1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/vmalloc.h> 11 12 #include "debug.h" 13 #include "ntfs.h" 14 #include "ntfs_fs.h" 15 #ifdef CONFIG_NTFS3_LZX_XPRESS 16 #include "lib/lib.h" 17 #endif 18 19 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 20 CLST ino, struct rb_node *ins) 21 { 22 struct rb_node **p = &tree->rb_node; 23 struct rb_node *pr = NULL; 24 25 while (*p) { 26 struct mft_inode *mi; 27 28 pr = *p; 29 mi = rb_entry(pr, struct mft_inode, node); 30 if (mi->rno > ino) 31 p = &pr->rb_left; 32 else if (mi->rno < ino) 33 p = &pr->rb_right; 34 else 35 return mi; 36 } 37 38 if (!ins) 39 return NULL; 40 41 rb_link_node(ins, pr, p); 42 rb_insert_color(ins, tree); 43 return rb_entry(ins, struct mft_inode, node); 44 } 45 46 /* 47 * ni_find_mi - Find mft_inode by record number. 48 */ 49 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 50 { 51 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 52 } 53 54 /* 55 * ni_add_mi - Add new mft_inode into ntfs_inode. 56 */ 57 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 58 { 59 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 60 } 61 62 /* 63 * ni_remove_mi - Remove mft_inode from ntfs_inode. 64 */ 65 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 66 { 67 rb_erase(&mi->node, &ni->mi_tree); 68 } 69 70 /* 71 * ni_std - Return: Pointer into std_info from primary record. 72 */ 73 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 74 { 75 const struct ATTRIB *attr; 76 77 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 78 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) 79 : NULL; 80 } 81 82 /* 83 * ni_std5 84 * 85 * Return: Pointer into std_info from primary record. 86 */ 87 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 88 { 89 const struct ATTRIB *attr; 90 91 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 92 93 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) 94 : NULL; 95 } 96 97 /* 98 * ni_clear - Clear resources allocated by ntfs_inode. 99 */ 100 void ni_clear(struct ntfs_inode *ni) 101 { 102 struct rb_node *node; 103 104 if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec)) 105 ni_delete_all(ni); 106 107 al_destroy(ni); 108 109 for (node = rb_first(&ni->mi_tree); node;) { 110 struct rb_node *next = rb_next(node); 111 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 112 113 rb_erase(node, &ni->mi_tree); 114 mi_put(mi); 115 node = next; 116 } 117 118 /* Bad inode always has mode == S_IFREG. */ 119 if (ni->ni_flags & NI_FLAG_DIR) 120 indx_clear(&ni->dir); 121 else { 122 run_close(&ni->file.run); 123 #ifdef CONFIG_NTFS3_LZX_XPRESS 124 if (ni->file.offs_page) { 125 /* On-demand allocated page for offsets. */ 126 put_page(ni->file.offs_page); 127 ni->file.offs_page = NULL; 128 } 129 #endif 130 } 131 132 mi_clear(&ni->mi); 133 } 134 135 /* 136 * ni_load_mi_ex - Find mft_inode by record number. 137 */ 138 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 139 { 140 int err; 141 struct mft_inode *r; 142 143 r = ni_find_mi(ni, rno); 144 if (r) 145 goto out; 146 147 err = mi_get(ni->mi.sbi, rno, &r); 148 if (err) 149 return err; 150 151 ni_add_mi(ni, r); 152 153 out: 154 if (mi) 155 *mi = r; 156 return 0; 157 } 158 159 /* 160 * ni_load_mi - Load mft_inode corresponded list_entry. 161 */ 162 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 163 struct mft_inode **mi) 164 { 165 CLST rno; 166 167 if (!le) { 168 *mi = &ni->mi; 169 return 0; 170 } 171 172 rno = ino_get(&le->ref); 173 if (rno == ni->mi.rno) { 174 *mi = &ni->mi; 175 return 0; 176 } 177 return ni_load_mi_ex(ni, rno, mi); 178 } 179 180 /* 181 * ni_find_attr 182 * 183 * Return: Attribute and record this attribute belongs to. 184 */ 185 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 186 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 187 const __le16 *name, u8 name_len, const CLST *vcn, 188 struct mft_inode **mi) 189 { 190 struct ATTR_LIST_ENTRY *le; 191 struct mft_inode *m; 192 193 if (!ni->attr_list.size || 194 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 195 if (le_o) 196 *le_o = NULL; 197 if (mi) 198 *mi = &ni->mi; 199 200 /* Look for required attribute in primary record. */ 201 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 202 } 203 204 /* First look for list entry of required type. */ 205 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 206 if (!le) 207 return NULL; 208 209 if (le_o) 210 *le_o = le; 211 212 /* Load record that contains this attribute. */ 213 if (ni_load_mi(ni, le, &m)) 214 return NULL; 215 216 /* Look for required attribute. */ 217 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 218 219 if (!attr) 220 goto out; 221 222 if (!attr->non_res) { 223 if (vcn && *vcn) 224 goto out; 225 } else if (!vcn) { 226 if (attr->nres.svcn) 227 goto out; 228 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 229 *vcn > le64_to_cpu(attr->nres.evcn)) { 230 goto out; 231 } 232 233 if (mi) 234 *mi = m; 235 return attr; 236 237 out: 238 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 239 return NULL; 240 } 241 242 /* 243 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 244 */ 245 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 246 struct ATTR_LIST_ENTRY **le, 247 struct mft_inode **mi) 248 { 249 struct mft_inode *mi2; 250 struct ATTR_LIST_ENTRY *le2; 251 252 /* Do we have an attribute list? */ 253 if (!ni->attr_list.size) { 254 *le = NULL; 255 if (mi) 256 *mi = &ni->mi; 257 /* Enum attributes in primary record. */ 258 return mi_enum_attr(&ni->mi, attr); 259 } 260 261 /* Get next list entry. */ 262 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 263 if (!le2) 264 return NULL; 265 266 /* Load record that contains the required attribute. */ 267 if (ni_load_mi(ni, le2, &mi2)) 268 return NULL; 269 270 if (mi) 271 *mi = mi2; 272 273 /* Find attribute in loaded record. */ 274 return rec_find_attr_le(mi2, le2); 275 } 276 277 /* 278 * ni_load_attr - Load attribute that contains given VCN. 279 */ 280 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 281 const __le16 *name, u8 name_len, CLST vcn, 282 struct mft_inode **pmi) 283 { 284 struct ATTR_LIST_ENTRY *le; 285 struct ATTRIB *attr; 286 struct mft_inode *mi; 287 struct ATTR_LIST_ENTRY *next; 288 289 if (!ni->attr_list.size) { 290 if (pmi) 291 *pmi = &ni->mi; 292 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 293 } 294 295 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 296 if (!le) 297 return NULL; 298 299 /* 300 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 301 * So to find the ATTRIB segment that contains 'vcn' we should 302 * enumerate some entries. 303 */ 304 if (vcn) { 305 for (;; le = next) { 306 next = al_find_ex(ni, le, type, name, name_len, NULL); 307 if (!next || le64_to_cpu(next->vcn) > vcn) 308 break; 309 } 310 } 311 312 if (ni_load_mi(ni, le, &mi)) 313 return NULL; 314 315 if (pmi) 316 *pmi = mi; 317 318 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 319 if (!attr) 320 return NULL; 321 322 if (!attr->non_res) 323 return attr; 324 325 if (le64_to_cpu(attr->nres.svcn) <= vcn && 326 vcn <= le64_to_cpu(attr->nres.evcn)) 327 return attr; 328 329 return NULL; 330 } 331 332 /* 333 * ni_load_all_mi - Load all subrecords. 334 */ 335 int ni_load_all_mi(struct ntfs_inode *ni) 336 { 337 int err; 338 struct ATTR_LIST_ENTRY *le; 339 340 if (!ni->attr_list.size) 341 return 0; 342 343 le = NULL; 344 345 while ((le = al_enumerate(ni, le))) { 346 CLST rno = ino_get(&le->ref); 347 348 if (rno == ni->mi.rno) 349 continue; 350 351 err = ni_load_mi_ex(ni, rno, NULL); 352 if (err) 353 return err; 354 } 355 356 return 0; 357 } 358 359 /* 360 * ni_add_subrecord - Allocate + format + attach a new subrecord. 361 */ 362 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 363 { 364 struct mft_inode *m; 365 366 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 367 if (!m) 368 return false; 369 370 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 371 mi_put(m); 372 return false; 373 } 374 375 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 376 377 ni_add_mi(ni, m); 378 *mi = m; 379 return true; 380 } 381 382 /* 383 * ni_remove_attr - Remove all attributes for the given type/name/id. 384 */ 385 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 386 const __le16 *name, size_t name_len, bool base_only, 387 const __le16 *id) 388 { 389 int err; 390 struct ATTRIB *attr; 391 struct ATTR_LIST_ENTRY *le; 392 struct mft_inode *mi; 393 u32 type_in; 394 int diff; 395 396 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 397 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 398 if (!attr) 399 return -ENOENT; 400 401 mi_remove_attr(ni, &ni->mi, attr); 402 return 0; 403 } 404 405 type_in = le32_to_cpu(type); 406 le = NULL; 407 408 for (;;) { 409 le = al_enumerate(ni, le); 410 if (!le) 411 return 0; 412 413 next_le2: 414 diff = le32_to_cpu(le->type) - type_in; 415 if (diff < 0) 416 continue; 417 418 if (diff > 0) 419 return 0; 420 421 if (le->name_len != name_len) 422 continue; 423 424 if (name_len && 425 memcmp(le_name(le), name, name_len * sizeof(short))) 426 continue; 427 428 if (id && le->id != *id) 429 continue; 430 err = ni_load_mi(ni, le, &mi); 431 if (err) 432 return err; 433 434 al_remove_le(ni, le); 435 436 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 437 if (!attr) 438 return -ENOENT; 439 440 mi_remove_attr(ni, mi, attr); 441 442 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 443 return 0; 444 goto next_le2; 445 } 446 } 447 448 /* 449 * ni_ins_new_attr - Insert the attribute into record. 450 * 451 * Return: Not full constructed attribute or NULL if not possible to create. 