeat the cycle above and copy all attributes to primary record. 707 * Do not remove original attributes from subrecords! 708 * It should be success! 709 */ 710 le = NULL; 711 while ((le = al_enumerate(ni, le))) { 712 if (!memcmp(&le->ref, &ref, sizeof(ref))) 713 continue; 714 715 mi = ni_find_mi(ni, ino_get(&le->ref)); 716 if (!mi) { 717 /* Should never happened, 'cause already checked. */ 718 goto out; 719 } 720 721 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 722 le->name_len, &le->id); 723 if (!attr) { 724 /* Should never happened, 'cause already checked. */ 725 goto out; 726 } 727 asize = le32_to_cpu(attr->size); 728 729 /* Insert into primary record. */ 730 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 731 le->name_len, asize, 732 le16_to_cpu(attr->name_off)); 733 if (!attr_ins) { 734 /* 735 * No space in primary record (already checked). 736 */ 737 goto out; 738 } 739 740 /* Copy all except id. */ 741 id = attr_ins->id; 742 memcpy(attr_ins, attr, asize); 743 attr_ins->id = id; 744 } 745 746 /* 747 * Repeat the cycle above and remove all attributes from subrecords. 748 */ 749 le = NULL; 750 while ((le = al_enumerate(ni, le))) { 751 if (!memcmp(&le->ref, &ref, sizeof(ref))) 752 continue; 753 754 mi = ni_find_mi(ni, ino_get(&le->ref)); 755 if (!mi) 756 continue; 757 758 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 759 le->name_len, &le->id); 760 if (!attr) 761 continue; 762 763 /* Remove from original record. */ 764 mi_remove_attr(NULL, mi, attr); 765 } 766 767 run_deallocate(sbi, &ni->attr_list.run, true); 768 run_close(&ni->attr_list.run); 769 ni->attr_list.size = 0; 770 kfree(ni->attr_list.le); 771 ni->attr_list.le = NULL; 772 ni->attr_list.dirty = false; 773 774 kfree(mrec); 775 return 0; 776 out: 777 /* Restore primary record. */ 778 swap(mrec, ni->mi.mrec); 779 kfree(mrec); 780 return 0; 781 } 782 783 /* 784 * ni_create_attr_list - Generates an attribute list for this primary record. 785 */ 786 int ni_create_attr_list(struct ntfs_inode *ni) 787 { 788 struct ntfs_sb_info *sbi = ni->mi.sbi; 789 int err; 790 u32 lsize; 791 struct ATTRIB *attr; 792 struct ATTRIB *arr_move[7]; 793 struct ATTR_LIST_ENTRY *le, *le_b[7]; 794 struct MFT_REC *rec; 795 bool is_mft; 796 CLST rno = 0; 797 struct mft_inode *mi; 798 u32 free_b, nb, to_free, rs; 799 u16 sz; 800 801 is_mft = ni->mi.rno == MFT_REC_MFT; 802 rec = ni->mi.mrec; 803 rs = sbi->record_size; 804 805 /* 806 * Skip estimating exact memory requirement. 807 * Looks like one record_size is always enough. 808 */ 809 le = kmalloc(al_aligned(rs), GFP_NOFS); 810 if (!le) { 811 err = -ENOMEM; 812 goto out; 813 } 814 815 mi_get_ref(&ni->mi, &le->ref); 816 ni->attr_list.le = le; 817 818 attr = NULL; 819 nb = 0; 820 free_b = 0; 821 attr = NULL; 822 823 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 824 sz = le_size(attr->name_len); 825 le->type = attr->type; 826 le->size = cpu_to_le16(sz); 827 le->name_len = attr->name_len; 828 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 829 le->vcn = 0; 830 if (le != ni->attr_list.le) 831 le->ref = ni->attr_list.le->ref; 832 le->id = attr->id; 833 834 if (attr->name_len) 835 memcpy(le->name, attr_name(attr), 836 sizeof(short) * attr->name_len); 837 else if (attr->type == ATTR_STD) 838 continue; 839 else if (attr->type == ATTR_LIST) 840 continue; 841 else if (is_mft && attr->type == ATTR_DATA) 842 continue; 843 844 if (!nb || nb < ARRAY_SIZE(arr_move)) { 845 le_b[nb] = le; 846 arr_move[nb++] = attr; 847 free_b += le32_to_cpu(attr->size); 848 } 849 } 850 851 lsize = PtrOffset(ni->attr_list.le, le); 852 ni->attr_list.size = lsize; 853 854 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 855 if (to_free <= rs) { 856 to_free = 0; 857 } else { 858 to_free -= rs; 859 860 if (to_free > free_b) { 861 err = -EINVAL; 862 goto out1; 863 } 864 } 865 866 /* Allocate child MFT. */ 867 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 868 if (err) 869 goto out1; 870 871 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 872 while (to_free > 0) { 873 struct ATTRIB *b = arr_move[--nb]; 874 u32 asize = le32_to_cpu(b->size); 875 u16 name_off = le16_to_cpu(b->name_off); 876 877 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 878 b->name_len, asize, name_off); 879 WARN_ON(!attr); 880 881 mi_get_ref(mi, &le_b[nb]->ref); 882 le_b[nb]->id = attr->id; 883 884 /* Copy all except id. */ 885 memcpy(attr, b, asize); 886 attr->id = le_b[nb]->id; 887 888 /* Remove from primary record. */ 889 WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); 890 891 if (to_free <= asize) 892 break; 893 to_free -= asize; 894 WARN_ON(!nb); 895 } 896 897 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 898 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 899 WARN_ON(!attr); 900 901 attr->non_res = 0; 902 attr->flags = 0; 903 attr->res.data_size = cpu_to_le32(lsize); 904 attr->res.data_off = SIZEOF_RESIDENT_LE; 905 attr->res.flags = 0; 906 attr->res.res = 0; 907 908 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 909 910 ni->attr_list.dirty = false; 911 912 mark_inode_dirty(&ni->vfs_inode); 913 goto out; 914 915 out1: 916 kfree(ni->attr_list.le); 917 ni->attr_list.le = NULL; 918 ni->attr_list.size = 0; 919 920 out: 921 return err; 922 } 923 924 /* 925 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 926 */ 927 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 928 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 929 u32 asize, CLST svcn, u16 name_off, bool force_ext, 930 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 931 struct ATTR_LIST_ENTRY **ins_le) 932 { 933 struct ATTRIB *attr; 934 struct mft_inode *mi; 935 CLST rno; 936 u64 vbo; 937 struct rb_node *node; 938 int err; 939 bool is_mft, is_mft_data; 940 struct ntfs_sb_info *sbi = ni->mi.sbi; 941 942 is_mft = ni->mi.rno == MFT_REC_MFT; 943 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 944 945 if (asize > sbi->max_bytes_per_attr) { 946 err = -EINVAL; 947 goto out; 948 } 949 950 /* 951 * Standard information and attr_list cannot be made external. 952 * The Log File cannot have any external attributes. 953 */ 954 if (type == ATTR_STD || type == ATTR_LIST || 955 ni->mi.rno == MFT_REC_LOG) { 956 err = -EINVAL; 957 goto out; 958 } 959 960 /* Create attribute list if it is not already existed. */ 961 if (!ni->attr_list.size) { 962 err = ni_create_attr_list(ni); 963 if (err) 964 goto out; 965 } 966 967 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 968 969 if (force_ext) 970 goto insert_ext; 971 972 /* Load all subrecords into memory. */ 973 err = ni_load_all_mi(ni); 974 if (err) 975 goto out; 976 977 /* Check each of loaded subrecord. */ 978 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 979 mi = rb_entry(node, struct mft_inode, node); 980 981 if (is_mft_data && 982 (mi_enum_attr(mi, NULL) || 983 vbo <= ((u64)mi->rno << sbi->record_bits))) { 984 /* We can't accept this record 'cause MFT's bootstrapping. */ 985 continue; 986 } 987 if (is_mft && 988 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 989 /* 990 * This child record already has a ATTR_DATA. 991 * So it can't accept any other records. 992 */ 993 continue; 994 } 995 996 if ((type != ATTR_NAME || name_len) && 997 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 998 /* Only indexed attributes can share same record. */ 999 continue; 1000 } 1001 1002 /* 1003 * Do not try to insert this attribute 1004 * if there is no room in record. 1005 */ 1006 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 1007 continue; 1008 1009 /* Try to insert attribute into this subrecord. */ 1010 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1011 name_off, svcn, ins_le); 1012 if (!attr) 1013 continue; 1014 if (IS_ERR(attr)) 1015 return PTR_ERR(attr); 1016 1017 if (ins_attr) 1018 *ins_attr = attr; 1019 if (ins_mi) 1020 *ins_mi = mi; 1021 return 0; 1022 } 1023 1024 insert_ext: 1025 /* We have to allocate a new child subrecord. */ 1026 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1027 if (err) 1028 goto out; 1029 1030 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1031 err = -EINVAL; 1032 goto out1; 1033 } 1034 1035 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1036 name_off, svcn, ins_le); 1037 if (!attr) { 1038 err = -EINVAL; 1039 goto out2; 1040 } 1041 1042 if (IS_ERR(attr)) { 1043 err = PTR_ERR(attr); 1044 goto out2; 1045 } 1046 1047 if (ins_attr) 1048 *ins_attr = attr; 1049 if (ins_mi) 1050 *ins_mi = mi; 1051 1052 return 0; 1053 1054 out2: 1055 ni_remove_mi(ni, mi); 1056 mi_put(mi); 1057 1058 out1: 1059 ntfs_mark_rec_free(sbi, rno, is_mft); 1060 1061 out: 1062 return err; 1063 } 1064 1065 /* 1066 * ni_insert_attr - Insert an attribute into the file. 1067 * 1068 * If the primary record has room, it will just insert the attribute. 