1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : 80 NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : 95 NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && 106 is_rec_inuse(ni->mi.mrec) && 107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING)) 108 ni_delete_all(ni); 109 110 al_destroy(ni); 111 112 for (node = rb_first(&ni->mi_tree); node;) { 113 struct rb_node *next = rb_next(node); 114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 115 116 rb_erase(node, &ni->mi_tree); 117 mi_put(mi); 118 node = next; 119 } 120 121 /* Bad inode always has mode == S_IFREG. */ 122 if (ni->ni_flags & NI_FLAG_DIR) 123 indx_clear(&ni->dir); 124 else { 125 run_close(&ni->file.run); 126 #ifdef CONFIG_NTFS3_LZX_XPRESS 127 if (ni->file.offs_folio) { 128 /* On-demand allocated page for offsets. */ 129 folio_put(ni->file.offs_folio); 130 ni->file.offs_folio = NULL; 131 } 132 #endif 133 } 134 135 mi_clear(&ni->mi); 136 } 137 138 /* 139 * ni_load_mi_ex - Find mft_inode by record number. 140 */ 141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 142 { 143 int err; 144 struct mft_inode *r; 145 146 r = ni_find_mi(ni, rno); 147 if (r) 148 goto out; 149 150 err = mi_get(ni->mi.sbi, rno, &r); 151 if (err) 152 return err; 153 154 ni_add_mi(ni, r); 155 156 out: 157 if (mi) 158 *mi = r; 159 return 0; 160 } 161 162 /* 163 * ni_load_mi - Load mft_inode corresponded list_entry. 164 */ 165 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 166 struct mft_inode **mi) 167 { 168 CLST rno; 169 170 if (!le) { 171 *mi = &ni->mi; 172 return 0; 173 } 174 175 rno = ino_get(&le->ref); 176 if (rno == ni->mi.rno) { 177 *mi = &ni->mi; 178 return 0; 179 } 180 return ni_load_mi_ex(ni, rno, mi); 181 } 182 183 /* 184 * ni_find_attr 185 * 186 * Return: Attribute and record this attribute belongs to. 187 */ 188 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 189 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 190 const __le16 *name, u8 name_len, const CLST *vcn, 191 struct mft_inode **mi) 192 { 193 struct ATTR_LIST_ENTRY *le; 194 struct mft_inode *m; 195 196 if (!ni->attr_list.size || 197 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 198 if (le_o) 199 *le_o = NULL; 200 if (mi) 201 *mi = &ni->mi; 202 203 /* Look for required attribute in primary record. */ 204 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 205 } 206 207 /* First look for list entry of required type. */ 208 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 209 if (!le) 210 return NULL; 211 212 if (le_o) 213 *le_o = le; 214 215 /* Load record that contains this attribute. */ 216 if (ni_load_mi(ni, le, &m)) 217 return NULL; 218 219 /* Look for required attribute. */ 220 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 221 222 if (!attr) 223 goto out; 224 225 if (!attr->non_res) { 226 if (vcn && *vcn) 227 goto out; 228 } else if (!vcn) { 229 if (attr->nres.svcn) 230 goto out; 231 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 232 *vcn > le64_to_cpu(attr->nres.evcn)) { 233 goto out; 234 } 235 236 if (mi) 237 *mi = m; 238 return attr; 239 240 out: 241 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record"); 242 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 243 return NULL; 244 } 245 246 /* 247 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 248 */ 249 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 250 struct ATTR_LIST_ENTRY **le, 251 struct mft_inode **mi) 252 { 253 struct mft_inode *mi2; 254 struct ATTR_LIST_ENTRY *le2; 255 256 /* Do we have an attribute list? */ 257 if (!ni->attr_list.size) { 258 *le = NULL; 259 if (mi) 260 *mi = &ni->mi; 261 /* Enum attributes in primary record. */ 262 return mi_enum_attr(&ni->mi, attr); 263 } 264 265 /* Get next list entry. */ 266 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 267 if (!le2) 268 return NULL; 269 270 /* Load record that contains the required attribute. */ 271 if (ni_load_mi(ni, le2, &mi2)) 272 return NULL; 273 274 if (mi) 275 *mi = mi2; 276 277 /* Find attribute in loaded record. */ 278 return rec_find_attr_le(mi2, le2); 279 } 280 281 /* 282 * ni_load_attr - Load attribute that contains given VCN. 283 */ 284 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 285 const __le16 *name, u8 name_len, CLST vcn, 286 struct mft_inode **pmi) 287 { 288 struct ATTR_LIST_ENTRY *le; 289 struct ATTRIB *attr; 290 struct mft_inode *mi; 291 struct ATTR_LIST_ENTRY *next; 292 293 if (!ni->attr_list.size) { 294 if (pmi) 295 *pmi = &ni->mi; 296 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 297 } 298 299 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 300 if (!le) 301 return NULL; 302 303 /* 304 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 305 * So to find the ATTRIB segment that contains 'vcn' we should 306 * enumerate some entries. 307 */ 308 if (vcn) { 309 for (;; le = next) { 310 next = al_find_ex(ni, le, type, name, name_len, NULL); 311 if (!next || le64_to_cpu(next->vcn) > vcn) 312 break; 313 } 314 } 315 316 if (ni_load_mi(ni, le, &mi)) 317 return NULL; 318 319 if (pmi) 320 *pmi = mi; 321 322 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 323 if (!attr) 324 return NULL; 325 326 if (!attr->non_res) 327 return attr; 328 329 if (le64_to_cpu(attr->nres.svcn) <= vcn && 330 vcn <= le64_to_cpu(attr->nres.evcn)) 331 return attr; 332 333 return NULL; 334 } 335 336 /* 337 * ni_load_all_mi - Load all subrecords. 338 */ 339 int ni_load_all_mi(struct ntfs_inode *ni) 340 { 341 int err; 342 struct ATTR_LIST_ENTRY *le; 343 344 if (!ni->attr_list.size) 345 return 0; 346 347 le = NULL; 348 349 while ((le = al_enumerate(ni, le))) { 350 CLST rno = ino_get(&le->ref); 351 352 if (rno == ni->mi.rno) 353 continue; 354 355 err = ni_load_mi_ex(ni, rno, NULL); 356 if (err) 357 return err; 358 } 359 360 return 0; 361 } 362 363 /* 364 * ni_add_subrecord - Allocate + format + attach a new subrecord. 365 */ 366 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 367 { 368 struct mft_inode *m; 369 370 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 371 if (!m) 372 return false; 373 374 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 375 mi_put(m); 376 return false; 377 } 378 379 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 380 381 ni_add_mi(ni, m); 382 *mi = m; 383 return true; 384 } 385 386 /* 387 * ni_remove_attr - Remove all attributes for the given type/name/id. 388 */ 389 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 390 const __le16 *name, u8 name_len, bool base_only, 391 const __le16 *id) 392 { 393 int err; 394 struct ATTRIB *attr; 395 struct ATTR_LIST_ENTRY *le; 396 struct mft_inode *mi; 397 u32 type_in; 398 int diff; 399 400 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 401 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 402 if (!attr) 403 return -ENOENT; 404 405 mi_remove_attr(ni, &ni->mi, attr); 406 return 0; 407 } 408 409 type_in = le32_to_cpu(type); 410 le = NULL; 411 412 for (;;) { 413 le = al_enumerate(ni, le); 414 if (!le) 415 return 0; 416 417 next_le2: 418 diff = le32_to_cpu(le->type) - type_in; 419 if (diff < 0) 420 continue; 421 422 if (diff > 0) 423 return 0; 424 425 if (le->name_len != name_len) 426 continue; 427 428 if (name_len && 429 memcmp(le_name(le), name, name_len * sizeof(short))) 430 continue; 431 432 if (id && le->id != *id) 433 continue; 434 err = ni_load_mi(ni, le, &mi); 435 if (err) 436 return err; 437 438 al_remove_le(ni, le); 439 440 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 441 if (!attr) 442 return -ENOENT; 443 444 mi_remove_attr(ni, mi, attr); 445 446 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 447 return 0; 448 goto next_le2; 449 } 450 } 451 452 /* 453 * ni_ins_new_attr - Insert the attribute into record. 454 * 455 * Return: Not full constructed attribute or NULL if not possible to create. 456 */ 457 static struct ATTRIB * 458 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 459 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 460 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 461 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 462 { 463 int err; 464 struct ATTRIB *attr; 465 bool le_added = false; 466 struct MFT_REF ref; 467 468 mi_get_ref(mi, &ref); 469 470 if (type != ATTR_LIST && !le && ni->attr_list.size) { 471 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 472 &ref, &le); 473 if (err) { 474 /* No memory or no space. */ 475 return ERR_PTR(err); 476 } 477 le_added = true; 478 479 /* 480 * al_add_le -> attr_set_size (list) -> ni_expand_list 481 * which moves some attributes out of primary record 482 * this means that name may point into moved memory 483 * reinit 'name' from le. 484 */ 485 name = le->name; 486 } 487 488 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 489 if (!attr) { 490 if (le_added) 491 al_remove_le(ni, le); 492 return NULL; 493 } 494 495 if (type == ATTR_LIST) { 496 /* Attr list is not in list entry array. */ 497 goto out; 498 } 499 500 if (!le) 501 goto out; 502 503 /* Update ATTRIB Id and record reference. */ 504 le->id = attr->id; 505 ni->attr_list.dirty = true; 506 le->ref = ref; 507 508 out: 509 if (ins_le) 510 *ins_le = le; 511 return attr; 512 } 513 514 /* 515 * ni_repack 516 * 517 * Random write access to sparsed or compressed file may result to 518 * not optimized packed runs. 519 * Here is the place to optimize it. 520 */ 521 static int ni_repack(struct ntfs_inode *ni) 522 { 523 #if 1 524 return 0; 525 #else 526 int err = 0; 527 struct ntfs_sb_info *sbi = ni->mi.sbi; 528 struct mft_inode *mi, *mi_p = NULL; 529 struct ATTRIB *attr = NULL, *attr_p; 530 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 531 CLST alloc = 0; 532 u8 cluster_bits = sbi->cluster_bits; 533 