452 */ 453 static struct ATTRIB * 454 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 455 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 456 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 457 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 458 { 459 int err; 460 struct ATTRIB *attr; 461 bool le_added = false; 462 struct MFT_REF ref; 463 464 mi_get_ref(mi, &ref); 465 466 if (type != ATTR_LIST && !le && ni->attr_list.size) { 467 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 468 &ref, &le); 469 if (err) { 470 /* No memory or no space. */ 471 return NULL; 472 } 473 le_added = true; 474 475 /* 476 * al_add_le -> attr_set_size (list) -> ni_expand_list 477 * which moves some attributes out of primary record 478 * this means that name may point into moved memory 479 * reinit 'name' from le. 480 */ 481 name = le->name; 482 } 483 484 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 485 if (!attr) { 486 if (le_added) 487 al_remove_le(ni, le); 488 return NULL; 489 } 490 491 if (type == ATTR_LIST) { 492 /* Attr list is not in list entry array. */ 493 goto out; 494 } 495 496 if (!le) 497 goto out; 498 499 /* Update ATTRIB Id and record reference. */ 500 le->id = attr->id; 501 ni->attr_list.dirty = true; 502 le->ref = ref; 503 504 out: 505 if (ins_le) 506 *ins_le = le; 507 return attr; 508 } 509 510 /* 511 * ni_repack 512 * 513 * Random write access to sparsed or compressed file may result to 514 * not optimized packed runs. 515 * Here is the place to optimize it. 516 */ 517 static int ni_repack(struct ntfs_inode *ni) 518 { 519 int err = 0; 520 struct ntfs_sb_info *sbi = ni->mi.sbi; 521 struct mft_inode *mi, *mi_p = NULL; 522 struct ATTRIB *attr = NULL, *attr_p; 523 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 524 CLST alloc = 0; 525 u8 cluster_bits = sbi->cluster_bits; 526 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 527 u32 roff, rs = sbi->record_size; 528 struct runs_tree run; 529 530 run_init(&run); 531 532 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 533 if (!attr->non_res) 534 continue; 535 536 svcn = le64_to_cpu(attr->nres.svcn); 537 if (svcn != le64_to_cpu(le->vcn)) { 538 err = -EINVAL; 539 break; 540 } 541 542 if (!svcn) { 543 alloc = le64_to_cpu(attr->nres.alloc_size) >> 544 cluster_bits; 545 mi_p = NULL; 546 } else if (svcn != evcn + 1) { 547 err = -EINVAL; 548 break; 549 } 550 551 evcn = le64_to_cpu(attr->nres.evcn); 552 553 if (svcn > evcn + 1) { 554 err = -EINVAL; 555 break; 556 } 557 558 if (!mi_p) { 559 /* Do not try if not enogh free space. */ 560 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 561 continue; 562 563 /* Do not try if last attribute segment. */ 564 if (evcn + 1 == alloc) 565 continue; 566 run_close(&run); 567 } 568 569 roff = le16_to_cpu(attr->nres.run_off); 570 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 571 Add2Ptr(attr, roff), 572 le32_to_cpu(attr->size) - roff); 573 if (err < 0) 574 break; 575 576 if (!mi_p) { 577 mi_p = mi; 578 attr_p = attr; 579 svcn_p = svcn; 580 evcn_p = evcn; 581 le_p = le; 582 err = 0; 583 continue; 584 } 585 586 /* 587 * Run contains data from two records: mi_p and mi 588 * Try to pack in one. 589 */ 590 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 591 if (err) 592 break; 593 594 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 595 596 if (next_svcn >= evcn + 1) { 597 /* We can remove this attribute segment. */ 598 al_remove_le(ni, le); 599 mi_remove_attr(NULL, mi, attr); 600 le = le_p; 601 continue; 602 } 603 604 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 605 mi->dirty = true; 606 ni->attr_list.dirty = true; 607 608 if (evcn + 1 == alloc) { 609 err = mi_pack_runs(mi, attr, &run, 610 evcn + 1 - next_svcn); 611 if (err) 612 break; 613 mi_p = NULL; 614 } else { 615 mi_p = mi; 616 attr_p = attr; 617 svcn_p = next_svcn; 618 evcn_p = evcn; 619 le_p = le; 620 run_truncate_head(&run, next_svcn); 621 } 622 } 623 624 if (err) { 625 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 626 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 627 628 /* Pack loaded but not packed runs. */ 629 if (mi_p) 630 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 631 } 632 633 run_close(&run); 634 return err; 635 } 636 637 /* 638 * ni_try_remove_attr_list 639 * 640 * Can we remove attribute list? 641 * Check the case when primary record contains enough space for all attributes. 642 */ 643 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 644 { 645 int err = 0; 646 struct ntfs_sb_info *sbi = ni->mi.sbi; 647 struct ATTRIB *attr, *attr_list, *attr_ins; 648 struct ATTR_LIST_ENTRY *le; 649 struct mft_inode *mi; 650 u32 asize, free; 651 struct MFT_REF ref; 652 __le16 id; 653 654 if (!ni->attr_list.dirty) 655 return 0; 656 657 err = ni_repack(ni); 658 if (err) 659 return err; 660 661 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 662 if (!attr_list) 663 return 0; 664 665 asize = le32_to_cpu(attr_list->size); 666 667 /* Free space in primary record without attribute list. */ 668 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 669 mi_get_ref(&ni->mi, &ref); 670 671 le = NULL; 672 while ((le = al_enumerate(ni, le))) { 673 if (!memcmp(&le->ref, &ref, sizeof(ref))) 674 continue; 675 676 if (le->vcn) 677 return 0; 678 679 mi = ni_find_mi(ni, ino_get(&le->ref)); 680 if (!mi) 681 return 0; 682 683 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 684 le->name_len, &le->id); 685 if (!attr) 686 return 0; 687 688 asize = le32_to_cpu(attr->size); 689 if (asize > free) 690 return 0; 691 692 free -= asize; 693 } 694 695 /* It seems that attribute list can be removed from primary record. */ 696 mi_remove_attr(NULL, &ni->mi, attr_list); 697 698 /* 699 * Repeat the cycle above and move all attributes to primary record. 700 * It should be success! 701 */ 702 le = NULL; 703 while ((le = al_enumerate(ni, le))) { 704 if (!memcmp(&le->ref, &ref, sizeof(ref))) 705 continue; 706 707 mi = ni_find_mi(ni, ino_get(&le->ref)); 708 if (!mi) { 709 /* Should never happened, 'cause already checked. */ 710 goto bad; 711 } 712 713 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 714 le->name_len, &le->id); 715 if (!attr) { 716 /* Should never happened, 'cause already checked. */ 717 goto bad; 718 } 719 asize = le32_to_cpu(attr->size); 720 721 /* Insert into primary record. */ 722 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 723 le->name_len, asize, 724 le16_to_cpu(attr->name_off)); 725 if (!attr_ins) { 726 /* 727 * Internal error. 728 * Either no space in primary record (already checked). 729 * Either tried to insert another 730 * non indexed attribute (logic error). 731 */ 732 goto bad; 733 } 734 735 /* Copy all except id. */ 736 id = attr_ins->id; 737 memcpy(attr_ins, attr, asize); 738 attr_ins->id = id; 739 740 /* Remove from original record. */ 741 mi_remove_attr(NULL, mi, attr); 742 } 743 744 run_deallocate(sbi, &ni->attr_list.run, true); 745 run_close(&ni->attr_list.run); 746 ni->attr_list.size = 0; 747 kfree(ni->attr_list.le); 748 ni->attr_list.le = NULL; 749 ni->attr_list.dirty = false; 750 751 return 0; 752 bad: 753 ntfs_inode_err(&ni->vfs_inode, "Internal error"); 754 make_bad_inode(&ni->vfs_inode); 755 return -EINVAL; 756 } 757 758 /* 759 * ni_create_attr_list - Generates an attribute list for this primary record. 760 */ 761 int ni_create_attr_list(struct ntfs_inode *ni) 762 { 763 struct ntfs_sb_info *sbi = ni->mi.sbi; 764 int err; 765 u32 lsize; 766 struct ATTRIB *attr; 767 struct ATTRIB *arr_move[7]; 768 struct ATTR_LIST_ENTRY *le, *le_b[7]; 769 struct MFT_REC *rec; 770 bool is_mft; 771 CLST rno = 0; 772 struct mft_inode *mi; 773 u32 free_b, nb, to_free, rs; 774 u16 sz; 775 776 is_mft = ni->mi.rno == MFT_REC_MFT; 777 rec = ni->mi.mrec; 778 rs = sbi->record_size; 779 780 /* 781 * Skip estimating exact memory requirement. 782 * Looks like one record_size is always enough. 783 */ 784 le = kmalloc(al_aligned(rs), GFP_NOFS); 785 if (!le) { 786 err = -ENOMEM; 787 goto out; 788 } 789 790 mi_get_ref(&ni->mi, &le->ref); 791 ni->attr_list.le = le; 792 793 attr = NULL; 794 nb = 0; 795 free_b = 0; 796 attr = NULL; 797 798 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 799 sz = le_size(attr->name_len); 800 le->type = attr->type; 801 le->size = cpu_to_le16(sz); 802 le->name_len = attr->name_len; 803 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 804 le->vcn = 0; 805 if (le != ni->attr_list.le) 806 le->ref = ni->attr_list.le->ref; 807 le->id = attr->id; 808 809 if (attr->name_len) 810 memcpy(le->name, attr_name(attr), 811 sizeof(short) * attr->name_len); 812 else if (attr->type == ATTR_STD) 813 continue; 814 else if (attr->type == ATTR_LIST) 815 continue; 816 else if (is_mft && attr->type == ATTR_DATA) 817 continue; 818 819 if (!nb || nb < ARRAY_SIZE(arr_move)) { 820 le_b[nb] = le; 821 arr_move[nb++] = attr; 822 free_b += le32_to_cpu(attr->size); 823 } 824 } 825 826 lsize = PtrOffset(ni->attr_list.le, le); 827 ni->attr_list.size = lsize; 828 829 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 830 if (to_free <= rs) { 831 to_free = 0; 832 } else { 833 to_free -= rs; 834 835 if (to_free > free_b) { 836 err = -EINVAL; 837 goto out1; 838 } 839 } 840 841 /* Allocate child MFT. */ 842 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 843 if (err) 844 goto out1; 845 846 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 847 while (to_free > 0) { 848 struct ATTRIB *b = arr_move[--nb]; 849 u32 asize = le32_to_cpu(b->size); 850 u16 name_off = le16_to_cpu(b->name_off); 851 852 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 853 b->name_len, asize, name_off); 854 WARN_ON(!attr); 855 856 mi_get_ref(mi, &le_b[nb]->ref); 857 le_b[nb]->id = attr->id; 858 859 /* Copy all except id. */ 860 memcpy(attr, b, asize); 861 attr->id = le_b[nb]->id; 862 863 /* Remove from primary record. */ 864 WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); 865 866 if (to_free <= asize) 867 break; 868 to_free -= asize; 869 WARN_ON(!nb); 870 } 871 872 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 873 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 874 WARN_ON(!attr); 875 876 attr->non_res = 0; 877 attr->flags = 0; 878 attr->res.data_size = cpu_to_le32(lsize); 879 attr->res.data_off = SIZEOF_RESIDENT_LE; 880 attr->res.flags = 0; 881 attr->res.res = 0; 882 883 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 884 885 ni->attr_list.dirty = false; 886 887 mark_inode_dirty(&ni->vfs_inode); 888 goto out; 889 890 out1: 891 kfree(ni->attr_list.le); 892 ni->attr_list.le = NULL; 893 ni->attr_list.size = 0; 894 895 out: 896 return err; 897 } 898 899 /* 900 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 901 */ 902 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 903 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 904 u32 asize, CLST svcn, u16 name_off, bool force_ext, 905 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 906 struct ATTR_LIST_ENTRY **ins_le) 907 { 908 struct ATTRIB *attr; 909 struct mft_inode *mi; 910 CLST rno; 911 u64 vbo; 912 struct rb_node *node; 913 int err; 914 bool is_mft, is_mft_data; 915 struct ntfs_sb_info *sbi = ni->mi.sbi; 916 917 is_mft = ni->mi.rno == MFT_REC_MFT; 918 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 919 920 if (asize > sbi->max_bytes_per_attr) { 921 err = -EINVAL; 922 goto out; 923 } 924 925 /* 926 * Standard information and attr_list cannot be made external. 