1069 * If not, it may make the attribute external. 1070 * For $MFT::Data it may make room for the attribute by 1071 * making other attributes external. 1072 * 1073 * NOTE: 1074 * The ATTR_LIST and ATTR_STD cannot be made external. 1075 * This function does not fill new attribute full. 1076 * It only fills 'size'/'type'/'id'/'name_len' fields. 1077 */ 1078 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1079 const __le16 *name, u8 name_len, u32 asize, 1080 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1081 struct mft_inode **ins_mi, 1082 struct ATTR_LIST_ENTRY **ins_le) 1083 { 1084 struct ntfs_sb_info *sbi = ni->mi.sbi; 1085 int err; 1086 struct ATTRIB *attr, *eattr; 1087 struct MFT_REC *rec; 1088 bool is_mft; 1089 struct ATTR_LIST_ENTRY *le; 1090 u32 list_reserve, max_free, free, used, t32; 1091 __le16 id; 1092 u16 t16; 1093 1094 is_mft = ni->mi.rno == MFT_REC_MFT; 1095 rec = ni->mi.mrec; 1096 1097 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1098 used = le32_to_cpu(rec->used); 1099 free = sbi->record_size - used; 1100 1101 if (is_mft && type != ATTR_LIST) { 1102 /* Reserve space for the ATTRIB list. */ 1103 if (free < list_reserve) 1104 free = 0; 1105 else 1106 free -= list_reserve; 1107 } 1108 1109 if (asize <= free) { 1110 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1111 asize, name_off, svcn, ins_le); 1112 if (IS_ERR(attr)) { 1113 err = PTR_ERR(attr); 1114 goto out; 1115 } 1116 1117 if (attr) { 1118 if (ins_attr) 1119 *ins_attr = attr; 1120 if (ins_mi) 1121 *ins_mi = &ni->mi; 1122 err = 0; 1123 goto out; 1124 } 1125 } 1126 1127 if (!is_mft || type != ATTR_DATA || svcn) { 1128 /* This ATTRIB will be external. */ 1129 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1130 svcn, name_off, false, ins_attr, ins_mi, 1131 ins_le); 1132 goto out; 1133 } 1134 1135 /* 1136 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1137 * 1138 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1139 * Evict as many other attributes as possible. 1140 */ 1141 max_free = free; 1142 1143 /* Estimate the result of moving all possible attributes away. */ 1144 attr = NULL; 1145 1146 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1147 if (attr->type == ATTR_STD) 1148 continue; 1149 if (attr->type == ATTR_LIST) 1150 continue; 1151 max_free += le32_to_cpu(attr->size); 1152 } 1153 1154 if (max_free < asize + list_reserve) { 1155 /* Impossible to insert this attribute into primary record. */ 1156 err = -EINVAL; 1157 goto out; 1158 } 1159 1160 /* Start real attribute moving. */ 1161 attr = NULL; 1162 1163 for (;;) { 1164 attr = mi_enum_attr(&ni->mi, attr); 1165 if (!attr) { 1166 /* We should never be here 'cause we have already check this case. */ 1167 err = -EINVAL; 1168 goto out; 1169 } 1170 1171 /* Skip attributes that MUST be primary record. */ 1172 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1173 continue; 1174 1175 le = NULL; 1176 if (ni->attr_list.size) { 1177 le = al_find_le(ni, NULL, attr); 1178 if (!le) { 1179 /* Really this is a serious bug. */ 1180 err = -EINVAL; 1181 goto out; 1182 } 1183 } 1184 1185 t32 = le32_to_cpu(attr->size); 1186 t16 = le16_to_cpu(attr->name_off); 1187 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1188 attr->name_len, t32, attr_svcn(attr), t16, 1189 false, &eattr, NULL, NULL); 1190 if (err) 1191 return err; 1192 1193 id = eattr->id; 1194 memcpy(eattr, attr, t32); 1195 eattr->id = id; 1196 1197 /* Remove from primary record. */ 1198 mi_remove_attr(NULL, &ni->mi, attr); 1199 1200 /* attr now points to next attribute. */ 1201 if (attr->type == ATTR_END) 1202 goto out; 1203 } 1204 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1205 ; 1206 1207 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1208 name_off, svcn, ins_le); 1209 if (!attr) { 1210 err = -EINVAL; 1211 goto out; 1212 } 1213 1214 if (IS_ERR(attr)) { 1215 err = PTR_ERR(attr); 1216 goto out; 1217 } 1218 1219 if (ins_attr) 1220 *ins_attr = attr; 1221 if (ins_mi) 1222 *ins_mi = &ni->mi; 1223 1224 out: 1225 return err; 1226 } 1227 1228 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1229 static int ni_expand_mft_list(struct ntfs_inode *ni) 1230 { 1231 int err = 0; 1232 struct runs_tree *run = &ni->file.run; 1233 u32 asize, run_size, done = 0; 1234 struct ATTRIB *attr; 1235 struct rb_node *node; 1236 CLST mft_min, mft_new, svcn, evcn, plen; 1237 struct mft_inode *mi, *mi_min, *mi_new; 1238 struct ntfs_sb_info *sbi = ni->mi.sbi; 1239 1240 /* Find the nearest MFT. */ 1241 mft_min = 0; 1242 mft_new = 0; 1243 mi_min = NULL; 1244 1245 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1246 mi = rb_entry(node, struct mft_inode, node); 1247 1248 attr = mi_enum_attr(mi, NULL); 1249 1250 if (!attr) { 1251 mft_min = mi->rno; 1252 mi_min = mi; 1253 break; 1254 } 1255 } 1256 1257 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1258 mft_new = 0; 1259 /* Really this is not critical. */ 1260 } else if (mft_min > mft_new) { 1261 mft_min = mft_new; 1262 mi_min = mi_new; 1263 } else { 1264 ntfs_mark_rec_free(sbi, mft_new, true); 1265 mft_new = 0; 1266 ni_remove_mi(ni, mi_new); 1267 } 1268 1269 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1270 if (!attr) { 1271 err = -EINVAL; 1272 goto out; 1273 } 1274 1275 asize = le32_to_cpu(attr->size); 1276 1277 evcn = le64_to_cpu(attr->nres.evcn); 1278 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1279 if (evcn + 1 >= svcn) { 1280 err = -EINVAL; 1281 goto out; 1282 } 1283 1284 /* 1285 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1286 * 1287 * Update first part of ATTR_DATA in 'primary MFT. 1288 */ 1289 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1290 asize - SIZEOF_NONRESIDENT, &plen); 1291 if (err < 0) 1292 goto out; 1293 1294 run_size = ALIGN(err, 8); 1295 err = 0; 1296 1297 if (plen < svcn) { 1298 err = -EINVAL; 1299 goto out; 1300 } 1301 1302 attr->nres.evcn = cpu_to_le64(svcn - 1); 1303 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1304 /* 'done' - How many bytes of primary MFT becomes free. */ 1305 done = asize - run_size - SIZEOF_NONRESIDENT; 1306 le32_sub_cpu(&ni->mi.mrec->used, done); 1307 1308 /* Estimate packed size (run_buf=NULL). */ 1309 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1310 &plen); 1311 if (err < 0) 1312 goto out; 1313 1314 run_size = ALIGN(err, 8); 1315 err = 0; 1316 1317 if (plen < evcn + 1 - svcn) { 1318 err = -EINVAL; 1319 goto out; 1320 } 1321 1322 /* 1323 * This function may implicitly call expand attr_list. 1324 * Insert second part of ATTR_DATA in 'mi_min'. 1325 */ 1326 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1327 SIZEOF_NONRESIDENT + run_size, 1328 SIZEOF_NONRESIDENT, svcn, NULL); 1329 if (!attr) { 1330 err = -EINVAL; 1331 goto out; 1332 } 1333 1334 if (IS_ERR(attr)) { 1335 err = PTR_ERR(attr); 1336 goto out; 1337 } 1338 1339 attr->non_res = 1; 1340 attr->name_off = SIZEOF_NONRESIDENT_LE; 1341 attr->flags = 0; 1342 1343 /* This function can't fail - cause already checked above. */ 1344 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1345 run_size, &plen); 1346 1347 attr->nres.svcn = cpu_to_le64(svcn); 1348 attr->nres.evcn = cpu_to_le64(evcn); 1349 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1350 1351 out: 1352 if (mft_new) { 1353 ntfs_mark_rec_free(sbi, mft_new, true); 1354 ni_remove_mi(ni, mi_new); 1355 } 1356 1357 return !err && !done ? -EOPNOTSUPP : err; 1358 } 1359 1360 /* 1361 * ni_expand_list - Move all possible attributes out of primary record. 