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 534 u32 roff, rs = sbi->record_size; 535 struct runs_tree run; 536 537 run_init(&run); 538 539 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 540 if (!attr->non_res) 541 continue; 542 543 svcn = le64_to_cpu(attr->nres.svcn); 544 if (svcn != le64_to_cpu(le->vcn)) { 545 err = -EINVAL; 546 break; 547 } 548 549 if (!svcn) { 550 alloc = le64_to_cpu(attr->nres.alloc_size) >> 551 cluster_bits; 552 mi_p = NULL; 553 } else if (svcn != evcn + 1) { 554 err = -EINVAL; 555 break; 556 } 557 558 evcn = le64_to_cpu(attr->nres.evcn); 559 560 if (svcn > evcn + 1) { 561 err = -EINVAL; 562 break; 563 } 564 565 if (!mi_p) { 566 /* Do not try if not enough free space. */ 567 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 568 continue; 569 570 /* Do not try if last attribute segment. */ 571 if (evcn + 1 == alloc) 572 continue; 573 run_close(&run); 574 } 575 576 roff = le16_to_cpu(attr->nres.run_off); 577 578 if (roff > le32_to_cpu(attr->size)) { 579 err = -EINVAL; 580 break; 581 } 582 583 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 584 Add2Ptr(attr, roff), 585 le32_to_cpu(attr->size) - roff); 586 if (err < 0) 587 break; 588 589 if (!mi_p) { 590 mi_p = mi; 591 attr_p = attr; 592 svcn_p = svcn; 593 evcn_p = evcn; 594 le_p = le; 595 err = 0; 596 continue; 597 } 598 599 /* 600 * Run contains data from two records: mi_p and mi 601 * Try to pack in one. 602 */ 603 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 604 if (err) 605 break; 606 607 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 608 609 if (next_svcn >= evcn + 1) { 610 /* We can remove this attribute segment. */ 611 al_remove_le(ni, le); 612 mi_remove_attr(NULL, mi, attr); 613 le = le_p; 614 continue; 615 } 616 617 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 618 mi->dirty = true; 619 ni->attr_list.dirty = true; 620 621 if (evcn + 1 == alloc) { 622 err = mi_pack_runs(mi, attr, &run, 623 evcn + 1 - next_svcn); 624 if (err) 625 break; 626 mi_p = NULL; 627 } else { 628 mi_p = mi; 629 attr_p = attr; 630 svcn_p = next_svcn; 631 evcn_p = evcn; 632 le_p = le; 633 run_truncate_head(&run, next_svcn); 634 } 635 } 636 637 if (err) { 638 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 639 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 640 641 /* Pack loaded but not packed runs. */ 642 if (mi_p) 643 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 644 } 645 646 run_close(&run); 647 return err; 648 #endif 649 } 650 651 /* 652 * ni_try_remove_attr_list 653 * 654 * Can we remove attribute list? 655 * Check the case when primary record contains enough space for all attributes. 656 */ 657 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 658 { 659 int err = 0; 660 struct ntfs_sb_info *sbi = ni->mi.sbi; 661 struct ATTRIB *attr, *attr_list, *attr_ins; 662 struct ATTR_LIST_ENTRY *le; 663 struct mft_inode *mi; 664 u32 asize, free; 665 struct MFT_REF ref; 666 struct MFT_REC *mrec; 667 __le16 id; 668 669 if (!ni->attr_list.dirty) 670 return 0; 671 672 err = ni_repack(ni); 673 if (err) 674 return err; 675 676 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 677 if (!attr_list) 678 return 0; 679 680 asize = le32_to_cpu(attr_list->size); 681 682 /* Free space in primary record without attribute list. */ 683 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 684 mi_get_ref(&ni->mi, &ref); 685 686 le = NULL; 687 while ((le = al_enumerate(ni, le))) { 688 if (!memcmp(&le->ref, &ref, sizeof(ref))) 689 continue; 690 691 if (le->vcn) 692 return 0; 693 694 mi = ni_find_mi(ni, ino_get(&le->ref)); 695 if (!mi) 696 return 0; 697 698 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 699 le->name_len, &le->id); 700 if (!attr) 701 return 0; 702 703 asize = le32_to_cpu(attr->size); 704 if (asize > free) 705 return 0; 706 707 free -= asize; 708 } 709 710 /* Make a copy of primary record to restore if error. */ 711 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 712 if (!mrec) 713 return 0; /* Not critical. */ 714 715 /* It seems that attribute list can be removed from primary record. */ 716 mi_remove_attr(NULL, &ni->mi, attr_list); 717 718 /* 719 * Repeat the cycle above and copy all attributes to primary record. 720 * Do not remove original attributes from subrecords! 721 * It should be success! 722 */ 723 le = NULL; 724 while ((le = al_enumerate(ni, le))) { 725 if (!memcmp(&le->ref, &ref, sizeof(ref))) 726 continue; 727 728 mi = ni_find_mi(ni, ino_get(&le->ref)); 729 if (!mi) { 730 /* Should never happened, 'cause already checked. */ 731 goto out; 732 } 733 734 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 735 le->name_len, &le->id); 736 if (!attr) { 737 /* Should never happened, 'cause already checked. */ 738 goto out; 739 } 740 asize = le32_to_cpu(attr->size); 741 742 /* Insert into primary record. */ 743 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 744 le->name_len, asize, 745 le16_to_cpu(attr->name_off)); 746 if (!attr_ins) { 747 /* 748 * No space in primary record (already checked). 749 */ 750 goto out; 751 } 752 753 /* Copy all except id. */ 754 id = attr_ins->id; 755 memcpy(attr_ins, attr, asize); 756 attr_ins->id = id; 757 } 758 759 /* 760 * Repeat the cycle above and remove all attributes from subrecords. 761 */ 762 le = NULL; 763 while ((le = al_enumerate(ni, le))) { 764 if (!memcmp(&le->ref, &ref, sizeof(ref))) 765 continue; 766 767 mi = ni_find_mi(ni, ino_get(&le->ref)); 768 if (!mi) 769 continue; 770 771 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 772 le->name_len, &le->id); 773 if (!attr) 774 continue; 775 776 /* Remove from original record. */ 777 mi_remove_attr(NULL, mi, attr); 778 } 779 780 run_deallocate(sbi, &ni->attr_list.run, true); 781 run_close(&ni->attr_list.run); 782 ni->attr_list.size = 0; 783 kvfree(ni->attr_list.le); 784 ni->attr_list.le = NULL; 785 ni->attr_list.dirty = false; 786 787 kfree(mrec); 788 return 0; 789 out: 790 /* Restore primary record. */ 791 swap(mrec, ni->mi.mrec); 792 kfree(mrec); 793 return 0; 794 } 795 796 /* 797 * ni_create_attr_list - Generates an attribute list for this primary record. 798 */ 799 int ni_create_attr_list(struct ntfs_inode *ni) 800 { 801 struct ntfs_sb_info *sbi = ni->mi.sbi; 802 int err; 803 u32 lsize; 804 struct ATTRIB *attr; 805 struct ATTRIB *arr_move[7]; 806 struct ATTR_LIST_ENTRY *le, *le_b[7]; 807 struct MFT_REC *rec; 808 bool is_mft; 809 CLST rno = 0; 810 struct mft_inode *mi; 811 u32 free_b, nb, to_free, rs; 812 u16 sz; 813 814 is_mft = ni->mi.rno == MFT_REC_MFT; 815 rec = ni->mi.mrec; 816 rs = sbi->record_size; 817 818 /* 819 * Skip estimating exact memory requirement. 820 * Looks like one record_size is always enough. 821 */ 822 le = kmalloc(al_aligned(rs), GFP_NOFS); 823 if (!le) 824 return -ENOMEM; 825 826 mi_get_ref(&ni->mi, &le->ref); 827 ni->attr_list.le = le; 828 829 attr = NULL; 830 nb = 0; 831 free_b = 0; 832 attr = NULL; 833 834 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 835 sz = le_size(attr->name_len); 836 le->type = attr->type; 837 le->size = cpu_to_le16(sz); 838 le->name_len = attr->name_len; 839 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 840 le->vcn = 0; 841 if (le != ni->attr_list.le) 842 le->ref = ni->attr_list.le->ref; 843 le->id = attr->id; 844 845 if (attr->name_len) 846 memcpy(le->name, attr_name(attr), 847 sizeof(short) * attr->name_len); 848 else if (attr->type == ATTR_STD) 849 continue; 850 else if (attr->type == ATTR_LIST) 851 continue; 852 else if (is_mft && attr->type == ATTR_DATA) 853 continue; 854 855 if (!nb || nb < ARRAY_SIZE(arr_move)) { 856 le_b[nb] = le; 857 arr_move[nb++] = attr; 858 free_b += le32_to_cpu(attr->size); 859 } 860 } 861 862 lsize = PtrOffset(ni->attr_list.le, le); 863 ni->attr_list.size = lsize; 864 865 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 866 if (to_free <= rs) { 867 to_free = 0; 868 } else { 869 to_free -= rs; 870 871 if (to_free > free_b) { 872 err = -EINVAL; 873 goto out; 874 } 875 } 876 877 /* Allocate child MFT. */ 878 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 879 if (err) 880 goto out; 881 882 err = -EINVAL; 883 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 884 while (to_free > 0) { 885 struct ATTRIB *b = arr_move[--nb]; 886 u32 asize = le32_to_cpu(b->size); 887 u16 name_off = le16_to_cpu(b->name_off); 888 889 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 890 b->name_len, asize, name_off); 891 if (!attr) 892 goto out; 893 894 mi_get_ref(mi, &le_b[nb]->ref); 895 le_b[nb]->id = attr->id; 896 897 /* Copy all except id. */ 898 memcpy(attr, b, asize); 899 attr->id = le_b[nb]->id; 900 901 /* Remove from primary record. */ 902 if (!mi_remove_attr(NULL, &ni->mi, b)) 903 goto out; 904 905 if (to_free <= asize) 906 break; 907 to_free -= asize; 908 if (!nb) 909 goto out; 910 } 911 912 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 913 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 914 if (!attr) 915 goto out; 916 917 attr->non_res = 0; 918 attr->flags = 0; 919 attr->res.data_size = cpu_to_le32(lsize); 920 attr->res.data_off = SIZEOF_RESIDENT_LE; 921 attr->res.flags = 0; 922 attr->res.res = 0; 923 924 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 925 926 ni->attr_list.dirty = false; 927 928 mark_inode_dirty(&ni->vfs_inode); 929 return 0; 930 931 out: 932 kvfree(ni->attr_list.le); 933 ni->attr_list.le = NULL; 934 ni->attr_list.size = 0; 935 return err; 936 } 937 938 /* 939 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 940 */ 941 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 942 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 943 u32 asize, CLST svcn, u16 name_off, bool force_ext, 944 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 945 struct ATTR_LIST_ENTRY **ins_le) 946 { 947 struct ATTRIB *attr; 948 struct mft_inode *mi; 949 CLST rno; 950 u64 vbo; 951 struct rb_node *node; 952 int err; 953 bool is_mft, is_mft_data; 954 struct ntfs_sb_info *sbi = ni->mi.sbi; 955 956 is_mft = ni->mi.rno == MFT_REC_MFT; 957 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 958 959 if (asize > sbi->max_bytes_per_attr) { 960 err = -EINVAL; 961 goto out; 962 } 963 964 /* 965 * Standard information and attr_list cannot be made external. 