927 * The Log File cannot have any external attributes. 928 */ 929 if (type == ATTR_STD || type == ATTR_LIST || 930 ni->mi.rno == MFT_REC_LOG) { 931 err = -EINVAL; 932 goto out; 933 } 934 935 /* Create attribute list if it is not already existed. */ 936 if (!ni->attr_list.size) { 937 err = ni_create_attr_list(ni); 938 if (err) 939 goto out; 940 } 941 942 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 943 944 if (force_ext) 945 goto insert_ext; 946 947 /* Load all subrecords into memory. */ 948 err = ni_load_all_mi(ni); 949 if (err) 950 goto out; 951 952 /* Check each of loaded subrecord. */ 953 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 954 mi = rb_entry(node, struct mft_inode, node); 955 956 if (is_mft_data && 957 (mi_enum_attr(mi, NULL) || 958 vbo <= ((u64)mi->rno << sbi->record_bits))) { 959 /* We can't accept this record 'cause MFT's bootstrapping. */ 960 continue; 961 } 962 if (is_mft && 963 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 964 /* 965 * This child record already has a ATTR_DATA. 966 * So it can't accept any other records. 967 */ 968 continue; 969 } 970 971 if ((type != ATTR_NAME || name_len) && 972 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 973 /* Only indexed attributes can share same record. */ 974 continue; 975 } 976 977 /* 978 * Do not try to insert this attribute 979 * if there is no room in record. 980 */ 981 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 982 continue; 983 984 /* Try to insert attribute into this subrecord. */ 985 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 986 name_off, svcn, ins_le); 987 if (!attr) 988 continue; 989 990 if (ins_attr) 991 *ins_attr = attr; 992 if (ins_mi) 993 *ins_mi = mi; 994 return 0; 995 } 996 997 insert_ext: 998 /* We have to allocate a new child subrecord. */ 999 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1000 if (err) 1001 goto out; 1002 1003 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1004 err = -EINVAL; 1005 goto out1; 1006 } 1007 1008 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1009 name_off, svcn, ins_le); 1010 if (!attr) 1011 goto out2; 1012 1013 if (ins_attr) 1014 *ins_attr = attr; 1015 if (ins_mi) 1016 *ins_mi = mi; 1017 1018 return 0; 1019 1020 out2: 1021 ni_remove_mi(ni, mi); 1022 mi_put(mi); 1023 err = -EINVAL; 1024 1025 out1: 1026 ntfs_mark_rec_free(sbi, rno); 1027 1028 out: 1029 return err; 1030 } 1031 1032 /* 1033 * ni_insert_attr - Insert an attribute into the file. 1034 * 1035 * If the primary record has room, it will just insert the attribute. 1036 * If not, it may make the attribute external. 1037 * For $MFT::Data it may make room for the attribute by 1038 * making other attributes external. 1039 * 1040 * NOTE: 1041 * The ATTR_LIST and ATTR_STD cannot be made external. 1042 * This function does not fill new attribute full. 1043 * It only fills 'size'/'type'/'id'/'name_len' fields. 1044 */ 1045 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1046 const __le16 *name, u8 name_len, u32 asize, 1047 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1048 struct mft_inode **ins_mi, 1049 struct ATTR_LIST_ENTRY **ins_le) 1050 { 1051 struct ntfs_sb_info *sbi = ni->mi.sbi; 1052 int err; 1053 struct ATTRIB *attr, *eattr; 1054 struct MFT_REC *rec; 1055 bool is_mft; 1056 struct ATTR_LIST_ENTRY *le; 1057 u32 list_reserve, max_free, free, used, t32; 1058 __le16 id; 1059 u16 t16; 1060 1061 is_mft = ni->mi.rno == MFT_REC_MFT; 1062 rec = ni->mi.mrec; 1063 1064 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1065 used = le32_to_cpu(rec->used); 1066 free = sbi->record_size - used; 1067 1068 if (is_mft && type != ATTR_LIST) { 1069 /* Reserve space for the ATTRIB list. */ 1070 if (free < list_reserve) 1071 free = 0; 1072 else 1073 free -= list_reserve; 1074 } 1075 1076 if (asize <= free) { 1077 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1078 asize, name_off, svcn, ins_le); 1079 if (attr) { 1080 if (ins_attr) 1081 *ins_attr = attr; 1082 if (ins_mi) 1083 *ins_mi = &ni->mi; 1084 err = 0; 1085 goto out; 1086 } 1087 } 1088 1089 if (!is_mft || type != ATTR_DATA || svcn) { 1090 /* This ATTRIB will be external. */ 1091 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1092 svcn, name_off, false, ins_attr, ins_mi, 1093 ins_le); 1094 goto out; 1095 } 1096 1097 /* 1098 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1099 * 1100 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1101 * Evict as many other attributes as possible. 1102 */ 1103 max_free = free; 1104 1105 /* Estimate the result of moving all possible attributes away. */ 1106 attr = NULL; 1107 1108 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1109 if (attr->type == ATTR_STD) 1110 continue; 1111 if (attr->type == ATTR_LIST) 1112 continue; 1113 max_free += le32_to_cpu(attr->size); 1114 } 1115 1116 if (max_free < asize + list_reserve) { 1117 /* Impossible to insert this attribute into primary record. */ 1118 err = -EINVAL; 1119 goto out; 1120 } 1121 1122 /* Start real attribute moving. */ 1123 attr = NULL; 1124 1125 for (;;) { 1126 attr = mi_enum_attr(&ni->mi, attr); 1127 if (!attr) { 1128 /* We should never be here 'cause we have already check this case. */ 1129 err = -EINVAL; 1130 goto out; 1131 } 1132 1133 /* Skip attributes that MUST be primary record. */ 1134 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1135 continue; 1136 1137 le = NULL; 1138 if (ni->attr_list.size) { 1139 le = al_find_le(ni, NULL, attr); 1140 if (!le) { 1141 /* Really this is a serious bug. */ 1142 err = -EINVAL; 1143 goto out; 1144 } 1145 } 1146 1147 t32 = le32_to_cpu(attr->size); 1148 t16 = le16_to_cpu(attr->name_off); 1149 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1150 attr->name_len, t32, attr_svcn(attr), t16, 1151 false, &eattr, NULL, NULL); 1152 if (err) 1153 return err; 1154 1155 id = eattr->id; 1156 memcpy(eattr, attr, t32); 1157 eattr->id = id; 1158 1159 /* Remove from primary record. */ 1160 mi_remove_attr(NULL, &ni->mi, attr); 1161 1162 /* attr now points to next attribute. */ 1163 if (attr->type == ATTR_END) 1164 goto out; 1165 } 1166 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1167 ; 1168 1169 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1170 name_off, svcn, ins_le); 1171 if (!attr) { 1172 err = -EINVAL; 1173 goto out; 1174 } 1175 1176 if (ins_attr) 1177 *ins_attr = attr; 1178 if (ins_mi) 1179 *ins_mi = &ni->mi; 1180 1181 out: 1182 return err; 1183 } 1184 1185 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1186 static int ni_expand_mft_list(struct ntfs_inode *ni) 1187 { 1188 int err = 0; 1189 struct runs_tree *run = &ni->file.run; 1190 u32 asize, run_size, done = 0; 1191 struct ATTRIB *attr; 1192 struct rb_node *node; 1193 CLST mft_min, mft_new, svcn, evcn, plen; 1194 struct mft_inode *mi, *mi_min, *mi_new; 1195 struct ntfs_sb_info *sbi = ni->mi.sbi; 1196 1197 /* Find the nearest MFT. */ 1198 mft_min = 0; 1199 mft_new = 0; 1200 mi_min = NULL; 1201 1202 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1203 mi = rb_entry(node, struct mft_inode, node); 1204 1205 attr = mi_enum_attr(mi, NULL); 1206 1207 if (!attr) { 1208 mft_min = mi->rno; 1209 mi_min = mi; 1210 break; 1211 } 1212 } 1213 1214 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1215 mft_new = 0; 1216 /* Really this is not critical. */ 1217 } else if (mft_min > mft_new) { 1218 mft_min = mft_new; 1219 mi_min = mi_new; 1220 } else { 1221 ntfs_mark_rec_free(sbi, mft_new); 1222 mft_new = 0; 1223 ni_remove_mi(ni, mi_new); 1224 } 1225 1226 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1227 if (!attr) { 1228 err = -EINVAL; 1229 goto out; 1230 } 1231 1232 asize = le32_to_cpu(attr->size); 1233 1234 evcn = le64_to_cpu(attr->nres.evcn); 1235 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1236 if (evcn + 1 >= svcn) { 1237 err = -EINVAL; 1238 goto out; 1239 } 1240 1241 /* 1242 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1243 * 1244 * Update first part of ATTR_DATA in 'primary MFT. 1245 */ 1246 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1247 asize - SIZEOF_NONRESIDENT, &plen); 1248 if (err < 0) 1249 goto out; 1250 1251 run_size = ALIGN(err, 8); 1252 err = 0; 1253 1254 if (plen < svcn) { 1255 err = -EINVAL; 1256 goto out; 1257 } 1258 1259 attr->nres.evcn = cpu_to_le64(svcn - 1); 1260 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1261 /* 'done' - How many bytes of primary MFT becomes free. */ 1262 done = asize - run_size - SIZEOF_NONRESIDENT; 1263 le32_sub_cpu(&ni->mi.mrec->used, done); 1264 1265 /* Estimate the size of second part: run_buf=NULL. */ 1266 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1267 &plen); 1268 if (err < 0) 1269 goto out; 1270 1271 run_size = ALIGN(err, 8); 1272 err = 0; 1273 1274 if (plen < evcn + 1 - svcn) { 1275 err = -EINVAL; 1276 goto out; 1277 } 1278 1279 /* 1280 * This function may implicitly call expand attr_list. 1281 * Insert second part of ATTR_DATA in 'mi_min'. 1282 */ 1283 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1284 SIZEOF_NONRESIDENT + run_size, 1285 SIZEOF_NONRESIDENT, svcn, NULL); 1286 if (!attr) { 1287 err = -EINVAL; 1288 goto out; 1289 } 1290 1291 attr->non_res = 1; 1292 attr->name_off = SIZEOF_NONRESIDENT_LE; 1293 attr->flags = 0; 1294 1295 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1296 run_size, &plen); 1297 1298 attr->nres.svcn = cpu_to_le64(svcn); 1299 attr->nres.evcn = cpu_to_le64(evcn); 1300 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1301 1302 out: 1303 if (mft_new) { 1304 ntfs_mark_rec_free(sbi, mft_new); 1305 ni_remove_mi(ni, mi_new); 1306 } 1307 1308 return !err && !done ? -EOPNOTSUPP : err; 1309 } 1310 1311 /* 1312 * ni_expand_list - Move all possible attributes out of primary record. 