1362 */ 1363 int ni_expand_list(struct ntfs_inode *ni) 1364 { 1365 int err = 0; 1366 u32 asize, done = 0; 1367 struct ATTRIB *attr, *ins_attr; 1368 struct ATTR_LIST_ENTRY *le; 1369 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1370 struct MFT_REF ref; 1371 1372 mi_get_ref(&ni->mi, &ref); 1373 le = NULL; 1374 1375 while ((le = al_enumerate(ni, le))) { 1376 if (le->type == ATTR_STD) 1377 continue; 1378 1379 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1380 continue; 1381 1382 if (is_mft && le->type == ATTR_DATA) 1383 continue; 1384 1385 /* Find attribute in primary record. */ 1386 attr = rec_find_attr_le(&ni->mi, le); 1387 if (!attr) { 1388 err = -EINVAL; 1389 goto out; 1390 } 1391 1392 asize = le32_to_cpu(attr->size); 1393 1394 /* Always insert into new record to avoid collisions (deep recursive). */ 1395 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1396 attr->name_len, asize, attr_svcn(attr), 1397 le16_to_cpu(attr->name_off), true, 1398 &ins_attr, NULL, NULL); 1399 1400 if (err) 1401 goto out; 1402 1403 memcpy(ins_attr, attr, asize); 1404 ins_attr->id = le->id; 1405 /* Remove from primary record. */ 1406 mi_remove_attr(NULL, &ni->mi, attr); 1407 1408 done += asize; 1409 goto out; 1410 } 1411 1412 if (!is_mft) { 1413 err = -EFBIG; /* Attr list is too big(?) */ 1414 goto out; 1415 } 1416 1417 /* Split MFT data as much as possible. */ 1418 err = ni_expand_mft_list(ni); 1419 1420 out: 1421 return !err && !done ? -EOPNOTSUPP : err; 1422 } 1423 1424 /* 1425 * ni_insert_nonresident - Insert new nonresident attribute. 1426 */ 1427 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1428 const __le16 *name, u8 name_len, 1429 const struct runs_tree *run, CLST svcn, CLST len, 1430 __le16 flags, struct ATTRIB **new_attr, 1431 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1432 { 1433 int err; 1434 CLST plen; 1435 struct ATTRIB *attr; 1436 bool is_ext = 1437 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; 1438 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1439 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1440 u32 run_off = name_off + name_size; 1441 u32 run_size, asize; 1442 struct ntfs_sb_info *sbi = ni->mi.sbi; 1443 1444 /* Estimate packed size (run_buf=NULL). */ 1445 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1446 &plen); 1447 if (err < 0) 1448 goto out; 1449 1450 run_size = ALIGN(err, 8); 1451 1452 if (plen < len) { 1453 err = -EINVAL; 1454 goto out; 1455 } 1456 1457 asize = run_off + run_size; 1458 1459 if (asize > sbi->max_bytes_per_attr) { 1460 err = -EINVAL; 1461 goto out; 1462 } 1463 1464 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1465 &attr, mi, le); 1466 1467 if (err) 1468 goto out; 1469 1470 attr->non_res = 1; 1471 attr->name_off = cpu_to_le16(name_off); 1472 attr->flags = flags; 1473 1474 /* This function can't fail - cause already checked above. */ 1475 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1476 1477 attr->nres.svcn = cpu_to_le64(svcn); 1478 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1479 1480 if (new_attr) 1481 *new_attr = attr; 1482 1483 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1484 1485 attr->nres.alloc_size = 1486 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1487 attr->nres.data_size = attr->nres.alloc_size; 1488 attr->nres.valid_size = attr->nres.alloc_size; 1489 1490 if (is_ext) { 1491 if (flags & ATTR_FLAG_COMPRESSED) 1492 attr->nres.c_unit = COMPRESSION_UNIT; 1493 attr->nres.total_size = attr->nres.alloc_size; 1494 } 1495 1496 out: 1497 return err; 1498 } 1499 1500 /* 1501 * ni_insert_resident - Inserts new resident attribute. 1502 */ 1503 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1504 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1505 struct ATTRIB **new_attr, struct mft_inode **mi, 1506 struct ATTR_LIST_ENTRY **le) 1507 { 1508 int err; 1509 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1510 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1511 struct ATTRIB *attr; 1512 1513 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1514 0, &attr, mi, le); 1515 if (err) 1516 return err; 1517 1518 attr->non_res = 0; 1519 attr->flags = 0; 1520 1521 attr->res.data_size = cpu_to_le32(data_size); 1522 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1523 if (type == ATTR_NAME) { 1524 attr->res.flags = RESIDENT_FLAG_INDEXED; 1525 1526 /* is_attr_indexed(attr)) == true */ 1527 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1528 ni->mi.dirty = true; 1529 } 1530 attr->res.res = 0; 1531 1532 if (new_attr) 1533 *new_attr = attr; 1534 1535 return 0; 1536 } 1537 1538 /* 1539 * ni_remove_attr_le - Remove attribute from record. 1540 */ 1541 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1542 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1543 { 1544 mi_remove_attr(ni, mi, attr); 1545 1546 if (le) 1547 al_remove_le(ni, le); 1548 } 1549 1550 /* 1551 * ni_delete_all - Remove all attributes and frees allocates space. 1552 * 1553 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1554 */ 1555 int ni_delete_all(struct ntfs_inode *ni) 1556 { 1557 int err; 1558 struct ATTR_LIST_ENTRY *le = NULL; 1559 struct ATTRIB *attr = NULL; 1560 struct rb_node *node; 1561 u16 roff; 1562 u32 asize; 1563 CLST svcn, evcn; 1564 struct ntfs_sb_info *sbi = ni->mi.sbi; 1565 bool nt3 = is_ntfs3(sbi); 1566 struct MFT_REF ref; 1567 1568 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1569 if (!nt3 || attr->name_len) { 1570 ; 1571 } else if (attr->type == ATTR_REPARSE) { 1572 mi_get_ref(&ni->mi, &ref); 1573 ntfs_remove_reparse(sbi, 0, &ref); 1574 } else if (attr->type == ATTR_ID && !attr->non_res && 1575 le32_to_cpu(attr->res.data_size) >= 1576 sizeof(struct GUID)) { 1577 ntfs_objid_remove(sbi, resident_data(attr)); 1578 } 1579 1580 if (!attr->non_res) 1581 continue; 1582 1583 svcn = le64_to_cpu(attr->nres.svcn); 1584 evcn = le64_to_cpu(attr->nres.evcn); 1585 1586 if (evcn + 1 <= svcn) 1587 continue; 1588 1589 asize = le32_to_cpu(attr->size); 1590 roff = le16_to_cpu(attr->nres.run_off); 1591 1592 /* run==1 means unpack and deallocate. */ 1593 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1594 Add2Ptr(attr, roff), asize - roff); 1595 } 1596 1597 if (ni->attr_list.size) { 1598 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1599 al_destroy(ni); 1600 } 1601 1602 /* Free all subrecords. */ 1603 for (node = rb_first(&ni->mi_tree); node;) { 1604 struct rb_node *next = rb_next(node); 1605 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1606 1607 clear_rec_inuse(mi->mrec); 1608 mi->dirty = true; 1609 mi_write(mi, 0); 1610 1611 ntfs_mark_rec_free(sbi, mi->rno, false); 1612 ni_remove_mi(ni, mi); 1613 mi_put(mi); 1614 node = next; 1615 } 1616 1617 /* Free base record. */ 1618 clear_rec_inuse(ni->mi.mrec); 1619 ni->mi.dirty = true; 1620 err = mi_write(&ni->mi, 0); 1621 1622 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1623 1624 return err; 1625 } 1626 1627 /* ni_fname_name 1628 * 1629 * Return: File name attribute by its value. 1630 */ 1631 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1632 const struct cpu_str *uni, 1633 const struct MFT_REF *home_dir, 1634 struct mft_inode **mi, 1635 struct ATTR_LIST_ENTRY **le) 1636 { 1637 struct ATTRIB *attr = NULL; 1638 struct ATTR_FILE_NAME *fname; 1639 1640 if (le) 1641 *le = NULL; 1642 1643 /* Enumerate all names. */ 1644 next: 1645 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1646 if (!attr) 1647 return NULL; 1648 1649 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1650 if (!fname) 1651 goto next; 1652 1653 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1654 goto next; 1655 1656 if (!uni) 1657 return fname; 1658 1659 if (uni->len != fname->name_len) 1660 goto next; 1661 1662 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL, 1663 false)) 1664 goto next; 1665 1666 return fname; 1667 } 1668 1669 /* 1670 * ni_fname_type 1671 * 1672 * Return: File name attribute with given type. 1673 */ 1674 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1675 struct mft_inode **mi, 1676 struct ATTR_LIST_ENTRY **le) 1677 { 1678 struct ATTRIB *attr = NULL; 1679 struct ATTR_FILE_NAME *fname; 1680 1681 *le = NULL; 1682 1683 if (name_type == FILE_NAME_POSIX) 1684 return NULL; 1685 1686 /* Enumerate all names. */ 1687 for (;;) { 1688 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1689 if (!attr) 1690 return NULL; 1691 1692 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1693 if (fname && name_type == fname->type) 1694 return fname; 1695 } 1696 } 1697 1698 /* 1699 * ni_new_attr_flags 1700 * 1701 * Process compressed/sparsed in special way. 1702 * NOTE: You need to set ni->std_fa = new_fa 1703 * after this function to keep internal structures in consistency. 