966 * The Log File cannot have any external attributes. 967 */ 968 if (type == ATTR_STD || type == ATTR_LIST || 969 ni->mi.rno == MFT_REC_LOG) { 970 err = -EINVAL; 971 goto out; 972 } 973 974 /* Create attribute list if it is not already existed. */ 975 if (!ni->attr_list.size) { 976 err = ni_create_attr_list(ni); 977 if (err) 978 goto out; 979 } 980 981 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 982 983 if (force_ext) 984 goto insert_ext; 985 986 /* Load all subrecords into memory. */ 987 err = ni_load_all_mi(ni); 988 if (err) 989 goto out; 990 991 /* Check each of loaded subrecord. */ 992 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 993 mi = rb_entry(node, struct mft_inode, node); 994 995 if (is_mft_data && 996 (mi_enum_attr(mi, NULL) || 997 vbo <= ((u64)mi->rno << sbi->record_bits))) { 998 /* We can't accept this record 'cause MFT's bootstrapping. */ 999 continue; 1000 } 1001 if (is_mft && 1002 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 1003 /* 1004 * This child record already has a ATTR_DATA. 1005 * So it can't accept any other records. 1006 */ 1007 continue; 1008 } 1009 1010 if ((type != ATTR_NAME || name_len) && 1011 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 1012 /* Only indexed attributes can share same record. */ 1013 continue; 1014 } 1015 1016 /* 1017 * Do not try to insert this attribute 1018 * if there is no room in record. 1019 */ 1020 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 1021 continue; 1022 1023 /* Try to insert attribute into this subrecord. */ 1024 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1025 name_off, svcn, ins_le); 1026 if (!attr) 1027 continue; 1028 if (IS_ERR(attr)) 1029 return PTR_ERR(attr); 1030 1031 if (ins_attr) 1032 *ins_attr = attr; 1033 if (ins_mi) 1034 *ins_mi = mi; 1035 return 0; 1036 } 1037 1038 insert_ext: 1039 /* We have to allocate a new child subrecord. */ 1040 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1041 if (err) 1042 goto out; 1043 1044 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1045 err = -EINVAL; 1046 goto out1; 1047 } 1048 1049 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1050 name_off, svcn, ins_le); 1051 if (!attr) { 1052 err = -EINVAL; 1053 goto out2; 1054 } 1055 1056 if (IS_ERR(attr)) { 1057 err = PTR_ERR(attr); 1058 goto out2; 1059 } 1060 1061 if (ins_attr) 1062 *ins_attr = attr; 1063 if (ins_mi) 1064 *ins_mi = mi; 1065 1066 return 0; 1067 1068 out2: 1069 ni_remove_mi(ni, mi); 1070 mi_put(mi); 1071 1072 out1: 1073 ntfs_mark_rec_free(sbi, rno, is_mft); 1074 1075 out: 1076 return err; 1077 } 1078 1079 /* 1080 * ni_insert_attr - Insert an attribute into the file. 1081 * 1082 * If the primary record has room, it will just insert the attribute. 1083 * If not, it may make the attribute external. 1084 * For $MFT::Data it may make room for the attribute by 1085 * making other attributes external. 1086 * 1087 * NOTE: 1088 * The ATTR_LIST and ATTR_STD cannot be made external. 1089 * This function does not fill new attribute full. 1090 * It only fills 'size'/'type'/'id'/'name_len' fields. 1091 */ 1092 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1093 const __le16 *name, u8 name_len, u32 asize, 1094 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1095 struct mft_inode **ins_mi, 1096 struct ATTR_LIST_ENTRY **ins_le) 1097 { 1098 struct ntfs_sb_info *sbi = ni->mi.sbi; 1099 int err; 1100 struct ATTRIB *attr, *eattr; 1101 struct MFT_REC *rec; 1102 bool is_mft; 1103 struct ATTR_LIST_ENTRY *le; 1104 u32 list_reserve, max_free, free, used, t32; 1105 __le16 id; 1106 u16 t16; 1107 1108 is_mft = ni->mi.rno == MFT_REC_MFT; 1109 rec = ni->mi.mrec; 1110 1111 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1112 used = le32_to_cpu(rec->used); 1113 free = sbi->record_size - used; 1114 1115 if (is_mft && type != ATTR_LIST) { 1116 /* Reserve space for the ATTRIB list. */ 1117 if (free < list_reserve) 1118 free = 0; 1119 else 1120 free -= list_reserve; 1121 } 1122 1123 if (asize <= free) { 1124 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1125 asize, name_off, svcn, ins_le); 1126 if (IS_ERR(attr)) { 1127 err = PTR_ERR(attr); 1128 goto out; 1129 } 1130 1131 if (attr) { 1132 if (ins_attr) 1133 *ins_attr = attr; 1134 if (ins_mi) 1135 *ins_mi = &ni->mi; 1136 err = 0; 1137 goto out; 1138 } 1139 } 1140 1141 if (!is_mft || type != ATTR_DATA || svcn) { 1142 /* This ATTRIB will be external. */ 1143 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1144 svcn, name_off, false, ins_attr, ins_mi, 1145 ins_le); 1146 goto out; 1147 } 1148 1149 /* 1150 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1151 * 1152 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1153 * Evict as many other attributes as possible. 1154 */ 1155 max_free = free; 1156 1157 /* Estimate the result of moving all possible attributes away. */ 1158 attr = NULL; 1159 1160 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1161 if (attr->type == ATTR_STD) 1162 continue; 1163 if (attr->type == ATTR_LIST) 1164 continue; 1165 max_free += le32_to_cpu(attr->size); 1166 } 1167 1168 if (max_free < asize + list_reserve) { 1169 /* Impossible to insert this attribute into primary record. */ 1170 err = -EINVAL; 1171 goto out; 1172 } 1173 1174 /* Start real attribute moving. */ 1175 attr = NULL; 1176 1177 for (;;) { 1178 attr = mi_enum_attr(&ni->mi, attr); 1179 if (!attr) { 1180 /* We should never be here 'cause we have already check this case. */ 1181 err = -EINVAL; 1182 goto out; 1183 } 1184 1185 /* Skip attributes that MUST be primary record. */ 1186 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1187 continue; 1188 1189 le = NULL; 1190 if (ni->attr_list.size) { 1191 le = al_find_le(ni, NULL, attr); 1192 if (!le) { 1193 /* Really this is a serious bug. */ 1194 err = -EINVAL; 1195 goto out; 1196 } 1197 } 1198 1199 t32 = le32_to_cpu(attr->size); 1200 t16 = le16_to_cpu(attr->name_off); 1201 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1202 attr->name_len, t32, attr_svcn(attr), t16, 1203 false, &eattr, NULL, NULL); 1204 if (err) 1205 return err; 1206 1207 id = eattr->id; 1208 memcpy(eattr, attr, t32); 1209 eattr->id = id; 1210 1211 /* Remove from primary record. */ 1212 mi_remove_attr(NULL, &ni->mi, attr); 1213 1214 /* attr now points to next attribute. */ 1215 if (attr->type == ATTR_END) 1216 goto out; 1217 } 1218 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1219 ; 1220 1221 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1222 name_off, svcn, ins_le); 1223 if (!attr) { 1224 err = -EINVAL; 1225 goto out; 1226 } 1227 1228 if (IS_ERR(attr)) { 1229 err = PTR_ERR(attr); 1230 goto out; 1231 } 1232 1233 if (ins_attr) 1234 *ins_attr = attr; 1235 if (ins_mi) 1236 *ins_mi = &ni->mi; 1237 1238 out: 1239 return err; 1240 } 1241 1242 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1243 static int ni_expand_mft_list(struct ntfs_inode *ni) 1244 { 1245 int err = 0; 1246 struct runs_tree *run = &ni->file.run; 1247 u32 asize, run_size, done = 0; 1248 struct ATTRIB *attr; 1249 struct rb_node *node; 1250 CLST mft_min, mft_new, svcn, evcn, plen; 1251 struct mft_inode *mi, *mi_min, *mi_new; 1252 struct ntfs_sb_info *sbi = ni->mi.sbi; 1253 1254 /* Find the nearest MFT. */ 1255 mft_min = 0; 1256 mft_new = 0; 1257 mi_min = NULL; 1258 1259 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1260 mi = rb_entry(node, struct mft_inode, node); 1261 1262 attr = mi_enum_attr(mi, NULL); 1263 1264 if (!attr) { 1265 mft_min = mi->rno; 1266 mi_min = mi; 1267 break; 1268 } 1269 } 1270 1271 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1272 mft_new = 0; 1273 /* Really this is not critical. */ 1274 } else if (mft_min > mft_new) { 1275 mft_min = mft_new; 1276 mi_min = mi_new; 1277 } else { 1278 ntfs_mark_rec_free(sbi, mft_new, true); 1279 mft_new = 0; 1280 ni_remove_mi(ni, mi_new); 1281 } 1282 1283 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1284 if (!attr) { 1285 err = -EINVAL; 1286 goto out; 1287 } 1288 1289 asize = le32_to_cpu(attr->size); 1290 1291 evcn = le64_to_cpu(attr->nres.evcn); 1292 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1293 if (evcn + 1 >= svcn) { 1294 err = -EINVAL; 1295 goto out; 1296 } 1297 1298 /* 1299 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1300 * 1301 * Update first part of ATTR_DATA in 'primary MFT. 1302 */ 1303 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1304 asize - SIZEOF_NONRESIDENT, &plen); 1305 if (err < 0) 1306 goto out; 1307 1308 run_size = ALIGN(err, 8); 1309 err = 0; 1310 1311 if (plen < svcn) { 1312 err = -EINVAL; 1313 goto out; 1314 } 1315 1316 attr->nres.evcn = cpu_to_le64(svcn - 1); 1317 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1318 /* 'done' - How many bytes of primary MFT becomes free. */ 1319 done = asize - run_size - SIZEOF_NONRESIDENT; 1320 le32_sub_cpu(&ni->mi.mrec->used, done); 1321 1322 /* Estimate packed size (run_buf=NULL). */ 1323 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1324 &plen); 1325 if (err < 0) 1326 goto out; 1327 1328 run_size = ALIGN(err, 8); 1329 err = 0; 1330 1331 if (plen < evcn + 1 - svcn) { 1332 err = -EINVAL; 1333 goto out; 1334 } 1335 1336 /* 1337 * This function may implicitly call expand attr_list. 1338 * Insert second part of ATTR_DATA in 'mi_min'. 