1313 */ 1314 int ni_expand_list(struct ntfs_inode *ni) 1315 { 1316 int err = 0; 1317 u32 asize, done = 0; 1318 struct ATTRIB *attr, *ins_attr; 1319 struct ATTR_LIST_ENTRY *le; 1320 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1321 struct MFT_REF ref; 1322 1323 mi_get_ref(&ni->mi, &ref); 1324 le = NULL; 1325 1326 while ((le = al_enumerate(ni, le))) { 1327 if (le->type == ATTR_STD) 1328 continue; 1329 1330 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1331 continue; 1332 1333 if (is_mft && le->type == ATTR_DATA) 1334 continue; 1335 1336 /* Find attribute in primary record. */ 1337 attr = rec_find_attr_le(&ni->mi, le); 1338 if (!attr) { 1339 err = -EINVAL; 1340 goto out; 1341 } 1342 1343 asize = le32_to_cpu(attr->size); 1344 1345 /* Always insert into new record to avoid collisions (deep recursive). */ 1346 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1347 attr->name_len, asize, attr_svcn(attr), 1348 le16_to_cpu(attr->name_off), true, 1349 &ins_attr, NULL, NULL); 1350 1351 if (err) 1352 goto out; 1353 1354 memcpy(ins_attr, attr, asize); 1355 ins_attr->id = le->id; 1356 /* Remove from primary record. */ 1357 mi_remove_attr(NULL, &ni->mi, attr); 1358 1359 done += asize; 1360 goto out; 1361 } 1362 1363 if (!is_mft) { 1364 err = -EFBIG; /* Attr list is too big(?) */ 1365 goto out; 1366 } 1367 1368 /* Split MFT data as much as possible. */ 1369 err = ni_expand_mft_list(ni); 1370 if (err) 1371 goto out; 1372 1373 out: 1374 return !err && !done ? -EOPNOTSUPP : err; 1375 } 1376 1377 /* 1378 * ni_insert_nonresident - Insert new nonresident attribute. 1379 */ 1380 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1381 const __le16 *name, u8 name_len, 1382 const struct runs_tree *run, CLST svcn, CLST len, 1383 __le16 flags, struct ATTRIB **new_attr, 1384 struct mft_inode **mi) 1385 { 1386 int err; 1387 CLST plen; 1388 struct ATTRIB *attr; 1389 bool is_ext = 1390 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; 1391 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1392 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1393 u32 run_off = name_off + name_size; 1394 u32 run_size, asize; 1395 struct ntfs_sb_info *sbi = ni->mi.sbi; 1396 1397 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1398 &plen); 1399 if (err < 0) 1400 goto out; 1401 1402 run_size = ALIGN(err, 8); 1403 1404 if (plen < len) { 1405 err = -EINVAL; 1406 goto out; 1407 } 1408 1409 asize = run_off + run_size; 1410 1411 if (asize > sbi->max_bytes_per_attr) { 1412 err = -EINVAL; 1413 goto out; 1414 } 1415 1416 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1417 &attr, mi, NULL); 1418 1419 if (err) 1420 goto out; 1421 1422 attr->non_res = 1; 1423 attr->name_off = cpu_to_le16(name_off); 1424 attr->flags = flags; 1425 1426 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1427 1428 attr->nres.svcn = cpu_to_le64(svcn); 1429 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1430 1431 err = 0; 1432 if (new_attr) 1433 *new_attr = attr; 1434 1435 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1436 1437 attr->nres.alloc_size = 1438 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1439 attr->nres.data_size = attr->nres.alloc_size; 1440 attr->nres.valid_size = attr->nres.alloc_size; 1441 1442 if (is_ext) { 1443 if (flags & ATTR_FLAG_COMPRESSED) 1444 attr->nres.c_unit = COMPRESSION_UNIT; 1445 attr->nres.total_size = attr->nres.alloc_size; 1446 } 1447 1448 out: 1449 return err; 1450 } 1451 1452 /* 1453 * ni_insert_resident - Inserts new resident attribute. 1454 */ 1455 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1456 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1457 struct ATTRIB **new_attr, struct mft_inode **mi, 1458 struct ATTR_LIST_ENTRY **le) 1459 { 1460 int err; 1461 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1462 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1463 struct ATTRIB *attr; 1464 1465 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1466 0, &attr, mi, le); 1467 if (err) 1468 return err; 1469 1470 attr->non_res = 0; 1471 attr->flags = 0; 1472 1473 attr->res.data_size = cpu_to_le32(data_size); 1474 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1475 if (type == ATTR_NAME) { 1476 attr->res.flags = RESIDENT_FLAG_INDEXED; 1477 1478 /* is_attr_indexed(attr)) == true */ 1479 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1480 ni->mi.dirty = true; 1481 } 1482 attr->res.res = 0; 1483 1484 if (new_attr) 1485 *new_attr = attr; 1486 1487 return 0; 1488 } 1489 1490 /* 1491 * ni_remove_attr_le - Remove attribute from record. 1492 */ 1493 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1494 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1495 { 1496 mi_remove_attr(ni, mi, attr); 1497 1498 if (le) 1499 al_remove_le(ni, le); 1500 } 1501 1502 /* 1503 * ni_delete_all - Remove all attributes and frees allocates space. 1504 * 1505 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1506 */ 1507 int ni_delete_all(struct ntfs_inode *ni) 1508 { 1509 int err; 1510 struct ATTR_LIST_ENTRY *le = NULL; 1511 struct ATTRIB *attr = NULL; 1512 struct rb_node *node; 1513 u16 roff; 1514 u32 asize; 1515 CLST svcn, evcn; 1516 struct ntfs_sb_info *sbi = ni->mi.sbi; 1517 bool nt3 = is_ntfs3(sbi); 1518 struct MFT_REF ref; 1519 1520 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1521 if (!nt3 || attr->name_len) { 1522 ; 1523 } else if (attr->type == ATTR_REPARSE) { 1524 mi_get_ref(&ni->mi, &ref); 1525 ntfs_remove_reparse(sbi, 0, &ref); 1526 } else if (attr->type == ATTR_ID && !attr->non_res && 1527 le32_to_cpu(attr->res.data_size) >= 1528 sizeof(struct GUID)) { 1529 ntfs_objid_remove(sbi, resident_data(attr)); 1530 } 1531 1532 if (!attr->non_res) 1533 continue; 1534 1535 svcn = le64_to_cpu(attr->nres.svcn); 1536 evcn = le64_to_cpu(attr->nres.evcn); 1537 1538 if (evcn + 1 <= svcn) 1539 continue; 1540 1541 asize = le32_to_cpu(attr->size); 1542 roff = le16_to_cpu(attr->nres.run_off); 1543 1544 /* run==1 means unpack and deallocate. */ 1545 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1546 Add2Ptr(attr, roff), asize - roff); 1547 } 1548 1549 if (ni->attr_list.size) { 1550 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1551 al_destroy(ni); 1552 } 1553 1554 /* Free all subrecords. */ 1555 for (node = rb_first(&ni->mi_tree); node;) { 1556 struct rb_node *next = rb_next(node); 1557 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1558 1559 clear_rec_inuse(mi->mrec); 1560 mi->dirty = true; 1561 mi_write(mi, 0); 1562 1563 ntfs_mark_rec_free(sbi, mi->rno); 1564 ni_remove_mi(ni, mi); 1565 mi_put(mi); 1566 node = next; 1567 } 1568 1569 /* Free base record. */ 1570 clear_rec_inuse(ni->mi.mrec); 1571 ni->mi.dirty = true; 1572 err = mi_write(&ni->mi, 0); 1573 1574 ntfs_mark_rec_free(sbi, ni->mi.rno); 1575 1576 return err; 1577 } 1578 1579 /* ni_fname_name 1580 * 1581 * Return: File name attribute by its value. 1582 */ 1583 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1584 const struct cpu_str *uni, 1585 const struct MFT_REF *home_dir, 1586 struct mft_inode **mi, 1587 struct ATTR_LIST_ENTRY **le) 1588 { 1589 struct ATTRIB *attr = NULL; 1590 struct ATTR_FILE_NAME *fname; 1591 1592 *le = NULL; 1593 1594 /* Enumerate all names. */ 1595 next: 1596 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1597 if (!attr) 1598 return NULL; 1599 1600 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1601 if (!fname) 1602 goto next; 1603 1604 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1605 goto next; 1606 1607 if (!uni) 1608 goto next; 1609 1610 if (uni->len != fname->name_len) 1611 goto next; 1612 1613 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL, 1614 false)) 1615 goto next; 1616 1617 return fname; 1618 } 1619 1620 /* 1621 * ni_fname_type 1622 * 1623 * Return: File name attribute with given type. 1624 */ 1625 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1626 struct mft_inode **mi, 1627 struct ATTR_LIST_ENTRY **le) 1628 { 1629 struct ATTRIB *attr = NULL; 1630 struct ATTR_FILE_NAME *fname; 1631 1632 *le = NULL; 1633 1634 if (name_type == FILE_NAME_POSIX) 1635 return NULL; 1636 1637 /* Enumerate all names. */ 1638 for (;;) { 1639 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1640 if (!attr) 1641 return NULL; 1642 1643 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1644 if (fname && name_type == fname->type) 1645 return fname; 1646 } 1647 } 1648 1649 /* 1650 * ni_new_attr_flags 1651 * 1652 * Process compressed/sparsed in special way. 1653 * NOTE: You need to set ni->std_fa = new_fa 1654 * after this function to keep internal structures in consistency. 