1704 */ 1705 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1706 { 1707 struct ATTRIB *attr; 1708 struct mft_inode *mi; 1709 __le16 new_aflags; 1710 u32 new_asize; 1711 1712 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1713 if (!attr) 1714 return -EINVAL; 1715 1716 new_aflags = attr->flags; 1717 1718 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1719 new_aflags |= ATTR_FLAG_SPARSED; 1720 else 1721 new_aflags &= ~ATTR_FLAG_SPARSED; 1722 1723 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1724 new_aflags |= ATTR_FLAG_COMPRESSED; 1725 else 1726 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1727 1728 if (new_aflags == attr->flags) 1729 return 0; 1730 1731 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1732 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1733 ntfs_inode_warn(&ni->vfs_inode, 1734 "file can't be sparsed and compressed"); 1735 return -EOPNOTSUPP; 1736 } 1737 1738 if (!attr->non_res) 1739 goto out; 1740 1741 if (attr->nres.data_size) { 1742 ntfs_inode_warn( 1743 &ni->vfs_inode, 1744 "one can change sparsed/compressed only for empty files"); 1745 return -EOPNOTSUPP; 1746 } 1747 1748 /* Resize nonresident empty attribute in-place only. */ 1749 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) 1750 ? (SIZEOF_NONRESIDENT_EX + 8) 1751 : (SIZEOF_NONRESIDENT + 8); 1752 1753 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1754 return -EOPNOTSUPP; 1755 1756 if (new_aflags & ATTR_FLAG_SPARSED) { 1757 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1758 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1759 attr->nres.c_unit = 0; 1760 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1761 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1762 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1763 /* The only allowed: 16 clusters per frame. */ 1764 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1765 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1766 } else { 1767 attr->name_off = SIZEOF_NONRESIDENT_LE; 1768 /* Normal files. */ 1769 attr->nres.c_unit = 0; 1770 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1771 } 1772 attr->nres.run_off = attr->name_off; 1773 out: 1774 attr->flags = new_aflags; 1775 mi->dirty = true; 1776 1777 return 0; 1778 } 1779 1780 /* 1781 * ni_parse_reparse 1782 * 1783 * buffer - memory for reparse buffer header 1784 */ 1785 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1786 struct REPARSE_DATA_BUFFER *buffer) 1787 { 1788 const struct REPARSE_DATA_BUFFER *rp = NULL; 1789 u8 bits; 1790 u16 len; 1791 typeof(rp->CompressReparseBuffer) *cmpr; 1792 1793 /* Try to estimate reparse point. */ 1794 if (!attr->non_res) { 1795 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1796 } else if (le64_to_cpu(attr->nres.data_size) >= 1797 sizeof(struct REPARSE_DATA_BUFFER)) { 1798 struct runs_tree run; 1799 1800 run_init(&run); 1801 1802 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1803 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1804 sizeof(struct REPARSE_DATA_BUFFER), 1805 NULL)) { 1806 rp = buffer; 1807 } 1808 1809 run_close(&run); 1810 } 1811 1812 if (!rp) 1813 return REPARSE_NONE; 1814 1815 len = le16_to_cpu(rp->ReparseDataLength); 1816 switch (rp->ReparseTag) { 1817 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1818 break; /* Symbolic link. */ 1819 case IO_REPARSE_TAG_MOUNT_POINT: 1820 break; /* Mount points and junctions. */ 1821 case IO_REPARSE_TAG_SYMLINK: 1822 break; 1823 case IO_REPARSE_TAG_COMPRESS: 1824 /* 1825 * WOF - Windows Overlay Filter - Used to compress files with 1826 * LZX/Xpress. 1827 * 1828 * Unlike native NTFS file compression, the Windows 1829 * Overlay Filter supports only read operations. This means 1830 * that it doesn't need to sector-align each compressed chunk, 1831 * so the compressed data can be packed more tightly together. 1832 * If you open the file for writing, the WOF just decompresses 1833 * the entire file, turning it back into a plain file. 1834 * 1835 * Ntfs3 driver decompresses the entire file only on write or 1836 * change size requests. 1837 */ 1838 1839 cmpr = &rp->CompressReparseBuffer; 1840 if (len < sizeof(*cmpr) || 1841 cmpr->WofVersion != WOF_CURRENT_VERSION || 1842 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1843 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1844 return REPARSE_NONE; 1845 } 1846 1847 switch (cmpr->CompressionFormat) { 1848 case WOF_COMPRESSION_XPRESS4K: 1849 bits = 0xc; // 4k 1850 break; 1851 case WOF_COMPRESSION_XPRESS8K: 1852 bits = 0xd; // 8k 1853 break; 1854 case WOF_COMPRESSION_XPRESS16K: 1855 bits = 0xe; // 16k 1856 break; 1857 case WOF_COMPRESSION_LZX32K: 1858 bits = 0xf; // 32k 1859 break; 1860 default: 1861 bits = 0x10; // 64k 1862 break; 1863 } 1864 ni_set_ext_compress_bits(ni, bits); 1865 return REPARSE_COMPRESSED; 1866 1867 case IO_REPARSE_TAG_DEDUP: 1868 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1869 return REPARSE_DEDUPLICATED; 1870 1871 default: 1872 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1873 break; 1874 1875 return REPARSE_NONE; 1876 } 1877 1878 if (buffer != rp) 1879 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1880 1881 /* Looks like normal symlink. */ 1882 return REPARSE_LINK; 1883 } 1884 1885 /* 1886 * ni_fiemap - Helper for file_fiemap(). 1887 * 1888 * Assumed ni_lock. 1889 * TODO: Less aggressive locks. 1890 */ 1891 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1892 __u64 vbo, __u64 len) 1893 { 1894 int err = 0; 1895 struct ntfs_sb_info *sbi = ni->mi.sbi; 1896 u8 cluster_bits = sbi->cluster_bits; 1897 struct runs_tree *run; 1898 struct rw_semaphore *run_lock; 1899 struct ATTRIB *attr; 1900 CLST vcn = vbo >> cluster_bits; 1901 CLST lcn, clen; 1902 u64 valid = ni->i_valid; 1903 u64 lbo, bytes; 1904 u64 end, alloc_size; 1905 size_t idx = -1; 1906 u32 flags; 1907 bool ok; 1908 1909 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1910 run = &ni->dir.alloc_run; 1911 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1912 ARRAY_SIZE(I30_NAME), NULL, NULL); 1913 run_lock = &ni->dir.run_lock; 1914 } else { 1915 run = &ni->file.run; 1916 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1917 NULL); 1918 if (!attr) { 1919 err = -EINVAL; 1920 goto out; 1921 } 1922 if (is_attr_compressed(attr)) { 1923 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1924 err = -EOPNOTSUPP; 1925 ntfs_inode_warn( 1926 &ni->vfs_inode, 1927 "fiemap is not supported for compressed file (cp -r)"); 1928 goto out; 1929 } 1930 run_lock = &ni->file.run_lock; 1931 } 1932 1933 if (!attr || !attr->non_res) { 1934 err = fiemap_fill_next_extent( 1935 fieinfo, 0, 0, 1936 attr ? le32_to_cpu(attr->res.data_size) : 0, 1937 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1938 FIEMAP_EXTENT_MERGED); 1939 goto out; 1940 } 1941 1942 end = vbo + len; 1943 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1944 if (end > alloc_size) 1945 end = alloc_size; 1946 1947 down_read(run_lock); 1948 1949 while (vbo < end) { 1950 if (idx == -1) { 1951 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1952 } else { 1953 CLST vcn_next = vcn; 1954 1955 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 1956 vcn == vcn_next; 1957 if (!ok) 1958 vcn = vcn_next; 1959 } 1960 1961 if (!ok) { 1962 up_read(run_lock); 1963 down_write(run_lock); 1964 1965 err = attr_load_runs_vcn(ni, attr->type, 1966 attr_name(attr), 1967 attr->name_len, run, vcn); 1968 1969 up_write(run_lock); 1970 down_read(run_lock); 1971 1972 if (err) 1973 break; 1974 1975 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1976 1977 if (!ok) { 1978 err = -EINVAL; 1979 break; 1980 } 1981 } 1982 1983 if (!clen) { 1984 err = -EINVAL; // ? 