1339 */ 1340 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1341 SIZEOF_NONRESIDENT + run_size, 1342 SIZEOF_NONRESIDENT, svcn, NULL); 1343 if (!attr) { 1344 err = -EINVAL; 1345 goto out; 1346 } 1347 1348 if (IS_ERR(attr)) { 1349 err = PTR_ERR(attr); 1350 goto out; 1351 } 1352 1353 attr->non_res = 1; 1354 attr->name_off = SIZEOF_NONRESIDENT_LE; 1355 attr->flags = 0; 1356 1357 /* This function can't fail - cause already checked above. */ 1358 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1359 run_size, &plen); 1360 1361 attr->nres.svcn = cpu_to_le64(svcn); 1362 attr->nres.evcn = cpu_to_le64(evcn); 1363 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1364 1365 out: 1366 if (mft_new) { 1367 ntfs_mark_rec_free(sbi, mft_new, true); 1368 ni_remove_mi(ni, mi_new); 1369 } 1370 1371 return !err && !done ? -EOPNOTSUPP : err; 1372 } 1373 1374 /* 1375 * ni_expand_list - Move all possible attributes out of primary record. 1376 */ 1377 int ni_expand_list(struct ntfs_inode *ni) 1378 { 1379 int err = 0; 1380 u32 asize, done = 0; 1381 struct ATTRIB *attr, *ins_attr; 1382 struct ATTR_LIST_ENTRY *le; 1383 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1384 struct MFT_REF ref; 1385 1386 mi_get_ref(&ni->mi, &ref); 1387 le = NULL; 1388 1389 while ((le = al_enumerate(ni, le))) { 1390 if (le->type == ATTR_STD) 1391 continue; 1392 1393 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1394 continue; 1395 1396 if (is_mft && le->type == ATTR_DATA) 1397 continue; 1398 1399 /* Find attribute in primary record. */ 1400 attr = rec_find_attr_le(&ni->mi, le); 1401 if (!attr) { 1402 err = -EINVAL; 1403 goto out; 1404 } 1405 1406 asize = le32_to_cpu(attr->size); 1407 1408 /* Always insert into new record to avoid collisions (deep recursive). */ 1409 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1410 attr->name_len, asize, attr_svcn(attr), 1411 le16_to_cpu(attr->name_off), true, 1412 &ins_attr, NULL, NULL); 1413 1414 if (err) 1415 goto out; 1416 1417 memcpy(ins_attr, attr, asize); 1418 ins_attr->id = le->id; 1419 /* Remove from primary record. */ 1420 mi_remove_attr(NULL, &ni->mi, attr); 1421 1422 done += asize; 1423 goto out; 1424 } 1425 1426 if (!is_mft) { 1427 err = -EFBIG; /* Attr list is too big(?) */ 1428 goto out; 1429 } 1430 1431 /* Split MFT data as much as possible. */ 1432 err = ni_expand_mft_list(ni); 1433 1434 out: 1435 return !err && !done ? -EOPNOTSUPP : err; 1436 } 1437 1438 /* 1439 * ni_insert_nonresident - Insert new nonresident attribute. 1440 */ 1441 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1442 const __le16 *name, u8 name_len, 1443 const struct runs_tree *run, CLST svcn, CLST len, 1444 __le16 flags, struct ATTRIB **new_attr, 1445 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1446 { 1447 int err; 1448 CLST plen; 1449 struct ATTRIB *attr; 1450 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && 1451 !svcn; 1452 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1453 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1454 u32 run_off = name_off + name_size; 1455 u32 run_size, asize; 1456 struct ntfs_sb_info *sbi = ni->mi.sbi; 1457 1458 /* Estimate packed size (run_buf=NULL). */ 1459 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1460 &plen); 1461 if (err < 0) 1462 goto out; 1463 1464 run_size = ALIGN(err, 8); 1465 1466 if (plen < len) { 1467 err = -EINVAL; 1468 goto out; 1469 } 1470 1471 asize = run_off + run_size; 1472 1473 if (asize > sbi->max_bytes_per_attr) { 1474 err = -EINVAL; 1475 goto out; 1476 } 1477 1478 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1479 &attr, mi, le); 1480 1481 if (err) 1482 goto out; 1483 1484 attr->non_res = 1; 1485 attr->name_off = cpu_to_le16(name_off); 1486 attr->flags = flags; 1487 1488 /* This function can't fail - cause already checked above. */ 1489 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1490 1491 attr->nres.svcn = cpu_to_le64(svcn); 1492 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1493 1494 if (new_attr) 1495 *new_attr = attr; 1496 1497 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1498 1499 attr->nres.alloc_size = 1500 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1501 attr->nres.data_size = attr->nres.alloc_size; 1502 attr->nres.valid_size = attr->nres.alloc_size; 1503 1504 if (is_ext) { 1505 if (flags & ATTR_FLAG_COMPRESSED) 1506 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1507 attr->nres.total_size = attr->nres.alloc_size; 1508 } 1509 1510 out: 1511 return err; 1512 } 1513 1514 /* 1515 * ni_insert_resident - Inserts new resident attribute. 1516 */ 1517 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1518 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1519 struct ATTRIB **new_attr, struct mft_inode **mi, 1520 struct ATTR_LIST_ENTRY **le) 1521 { 1522 int err; 1523 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1524 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1525 struct ATTRIB *attr; 1526 1527 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1528 0, &attr, mi, le); 1529 if (err) 1530 return err; 1531 1532 attr->non_res = 0; 1533 attr->flags = 0; 1534 1535 attr->res.data_size = cpu_to_le32(data_size); 1536 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1537 if (type == ATTR_NAME) { 1538 attr->res.flags = RESIDENT_FLAG_INDEXED; 1539 1540 /* is_attr_indexed(attr)) == true */ 1541 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1542 ni->mi.dirty = true; 1543 } 1544 attr->res.res = 0; 1545 1546 if (new_attr) 1547 *new_attr = attr; 1548 1549 return 0; 1550 } 1551 1552 /* 1553 * ni_remove_attr_le - Remove attribute from record. 1554 */ 1555 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1556 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1557 { 1558 mi_remove_attr(ni, mi, attr); 1559 1560 if (le) 1561 al_remove_le(ni, le); 1562 } 1563 1564 /* 1565 * ni_delete_all - Remove all attributes and frees allocates space. 1566 * 1567 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1568 */ 1569 int ni_delete_all(struct ntfs_inode *ni) 1570 { 1571 int err; 1572 struct ATTR_LIST_ENTRY *le = NULL; 1573 struct ATTRIB *attr = NULL; 1574 struct rb_node *node; 1575 u16 roff; 1576 u32 asize; 1577 CLST svcn, evcn; 1578 struct ntfs_sb_info *sbi = ni->mi.sbi; 1579 bool nt3 = is_ntfs3(sbi); 1580 struct MFT_REF ref; 1581 1582 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1583 if (!nt3 || attr->name_len) { 1584 ; 1585 } else if (attr->type == ATTR_REPARSE) { 1586 mi_get_ref(&ni->mi, &ref); 1587 ntfs_remove_reparse(sbi, 0, &ref); 1588 } else if (attr->type == ATTR_ID && !attr->non_res && 1589 le32_to_cpu(attr->res.data_size) >= 1590 sizeof(struct GUID)) { 1591 ntfs_objid_remove(sbi, resident_data(attr)); 1592 } 1593 1594 if (!attr->non_res) 1595 continue; 1596 1597 svcn = le64_to_cpu(attr->nres.svcn); 1598 evcn = le64_to_cpu(attr->nres.evcn); 1599 1600 if (evcn + 1 <= svcn) 1601 continue; 1602 1603 asize = le32_to_cpu(attr->size); 1604 roff = le16_to_cpu(attr->nres.run_off); 1605 1606 if (roff > asize) { 1607 _ntfs_bad_inode(&ni->vfs_inode); 1608 return -EINVAL; 1609 } 1610 1611 /* run==1 means unpack and deallocate. */ 1612 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1613 Add2Ptr(attr, roff), asize - roff); 1614 } 1615 1616 if (ni->attr_list.size) { 1617 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1618 al_destroy(ni); 1619 } 1620 1621 /* Free all subrecords. */ 1622 for (node = rb_first(&ni->mi_tree); node;) { 1623 struct rb_node *next = rb_next(node); 1624 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1625 1626 clear_rec_inuse(mi->mrec); 1627 mi->dirty = true; 1628 mi_write(mi, 0); 1629 1630 ntfs_mark_rec_free(sbi, mi->rno, false); 1631 ni_remove_mi(ni, mi); 1632 mi_put(mi); 1633 node = next; 1634 } 1635 1636 /* Free base record. */ 1637 clear_rec_inuse(ni->mi.mrec); 1638 ni->mi.dirty = true; 1639 err = mi_write(&ni->mi, 0); 1640 1641 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1642 1643 return err; 1644 } 1645 1646 /* ni_fname_name 1647 * 1648 * Return: File name attribute by its value. 1649 */ 1650 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1651 const struct le_str *uni, 1652 const struct MFT_REF *home_dir, 1653 struct mft_inode **mi, 1654 struct ATTR_LIST_ENTRY **le) 1655 { 1656 struct ATTRIB *attr = NULL; 1657 struct ATTR_FILE_NAME *fname; 1658 1659 if (le) 1660 *le = NULL; 1661 1662 /* Enumerate all names. */ 1663 next: 1664 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1665 if (!attr) 1666 return NULL; 1667 1668 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1669 if (!fname) 1670 goto next; 1671 1672 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1673 goto next; 1674 1675 if (!uni) 1676 return fname; 1677 1678 if (uni->len != fname->name_len) 1679 goto next; 1680 1681 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL, 1682 false)) 1683 goto next; 1684 return fname; 1685 } 1686 1687 /* 1688 * ni_fname_type 1689 * 1690 * Return: File name attribute with given type. 1691 */ 1692 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1693 struct mft_inode **mi, 1694 struct ATTR_LIST_ENTRY **le) 1695 { 1696 struct ATTRIB *attr = NULL; 1697 struct ATTR_FILE_NAME *fname; 1698 1699 *le = NULL; 1700 1701 if (name_type == FILE_NAME_POSIX) 1702 return NULL; 1703 1704 /* Enumerate all names. */ 1705 for (;;) { 1706 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1707 if (!attr) 1708 return NULL; 1709 1710 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1711 if (fname && name_type == fname->type) 1712 return fname; 1713 } 1714 } 1715 1716 /* 1717 * ni_new_attr_flags 1718 * 1719 * Process compressed/sparsed in special way. 1720 * NOTE: You need to set ni->std_fa = new_fa 1721 * after this function to keep internal structures in consistency. 