1655 */ 1656 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1657 { 1658 struct ATTRIB *attr; 1659 struct mft_inode *mi; 1660 __le16 new_aflags; 1661 u32 new_asize; 1662 1663 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1664 if (!attr) 1665 return -EINVAL; 1666 1667 new_aflags = attr->flags; 1668 1669 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1670 new_aflags |= ATTR_FLAG_SPARSED; 1671 else 1672 new_aflags &= ~ATTR_FLAG_SPARSED; 1673 1674 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1675 new_aflags |= ATTR_FLAG_COMPRESSED; 1676 else 1677 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1678 1679 if (new_aflags == attr->flags) 1680 return 0; 1681 1682 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1683 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1684 ntfs_inode_warn(&ni->vfs_inode, 1685 "file can't be sparsed and compressed"); 1686 return -EOPNOTSUPP; 1687 } 1688 1689 if (!attr->non_res) 1690 goto out; 1691 1692 if (attr->nres.data_size) { 1693 ntfs_inode_warn( 1694 &ni->vfs_inode, 1695 "one can change sparsed/compressed only for empty files"); 1696 return -EOPNOTSUPP; 1697 } 1698 1699 /* Resize nonresident empty attribute in-place only. */ 1700 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) 1701 ? (SIZEOF_NONRESIDENT_EX + 8) 1702 : (SIZEOF_NONRESIDENT + 8); 1703 1704 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1705 return -EOPNOTSUPP; 1706 1707 if (new_aflags & ATTR_FLAG_SPARSED) { 1708 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1709 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1710 attr->nres.c_unit = 0; 1711 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1712 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1713 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1714 /* The only allowed: 16 clusters per frame. */ 1715 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1716 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1717 } else { 1718 attr->name_off = SIZEOF_NONRESIDENT_LE; 1719 /* Normal files. */ 1720 attr->nres.c_unit = 0; 1721 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1722 } 1723 attr->nres.run_off = attr->name_off; 1724 out: 1725 attr->flags = new_aflags; 1726 mi->dirty = true; 1727 1728 return 0; 1729 } 1730 1731 /* 1732 * ni_parse_reparse 1733 * 1734 * buffer - memory for reparse buffer header 1735 */ 1736 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1737 struct REPARSE_DATA_BUFFER *buffer) 1738 { 1739 const struct REPARSE_DATA_BUFFER *rp = NULL; 1740 u8 bits; 1741 u16 len; 1742 typeof(rp->CompressReparseBuffer) *cmpr; 1743 1744 /* Try to estimate reparse point. */ 1745 if (!attr->non_res) { 1746 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1747 } else if (le64_to_cpu(attr->nres.data_size) >= 1748 sizeof(struct REPARSE_DATA_BUFFER)) { 1749 struct runs_tree run; 1750 1751 run_init(&run); 1752 1753 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1754 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1755 sizeof(struct REPARSE_DATA_BUFFER), 1756 NULL)) { 1757 rp = buffer; 1758 } 1759 1760 run_close(&run); 1761 } 1762 1763 if (!rp) 1764 return REPARSE_NONE; 1765 1766 len = le16_to_cpu(rp->ReparseDataLength); 1767 switch (rp->ReparseTag) { 1768 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1769 break; /* Symbolic link. */ 1770 case IO_REPARSE_TAG_MOUNT_POINT: 1771 break; /* Mount points and junctions. */ 1772 case IO_REPARSE_TAG_SYMLINK: 1773 break; 1774 case IO_REPARSE_TAG_COMPRESS: 1775 /* 1776 * WOF - Windows Overlay Filter - Used to compress files with 1777 * LZX/Xpress. 1778 * 1779 * Unlike native NTFS file compression, the Windows 1780 * Overlay Filter supports only read operations. This means 1781 * that it doesn't need to sector-align each compressed chunk, 1782 * so the compressed data can be packed more tightly together. 1783 * If you open the file for writing, the WOF just decompresses 1784 * the entire file, turning it back into a plain file. 1785 * 1786 * Ntfs3 driver decompresses the entire file only on write or 1787 * change size requests. 1788 */ 1789 1790 cmpr = &rp->CompressReparseBuffer; 1791 if (len < sizeof(*cmpr) || 1792 cmpr->WofVersion != WOF_CURRENT_VERSION || 1793 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1794 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1795 return REPARSE_NONE; 1796 } 1797 1798 switch (cmpr->CompressionFormat) { 1799 case WOF_COMPRESSION_XPRESS4K: 1800 bits = 0xc; // 4k 1801 break; 1802 case WOF_COMPRESSION_XPRESS8K: 1803 bits = 0xd; // 8k 1804 break; 1805 case WOF_COMPRESSION_XPRESS16K: 1806 bits = 0xe; // 16k 1807 break; 1808 case WOF_COMPRESSION_LZX32K: 1809 bits = 0xf; // 32k 1810 break; 1811 default: 1812 bits = 0x10; // 64k 1813 break; 1814 } 1815 ni_set_ext_compress_bits(ni, bits); 1816 return REPARSE_COMPRESSED; 1817 1818 case IO_REPARSE_TAG_DEDUP: 1819 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1820 return REPARSE_DEDUPLICATED; 1821 1822 default: 1823 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1824 break; 1825 1826 return REPARSE_NONE; 1827 } 1828 1829 if (buffer != rp) 1830 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1831 1832 /* Looks like normal symlink. */ 1833 return REPARSE_LINK; 1834 } 1835 1836 /* 1837 * ni_fiemap - Helper for file_fiemap(). 1838 * 1839 * Assumed ni_lock. 1840 * TODO: Less aggressive locks. 1841 */ 1842 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1843 __u64 vbo, __u64 len) 1844 { 1845 int err = 0; 1846 struct ntfs_sb_info *sbi = ni->mi.sbi; 1847 u8 cluster_bits = sbi->cluster_bits; 1848 struct runs_tree *run; 1849 struct rw_semaphore *run_lock; 1850 struct ATTRIB *attr; 1851 CLST vcn = vbo >> cluster_bits; 1852 CLST lcn, clen; 1853 u64 valid = ni->i_valid; 1854 u64 lbo, bytes; 1855 u64 end, alloc_size; 1856 size_t idx = -1; 1857 u32 flags; 1858 bool ok; 1859 1860 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1861 run = &ni->dir.alloc_run; 1862 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1863 ARRAY_SIZE(I30_NAME), NULL, NULL); 1864 run_lock = &ni->dir.run_lock; 1865 } else { 1866 run = &ni->file.run; 1867 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1868 NULL); 1869 if (!attr) { 1870 err = -EINVAL; 1871 goto out; 1872 } 1873 if (is_attr_compressed(attr)) { 1874 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1875 err = -EOPNOTSUPP; 1876 ntfs_inode_warn( 1877 &ni->vfs_inode, 1878 "fiemap is not supported for compressed file (cp -r)"); 1879 goto out; 1880 } 1881 run_lock = &ni->file.run_lock; 1882 } 1883 1884 if (!attr || !attr->non_res) { 1885 err = fiemap_fill_next_extent( 1886 fieinfo, 0, 0, 1887 attr ? le32_to_cpu(attr->res.data_size) : 0, 1888 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1889 FIEMAP_EXTENT_MERGED); 1890 goto out; 1891 } 1892 1893 end = vbo + len; 1894 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1895 if (end > alloc_size) 1896 end = alloc_size; 1897 1898 down_read(run_lock); 1899 1900 while (vbo < end) { 1901 if (idx == -1) { 1902 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1903 } else { 1904 CLST vcn_next = vcn; 1905 1906 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 1907 vcn == vcn_next; 1908 if (!ok) 1909 vcn = vcn_next; 1910 } 1911 1912 if (!ok) { 1913 up_read(run_lock); 1914 down_write(run_lock); 1915 1916 err = attr_load_runs_vcn(ni, attr->type, 1917 attr_name(attr), 1918 attr->name_len, run, vcn); 1919 1920 up_write(run_lock); 1921 down_read(run_lock); 1922 1923 if (err) 1924 break; 1925 1926 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1927 1928 if (!ok) { 1929 err = -EINVAL; 1930 break; 1931 } 1932 } 1933 1934 if (!clen) { 1935 err = -EINVAL; // ? 1936 break; 1937 } 1938 1939 if (lcn == SPARSE_LCN) { 1940 vcn += clen; 1941 vbo = (u64)vcn << cluster_bits; 1942 continue; 1943 } 1944 1945 flags = FIEMAP_EXTENT_MERGED; 1946 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1947 ; 1948 } else if (is_attr_compressed(attr)) { 1949 CLST clst_data; 1950 1951 err = attr_is_frame_compressed( 1952 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 1953 if (err) 1954 break; 1955 if (clst_data < NTFS_LZNT_CLUSTERS) 1956 flags |= FIEMAP_EXTENT_ENCODED; 1957 } else if (is_attr_encrypted(attr)) { 1958 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1959 } 1960 1961 vbo = (u64)vcn << cluster_bits; 1962 bytes = (u64)clen << cluster_bits; 1963 lbo = (u64)lcn << cluster_bits; 1964 1965 vcn += clen; 1966 1967 if (vbo + bytes >= end) 1968 bytes = end - vbo; 1969 1970 if (vbo + bytes <= valid) { 1971 ; 1972 } else if (vbo >= valid) { 1973 flags |= FIEMAP_EXTENT_UNWRITTEN; 1974 } else { 1975 /* vbo < valid && valid < vbo + bytes */ 1976 u64 dlen = valid - vbo; 1977 1978 if (vbo + dlen >= end) 1979 flags |= FIEMAP_EXTENT_LAST; 1980 1981 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 1982 flags); 1983 if (err < 0) 1984 break; 1985 if (err == 1) { 1986 err = 0; 1987 break; 1988 } 1989 1990 vbo = valid; 1991 bytes -= dlen; 1992 if (!bytes) 1993 continue; 1994 1995 lbo += dlen; 1996 flags |= FIEMAP_EXTENT_UNWRITTEN; 1997 } 1998 1999 if (vbo + bytes >= end) 2000 flags |= FIEMAP_EXTENT_LAST; 2001 2002 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 2003 if (err < 0) 2004 break; 2005 if (err == 1) { 2006 err = 0; 2007 break; 2008 } 2009 2010 vbo += bytes; 2011 } 2012 2013 up_read(run_lock); 2014 2015 out: 2016 return err; 2017 } 2018 2019 /* 2020 * ni_readpage_cmpr 2021 * 2022 * When decompressing, we typically obtain more than one page per reference. 2023 * We inject the additional pages into the page cache. 2024 */ 2025 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 2026 { 2027 int err; 2028 struct ntfs_sb_info *sbi = ni->mi.sbi; 2029 struct address_space *mapping = page->mapping; 2030 pgoff_t index = page->index; 2031 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2032 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2033 u8 frame_bits; 2034 CLST frame; 2035 u32 i, idx, frame_size, pages_per_frame; 2036 gfp_t gfp_mask; 2037 struct page *pg; 2038 2039 if (vbo >= ni->vfs_inode.i_size) { 2040 SetPageUptodate(page); 2041 err = 0; 2042 goto out; 2043 } 2044 2045 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2046 /* Xpress or LZX. */ 2047 frame_bits = ni_ext_compress_bits(ni); 2048 } else { 2049 /* LZNT compression. */ 2050 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2051 } 2052 frame_size = 1u << frame_bits; 2053 frame = vbo >> frame_bits; 2054 frame_vbo = (u64)frame << frame_bits; 2055 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2056 2057 pages_per_frame = frame_size >> PAGE_SHIFT; 2058 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2059 if (!pages) { 2060 err = -ENOMEM; 2061 goto out; 2062 } 2063 2064 pages[idx] = page; 2065 index = frame_vbo >> PAGE_SHIFT; 2066 gfp_mask = mapping_gfp_mask(mapping); 2067 2068 for (i = 0; i < pages_per_frame; i++, index++) { 2069 if (i == idx) 2070 continue; 2071 2072 pg = find_or_create_page(mapping, index, gfp_mask); 2073 if (!pg) { 2074 err = -ENOMEM; 2075 goto out1; 2076 } 2077 pages[i] = pg; 2078 } 2079 2080 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2081 2082 out1: 2083 if (err) 2084 SetPageError(page); 2085 2086 for (i = 0; i < pages_per_frame; i++) { 2087 pg = pages[i]; 2088 if (i == idx) 2089 continue; 2090 unlock_page(pg); 2091 put_page(pg); 2092 } 2093 2094 out: 2095 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2096 kfree(pages); 2097 unlock_page(page); 2098 2099 return err; 2100 } 2101 2102 #ifdef CONFIG_NTFS3_LZX_XPRESS 2103 /* 2104 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2105 * 2106 * Remove ATTR_DATA::WofCompressedData. 