1985 break; 1986 } 1987 1988 if (lcn == SPARSE_LCN) { 1989 vcn += clen; 1990 vbo = (u64)vcn << cluster_bits; 1991 continue; 1992 } 1993 1994 flags = FIEMAP_EXTENT_MERGED; 1995 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1996 ; 1997 } else if (is_attr_compressed(attr)) { 1998 CLST clst_data; 1999 2000 err = attr_is_frame_compressed( 2001 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 2002 if (err) 2003 break; 2004 if (clst_data < NTFS_LZNT_CLUSTERS) 2005 flags |= FIEMAP_EXTENT_ENCODED; 2006 } else if (is_attr_encrypted(attr)) { 2007 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2008 } 2009 2010 vbo = (u64)vcn << cluster_bits; 2011 bytes = (u64)clen << cluster_bits; 2012 lbo = (u64)lcn << cluster_bits; 2013 2014 vcn += clen; 2015 2016 if (vbo + bytes >= end) 2017 bytes = end - vbo; 2018 2019 if (vbo + bytes <= valid) { 2020 ; 2021 } else if (vbo >= valid) { 2022 flags |= FIEMAP_EXTENT_UNWRITTEN; 2023 } else { 2024 /* vbo < valid && valid < vbo + bytes */ 2025 u64 dlen = valid - vbo; 2026 2027 if (vbo + dlen >= end) 2028 flags |= FIEMAP_EXTENT_LAST; 2029 2030 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 2031 flags); 2032 if (err < 0) 2033 break; 2034 if (err == 1) { 2035 err = 0; 2036 break; 2037 } 2038 2039 vbo = valid; 2040 bytes -= dlen; 2041 if (!bytes) 2042 continue; 2043 2044 lbo += dlen; 2045 flags |= FIEMAP_EXTENT_UNWRITTEN; 2046 } 2047 2048 if (vbo + bytes >= end) 2049 flags |= FIEMAP_EXTENT_LAST; 2050 2051 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 2052 if (err < 0) 2053 break; 2054 if (err == 1) { 2055 err = 0; 2056 break; 2057 } 2058 2059 vbo += bytes; 2060 } 2061 2062 up_read(run_lock); 2063 2064 out: 2065 return err; 2066 } 2067 2068 /* 2069 * ni_readpage_cmpr 2070 * 2071 * When decompressing, we typically obtain more than one page per reference. 2072 * We inject the additional pages into the page cache. 2073 */ 2074 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 2075 { 2076 int err; 2077 struct ntfs_sb_info *sbi = ni->mi.sbi; 2078 struct address_space *mapping = page->mapping; 2079 pgoff_t index = page->index; 2080 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2081 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2082 u8 frame_bits; 2083 CLST frame; 2084 u32 i, idx, frame_size, pages_per_frame; 2085 gfp_t gfp_mask; 2086 struct page *pg; 2087 2088 if (vbo >= ni->vfs_inode.i_size) { 2089 SetPageUptodate(page); 2090 err = 0; 2091 goto out; 2092 } 2093 2094 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2095 /* Xpress or LZX. */ 2096 frame_bits = ni_ext_compress_bits(ni); 2097 } else { 2098 /* LZNT compression. */ 2099 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2100 } 2101 frame_size = 1u << frame_bits; 2102 frame = vbo >> frame_bits; 2103 frame_vbo = (u64)frame << frame_bits; 2104 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2105 2106 pages_per_frame = frame_size >> PAGE_SHIFT; 2107 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2108 if (!pages) { 2109 err = -ENOMEM; 2110 goto out; 2111 } 2112 2113 pages[idx] = page; 2114 index = frame_vbo >> PAGE_SHIFT; 2115 gfp_mask = mapping_gfp_mask(mapping); 2116 2117 for (i = 0; i < pages_per_frame; i++, index++) { 2118 if (i == idx) 2119 continue; 2120 2121 pg = find_or_create_page(mapping, index, gfp_mask); 2122 if (!pg) { 2123 err = -ENOMEM; 2124 goto out1; 2125 } 2126 pages[i] = pg; 2127 } 2128 2129 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2130 2131 out1: 2132 if (err) 2133 SetPageError(page); 2134 2135 for (i = 0; i < pages_per_frame; i++) { 2136 pg = pages[i]; 2137 if (i == idx) 2138 continue; 2139 unlock_page(pg); 2140 put_page(pg); 2141 } 2142 2143 out: 2144 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2145 kfree(pages); 2146 unlock_page(page); 2147 2148 return err; 2149 } 2150 2151 #ifdef CONFIG_NTFS3_LZX_XPRESS 2152 /* 2153 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2154 * 2155 * Remove ATTR_DATA::WofCompressedData. 2156 * Remove ATTR_REPARSE. 2157 */ 2158 int ni_decompress_file(struct ntfs_inode *ni) 2159 { 2160 struct ntfs_sb_info *sbi = ni->mi.sbi; 2161 struct inode *inode = &ni->vfs_inode; 2162 loff_t i_size = inode->i_size; 2163 struct address_space *mapping = inode->i_mapping; 2164 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2165 struct page **pages = NULL; 2166 struct ATTR_LIST_ENTRY *le; 2167 struct ATTRIB *attr; 2168 CLST vcn, cend, lcn, clen, end; 2169 pgoff_t index; 2170 u64 vbo; 2171 u8 frame_bits; 2172 u32 i, frame_size, pages_per_frame, bytes; 2173 struct mft_inode *mi; 2174 int err; 2175 2176 /* Clusters for decompressed data. */ 2177 cend = bytes_to_cluster(sbi, i_size); 2178 2179 if (!i_size) 2180 goto remove_wof; 2181 2182 /* Check in advance. */ 2183 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2184 err = -ENOSPC; 2185 goto out; 2186 } 2187 2188 frame_bits = ni_ext_compress_bits(ni); 2189 frame_size = 1u << frame_bits; 2190 pages_per_frame = frame_size >> PAGE_SHIFT; 2191 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2192 if (!pages) { 2193 err = -ENOMEM; 2194 goto out; 2195 } 2196 2197 /* 2198 * Step 1: Decompress data and copy to new allocated clusters. 2199 */ 2200 index = 0; 2201 for (vbo = 0; vbo < i_size; vbo += bytes) { 2202 u32 nr_pages; 2203 bool new; 2204 2205 if (vbo + frame_size > i_size) { 2206 bytes = i_size - vbo; 2207 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2208 } else { 2209 nr_pages = pages_per_frame; 2210 bytes = frame_size; 2211 } 2212 2213 end = bytes_to_cluster(sbi, vbo + bytes); 2214 2215 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2216 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2217 &clen, &new); 2218 if (err) 2219 goto out; 2220 } 2221 2222 for (i = 0; i < pages_per_frame; i++, index++) { 2223 struct page *pg; 2224 2225 pg = find_or_create_page(mapping, index, gfp_mask); 2226 if (!pg) { 2227 while (i--) { 2228 unlock_page(pages[i]); 2229 put_page(pages[i]); 2230 } 2231 err = -ENOMEM; 2232 goto out; 2233 } 2234 pages[i] = pg; 2235 } 2236 2237 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2238 2239 if (!err) { 2240 down_read(&ni->file.run_lock); 2241 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2242 nr_pages, vbo, bytes, 2243 REQ_OP_WRITE); 2244 up_read(&ni->file.run_lock); 2245 } 2246 2247 for (i = 0; i < pages_per_frame; i++) { 2248 unlock_page(pages[i]); 2249 put_page(pages[i]); 2250 } 2251 2252 if (err) 2253 goto out; 2254 2255 cond_resched(); 2256 } 2257 2258 remove_wof: 2259 /* 2260 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2261 * and ATTR_REPARSE. 2262 */ 2263 attr = NULL; 2264 le = NULL; 2265 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2266 CLST svcn, evcn; 2267 u32 asize, roff; 2268 2269 if (attr->type == ATTR_REPARSE) { 2270 struct MFT_REF ref; 2271 2272 mi_get_ref(&ni->mi, &ref); 2273 ntfs_remove_reparse(sbi, 0, &ref); 2274 } 2275 2276 if (!attr->non_res) 2277 continue; 2278 2279 if (attr->type != ATTR_REPARSE && 2280 (attr->type != ATTR_DATA || 2281 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2282 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2283 continue; 2284 2285 svcn = le64_to_cpu(attr->nres.svcn); 2286 evcn = le64_to_cpu(attr->nres.evcn); 2287 2288 if (evcn + 1 <= svcn) 2289 continue; 2290 2291 asize = le32_to_cpu(attr->size); 2292 roff = le16_to_cpu(attr->nres.run_off); 2293 2294 /*run==1 Means unpack and deallocate. */ 2295 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2296 Add2Ptr(attr, roff), asize - roff); 2297 } 2298 2299 /* 2300 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2301 */ 2302 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2303 false, NULL); 2304 if (err) 2305 goto out; 2306 2307 /* 2308 * Step 4: Remove ATTR_REPARSE. 2309 */ 2310 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2311 if (err) 2312 goto out; 2313 2314 /* 2315 * Step 5: Remove sparse flag from data attribute. 2316 */ 2317 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2318 if (!attr) { 2319 err = -EINVAL; 2320 goto out; 2321 } 2322 2323 if (attr->non_res && is_attr_sparsed(attr)) { 2324 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2325 struct MFT_REC *rec = mi->mrec; 2326 u32 used = le32_to_cpu(rec->used); 2327 u32 asize = le32_to_cpu(attr->size); 2328 u16 roff = le16_to_cpu(attr->nres.run_off); 2329 char *rbuf = Add2Ptr(attr, roff); 2330 2331 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2332 attr->size = cpu_to_le32(asize - 8); 2333 attr->flags &= ~ATTR_FLAG_SPARSED; 2334 attr->nres.run_off = cpu_to_le16(roff - 8); 2335 attr->nres.c_unit = 0; 2336 rec->used = cpu_to_le32(used - 8); 2337 mi->dirty = true; 2338 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2339 FILE_ATTRIBUTE_REPARSE_POINT); 2340 2341 mark_inode_dirty(inode); 2342 } 2343 2344 /* Clear cached flag. */ 2345 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2346 if (ni->file.offs_page) { 2347 put_page(ni->file.offs_page); 2348 ni->file.offs_page = NULL; 2349 } 2350 mapping->a_ops = &ntfs_aops; 2351 2352 out: 2353 kfree(pages); 2354 if (err) 2355 _ntfs_bad_inode(inode); 2356 2357 return err; 2358 } 2359 2360 /* 2361 * decompress_lzx_xpress - External compression LZX/Xpress. 