1722 */ 1723 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1724 { 1725 struct ATTRIB *attr; 1726 struct mft_inode *mi; 1727 __le16 new_aflags; 1728 u32 new_asize; 1729 1730 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1731 if (!attr) 1732 return -EINVAL; 1733 1734 new_aflags = attr->flags; 1735 1736 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1737 new_aflags |= ATTR_FLAG_SPARSED; 1738 else 1739 new_aflags &= ~ATTR_FLAG_SPARSED; 1740 1741 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1742 new_aflags |= ATTR_FLAG_COMPRESSED; 1743 else 1744 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1745 1746 if (new_aflags == attr->flags) 1747 return 0; 1748 1749 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1750 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1751 ntfs_inode_warn(&ni->vfs_inode, 1752 "file can't be sparsed and compressed"); 1753 return -EOPNOTSUPP; 1754 } 1755 1756 if (!attr->non_res) 1757 goto out; 1758 1759 if (attr->nres.data_size) { 1760 ntfs_inode_warn( 1761 &ni->vfs_inode, 1762 "one can change sparsed/compressed only for empty files"); 1763 return -EOPNOTSUPP; 1764 } 1765 1766 /* Resize nonresident empty attribute in-place only. */ 1767 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 1768 (SIZEOF_NONRESIDENT_EX + 8) : 1769 (SIZEOF_NONRESIDENT + 8); 1770 1771 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1772 return -EOPNOTSUPP; 1773 1774 if (new_aflags & ATTR_FLAG_SPARSED) { 1775 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1776 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1777 attr->nres.c_unit = 0; 1778 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1779 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1780 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1781 /* The only allowed: 16 clusters per frame. */ 1782 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1783 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1784 } else { 1785 attr->name_off = SIZEOF_NONRESIDENT_LE; 1786 /* Normal files. */ 1787 attr->nres.c_unit = 0; 1788 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1789 } 1790 attr->nres.run_off = attr->name_off; 1791 out: 1792 attr->flags = new_aflags; 1793 mi->dirty = true; 1794 1795 return 0; 1796 } 1797 1798 /* 1799 * ni_parse_reparse 1800 * 1801 * buffer - memory for reparse buffer header 1802 */ 1803 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1804 struct REPARSE_DATA_BUFFER *buffer) 1805 { 1806 const struct REPARSE_DATA_BUFFER *rp = NULL; 1807 u8 bits; 1808 u16 len; 1809 typeof(rp->CompressReparseBuffer) *cmpr; 1810 1811 /* Try to estimate reparse point. */ 1812 if (!attr->non_res) { 1813 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1814 } else if (le64_to_cpu(attr->nres.data_size) >= 1815 sizeof(struct REPARSE_DATA_BUFFER)) { 1816 struct runs_tree run; 1817 1818 run_init(&run); 1819 1820 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1821 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1822 sizeof(struct REPARSE_DATA_BUFFER), 1823 NULL)) { 1824 rp = buffer; 1825 } 1826 1827 run_close(&run); 1828 } 1829 1830 if (!rp) 1831 return REPARSE_NONE; 1832 1833 len = le16_to_cpu(rp->ReparseDataLength); 1834 switch (rp->ReparseTag) { 1835 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1836 break; /* Symbolic link. */ 1837 case IO_REPARSE_TAG_MOUNT_POINT: 1838 break; /* Mount points and junctions. */ 1839 case IO_REPARSE_TAG_SYMLINK: 1840 break; 1841 case IO_REPARSE_TAG_COMPRESS: 1842 /* 1843 * WOF - Windows Overlay Filter - Used to compress files with 1844 * LZX/Xpress. 1845 * 1846 * Unlike native NTFS file compression, the Windows 1847 * Overlay Filter supports only read operations. This means 1848 * that it doesn't need to sector-align each compressed chunk, 1849 * so the compressed data can be packed more tightly together. 1850 * If you open the file for writing, the WOF just decompresses 1851 * the entire file, turning it back into a plain file. 1852 * 1853 * Ntfs3 driver decompresses the entire file only on write or 1854 * change size requests. 1855 */ 1856 1857 cmpr = &rp->CompressReparseBuffer; 1858 if (len < sizeof(*cmpr) || 1859 cmpr->WofVersion != WOF_CURRENT_VERSION || 1860 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1861 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1862 return REPARSE_NONE; 1863 } 1864 1865 switch (cmpr->CompressionFormat) { 1866 case WOF_COMPRESSION_XPRESS4K: 1867 bits = 0xc; // 4k 1868 break; 1869 case WOF_COMPRESSION_XPRESS8K: 1870 bits = 0xd; // 8k 1871 break; 1872 case WOF_COMPRESSION_XPRESS16K: 1873 bits = 0xe; // 16k 1874 break; 1875 case WOF_COMPRESSION_LZX32K: 1876 bits = 0xf; // 32k 1877 break; 1878 default: 1879 bits = 0x10; // 64k 1880 break; 1881 } 1882 ni_set_ext_compress_bits(ni, bits); 1883 return REPARSE_COMPRESSED; 1884 1885 case IO_REPARSE_TAG_DEDUP: 1886 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1887 return REPARSE_DEDUPLICATED; 1888 1889 default: 1890 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1891 break; 1892 1893 return REPARSE_NONE; 1894 } 1895 1896 if (buffer != rp) 1897 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1898 1899 /* Looks like normal symlink. */ 1900 return REPARSE_LINK; 1901 } 1902 1903 /* 1904 * ni_fiemap - Helper for file_fiemap(). 1905 * 1906 * Assumed ni_lock. 1907 * TODO: Less aggressive locks. 1908 */ 1909 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1910 __u64 vbo, __u64 len) 1911 { 1912 int err = 0; 1913 struct ntfs_sb_info *sbi = ni->mi.sbi; 1914 u8 cluster_bits = sbi->cluster_bits; 1915 struct runs_tree run; 1916 struct ATTRIB *attr; 1917 CLST vcn = vbo >> cluster_bits; 1918 CLST lcn, clen; 1919 u64 valid = ni->i_valid; 1920 u64 lbo, bytes; 1921 u64 end, alloc_size; 1922 size_t idx = -1; 1923 u32 flags; 1924 bool ok; 1925 1926 run_init(&run); 1927 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1928 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1929 ARRAY_SIZE(I30_NAME), NULL, NULL); 1930 } else { 1931 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1932 NULL); 1933 if (!attr) { 1934 err = -EINVAL; 1935 goto out; 1936 } 1937 if (is_attr_compressed(attr)) { 1938 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1939 err = -EOPNOTSUPP; 1940 ntfs_inode_warn( 1941 &ni->vfs_inode, 1942 "fiemap is not supported for compressed file (cp -r)"); 1943 goto out; 1944 } 1945 } 1946 1947 if (!attr || !attr->non_res) { 1948 err = fiemap_fill_next_extent( 1949 fieinfo, 0, 0, 1950 attr ? le32_to_cpu(attr->res.data_size) : 0, 1951 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1952 FIEMAP_EXTENT_MERGED); 1953 goto out; 1954 } 1955 1956 end = vbo + len; 1957 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1958 if (end > alloc_size) 1959 end = alloc_size; 1960 1961 while (vbo < end) { 1962 if (idx == -1) { 1963 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx); 1964 } else { 1965 CLST vcn_next = vcn; 1966 1967 ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) && 1968 vcn == vcn_next; 1969 if (!ok) 1970 vcn = vcn_next; 1971 } 1972 1973 if (!ok) { 1974 err = attr_load_runs_vcn(ni, attr->type, 1975 attr_name(attr), 1976 attr->name_len, &run, vcn); 1977 1978 if (err) 1979 break; 1980 1981 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx); 1982 1983 if (!ok) { 1984 err = -EINVAL; 1985 break; 1986 } 1987 } 1988 1989 if (!clen) { 1990 err = -EINVAL; // ? 1991 break; 1992 } 1993 1994 if (lcn == SPARSE_LCN) { 1995 vcn += clen; 1996 vbo = (u64)vcn << cluster_bits; 1997 continue; 1998 } 1999 2000 flags = FIEMAP_EXTENT_MERGED; 2001 if (S_ISDIR(ni->vfs_inode.i_mode)) { 2002 ; 2003 } else if (is_attr_compressed(attr)) { 2004 CLST clst_data; 2005 2006 err = attr_is_frame_compressed(ni, attr, 2007 vcn >> attr->nres.c_unit, 2008 &clst_data, &run); 2009 if (err) 2010 break; 2011 if (clst_data < NTFS_LZNT_CLUSTERS) 2012 flags |= FIEMAP_EXTENT_ENCODED; 2013 } else if (is_attr_encrypted(attr)) { 2014 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2015 } 2016 2017 vbo = (u64)vcn << cluster_bits; 2018 bytes = (u64)clen << cluster_bits; 2019 lbo = (u64)lcn << cluster_bits; 2020 2021 vcn += clen; 2022 2023 if (vbo + bytes >= end) 2024 bytes = end - vbo; 2025 2026 if (vbo + bytes <= valid) { 2027 ; 2028 } else if (vbo >= valid) { 2029 flags |= FIEMAP_EXTENT_UNWRITTEN; 2030 } else { 2031 /* vbo < valid && valid < vbo + bytes */ 2032 u64 dlen = valid - vbo; 2033 2034 if (vbo + dlen >= end) 2035 flags |= FIEMAP_EXTENT_LAST; 2036 2037 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 2038 flags); 2039 2040 if (err < 0) 2041 break; 2042 if (err == 1) { 2043 err = 0; 2044 break; 2045 } 2046 2047 vbo = valid; 2048 bytes -= dlen; 2049 if (!bytes) 2050 continue; 2051 2052 lbo += dlen; 2053 flags |= FIEMAP_EXTENT_UNWRITTEN; 2054 } 2055 2056 if (vbo + bytes >= end) 2057 flags |= FIEMAP_EXTENT_LAST; 2058 2059 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 2060 if (err < 0) 2061 break; 2062 if (err == 1) { 2063 err = 0; 2064 break; 2065 } 2066 2067 vbo += bytes; 2068 } 2069 2070 out: 2071 run_close(&run); 2072 return err; 2073 } 2074 2075 /* 2076 * ni_readpage_cmpr 2077 * 2078 * When decompressing, we typically obtain more than one page per reference. 2079 * We inject the additional pages into the page cache. 