2107 * Remove ATTR_REPARSE. 2108 */ 2109 int ni_decompress_file(struct ntfs_inode *ni) 2110 { 2111 struct ntfs_sb_info *sbi = ni->mi.sbi; 2112 struct inode *inode = &ni->vfs_inode; 2113 loff_t i_size = inode->i_size; 2114 struct address_space *mapping = inode->i_mapping; 2115 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2116 struct page **pages = NULL; 2117 struct ATTR_LIST_ENTRY *le; 2118 struct ATTRIB *attr; 2119 CLST vcn, cend, lcn, clen, end; 2120 pgoff_t index; 2121 u64 vbo; 2122 u8 frame_bits; 2123 u32 i, frame_size, pages_per_frame, bytes; 2124 struct mft_inode *mi; 2125 int err; 2126 2127 /* Clusters for decompressed data. */ 2128 cend = bytes_to_cluster(sbi, i_size); 2129 2130 if (!i_size) 2131 goto remove_wof; 2132 2133 /* Check in advance. */ 2134 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2135 err = -ENOSPC; 2136 goto out; 2137 } 2138 2139 frame_bits = ni_ext_compress_bits(ni); 2140 frame_size = 1u << frame_bits; 2141 pages_per_frame = frame_size >> PAGE_SHIFT; 2142 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2143 if (!pages) { 2144 err = -ENOMEM; 2145 goto out; 2146 } 2147 2148 /* 2149 * Step 1: Decompress data and copy to new allocated clusters. 2150 */ 2151 index = 0; 2152 for (vbo = 0; vbo < i_size; vbo += bytes) { 2153 u32 nr_pages; 2154 bool new; 2155 2156 if (vbo + frame_size > i_size) { 2157 bytes = i_size - vbo; 2158 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2159 } else { 2160 nr_pages = pages_per_frame; 2161 bytes = frame_size; 2162 } 2163 2164 end = bytes_to_cluster(sbi, vbo + bytes); 2165 2166 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2167 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2168 &clen, &new); 2169 if (err) 2170 goto out; 2171 } 2172 2173 for (i = 0; i < pages_per_frame; i++, index++) { 2174 struct page *pg; 2175 2176 pg = find_or_create_page(mapping, index, gfp_mask); 2177 if (!pg) { 2178 while (i--) { 2179 unlock_page(pages[i]); 2180 put_page(pages[i]); 2181 } 2182 err = -ENOMEM; 2183 goto out; 2184 } 2185 pages[i] = pg; 2186 } 2187 2188 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2189 2190 if (!err) { 2191 down_read(&ni->file.run_lock); 2192 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2193 nr_pages, vbo, bytes, 2194 REQ_OP_WRITE); 2195 up_read(&ni->file.run_lock); 2196 } 2197 2198 for (i = 0; i < pages_per_frame; i++) { 2199 unlock_page(pages[i]); 2200 put_page(pages[i]); 2201 } 2202 2203 if (err) 2204 goto out; 2205 2206 cond_resched(); 2207 } 2208 2209 remove_wof: 2210 /* 2211 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2212 * and ATTR_REPARSE. 2213 */ 2214 attr = NULL; 2215 le = NULL; 2216 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2217 CLST svcn, evcn; 2218 u32 asize, roff; 2219 2220 if (attr->type == ATTR_REPARSE) { 2221 struct MFT_REF ref; 2222 2223 mi_get_ref(&ni->mi, &ref); 2224 ntfs_remove_reparse(sbi, 0, &ref); 2225 } 2226 2227 if (!attr->non_res) 2228 continue; 2229 2230 if (attr->type != ATTR_REPARSE && 2231 (attr->type != ATTR_DATA || 2232 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2233 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2234 continue; 2235 2236 svcn = le64_to_cpu(attr->nres.svcn); 2237 evcn = le64_to_cpu(attr->nres.evcn); 2238 2239 if (evcn + 1 <= svcn) 2240 continue; 2241 2242 asize = le32_to_cpu(attr->size); 2243 roff = le16_to_cpu(attr->nres.run_off); 2244 2245 /*run==1 Means unpack and deallocate. */ 2246 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2247 Add2Ptr(attr, roff), asize - roff); 2248 } 2249 2250 /* 2251 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2252 */ 2253 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2254 false, NULL); 2255 if (err) 2256 goto out; 2257 2258 /* 2259 * Step 4: Remove ATTR_REPARSE. 2260 */ 2261 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2262 if (err) 2263 goto out; 2264 2265 /* 2266 * Step 5: Remove sparse flag from data attribute. 2267 */ 2268 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2269 if (!attr) { 2270 err = -EINVAL; 2271 goto out; 2272 } 2273 2274 if (attr->non_res && is_attr_sparsed(attr)) { 2275 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2276 struct MFT_REC *rec = mi->mrec; 2277 u32 used = le32_to_cpu(rec->used); 2278 u32 asize = le32_to_cpu(attr->size); 2279 u16 roff = le16_to_cpu(attr->nres.run_off); 2280 char *rbuf = Add2Ptr(attr, roff); 2281 2282 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2283 attr->size = cpu_to_le32(asize - 8); 2284 attr->flags &= ~ATTR_FLAG_SPARSED; 2285 attr->nres.run_off = cpu_to_le16(roff - 8); 2286 attr->nres.c_unit = 0; 2287 rec->used = cpu_to_le32(used - 8); 2288 mi->dirty = true; 2289 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2290 FILE_ATTRIBUTE_REPARSE_POINT); 2291 2292 mark_inode_dirty(inode); 2293 } 2294 2295 /* Clear cached flag. */ 2296 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2297 if (ni->file.offs_page) { 2298 put_page(ni->file.offs_page); 2299 ni->file.offs_page = NULL; 2300 } 2301 mapping->a_ops = &ntfs_aops; 2302 2303 out: 2304 kfree(pages); 2305 if (err) { 2306 make_bad_inode(inode); 2307 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 2308 } 2309 2310 return err; 2311 } 2312 2313 /* 2314 * decompress_lzx_xpress - External compression LZX/Xpress. 2315 */ 2316 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2317 size_t cmpr_size, void *unc, size_t unc_size, 2318 u32 frame_size) 2319 { 2320 int err; 2321 void *ctx; 2322 2323 if (cmpr_size == unc_size) { 2324 /* Frame not compressed. */ 2325 memcpy(unc, cmpr, unc_size); 2326 return 0; 2327 } 2328 2329 err = 0; 2330 if (frame_size == 0x8000) { 2331 mutex_lock(&sbi->compress.mtx_lzx); 2332 /* LZX: Frame compressed. */ 2333 ctx = sbi->compress.lzx; 2334 if (!ctx) { 2335 /* Lazy initialize LZX decompress context. */ 2336 ctx = lzx_allocate_decompressor(); 2337 if (!ctx) { 2338 err = -ENOMEM; 2339 goto out1; 2340 } 2341 2342 sbi->compress.lzx = ctx; 2343 } 2344 2345 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2346 /* Treat all errors as "invalid argument". */ 2347 err = -EINVAL; 2348 } 2349 out1: 2350 mutex_unlock(&sbi->compress.mtx_lzx); 2351 } else { 2352 /* XPRESS: Frame compressed. */ 2353 mutex_lock(&sbi->compress.mtx_xpress); 2354 ctx = sbi->compress.xpress; 2355 if (!ctx) { 2356 /* Lazy initialize Xpress decompress context. */ 2357 ctx = xpress_allocate_decompressor(); 2358 if (!ctx) { 2359 err = -ENOMEM; 2360 goto out2; 2361 } 2362 2363 sbi->compress.xpress = ctx; 2364 } 2365 2366 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2367 /* Treat all errors as "invalid argument". */ 2368 err = -EINVAL; 2369 } 2370 out2: 2371 mutex_unlock(&sbi->compress.mtx_xpress); 2372 } 2373 return err; 2374 } 2375 #endif 2376 2377 /* 2378 * ni_read_frame 2379 * 2380 * Pages - Array of locked pages. 2381 */ 2382 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2383 u32 pages_per_frame) 2384 { 2385 int err; 2386 struct ntfs_sb_info *sbi = ni->mi.sbi; 2387 u8 cluster_bits = sbi->cluster_bits; 2388 char *frame_ondisk = NULL; 2389 char *frame_mem = NULL; 2390 struct page **pages_disk = NULL; 2391 struct ATTR_LIST_ENTRY *le = NULL; 2392 struct runs_tree *run = &ni->file.run; 2393 u64 valid_size = ni->i_valid; 2394 u64 vbo_disk; 2395 size_t unc_size; 2396 u32 frame_size, i, npages_disk, ondisk_size; 2397 struct page *pg; 2398 struct ATTRIB *attr; 2399 CLST frame, clst_data; 2400 2401 /* 2402 * To simplify decompress algorithm do vmap for source 2403 * and target pages. 2404 */ 2405 for (i = 0; i < pages_per_frame; i++) 2406 kmap(pages[i]); 2407 2408 frame_size = pages_per_frame << PAGE_SHIFT; 2409 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2410 if (!frame_mem) { 2411 err = -ENOMEM; 2412 goto out; 2413 } 2414 2415 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2416 if (!attr) { 2417 err = -ENOENT; 2418 goto out1; 2419 } 2420 2421 if (!attr->non_res) { 2422 u32 data_size = le32_to_cpu(attr->res.data_size); 2423 2424 memset(frame_mem, 0, frame_size); 2425 if (frame_vbo < data_size) { 2426 ondisk_size = data_size - frame_vbo; 2427 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2428 min(ondisk_size, frame_size)); 2429 } 2430 err = 0; 2431 goto out1; 2432 } 2433 2434 if (frame_vbo >= valid_size) { 2435 memset(frame_mem, 0, frame_size); 2436 err = 0; 2437 goto out1; 2438 } 2439 2440 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2441 #ifndef CONFIG_NTFS3_LZX_XPRESS 2442 err = -EOPNOTSUPP; 2443 goto out1; 2444 #else 2445 u32 frame_bits = ni_ext_compress_bits(ni); 2446 u64 frame64 = frame_vbo >> frame_bits; 2447 u64 frames, vbo_data; 2448 2449 if (frame_size != (1u << frame_bits)) { 2450 err = -EINVAL; 2451 goto out1; 2452 } 2453 switch (frame_size) { 2454 case 0x1000: 2455 case 0x2000: 2456 case 0x4000: 2457 case 0x8000: 2458 break; 2459 default: 2460 /* Unknown compression. */ 2461 err = -EOPNOTSUPP; 2462 goto out1; 2463 } 2464 2465 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2466 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2467 if (!attr) { 2468 ntfs_inode_err( 2469 &ni->vfs_inode, 2470 "external compressed file should contains data attribute \"WofCompressedData\""); 2471 err = -EINVAL; 2472 goto out1; 2473 } 2474 2475 if (!attr->non_res) { 2476 run = NULL; 2477 } else { 2478 run = run_alloc(); 2479 if (!run) { 2480 err = -ENOMEM; 2481 goto out1; 2482 } 2483 } 2484 2485 frames = (ni->vfs_inode.i_size - 1) >> frame_bits; 2486 2487 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2488 frame_bits, &ondisk_size, &vbo_data); 2489 if (err) 2490 goto out2; 2491 2492 if (frame64 == frames) { 2493 unc_size = 1 + ((ni->vfs_inode.i_size - 1) & 2494 (frame_size - 1)); 2495 ondisk_size = attr_size(attr) - vbo_data; 2496 } else { 2497 unc_size = frame_size; 2498 } 2499 2500 if (ondisk_size > frame_size) { 2501 err = -EINVAL; 2502 goto out2; 