2362 */ 2363 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2364 size_t cmpr_size, void *unc, size_t unc_size, 2365 u32 frame_size) 2366 { 2367 int err; 2368 void *ctx; 2369 2370 if (cmpr_size == unc_size) { 2371 /* Frame not compressed. */ 2372 memcpy(unc, cmpr, unc_size); 2373 return 0; 2374 } 2375 2376 err = 0; 2377 if (frame_size == 0x8000) { 2378 mutex_lock(&sbi->compress.mtx_lzx); 2379 /* LZX: Frame compressed. */ 2380 ctx = sbi->compress.lzx; 2381 if (!ctx) { 2382 /* Lazy initialize LZX decompress context. */ 2383 ctx = lzx_allocate_decompressor(); 2384 if (!ctx) { 2385 err = -ENOMEM; 2386 goto out1; 2387 } 2388 2389 sbi->compress.lzx = ctx; 2390 } 2391 2392 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2393 /* Treat all errors as "invalid argument". */ 2394 err = -EINVAL; 2395 } 2396 out1: 2397 mutex_unlock(&sbi->compress.mtx_lzx); 2398 } else { 2399 /* XPRESS: Frame compressed. */ 2400 mutex_lock(&sbi->compress.mtx_xpress); 2401 ctx = sbi->compress.xpress; 2402 if (!ctx) { 2403 /* Lazy initialize Xpress decompress context. */ 2404 ctx = xpress_allocate_decompressor(); 2405 if (!ctx) { 2406 err = -ENOMEM; 2407 goto out2; 2408 } 2409 2410 sbi->compress.xpress = ctx; 2411 } 2412 2413 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2414 /* Treat all errors as "invalid argument". */ 2415 err = -EINVAL; 2416 } 2417 out2: 2418 mutex_unlock(&sbi->compress.mtx_xpress); 2419 } 2420 return err; 2421 } 2422 #endif 2423 2424 /* 2425 * ni_read_frame 2426 * 2427 * Pages - Array of locked pages. 2428 */ 2429 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2430 u32 pages_per_frame) 2431 { 2432 int err; 2433 struct ntfs_sb_info *sbi = ni->mi.sbi; 2434 u8 cluster_bits = sbi->cluster_bits; 2435 char *frame_ondisk = NULL; 2436 char *frame_mem = NULL; 2437 struct page **pages_disk = NULL; 2438 struct ATTR_LIST_ENTRY *le = NULL; 2439 struct runs_tree *run = &ni->file.run; 2440 u64 valid_size = ni->i_valid; 2441 u64 vbo_disk; 2442 size_t unc_size; 2443 u32 frame_size, i, npages_disk, ondisk_size; 2444 struct page *pg; 2445 struct ATTRIB *attr; 2446 CLST frame, clst_data; 2447 2448 /* 2449 * To simplify decompress algorithm do vmap for source 2450 * and target pages. 2451 */ 2452 for (i = 0; i < pages_per_frame; i++) 2453 kmap(pages[i]); 2454 2455 frame_size = pages_per_frame << PAGE_SHIFT; 2456 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2457 if (!frame_mem) { 2458 err = -ENOMEM; 2459 goto out; 2460 } 2461 2462 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2463 if (!attr) { 2464 err = -ENOENT; 2465 goto out1; 2466 } 2467 2468 if (!attr->non_res) { 2469 u32 data_size = le32_to_cpu(attr->res.data_size); 2470 2471 memset(frame_mem, 0, frame_size); 2472 if (frame_vbo < data_size) { 2473 ondisk_size = data_size - frame_vbo; 2474 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2475 min(ondisk_size, frame_size)); 2476 } 2477 err = 0; 2478 goto out1; 2479 } 2480 2481 if (frame_vbo >= valid_size) { 2482 memset(frame_mem, 0, frame_size); 2483 err = 0; 2484 goto out1; 2485 } 2486 2487 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2488 #ifndef CONFIG_NTFS3_LZX_XPRESS 2489 err = -EOPNOTSUPP; 2490 goto out1; 2491 #else 2492 u32 frame_bits = ni_ext_compress_bits(ni); 2493 u64 frame64 = frame_vbo >> frame_bits; 2494 u64 frames, vbo_data; 2495 2496 if (frame_size != (1u << frame_bits)) { 2497 err = -EINVAL; 2498 goto out1; 2499 } 2500 switch (frame_size) { 2501 case 0x1000: 2502 case 0x2000: 2503 case 0x4000: 2504 case 0x8000: 2505 break; 2506 default: 2507 /* Unknown compression. */ 2508 err = -EOPNOTSUPP; 2509 goto out1; 2510 } 2511 2512 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2513 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2514 if (!attr) { 2515 ntfs_inode_err( 2516 &ni->vfs_inode, 2517 "external compressed file should contains data attribute \"WofCompressedData\""); 2518 err = -EINVAL; 2519 goto out1; 2520 } 2521 2522 if (!attr->non_res) { 2523 run = NULL; 2524 } else { 2525 run = run_alloc(); 2526 if (!run) { 2527 err = -ENOMEM; 2528 goto out1; 2529 } 2530 } 2531 2532 frames = (ni->vfs_inode.i_size - 1) >> frame_bits; 2533 2534 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2535 frame_bits, &ondisk_size, &vbo_data); 2536 if (err) 2537 goto out2; 2538 2539 if (frame64 == frames) { 2540 unc_size = 1 + ((ni->vfs_inode.i_size - 1) & 2541 (frame_size - 1)); 2542 ondisk_size = attr_size(attr) - vbo_data; 2543 } else { 2544 unc_size = frame_size; 2545 } 2546 2547 if (ondisk_size > frame_size) { 2548 err = -EINVAL; 2549 goto out2; 2550 } 2551 2552 if (!attr->non_res) { 2553 if (vbo_data + ondisk_size > 2554 le32_to_cpu(attr->res.data_size)) { 2555 err = -EINVAL; 2556 goto out1; 2557 } 2558 2559 err = decompress_lzx_xpress( 2560 sbi, Add2Ptr(resident_data(attr), vbo_data), 2561 ondisk_size, frame_mem, unc_size, frame_size); 2562 goto out1; 2563 } 2564 vbo_disk = vbo_data; 2565 /* Load all runs to read [vbo_disk-vbo_to). */ 2566 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2567 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2568 vbo_data + ondisk_size); 2569 if (err) 2570 goto out2; 2571 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2572 PAGE_SIZE - 1) >> 2573 PAGE_SHIFT; 2574 #endif 2575 } else if (is_attr_compressed(attr)) { 2576 /* LZNT compression. */ 2577 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2578 err = -EOPNOTSUPP; 2579 goto out1; 2580 } 2581 2582 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2583 err = -EOPNOTSUPP; 2584 goto out1; 2585 } 2586 2587 down_write(&ni->file.run_lock); 2588 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2589 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2590 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2591 up_write(&ni->file.run_lock); 2592 if (err) 2593 goto out1; 2594 2595 if (!clst_data) { 2596 memset(frame_mem, 0, frame_size); 2597 goto out1; 2598 } 2599 2600 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2601 ondisk_size = clst_data << cluster_bits; 2602 2603 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2604 /* Frame is not compressed. */ 2605 down_read(&ni->file.run_lock); 2606 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2607 frame_vbo, ondisk_size, 2608 REQ_OP_READ); 2609 up_read(&ni->file.run_lock); 2610 goto out1; 2611 } 2612 vbo_disk = frame_vbo; 2613 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2614 } else { 2615 __builtin_unreachable(); 2616 err = -EINVAL; 2617 goto out1; 2618 } 2619 2620 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2621 if (!pages_disk) { 2622 err = -ENOMEM; 2623 goto out2; 2624 } 2625 2626 for (i = 0; i < npages_disk; i++) { 2627 pg = alloc_page(GFP_KERNEL); 2628 if (!pg) { 2629 err = -ENOMEM; 2630 goto out3; 2631 } 2632 pages_disk[i] = pg; 2633 lock_page(pg); 2634 kmap(pg); 2635 } 2636 2637 /* Read 'ondisk_size' bytes from disk. */ 2638 down_read(&ni->file.run_lock); 2639 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2640 ondisk_size, REQ_OP_READ); 2641 up_read(&ni->file.run_lock); 2642 if (err) 2643 goto out3; 2644 2645 /* 2646 * To simplify decompress algorithm do vmap for source and target pages. 2647 */ 2648 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2649 if (!frame_ondisk) { 2650 err = -ENOMEM; 2651 goto out3; 2652 } 2653 2654 /* Decompress: Frame_ondisk -> frame_mem. */ 2655 #ifdef CONFIG_NTFS3_LZX_XPRESS 2656 if (run != &ni->file.run) { 2657 /* LZX or XPRESS */ 2658 err = decompress_lzx_xpress( 2659 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2660 ondisk_size, frame_mem, unc_size, frame_size); 2661 } else 2662 #endif 2663 { 2664 /* LZNT - Native NTFS compression. */ 2665 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2666 frame_size); 2667 if ((ssize_t)unc_size < 0) 2668 err = unc_size; 2669 else if (!unc_size || unc_size > frame_size) 2670 err = -EINVAL; 2671 } 2672 if (!err && valid_size < frame_vbo + frame_size) { 2673 size_t ok = valid_size - frame_vbo; 2674 2675 memset(frame_mem + ok, 0, frame_size - ok); 2676 } 2677 2678 vunmap(frame_ondisk); 2679 2680 out3: 2681 for (i = 0; i < npages_disk; i++) { 2682 pg = pages_disk[i]; 2683 if (pg) { 2684 kunmap(pg); 2685 unlock_page(pg); 2686 put_page(pg); 2687 } 2688 } 2689 kfree(pages_disk); 2690 2691 out2: 2692 #ifdef CONFIG_NTFS3_LZX_XPRESS 2693 if (run != &ni->file.run) 2694 run_free(run); 2695 #endif 2696 out1: 2697 vunmap(frame_mem); 2698 out: 2699 for (i = 0; i < pages_per_frame; i++) { 2700 pg = pages[i]; 2701 kunmap(pg); 2702 ClearPageError(pg); 2703 SetPageUptodate(pg); 2704 } 2705 2706 return err; 2707 } 2708 2709 /* 2710 * ni_write_frame 2711 * 2712 * Pages - Array of locked pages. 