2080 */ 2081 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio) 2082 { 2083 int err; 2084 struct ntfs_sb_info *sbi = ni->mi.sbi; 2085 struct address_space *mapping = folio->mapping; 2086 pgoff_t index = folio->index; 2087 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2088 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2089 u8 frame_bits; 2090 CLST frame; 2091 u32 i, idx, frame_size, pages_per_frame; 2092 gfp_t gfp_mask; 2093 struct page *pg; 2094 2095 if (vbo >= i_size_read(&ni->vfs_inode)) { 2096 folio_zero_range(folio, 0, folio_size(folio)); 2097 folio_mark_uptodate(folio); 2098 err = 0; 2099 goto out; 2100 } 2101 2102 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2103 /* Xpress or LZX. */ 2104 frame_bits = ni_ext_compress_bits(ni); 2105 } else { 2106 /* LZNT compression. */ 2107 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2108 } 2109 frame_size = 1u << frame_bits; 2110 frame = vbo >> frame_bits; 2111 frame_vbo = (u64)frame << frame_bits; 2112 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2113 2114 pages_per_frame = frame_size >> PAGE_SHIFT; 2115 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2116 if (!pages) { 2117 err = -ENOMEM; 2118 goto out; 2119 } 2120 2121 pages[idx] = &folio->page; 2122 index = frame_vbo >> PAGE_SHIFT; 2123 gfp_mask = mapping_gfp_mask(mapping); 2124 2125 for (i = 0; i < pages_per_frame; i++, index++) { 2126 if (i == idx) 2127 continue; 2128 2129 pg = find_or_create_page(mapping, index, gfp_mask); 2130 if (!pg) { 2131 err = -ENOMEM; 2132 goto out1; 2133 } 2134 pages[i] = pg; 2135 } 2136 2137 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2138 2139 out1: 2140 for (i = 0; i < pages_per_frame; i++) { 2141 pg = pages[i]; 2142 if (i == idx || !pg) 2143 continue; 2144 unlock_page(pg); 2145 put_page(pg); 2146 } 2147 2148 out: 2149 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2150 kfree(pages); 2151 folio_unlock(folio); 2152 2153 return err; 2154 } 2155 2156 #ifdef CONFIG_NTFS3_LZX_XPRESS 2157 /* 2158 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2159 * 2160 * Remove ATTR_DATA::WofCompressedData. 2161 * Remove ATTR_REPARSE. 2162 */ 2163 int ni_decompress_file(struct ntfs_inode *ni) 2164 { 2165 struct ntfs_sb_info *sbi = ni->mi.sbi; 2166 struct inode *inode = &ni->vfs_inode; 2167 loff_t i_size = i_size_read(inode); 2168 struct address_space *mapping = inode->i_mapping; 2169 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2170 struct page **pages = NULL; 2171 struct ATTR_LIST_ENTRY *le; 2172 struct ATTRIB *attr; 2173 CLST vcn, cend, lcn, clen, end; 2174 pgoff_t index; 2175 u64 vbo; 2176 u8 frame_bits; 2177 u32 i, frame_size, pages_per_frame, bytes; 2178 struct mft_inode *mi; 2179 int err; 2180 2181 /* Clusters for decompressed data. */ 2182 cend = bytes_to_cluster(sbi, i_size); 2183 2184 if (!i_size) 2185 goto remove_wof; 2186 2187 /* Check in advance. */ 2188 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2189 err = -ENOSPC; 2190 goto out; 2191 } 2192 2193 frame_bits = ni_ext_compress_bits(ni); 2194 frame_size = 1u << frame_bits; 2195 pages_per_frame = frame_size >> PAGE_SHIFT; 2196 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2197 if (!pages) { 2198 err = -ENOMEM; 2199 goto out; 2200 } 2201 2202 /* 2203 * Step 1: Decompress data and copy to new allocated clusters. 2204 */ 2205 index = 0; 2206 for (vbo = 0; vbo < i_size; vbo += bytes) { 2207 u32 nr_pages; 2208 bool new; 2209 2210 if (vbo + frame_size > i_size) { 2211 bytes = i_size - vbo; 2212 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2213 } else { 2214 nr_pages = pages_per_frame; 2215 bytes = frame_size; 2216 } 2217 2218 end = bytes_to_cluster(sbi, vbo + bytes); 2219 2220 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2221 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2222 &clen, &new, false); 2223 if (err) 2224 goto out; 2225 } 2226 2227 for (i = 0; i < pages_per_frame; i++, index++) { 2228 struct page *pg; 2229 2230 pg = find_or_create_page(mapping, index, gfp_mask); 2231 if (!pg) { 2232 while (i--) { 2233 unlock_page(pages[i]); 2234 put_page(pages[i]); 2235 } 2236 err = -ENOMEM; 2237 goto out; 2238 } 2239 pages[i] = pg; 2240 } 2241 2242 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2243 2244 if (!err) { 2245 down_read(&ni->file.run_lock); 2246 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2247 nr_pages, vbo, bytes, 2248 REQ_OP_WRITE); 2249 up_read(&ni->file.run_lock); 2250 } 2251 2252 for (i = 0; i < pages_per_frame; i++) { 2253 unlock_page(pages[i]); 2254 put_page(pages[i]); 2255 } 2256 2257 if (err) 2258 goto out; 2259 2260 cond_resched(); 2261 } 2262 2263 remove_wof: 2264 /* 2265 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2266 * and ATTR_REPARSE. 2267 */ 2268 attr = NULL; 2269 le = NULL; 2270 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2271 CLST svcn, evcn; 2272 u32 asize, roff; 2273 2274 if (attr->type == ATTR_REPARSE) { 2275 struct MFT_REF ref; 2276 2277 mi_get_ref(&ni->mi, &ref); 2278 ntfs_remove_reparse(sbi, 0, &ref); 2279 } 2280 2281 if (!attr->non_res) 2282 continue; 2283 2284 if (attr->type != ATTR_REPARSE && 2285 (attr->type != ATTR_DATA || 2286 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2287 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2288 continue; 2289 2290 svcn = le64_to_cpu(attr->nres.svcn); 2291 evcn = le64_to_cpu(attr->nres.evcn); 2292 2293 if (evcn + 1 <= svcn) 2294 continue; 2295 2296 asize = le32_to_cpu(attr->size); 2297 roff = le16_to_cpu(attr->nres.run_off); 2298 2299 if (roff > asize) { 2300 err = -EINVAL; 2301 goto out; 2302 } 2303 2304 /*run==1 Means unpack and deallocate. */ 2305 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2306 Add2Ptr(attr, roff), asize - roff); 2307 } 2308 2309 /* 2310 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2311 */ 2312 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2313 false, NULL); 2314 if (err) 2315 goto out; 2316 2317 /* 2318 * Step 4: Remove ATTR_REPARSE. 2319 */ 2320 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2321 if (err) 2322 goto out; 2323 2324 /* 2325 * Step 5: Remove sparse flag from data attribute. 2326 */ 2327 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2328 if (!attr) { 2329 err = -EINVAL; 2330 goto out; 2331 } 2332 2333 if (attr->non_res && is_attr_sparsed(attr)) { 2334 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2335 struct MFT_REC *rec = mi->mrec; 2336 u32 used = le32_to_cpu(rec->used); 2337 u32 asize = le32_to_cpu(attr->size); 2338 u16 roff = le16_to_cpu(attr->nres.run_off); 2339 char *rbuf = Add2Ptr(attr, roff); 2340 2341 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2342 attr->size = cpu_to_le32(asize - 8); 2343 attr->flags &= ~ATTR_FLAG_SPARSED; 2344 attr->nres.run_off = cpu_to_le16(roff - 8); 2345 attr->nres.c_unit = 0; 2346 rec->used = cpu_to_le32(used - 8); 2347 mi->dirty = true; 2348 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2349 FILE_ATTRIBUTE_REPARSE_POINT); 2350 2351 mark_inode_dirty(inode); 2352 } 2353 2354 /* Clear cached flag. */ 2355 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2356 if (ni->file.offs_folio) { 2357 folio_put(ni->file.offs_folio); 2358 ni->file.offs_folio = NULL; 2359 } 2360 mapping->a_ops = &ntfs_aops; 2361 2362 out: 2363 kfree(pages); 2364 if (err) 2365 _ntfs_bad_inode(inode); 2366 2367 return err; 2368 } 2369 2370 /* 2371 * decompress_lzx_xpress - External compression LZX/Xpress. 2372 */ 2373 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2374 size_t cmpr_size, void *unc, size_t unc_size, 2375 u32 frame_size) 2376 { 2377 int err; 2378 void *ctx; 2379 2380 if (cmpr_size == unc_size) { 2381 /* Frame not compressed. */ 2382 memcpy(unc, cmpr, unc_size); 2383 return 0; 2384 } 2385 2386 err = 0; 2387 if (frame_size == 0x8000) { 2388 mutex_lock(&sbi->compress.mtx_lzx); 2389 /* LZX: Frame compressed. */ 2390 ctx = sbi->compress.lzx; 2391 if (!ctx) { 2392 /* Lazy initialize LZX decompress context. */ 2393 ctx = lzx_allocate_decompressor(); 2394 if (!ctx) { 2395 err = -ENOMEM; 2396 goto out1; 2397 } 2398 2399 sbi->compress.lzx = ctx; 2400 } 2401 2402 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2403 /* Treat all errors as "invalid argument". */ 2404 err = -EINVAL; 2405 } 2406 out1: 2407 mutex_unlock(&sbi->compress.mtx_lzx); 2408 } else { 2409 /* XPRESS: Frame compressed. */ 2410 mutex_lock(&sbi->compress.mtx_xpress); 2411 ctx = sbi->compress.xpress; 2412 if (!ctx) { 2413 /* Lazy initialize Xpress decompress context. */ 2414 ctx = xpress_allocate_decompressor(); 2415 if (!ctx) { 2416 err = -ENOMEM; 2417 goto out2; 2418 } 2419 2420 sbi->compress.xpress = ctx; 2421 } 2422 2423 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2424 /* Treat all errors as "invalid argument". */ 2425 err = -EINVAL; 2426 } 2427 out2: 2428 mutex_unlock(&sbi->compress.mtx_xpress); 2429 } 2430 return err; 2431 } 2432 #endif 2433 2434 /* 2435 * ni_read_frame 2436 * 2437 * Pages - Array of locked pages. 2438 */ 2439 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2440 u32 pages_per_frame) 2441 { 2442 int err; 2443 struct ntfs_sb_info *sbi = ni->mi.sbi; 2444 u8 cluster_bits = sbi->cluster_bits; 2445 char *frame_ondisk = NULL; 2446 char *frame_mem = NULL; 2447 struct page **pages_disk = NULL; 2448 struct ATTR_LIST_ENTRY *le = NULL; 2449 struct runs_tree *run = &ni->file.run; 2450 u64 valid_size = ni->i_valid; 2451 u64 vbo_disk; 2452 size_t unc_size; 2453 u32 frame_size, i, npages_disk, ondisk_size; 2454 struct page *pg; 2455 struct ATTRIB *attr; 2456 CLST frame, clst_data; 2457 2458 /* 2459 * To simplify decompress algorithm do vmap for source 2460 * and target pages. 