2503 } 2504 2505 if (!attr->non_res) { 2506 if (vbo_data + ondisk_size > 2507 le32_to_cpu(attr->res.data_size)) { 2508 err = -EINVAL; 2509 goto out1; 2510 } 2511 2512 err = decompress_lzx_xpress( 2513 sbi, Add2Ptr(resident_data(attr), vbo_data), 2514 ondisk_size, frame_mem, unc_size, frame_size); 2515 goto out1; 2516 } 2517 vbo_disk = vbo_data; 2518 /* Load all runs to read [vbo_disk-vbo_to). */ 2519 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2520 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2521 vbo_data + ondisk_size); 2522 if (err) 2523 goto out2; 2524 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2525 PAGE_SIZE - 1) >> 2526 PAGE_SHIFT; 2527 #endif 2528 } else if (is_attr_compressed(attr)) { 2529 /* LZNT compression. */ 2530 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2531 err = -EOPNOTSUPP; 2532 goto out1; 2533 } 2534 2535 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2536 err = -EOPNOTSUPP; 2537 goto out1; 2538 } 2539 2540 down_write(&ni->file.run_lock); 2541 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2542 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2543 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2544 up_write(&ni->file.run_lock); 2545 if (err) 2546 goto out1; 2547 2548 if (!clst_data) { 2549 memset(frame_mem, 0, frame_size); 2550 goto out1; 2551 } 2552 2553 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2554 ondisk_size = clst_data << cluster_bits; 2555 2556 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2557 /* Frame is not compressed. */ 2558 down_read(&ni->file.run_lock); 2559 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2560 frame_vbo, ondisk_size, 2561 REQ_OP_READ); 2562 up_read(&ni->file.run_lock); 2563 goto out1; 2564 } 2565 vbo_disk = frame_vbo; 2566 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2567 } else { 2568 __builtin_unreachable(); 2569 err = -EINVAL; 2570 goto out1; 2571 } 2572 2573 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2574 if (!pages_disk) { 2575 err = -ENOMEM; 2576 goto out2; 2577 } 2578 2579 for (i = 0; i < npages_disk; i++) { 2580 pg = alloc_page(GFP_KERNEL); 2581 if (!pg) { 2582 err = -ENOMEM; 2583 goto out3; 2584 } 2585 pages_disk[i] = pg; 2586 lock_page(pg); 2587 kmap(pg); 2588 } 2589 2590 /* Read 'ondisk_size' bytes from disk. */ 2591 down_read(&ni->file.run_lock); 2592 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2593 ondisk_size, REQ_OP_READ); 2594 up_read(&ni->file.run_lock); 2595 if (err) 2596 goto out3; 2597 2598 /* 2599 * To simplify decompress algorithm do vmap for source and target pages. 2600 */ 2601 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2602 if (!frame_ondisk) { 2603 err = -ENOMEM; 2604 goto out3; 2605 } 2606 2607 /* Decompress: Frame_ondisk -> frame_mem. */ 2608 #ifdef CONFIG_NTFS3_LZX_XPRESS 2609 if (run != &ni->file.run) { 2610 /* LZX or XPRESS */ 2611 err = decompress_lzx_xpress( 2612 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2613 ondisk_size, frame_mem, unc_size, frame_size); 2614 } else 2615 #endif 2616 { 2617 /* LZNT - Native NTFS compression. */ 2618 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2619 frame_size); 2620 if ((ssize_t)unc_size < 0) 2621 err = unc_size; 2622 else if (!unc_size || unc_size > frame_size) 2623 err = -EINVAL; 2624 } 2625 if (!err && valid_size < frame_vbo + frame_size) { 2626 size_t ok = valid_size - frame_vbo; 2627 2628 memset(frame_mem + ok, 0, frame_size - ok); 2629 } 2630 2631 vunmap(frame_ondisk); 2632 2633 out3: 2634 for (i = 0; i < npages_disk; i++) { 2635 pg = pages_disk[i]; 2636 if (pg) { 2637 kunmap(pg); 2638 unlock_page(pg); 2639 put_page(pg); 2640 } 2641 } 2642 kfree(pages_disk); 2643 2644 out2: 2645 #ifdef CONFIG_NTFS3_LZX_XPRESS 2646 if (run != &ni->file.run) 2647 run_free(run); 2648 #endif 2649 out1: 2650 vunmap(frame_mem); 2651 out: 2652 for (i = 0; i < pages_per_frame; i++) { 2653 pg = pages[i]; 2654 kunmap(pg); 2655 ClearPageError(pg); 2656 SetPageUptodate(pg); 2657 } 2658 2659 return err; 2660 } 2661 2662 /* 2663 * ni_write_frame 2664 * 2665 * Pages - Array of locked pages. 2666 */ 2667 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2668 u32 pages_per_frame) 2669 { 2670 int err; 2671 struct ntfs_sb_info *sbi = ni->mi.sbi; 2672 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2673 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2674 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2675 CLST frame = frame_vbo >> frame_bits; 2676 char *frame_ondisk = NULL; 2677 struct page **pages_disk = NULL; 2678 struct ATTR_LIST_ENTRY *le = NULL; 2679 char *frame_mem; 2680 struct ATTRIB *attr; 2681 struct mft_inode *mi; 2682 u32 i; 2683 struct page *pg; 2684 size_t compr_size, ondisk_size; 2685 struct lznt *lznt; 2686 2687 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2688 if (!attr) { 2689 err = -ENOENT; 2690 goto out; 2691 } 2692 2693 if (WARN_ON(!is_attr_compressed(attr))) { 2694 err = -EINVAL; 2695 goto out; 2696 } 2697 2698 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2699 err = -EOPNOTSUPP; 2700 goto out; 2701 } 2702 2703 if (!attr->non_res) { 2704 down_write(&ni->file.run_lock); 2705 err = attr_make_nonresident(ni, attr, le, mi, 2706 le32_to_cpu(attr->res.data_size), 2707 &ni->file.run, &attr, pages[0]); 2708 up_write(&ni->file.run_lock); 2709 if (err) 2710 goto out; 2711 } 2712 2713 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2714 err = -EOPNOTSUPP; 2715 goto out; 2716 } 2717 2718 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2719 if (!pages_disk) { 2720 err = -ENOMEM; 2721 goto out; 2722 } 2723 2724 for (i = 0; i < pages_per_frame; i++) { 2725 pg = alloc_page(GFP_KERNEL); 2726 if (!pg) { 2727 err = -ENOMEM; 2728 goto out1; 2729 } 2730 pages_disk[i] = pg; 2731 lock_page(pg); 2732 kmap(pg); 2733 } 2734 2735 /* To simplify compress algorithm do vmap for source and target pages. */ 2736 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2737 if (!frame_ondisk) { 2738 err = -ENOMEM; 2739 goto out1; 2740 } 2741 2742 for (i = 0; i < pages_per_frame; i++) 2743 kmap(pages[i]); 2744 2745 /* Map in-memory frame for read-only. */ 2746 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2747 if (!frame_mem) { 2748 err = -ENOMEM; 2749 goto out2; 2750 } 2751 2752 mutex_lock(&sbi->compress.mtx_lznt); 2753 lznt = NULL; 2754 if (!sbi->compress.lznt) { 2755 /* 2756 * LZNT implements two levels of compression: 2757 * 0 - Standard compression 2758 * 1 - Best compression, requires a lot of cpu 2759 * use mount option? 2760 */ 2761 lznt = get_lznt_ctx(0); 2762 if (!lznt) { 2763 mutex_unlock(&sbi->compress.mtx_lznt); 2764 err = -ENOMEM; 2765 goto out3; 2766 } 2767 2768 sbi->compress.lznt = lznt; 2769 lznt = NULL; 2770 } 2771 2772 /* Compress: frame_mem -> frame_ondisk */ 2773 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2774 frame_size, sbi->compress.lznt); 2775 mutex_unlock(&sbi->compress.mtx_lznt); 2776 kfree(lznt); 2777 2778 if (compr_size + sbi->cluster_size > frame_size) { 2779 /* Frame is not compressed. */ 2780 compr_size = frame_size; 2781 ondisk_size = frame_size; 2782 } else if (compr_size) { 2783 /* Frame is compressed. */ 2784 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2785 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2786 } else { 2787 /* Frame is sparsed. */ 2788 ondisk_size = 0; 2789 } 2790 2791 down_write(&ni->file.run_lock); 2792 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2793 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2794 up_write(&ni->file.run_lock); 2795 if (err) 2796 goto out2; 2797 2798 if (!ondisk_size) 2799 goto out2; 2800 2801 down_read(&ni->file.run_lock); 2802 err = ntfs_bio_pages(sbi, &ni->file.run, 2803 ondisk_size < frame_size ? pages_disk : pages, 2804 pages_per_frame, frame_vbo, ondisk_size, 2805 REQ_OP_WRITE); 2806 up_read(&ni->file.run_lock); 2807 2808 out3: 2809 vunmap(frame_mem); 2810 2811 out2: 2812 for (i = 0; i < pages_per_frame; i++) 2813 kunmap(pages[i]); 2814 2815 vunmap(frame_ondisk); 2816 out1: 2817 for (i = 0; i < pages_per_frame; i++) { 2818 pg = pages_disk[i]; 2819 if (pg) { 2820 kunmap(pg); 2821 unlock_page(pg); 2822 put_page(pg); 2823 } 2824 } 2825 kfree(pages_disk); 2826 out: 2827 return err; 2828 } 2829 2830 /* 2831 * ni_remove_name - Removes name 'de' from MFT and from directory. 2832 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2833 */ 2834 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2835 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2836 { 2837 int err; 2838 struct ntfs_sb_info *sbi = ni->mi.sbi; 2839 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2840 struct ATTR_FILE_NAME *fname; 2841 struct ATTR_LIST_ENTRY *le; 2842 struct mft_inode *mi; 2843 u16 de_key_size = le16_to_cpu(de->key_size); 2844 u8 name_type; 2845 2846 *undo_step = 0; 2847 2848 /* Find name in record. */ 2849 mi_get_ref(&dir_ni->mi, &de_name->home); 2850 2851 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, 2852 &de_name->home, &mi, &le); 2853 if (!fname) 2854 return -ENOENT; 2855 2856 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2857 name_type = paired_name(fname->type); 2858 2859 /* Mark ntfs as dirty. It will be cleared at umount. */ 2860 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2861 2862 /* Step 1: Remove name from directory. */ 2863 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2864 if (err) 2865 return err; 2866 2867 /* Step 2: Remove name from MFT. */ 2868 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2869 2870 *undo_step = 2; 2871 2872 /* Get paired name. */ 2873 fname = ni_fname_type(ni, name_type, &mi, &le); 2874 if (fname) { 2875 u16 de2_key_size = fname_full_size(fname); 2876 2877 *de2 = Add2Ptr(de, 1024); 2878 (*de2)->key_size = cpu_to_le16(de2_key_size); 2879 2880 memcpy(*de2 + 1, fname, de2_key_size); 2881 2882 /* Step 3: Remove paired name from directory. */ 2883 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2884 de2_key_size, sbi); 2885 if (err) 2886 return err; 2887 2888 /* Step 4: Remove paired name from MFT. */ 2889 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2890 2891 *undo_step = 4; 2892 } 2893 return 0; 2894 } 2895 2896 /* 2897 * ni_remove_name_undo - Paired function for ni_remove_name. 2898 * 2899 * Return: True if ok 2900 */ 2901 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2902 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2903 { 2904 struct ntfs_sb_info *sbi = ni->mi.sbi; 2905 struct ATTRIB *attr; 2906 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0; 2907 2908 switch (undo_step) { 2909 case 4: 2910 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2911 &attr, NULL, NULL)) { 2912 return false; 2913 } 2914 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2915 2916 mi_get_ref(&ni->mi, &de2->ref); 2917 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2918 sizeof(struct NTFS_DE)); 2919 de2->flags = 0; 2920 de2->res = 0; 2921 2922 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 2923 1)) { 2924 return false; 2925 } 2926 fallthrough; 2927 2928 case 2: 2929 de_key_size = le16_to_cpu(de->key_size); 2930 2931 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2932 &attr, NULL, NULL)) { 2933 return false; 2934 } 2935 2936 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2937 mi_get_ref(&ni->mi, &de->ref); 2938 2939 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 2940 return false; 2941 } 2942 2943 return true; 2944 } 2945 2946 /* 2947 * ni_add_name - Add new name in MFT and in directory. 