2713 */ 2714 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2715 u32 pages_per_frame) 2716 { 2717 int err; 2718 struct ntfs_sb_info *sbi = ni->mi.sbi; 2719 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2720 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2721 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2722 CLST frame = frame_vbo >> frame_bits; 2723 char *frame_ondisk = NULL; 2724 struct page **pages_disk = NULL; 2725 struct ATTR_LIST_ENTRY *le = NULL; 2726 char *frame_mem; 2727 struct ATTRIB *attr; 2728 struct mft_inode *mi; 2729 u32 i; 2730 struct page *pg; 2731 size_t compr_size, ondisk_size; 2732 struct lznt *lznt; 2733 2734 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2735 if (!attr) { 2736 err = -ENOENT; 2737 goto out; 2738 } 2739 2740 if (WARN_ON(!is_attr_compressed(attr))) { 2741 err = -EINVAL; 2742 goto out; 2743 } 2744 2745 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2746 err = -EOPNOTSUPP; 2747 goto out; 2748 } 2749 2750 if (!attr->non_res) { 2751 down_write(&ni->file.run_lock); 2752 err = attr_make_nonresident(ni, attr, le, mi, 2753 le32_to_cpu(attr->res.data_size), 2754 &ni->file.run, &attr, pages[0]); 2755 up_write(&ni->file.run_lock); 2756 if (err) 2757 goto out; 2758 } 2759 2760 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2761 err = -EOPNOTSUPP; 2762 goto out; 2763 } 2764 2765 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2766 if (!pages_disk) { 2767 err = -ENOMEM; 2768 goto out; 2769 } 2770 2771 for (i = 0; i < pages_per_frame; i++) { 2772 pg = alloc_page(GFP_KERNEL); 2773 if (!pg) { 2774 err = -ENOMEM; 2775 goto out1; 2776 } 2777 pages_disk[i] = pg; 2778 lock_page(pg); 2779 kmap(pg); 2780 } 2781 2782 /* To simplify compress algorithm do vmap for source and target pages. */ 2783 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2784 if (!frame_ondisk) { 2785 err = -ENOMEM; 2786 goto out1; 2787 } 2788 2789 for (i = 0; i < pages_per_frame; i++) 2790 kmap(pages[i]); 2791 2792 /* Map in-memory frame for read-only. */ 2793 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2794 if (!frame_mem) { 2795 err = -ENOMEM; 2796 goto out2; 2797 } 2798 2799 mutex_lock(&sbi->compress.mtx_lznt); 2800 lznt = NULL; 2801 if (!sbi->compress.lznt) { 2802 /* 2803 * LZNT implements two levels of compression: 2804 * 0 - Standard compression 2805 * 1 - Best compression, requires a lot of cpu 2806 * use mount option? 2807 */ 2808 lznt = get_lznt_ctx(0); 2809 if (!lznt) { 2810 mutex_unlock(&sbi->compress.mtx_lznt); 2811 err = -ENOMEM; 2812 goto out3; 2813 } 2814 2815 sbi->compress.lznt = lznt; 2816 lznt = NULL; 2817 } 2818 2819 /* Compress: frame_mem -> frame_ondisk */ 2820 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2821 frame_size, sbi->compress.lznt); 2822 mutex_unlock(&sbi->compress.mtx_lznt); 2823 kfree(lznt); 2824 2825 if (compr_size + sbi->cluster_size > frame_size) { 2826 /* Frame is not compressed. */ 2827 compr_size = frame_size; 2828 ondisk_size = frame_size; 2829 } else if (compr_size) { 2830 /* Frame is compressed. */ 2831 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2832 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2833 } else { 2834 /* Frame is sparsed. */ 2835 ondisk_size = 0; 2836 } 2837 2838 down_write(&ni->file.run_lock); 2839 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2840 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2841 up_write(&ni->file.run_lock); 2842 if (err) 2843 goto out2; 2844 2845 if (!ondisk_size) 2846 goto out2; 2847 2848 down_read(&ni->file.run_lock); 2849 err = ntfs_bio_pages(sbi, &ni->file.run, 2850 ondisk_size < frame_size ? pages_disk : pages, 2851 pages_per_frame, frame_vbo, ondisk_size, 2852 REQ_OP_WRITE); 2853 up_read(&ni->file.run_lock); 2854 2855 out3: 2856 vunmap(frame_mem); 2857 2858 out2: 2859 for (i = 0; i < pages_per_frame; i++) 2860 kunmap(pages[i]); 2861 2862 vunmap(frame_ondisk); 2863 out1: 2864 for (i = 0; i < pages_per_frame; i++) { 2865 pg = pages_disk[i]; 2866 if (pg) { 2867 kunmap(pg); 2868 unlock_page(pg); 2869 put_page(pg); 2870 } 2871 } 2872 kfree(pages_disk); 2873 out: 2874 return err; 2875 } 2876 2877 /* 2878 * ni_remove_name - Removes name 'de' from MFT and from directory. 2879 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2880 */ 2881 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2882 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2883 { 2884 int err; 2885 struct ntfs_sb_info *sbi = ni->mi.sbi; 2886 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2887 struct ATTR_FILE_NAME *fname; 2888 struct ATTR_LIST_ENTRY *le; 2889 struct mft_inode *mi; 2890 u16 de_key_size = le16_to_cpu(de->key_size); 2891 u8 name_type; 2892 2893 *undo_step = 0; 2894 2895 /* Find name in record. */ 2896 mi_get_ref(&dir_ni->mi, &de_name->home); 2897 2898 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, 2899 &de_name->home, &mi, &le); 2900 if (!fname) 2901 return -ENOENT; 2902 2903 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2904 name_type = paired_name(fname->type); 2905 2906 /* Mark ntfs as dirty. It will be cleared at umount. */ 2907 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2908 2909 /* Step 1: Remove name from directory. */ 2910 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2911 if (err) 2912 return err; 2913 2914 /* Step 2: Remove name from MFT. */ 2915 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2916 2917 *undo_step = 2; 2918 2919 /* Get paired name. */ 2920 fname = ni_fname_type(ni, name_type, &mi, &le); 2921 if (fname) { 2922 u16 de2_key_size = fname_full_size(fname); 2923 2924 *de2 = Add2Ptr(de, 1024); 2925 (*de2)->key_size = cpu_to_le16(de2_key_size); 2926 2927 memcpy(*de2 + 1, fname, de2_key_size); 2928 2929 /* Step 3: Remove paired name from directory. */ 2930 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2931 de2_key_size, sbi); 2932 if (err) 2933 return err; 2934 2935 /* Step 4: Remove paired name from MFT. */ 2936 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2937 2938 *undo_step = 4; 2939 } 2940 return 0; 2941 } 2942 2943 /* 2944 * ni_remove_name_undo - Paired function for ni_remove_name. 2945 * 2946 * Return: True if ok 2947 */ 2948 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2949 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2950 { 2951 struct ntfs_sb_info *sbi = ni->mi.sbi; 2952 struct ATTRIB *attr; 2953 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0; 2954 2955 switch (undo_step) { 2956 case 4: 2957 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2958 &attr, NULL, NULL)) { 2959 return false; 2960 } 2961 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2962 2963 mi_get_ref(&ni->mi, &de2->ref); 2964 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2965 sizeof(struct NTFS_DE)); 2966 de2->flags = 0; 2967 de2->res = 0; 2968 2969 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 2970 1)) { 2971 return false; 2972 } 2973 fallthrough; 2974 2975 case 2: 2976 de_key_size = le16_to_cpu(de->key_size); 2977 2978 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2979 &attr, NULL, NULL)) { 2980 return false; 2981 } 2982 2983 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2984 mi_get_ref(&ni->mi, &de->ref); 2985 2986 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 2987 return false; 2988 } 2989 2990 return true; 2991 } 2992 2993 /* 2994 * ni_add_name - Add new name into MFT and into directory. 