2461 */ 2462 for (i = 0; i < pages_per_frame; i++) 2463 kmap(pages[i]); 2464 2465 frame_size = pages_per_frame << PAGE_SHIFT; 2466 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2467 if (!frame_mem) { 2468 err = -ENOMEM; 2469 goto out; 2470 } 2471 2472 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2473 if (!attr) { 2474 err = -ENOENT; 2475 goto out1; 2476 } 2477 2478 if (!attr->non_res) { 2479 u32 data_size = le32_to_cpu(attr->res.data_size); 2480 2481 memset(frame_mem, 0, frame_size); 2482 if (frame_vbo < data_size) { 2483 ondisk_size = data_size - frame_vbo; 2484 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2485 min(ondisk_size, frame_size)); 2486 } 2487 err = 0; 2488 goto out1; 2489 } 2490 2491 if (frame_vbo >= valid_size) { 2492 memset(frame_mem, 0, frame_size); 2493 err = 0; 2494 goto out1; 2495 } 2496 2497 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2498 #ifndef CONFIG_NTFS3_LZX_XPRESS 2499 err = -EOPNOTSUPP; 2500 goto out1; 2501 #else 2502 loff_t i_size = i_size_read(&ni->vfs_inode); 2503 u32 frame_bits = ni_ext_compress_bits(ni); 2504 u64 frame64 = frame_vbo >> frame_bits; 2505 u64 frames, vbo_data; 2506 2507 if (frame_size != (1u << frame_bits)) { 2508 err = -EINVAL; 2509 goto out1; 2510 } 2511 switch (frame_size) { 2512 case 0x1000: 2513 case 0x2000: 2514 case 0x4000: 2515 case 0x8000: 2516 break; 2517 default: 2518 /* Unknown compression. */ 2519 err = -EOPNOTSUPP; 2520 goto out1; 2521 } 2522 2523 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2524 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2525 if (!attr) { 2526 ntfs_inode_err( 2527 &ni->vfs_inode, 2528 "external compressed file should contains data attribute \"WofCompressedData\""); 2529 err = -EINVAL; 2530 goto out1; 2531 } 2532 2533 if (!attr->non_res) { 2534 run = NULL; 2535 } else { 2536 run = run_alloc(); 2537 if (!run) { 2538 err = -ENOMEM; 2539 goto out1; 2540 } 2541 } 2542 2543 frames = (i_size - 1) >> frame_bits; 2544 2545 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2546 frame_bits, &ondisk_size, &vbo_data); 2547 if (err) 2548 goto out2; 2549 2550 if (frame64 == frames) { 2551 unc_size = 1 + ((i_size - 1) & (frame_size - 1)); 2552 ondisk_size = attr_size(attr) - vbo_data; 2553 } else { 2554 unc_size = frame_size; 2555 } 2556 2557 if (ondisk_size > frame_size) { 2558 err = -EINVAL; 2559 goto out2; 2560 } 2561 2562 if (!attr->non_res) { 2563 if (vbo_data + ondisk_size > 2564 le32_to_cpu(attr->res.data_size)) { 2565 err = -EINVAL; 2566 goto out1; 2567 } 2568 2569 err = decompress_lzx_xpress( 2570 sbi, Add2Ptr(resident_data(attr), vbo_data), 2571 ondisk_size, frame_mem, unc_size, frame_size); 2572 goto out1; 2573 } 2574 vbo_disk = vbo_data; 2575 /* Load all runs to read [vbo_disk-vbo_to). */ 2576 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2577 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2578 vbo_data + ondisk_size); 2579 if (err) 2580 goto out2; 2581 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2582 PAGE_SIZE - 1) >> 2583 PAGE_SHIFT; 2584 #endif 2585 } else if (is_attr_compressed(attr)) { 2586 /* LZNT compression. */ 2587 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2588 err = -EOPNOTSUPP; 2589 goto out1; 2590 } 2591 2592 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2593 err = -EOPNOTSUPP; 2594 goto out1; 2595 } 2596 2597 down_write(&ni->file.run_lock); 2598 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2599 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2600 err = attr_is_frame_compressed(ni, attr, frame, &clst_data, 2601 run); 2602 up_write(&ni->file.run_lock); 2603 if (err) 2604 goto out1; 2605 2606 if (!clst_data) { 2607 memset(frame_mem, 0, frame_size); 2608 goto out1; 2609 } 2610 2611 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2612 ondisk_size = clst_data << cluster_bits; 2613 2614 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2615 /* Frame is not compressed. */ 2616 down_read(&ni->file.run_lock); 2617 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2618 frame_vbo, ondisk_size, 2619 REQ_OP_READ); 2620 up_read(&ni->file.run_lock); 2621 goto out1; 2622 } 2623 vbo_disk = frame_vbo; 2624 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2625 } else { 2626 __builtin_unreachable(); 2627 err = -EINVAL; 2628 goto out1; 2629 } 2630 2631 pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS); 2632 if (!pages_disk) { 2633 err = -ENOMEM; 2634 goto out2; 2635 } 2636 2637 for (i = 0; i < npages_disk; i++) { 2638 pg = alloc_page(GFP_KERNEL); 2639 if (!pg) { 2640 err = -ENOMEM; 2641 goto out3; 2642 } 2643 pages_disk[i] = pg; 2644 lock_page(pg); 2645 kmap(pg); 2646 } 2647 2648 /* Read 'ondisk_size' bytes from disk. */ 2649 down_read(&ni->file.run_lock); 2650 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2651 ondisk_size, REQ_OP_READ); 2652 up_read(&ni->file.run_lock); 2653 if (err) 2654 goto out3; 2655 2656 /* 2657 * To simplify decompress algorithm do vmap for source and target pages. 2658 */ 2659 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2660 if (!frame_ondisk) { 2661 err = -ENOMEM; 2662 goto out3; 2663 } 2664 2665 /* Decompress: Frame_ondisk -> frame_mem. */ 2666 #ifdef CONFIG_NTFS3_LZX_XPRESS 2667 if (run != &ni->file.run) { 2668 /* LZX or XPRESS */ 2669 err = decompress_lzx_xpress( 2670 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2671 ondisk_size, frame_mem, unc_size, frame_size); 2672 } else 2673 #endif 2674 { 2675 /* LZNT - Native NTFS compression. */ 2676 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2677 frame_size); 2678 if ((ssize_t)unc_size < 0) 2679 err = unc_size; 2680 else if (!unc_size || unc_size > frame_size) 2681 err = -EINVAL; 2682 } 2683 if (!err && valid_size < frame_vbo + frame_size) { 2684 size_t ok = valid_size - frame_vbo; 2685 2686 memset(frame_mem + ok, 0, frame_size - ok); 2687 } 2688 2689 vunmap(frame_ondisk); 2690 2691 out3: 2692 for (i = 0; i < npages_disk; i++) { 2693 pg = pages_disk[i]; 2694 if (pg) { 2695 kunmap(pg); 2696 unlock_page(pg); 2697 put_page(pg); 2698 } 2699 } 2700 kfree(pages_disk); 2701 2702 out2: 2703 #ifdef CONFIG_NTFS3_LZX_XPRESS 2704 if (run != &ni->file.run) 2705 run_free(run); 2706 #endif 2707 out1: 2708 vunmap(frame_mem); 2709 out: 2710 for (i = 0; i < pages_per_frame; i++) { 2711 pg = pages[i]; 2712 kunmap(pg); 2713 SetPageUptodate(pg); 2714 } 2715 2716 return err; 2717 } 2718 2719 /* 2720 * ni_write_frame 2721 * 2722 * Pages - Array of locked pages. 2723 */ 2724 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2725 u32 pages_per_frame) 2726 { 2727 int err; 2728 struct ntfs_sb_info *sbi = ni->mi.sbi; 2729 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2730 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2731 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2732 CLST frame = frame_vbo >> frame_bits; 2733 char *frame_ondisk = NULL; 2734 struct page **pages_disk = NULL; 2735 struct ATTR_LIST_ENTRY *le = NULL; 2736 char *frame_mem; 2737 struct ATTRIB *attr; 2738 struct mft_inode *mi; 2739 u32 i; 2740 struct page *pg; 2741 size_t compr_size, ondisk_size; 2742 struct lznt *lznt; 2743 2744 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2745 if (!attr) { 2746 err = -ENOENT; 2747 goto out; 2748 } 2749 2750 if (WARN_ON(!is_attr_compressed(attr))) { 2751 err = -EINVAL; 2752 goto out; 2753 } 2754 2755 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2756 err = -EOPNOTSUPP; 2757 goto out; 2758 } 2759 2760 if (!attr->non_res) { 2761 down_write(&ni->file.run_lock); 2762 err = attr_make_nonresident(ni, attr, le, mi, 2763 le32_to_cpu(attr->res.data_size), 2764 &ni->file.run, &attr, pages[0]); 2765 up_write(&ni->file.run_lock); 2766 if (err) 2767 goto out; 2768 } 2769 2770 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2771 err = -EOPNOTSUPP; 2772 goto out; 2773 } 2774 2775 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2776 if (!pages_disk) { 2777 err = -ENOMEM; 2778 goto out; 2779 } 2780 2781 for (i = 0; i < pages_per_frame; i++) { 2782 pg = alloc_page(GFP_KERNEL); 2783 if (!pg) { 2784 err = -ENOMEM; 2785 goto out1; 2786 } 2787 pages_disk[i] = pg; 2788 lock_page(pg); 2789 kmap(pg); 2790 } 2791 2792 /* To simplify compress algorithm do vmap for source and target pages. */ 2793 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2794 if (!frame_ondisk) { 2795 err = -ENOMEM; 2796 goto out1; 2797 } 2798 2799 for (i = 0; i < pages_per_frame; i++) 2800 kmap(pages[i]); 2801 2802 /* Map in-memory frame for read-only. */ 2803 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2804 if (!frame_mem) { 2805 err = -ENOMEM; 2806 goto out2; 2807 } 2808 2809 mutex_lock(&sbi->compress.mtx_lznt); 2810 lznt = NULL; 2811 if (!sbi->compress.lznt) { 2812 /* 2813 * LZNT implements two levels of compression: 2814 * 0 - Standard compression 2815 * 1 - Best compression, requires a lot of cpu 2816 * use mount option? 2817 */ 2818 lznt = get_lznt_ctx(0); 2819 if (!lznt) { 2820 mutex_unlock(&sbi->compress.mtx_lznt); 2821 err = -ENOMEM; 2822 goto out3; 2823 } 2824 2825 sbi->compress.lznt = lznt; 2826 lznt = NULL; 2827 } 2828 2829 /* Compress: frame_mem -> frame_ondisk */ 2830 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2831 frame_size, sbi->compress.lznt); 2832 mutex_unlock(&sbi->compress.mtx_lznt); 2833 kfree(lznt); 2834 2835 if (compr_size + sbi->cluster_size > frame_size) { 2836 /* Frame is not compressed. */ 2837 compr_size = frame_size; 2838 ondisk_size = frame_size; 2839 } else if (compr_size) { 2840 /* Frame is compressed. */ 2841 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2842 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2843 } else { 2844 /* Frame is sparsed. */ 2845 ondisk_size = 0; 2846 } 2847 2848 down_write(&ni->file.run_lock); 2849 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2850 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2851 up_write(&ni->file.run_lock); 2852 if (err) 2853 goto out2; 2854 2855 if (!ondisk_size) 2856 goto out2; 2857 2858 down_read(&ni->file.run_lock); 2859 err = ntfs_bio_pages(sbi, &ni->file.run, 2860 ondisk_size < frame_size ? pages_disk : pages, 2861 pages_per_frame, frame_vbo, ondisk_size, 2862 REQ_OP_WRITE); 2863 up_read(&ni->file.run_lock); 2864 2865 out3: 2866 vunmap(frame_mem); 2867 2868 out2: 2869 for (i = 0; i < pages_per_frame; i++) 2870 kunmap(pages[i]); 2871 2872 vunmap(frame_ondisk); 2873 out1: 2874 for (i = 0; i < pages_per_frame; i++) { 2875 pg = pages_disk[i]; 2876 if (pg) { 2877 kunmap(pg); 2878 unlock_page(pg); 2879 put_page(pg); 2880 } 2881 } 2882 kfree(pages_disk); 2883 out: 2884 return err; 2885 } 2886 2887 /* 2888 * ni_remove_name - Removes name 'de' from MFT and from directory. 