2948 */ 2949 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2950 struct NTFS_DE *de) 2951 { 2952 int err; 2953 struct ATTRIB *attr; 2954 struct ATTR_LIST_ENTRY *le; 2955 struct mft_inode *mi; 2956 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2957 u16 de_key_size = le16_to_cpu(de->key_size); 2958 2959 mi_get_ref(&ni->mi, &de->ref); 2960 mi_get_ref(&dir_ni->mi, &de_name->home); 2961 2962 /* Insert new name in MFT. */ 2963 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 2964 &mi, &le); 2965 if (err) 2966 return err; 2967 2968 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 2969 2970 /* Insert new name in directory. */ 2971 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0); 2972 if (err) 2973 ni_remove_attr_le(ni, attr, mi, le); 2974 2975 return err; 2976 } 2977 2978 /* 2979 * ni_rename - Remove one name and insert new name. 2980 */ 2981 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 2982 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 2983 bool *is_bad) 2984 { 2985 int err; 2986 struct NTFS_DE *de2 = NULL; 2987 int undo = 0; 2988 2989 /* 2990 * There are two possible ways to rename: 2991 * 1) Add new name and remove old name. 2992 * 2) Remove old name and add new name. 2993 * 2994 * In most cases (not all!) adding new name in MFT and in directory can 2995 * allocate additional cluster(s). 2996 * Second way may result to bad inode if we can't add new name 2997 * and then can't restore (add) old name. 2998 */ 2999 3000 /* 3001 * Way 1 - Add new + remove old. 3002 */ 3003 err = ni_add_name(new_dir_ni, ni, new_de); 3004 if (!err) { 3005 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3006 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3007 *is_bad = true; 3008 } 3009 3010 /* 3011 * Way 2 - Remove old + add new. 3012 */ 3013 /* 3014 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3015 * if (!err) { 3016 * err = ni_add_name(new_dir_ni, ni, new_de); 3017 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3018 * *is_bad = true; 3019 * } 3020 */ 3021 3022 return err; 3023 } 3024 3025 /* 3026 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3027 */ 3028 bool ni_is_dirty(struct inode *inode) 3029 { 3030 struct ntfs_inode *ni = ntfs_i(inode); 3031 struct rb_node *node; 3032 3033 if (ni->mi.dirty || ni->attr_list.dirty || 3034 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3035 return true; 3036 3037 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3038 if (rb_entry(node, struct mft_inode, node)->dirty) 3039 return true; 3040 } 3041 3042 return false; 3043 } 3044 3045 /* 3046 * ni_update_parent 3047 * 3048 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3049 */ 3050 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3051 int sync) 3052 { 3053 struct ATTRIB *attr; 3054 struct mft_inode *mi; 3055 struct ATTR_LIST_ENTRY *le = NULL; 3056 struct ntfs_sb_info *sbi = ni->mi.sbi; 3057 struct super_block *sb = sbi->sb; 3058 bool re_dirty = false; 3059 3060 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3061 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3062 attr = NULL; 3063 dup->alloc_size = 0; 3064 dup->data_size = 0; 3065 } else { 3066 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3067 3068 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3069 &mi); 3070 if (!attr) { 3071 dup->alloc_size = dup->data_size = 0; 3072 } else if (!attr->non_res) { 3073 u32 data_size = le32_to_cpu(attr->res.data_size); 3074 3075 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3076 dup->data_size = cpu_to_le64(data_size); 3077 } else { 3078 u64 new_valid = ni->i_valid; 3079 u64 data_size = le64_to_cpu(attr->nres.data_size); 3080 __le64 valid_le; 3081 3082 dup->alloc_size = is_attr_ext(attr) 3083 ? attr->nres.total_size 3084 : attr->nres.alloc_size; 3085 dup->data_size = attr->nres.data_size; 3086 3087 if (new_valid > data_size) 3088 new_valid = data_size; 3089 3090 valid_le = cpu_to_le64(new_valid); 3091 if (valid_le != attr->nres.valid_size) { 3092 attr->nres.valid_size = valid_le; 3093 mi->dirty = true; 3094 } 3095 } 3096 } 3097 3098 /* TODO: Fill reparse info. */ 3099 dup->reparse = 0; 3100 dup->ea_size = 0; 3101 3102 if (ni->ni_flags & NI_FLAG_EA) { 3103 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3104 NULL); 3105 if (attr) { 3106 const struct EA_INFO *info; 3107 3108 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3109 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3110 if (info) 3111 dup->ea_size = info->size_pack; 3112 } 3113 } 3114 3115 attr = NULL; 3116 le = NULL; 3117 3118 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3119 &mi))) { 3120 struct inode *dir; 3121 struct ATTR_FILE_NAME *fname; 3122 3123 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3124 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3125 continue; 3126 3127 /* ntfs_iget5 may sleep. */ 3128 dir = ntfs_iget5(sb, &fname->home, NULL); 3129 if (IS_ERR(dir)) { 3130 ntfs_inode_warn( 3131 &ni->vfs_inode, 3132 "failed to open parent directory r=%lx to update", 3133 (long)ino_get(&fname->home)); 3134 continue; 3135 } 3136 3137 if (!is_bad_inode(dir)) { 3138 struct ntfs_inode *dir_ni = ntfs_i(dir); 3139 3140 if (!ni_trylock(dir_ni)) { 3141 re_dirty = true; 3142 } else { 3143 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3144 ni_unlock(dir_ni); 3145 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3146 mi->dirty = true; 3147 } 3148 } 3149 iput(dir); 3150 } 3151 3152 return re_dirty; 3153 } 3154 3155 /* 3156 * ni_write_inode - Write MFT base record and all subrecords to disk. 3157 */ 3158 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3159 { 3160 int err = 0, err2; 3161 struct ntfs_inode *ni = ntfs_i(inode); 3162 struct super_block *sb = inode->i_sb; 3163 struct ntfs_sb_info *sbi = sb->s_fs_info; 3164 bool re_dirty = false; 3165 struct ATTR_STD_INFO *std; 3166 struct rb_node *node, *next; 3167 struct NTFS_DUP_INFO dup; 3168 3169 if (is_bad_inode(inode) || sb_rdonly(sb)) 3170 return 0; 3171 3172 if (!ni_trylock(ni)) { 3173 /* 'ni' is under modification, skip for now. */ 3174 mark_inode_dirty_sync(inode); 3175 return 0; 3176 } 3177 3178 if (is_rec_inuse(ni->mi.mrec) && 3179 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3180 bool modified = false; 3181 3182 /* Update times in standard attribute. */ 3183 std = ni_std(ni); 3184 if (!std) { 3185 err = -EINVAL; 3186 goto out; 3187 } 3188 3189 /* Update the access times if they have changed. */ 3190 dup.m_time = kernel2nt(&inode->i_mtime); 3191 if (std->m_time != dup.m_time) { 3192 std->m_time = dup.m_time; 3193 modified = true; 3194 } 3195 3196 dup.c_time = kernel2nt(&inode->i_ctime); 3197 if (std->c_time != dup.c_time) { 3198 std->c_time = dup.c_time; 3199 modified = true; 3200 } 3201 3202 dup.a_time = kernel2nt(&inode->i_atime); 3203 if (std->a_time != dup.a_time) { 3204 std->a_time = dup.a_time; 3205 modified = true; 3206 } 3207 3208 dup.fa = ni->std_fa; 3209 if (std->fa != dup.fa) { 3210 std->fa = dup.fa; 3211 modified = true; 3212 } 3213 3214 if (modified) 3215 ni->mi.dirty = true; 3216 3217 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3218 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3219 /* Avoid __wait_on_freeing_inode(inode). */ 3220 && (sb->s_flags & SB_ACTIVE)) { 3221 dup.cr_time = std->cr_time; 3222 /* Not critical if this function fail. */ 3223 re_dirty = ni_update_parent(ni, &dup, sync); 3224 3225 if (re_dirty) 3226 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3227 else 3228 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3229 } 3230 3231 /* Update attribute list. */ 3232 if (ni->attr_list.size && ni->attr_list.dirty) { 3233 if (inode->i_ino != MFT_REC_MFT || sync) { 3234 err = ni_try_remove_attr_list(ni); 3235 if (err) 3236 goto out; 3237 } 3238 3239 err = al_update(ni, sync); 3240 if (err) 3241 goto out; 3242 } 3243 } 3244 3245 for (node = rb_first(&ni->mi_tree); node; node = next) { 3246 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3247 bool is_empty; 3248 3249 next = rb_next(node); 3250 3251 if (!mi->dirty) 3252 continue; 3253 3254 is_empty = !mi_enum_attr(mi, NULL); 3255 3256 if (is_empty) 3257 clear_rec_inuse(mi->mrec); 3258 3259 err2 = mi_write(mi, sync); 3260 if (!err && err2) 3261 err = err2; 3262 3263 if (is_empty) { 3264 ntfs_mark_rec_free(sbi, mi->rno); 3265 rb_erase(node, &ni->mi_tree); 3266 mi_put(mi); 3267 } 3268 } 3269 3270 if (ni->mi.dirty) { 3271 err2 = mi_write(&ni->mi, sync); 3272 if (!err && err2) 3273 err = err2; 3274 } 3275 out: 3276 ni_unlock(ni); 3277 3278 if (err) { 3279 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err); 3280 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3281 return err; 3282 } 3283 3284 if (re_dirty) 3285 mark_inode_dirty_sync(inode); 3286 3287 return 0; 3288 } 3289