2995 */ 2996 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2997 struct NTFS_DE *de) 2998 { 2999 int err; 3000 struct ATTRIB *attr; 3001 struct ATTR_LIST_ENTRY *le; 3002 struct mft_inode *mi; 3003 struct ATTR_FILE_NAME *fname; 3004 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 3005 u16 de_key_size = le16_to_cpu(de->key_size); 3006 3007 mi_get_ref(&ni->mi, &de->ref); 3008 mi_get_ref(&dir_ni->mi, &de_name->home); 3009 3010 /* Fill duplicate from any ATTR_NAME. */ 3011 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 3012 if (fname) 3013 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 3014 de_name->dup.fa = ni->std_fa; 3015 3016 /* Insert new name into MFT. */ 3017 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 3018 &mi, &le); 3019 if (err) 3020 return err; 3021 3022 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 3023 3024 /* Insert new name into directory. */ 3025 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0); 3026 if (err) 3027 ni_remove_attr_le(ni, attr, mi, le); 3028 3029 return err; 3030 } 3031 3032 /* 3033 * ni_rename - Remove one name and insert new name. 3034 */ 3035 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 3036 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 3037 bool *is_bad) 3038 { 3039 int err; 3040 struct NTFS_DE *de2 = NULL; 3041 int undo = 0; 3042 3043 /* 3044 * There are two possible ways to rename: 3045 * 1) Add new name and remove old name. 3046 * 2) Remove old name and add new name. 3047 * 3048 * In most cases (not all!) adding new name into MFT and into directory can 3049 * allocate additional cluster(s). 3050 * Second way may result to bad inode if we can't add new name 3051 * and then can't restore (add) old name. 3052 */ 3053 3054 /* 3055 * Way 1 - Add new + remove old. 3056 */ 3057 err = ni_add_name(new_dir_ni, ni, new_de); 3058 if (!err) { 3059 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3060 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3061 *is_bad = true; 3062 } 3063 3064 /* 3065 * Way 2 - Remove old + add new. 3066 */ 3067 /* 3068 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3069 * if (!err) { 3070 * err = ni_add_name(new_dir_ni, ni, new_de); 3071 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3072 * *is_bad = true; 3073 * } 3074 */ 3075 3076 return err; 3077 } 3078 3079 /* 3080 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3081 */ 3082 bool ni_is_dirty(struct inode *inode) 3083 { 3084 struct ntfs_inode *ni = ntfs_i(inode); 3085 struct rb_node *node; 3086 3087 if (ni->mi.dirty || ni->attr_list.dirty || 3088 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3089 return true; 3090 3091 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3092 if (rb_entry(node, struct mft_inode, node)->dirty) 3093 return true; 3094 } 3095 3096 return false; 3097 } 3098 3099 /* 3100 * ni_update_parent 3101 * 3102 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3103 */ 3104 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3105 int sync) 3106 { 3107 struct ATTRIB *attr; 3108 struct mft_inode *mi; 3109 struct ATTR_LIST_ENTRY *le = NULL; 3110 struct ntfs_sb_info *sbi = ni->mi.sbi; 3111 struct super_block *sb = sbi->sb; 3112 bool re_dirty = false; 3113 3114 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3115 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3116 attr = NULL; 3117 dup->alloc_size = 0; 3118 dup->data_size = 0; 3119 } else { 3120 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3121 3122 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3123 &mi); 3124 if (!attr) { 3125 dup->alloc_size = dup->data_size = 0; 3126 } else if (!attr->non_res) { 3127 u32 data_size = le32_to_cpu(attr->res.data_size); 3128 3129 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3130 dup->data_size = cpu_to_le64(data_size); 3131 } else { 3132 u64 new_valid = ni->i_valid; 3133 u64 data_size = le64_to_cpu(attr->nres.data_size); 3134 __le64 valid_le; 3135 3136 dup->alloc_size = is_attr_ext(attr) 3137 ? attr->nres.total_size 3138 : attr->nres.alloc_size; 3139 dup->data_size = attr->nres.data_size; 3140 3141 if (new_valid > data_size) 3142 new_valid = data_size; 3143 3144 valid_le = cpu_to_le64(new_valid); 3145 if (valid_le != attr->nres.valid_size) { 3146 attr->nres.valid_size = valid_le; 3147 mi->dirty = true; 3148 } 3149 } 3150 } 3151 3152 /* TODO: Fill reparse info. */ 3153 dup->reparse = 0; 3154 dup->ea_size = 0; 3155 3156 if (ni->ni_flags & NI_FLAG_EA) { 3157 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3158 NULL); 3159 if (attr) { 3160 const struct EA_INFO *info; 3161 3162 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3163 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3164 if (info) 3165 dup->ea_size = info->size_pack; 3166 } 3167 } 3168 3169 attr = NULL; 3170 le = NULL; 3171 3172 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3173 &mi))) { 3174 struct inode *dir; 3175 struct ATTR_FILE_NAME *fname; 3176 3177 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3178 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3179 continue; 3180 3181 /* ntfs_iget5 may sleep. */ 3182 dir = ntfs_iget5(sb, &fname->home, NULL); 3183 if (IS_ERR(dir)) { 3184 ntfs_inode_warn( 3185 &ni->vfs_inode, 3186 "failed to open parent directory r=%lx to update", 3187 (long)ino_get(&fname->home)); 3188 continue; 3189 } 3190 3191 if (!is_bad_inode(dir)) { 3192 struct ntfs_inode *dir_ni = ntfs_i(dir); 3193 3194 if (!ni_trylock(dir_ni)) { 3195 re_dirty = true; 3196 } else { 3197 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3198 ni_unlock(dir_ni); 3199 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3200 mi->dirty = true; 3201 } 3202 } 3203 iput(dir); 3204 } 3205 3206 return re_dirty; 3207 } 3208 3209 /* 3210 * ni_write_inode - Write MFT base record and all subrecords to disk. 3211 */ 3212 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3213 { 3214 int err = 0, err2; 3215 struct ntfs_inode *ni = ntfs_i(inode); 3216 struct super_block *sb = inode->i_sb; 3217 struct ntfs_sb_info *sbi = sb->s_fs_info; 3218 bool re_dirty = false; 3219 struct ATTR_STD_INFO *std; 3220 struct rb_node *node, *next; 3221 struct NTFS_DUP_INFO dup; 3222 3223 if (is_bad_inode(inode) || sb_rdonly(sb)) 3224 return 0; 3225 3226 if (!ni_trylock(ni)) { 3227 /* 'ni' is under modification, skip for now. */ 3228 mark_inode_dirty_sync(inode); 3229 return 0; 3230 } 3231 3232 if (is_rec_inuse(ni->mi.mrec) && 3233 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3234 bool modified = false; 3235 3236 /* Update times in standard attribute. */ 3237 std = ni_std(ni); 3238 if (!std) { 3239 err = -EINVAL; 3240 goto out; 3241 } 3242 3243 /* Update the access times if they have changed. */ 3244 dup.m_time = kernel2nt(&inode->i_mtime); 3245 if (std->m_time != dup.m_time) { 3246 std->m_time = dup.m_time; 3247 modified = true; 3248 } 3249 3250 dup.c_time = kernel2nt(&inode->i_ctime); 3251 if (std->c_time != dup.c_time) { 3252 std->c_time = dup.c_time; 3253 modified = true; 3254 } 3255 3256 dup.a_time = kernel2nt(&inode->i_atime); 3257 if (std->a_time != dup.a_time) { 3258 std->a_time = dup.a_time; 3259 modified = true; 3260 } 3261 3262 dup.fa = ni->std_fa; 3263 if (std->fa != dup.fa) { 3264 std->fa = dup.fa; 3265 modified = true; 3266 } 3267 3268 if (modified) 3269 ni->mi.dirty = true; 3270 3271 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3272 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3273 /* Avoid __wait_on_freeing_inode(inode). */ 3274 && (sb->s_flags & SB_ACTIVE)) { 3275 dup.cr_time = std->cr_time; 3276 /* Not critical if this function fail. */ 3277 re_dirty = ni_update_parent(ni, &dup, sync); 3278 3279 if (re_dirty) 3280 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3281 else 3282 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3283 } 3284 3285 /* Update attribute list. */ 3286 if (ni->attr_list.size && ni->attr_list.dirty) { 3287 if (inode->i_ino != MFT_REC_MFT || sync) { 3288 err = ni_try_remove_attr_list(ni); 3289 if (err) 3290 goto out; 3291 } 3292 3293 err = al_update(ni, sync); 3294 if (err) 3295 goto out; 3296 } 3297 } 3298 3299 for (node = rb_first(&ni->mi_tree); node; node = next) { 3300 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3301 bool is_empty; 3302 3303 next = rb_next(node); 3304 3305 if (!mi->dirty) 3306 continue; 3307 3308 is_empty = !mi_enum_attr(mi, NULL); 3309 3310 if (is_empty) 3311 clear_rec_inuse(mi->mrec); 3312 3313 err2 = mi_write(mi, sync); 3314 if (!err && err2) 3315 err = err2; 3316 3317 if (is_empty) { 3318 ntfs_mark_rec_free(sbi, mi->rno, false); 3319 rb_erase(node, &ni->mi_tree); 3320 mi_put(mi); 3321 } 3322 } 3323 3324 if (ni->mi.dirty) { 3325 err2 = mi_write(&ni->mi, sync); 3326 if (!err && err2) 3327 err = err2; 3328 } 3329 out: 3330 ni_unlock(ni); 3331 3332 if (err) { 3333 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err); 3334 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3335 return err; 3336 } 3337 3338 if (re_dirty) 3339 mark_inode_dirty_sync(inode); 3340 3341 return 0; 3342 } 3343