2889 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2890 */ 2891 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2892 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2893 { 2894 int err; 2895 struct ntfs_sb_info *sbi = ni->mi.sbi; 2896 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2897 struct ATTR_FILE_NAME *fname; 2898 struct ATTR_LIST_ENTRY *le; 2899 struct mft_inode *mi; 2900 u16 de_key_size = le16_to_cpu(de->key_size); 2901 u8 name_type; 2902 2903 *undo_step = 0; 2904 2905 /* Find name in record. */ 2906 mi_get_ref(&dir_ni->mi, &de_name->home); 2907 2908 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len, 2909 &de_name->home, &mi, &le); 2910 if (!fname) 2911 return -ENOENT; 2912 2913 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2914 name_type = paired_name(fname->type); 2915 2916 /* Mark ntfs as dirty. It will be cleared at umount. */ 2917 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2918 2919 /* Step 1: Remove name from directory. */ 2920 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2921 if (err) 2922 return err; 2923 2924 /* Step 2: Remove name from MFT. */ 2925 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2926 2927 *undo_step = 2; 2928 2929 /* Get paired name. */ 2930 fname = ni_fname_type(ni, name_type, &mi, &le); 2931 if (fname) { 2932 u16 de2_key_size = fname_full_size(fname); 2933 2934 *de2 = Add2Ptr(de, 1024); 2935 (*de2)->key_size = cpu_to_le16(de2_key_size); 2936 2937 memcpy(*de2 + 1, fname, de2_key_size); 2938 2939 /* Step 3: Remove paired name from directory. */ 2940 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2941 de2_key_size, sbi); 2942 if (err) 2943 return err; 2944 2945 /* Step 4: Remove paired name from MFT. */ 2946 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2947 2948 *undo_step = 4; 2949 } 2950 return 0; 2951 } 2952 2953 /* 2954 * ni_remove_name_undo - Paired function for ni_remove_name. 2955 * 2956 * Return: True if ok 2957 */ 2958 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2959 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2960 { 2961 struct ntfs_sb_info *sbi = ni->mi.sbi; 2962 struct ATTRIB *attr; 2963 u16 de_key_size; 2964 2965 switch (undo_step) { 2966 case 4: 2967 de_key_size = le16_to_cpu(de2->key_size); 2968 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2969 &attr, NULL, NULL)) 2970 return false; 2971 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2972 2973 mi_get_ref(&ni->mi, &de2->ref); 2974 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2975 sizeof(struct NTFS_DE)); 2976 de2->flags = 0; 2977 de2->res = 0; 2978 2979 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) 2980 return false; 2981 fallthrough; 2982 2983 case 2: 2984 de_key_size = le16_to_cpu(de->key_size); 2985 2986 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2987 &attr, NULL, NULL)) 2988 return false; 2989 2990 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2991 mi_get_ref(&ni->mi, &de->ref); 2992 2993 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 2994 return false; 2995 } 2996 2997 return true; 2998 } 2999 3000 /* 3001 * ni_add_name - Add new name into MFT and into directory. 3002 */ 3003 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3004 struct NTFS_DE *de) 3005 { 3006 int err; 3007 struct ntfs_sb_info *sbi = ni->mi.sbi; 3008 struct ATTRIB *attr; 3009 struct ATTR_LIST_ENTRY *le; 3010 struct mft_inode *mi; 3011 struct ATTR_FILE_NAME *fname; 3012 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 3013 u16 de_key_size = le16_to_cpu(de->key_size); 3014 3015 if (sbi->options->windows_names && 3016 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) 3017 return -EINVAL; 3018 3019 /* If option "hide_dot_files" then set hidden attribute for dot files. */ 3020 if (ni->mi.sbi->options->hide_dot_files) { 3021 if (de_name->name_len > 0 && 3022 le16_to_cpu(de_name->name[0]) == '.') 3023 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; 3024 else 3025 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; 3026 } 3027 3028 mi_get_ref(&ni->mi, &de->ref); 3029 mi_get_ref(&dir_ni->mi, &de_name->home); 3030 3031 /* Fill duplicate from any ATTR_NAME. */ 3032 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 3033 if (fname) 3034 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 3035 de_name->dup.fa = ni->std_fa; 3036 3037 /* Insert new name into MFT. */ 3038 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 3039 &mi, &le); 3040 if (err) 3041 return err; 3042 3043 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 3044 3045 /* Insert new name into directory. */ 3046 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); 3047 if (err) 3048 ni_remove_attr_le(ni, attr, mi, le); 3049 3050 return err; 3051 } 3052 3053 /* 3054 * ni_rename - Remove one name and insert new name. 3055 */ 3056 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 3057 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 3058 bool *is_bad) 3059 { 3060 int err; 3061 struct NTFS_DE *de2 = NULL; 3062 int undo = 0; 3063 3064 /* 3065 * There are two possible ways to rename: 3066 * 1) Add new name and remove old name. 3067 * 2) Remove old name and add new name. 3068 * 3069 * In most cases (not all!) adding new name into MFT and into directory can 3070 * allocate additional cluster(s). 3071 * Second way may result to bad inode if we can't add new name 3072 * and then can't restore (add) old name. 3073 */ 3074 3075 /* 3076 * Way 1 - Add new + remove old. 3077 */ 3078 err = ni_add_name(new_dir_ni, ni, new_de); 3079 if (!err) { 3080 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3081 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3082 *is_bad = true; 3083 } 3084 3085 /* 3086 * Way 2 - Remove old + add new. 3087 */ 3088 /* 3089 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3090 * if (!err) { 3091 * err = ni_add_name(new_dir_ni, ni, new_de); 3092 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3093 * *is_bad = true; 3094 * } 3095 */ 3096 3097 return err; 3098 } 3099 3100 /* 3101 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3102 */ 3103 bool ni_is_dirty(struct inode *inode) 3104 { 3105 struct ntfs_inode *ni = ntfs_i(inode); 3106 struct rb_node *node; 3107 3108 if (ni->mi.dirty || ni->attr_list.dirty || 3109 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3110 return true; 3111 3112 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3113 if (rb_entry(node, struct mft_inode, node)->dirty) 3114 return true; 3115 } 3116 3117 return false; 3118 } 3119 3120 /* 3121 * ni_update_parent 3122 * 3123 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3124 */ 3125 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3126 int sync) 3127 { 3128 struct ATTRIB *attr; 3129 struct mft_inode *mi; 3130 struct ATTR_LIST_ENTRY *le = NULL; 3131 struct ntfs_sb_info *sbi = ni->mi.sbi; 3132 struct super_block *sb = sbi->sb; 3133 bool re_dirty = false; 3134 3135 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3136 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3137 attr = NULL; 3138 dup->alloc_size = 0; 3139 dup->data_size = 0; 3140 } else { 3141 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3142 3143 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3144 &mi); 3145 if (!attr) { 3146 dup->alloc_size = dup->data_size = 0; 3147 } else if (!attr->non_res) { 3148 u32 data_size = le32_to_cpu(attr->res.data_size); 3149 3150 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3151 dup->data_size = cpu_to_le64(data_size); 3152 } else { 3153 u64 new_valid = ni->i_valid; 3154 u64 data_size = le64_to_cpu(attr->nres.data_size); 3155 __le64 valid_le; 3156 3157 dup->alloc_size = is_attr_ext(attr) ? 3158 attr->nres.total_size : 3159 attr->nres.alloc_size; 3160 dup->data_size = attr->nres.data_size; 3161 3162 if (new_valid > data_size) 3163 new_valid = data_size; 3164 3165 valid_le = cpu_to_le64(new_valid); 3166 if (valid_le != attr->nres.valid_size) { 3167 attr->nres.valid_size = valid_le; 3168 mi->dirty = true; 3169 } 3170 } 3171 } 3172 3173 /* TODO: Fill reparse info. */ 3174 dup->reparse = 0; 3175 dup->ea_size = 0; 3176 3177 if (ni->ni_flags & NI_FLAG_EA) { 3178 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3179 NULL); 3180 if (attr) { 3181 const struct EA_INFO *info; 3182 3183 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3184 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3185 if (info) 3186 dup->ea_size = info->size_pack; 3187 } 3188 } 3189 3190 attr = NULL; 3191 le = NULL; 3192 3193 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3194 &mi))) { 3195 struct inode *dir; 3196 struct ATTR_FILE_NAME *fname; 3197 3198 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3199 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3200 continue; 3201 3202 /* Check simple case when parent inode equals current inode. */ 3203 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) { 3204 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3205 continue; 3206 } 3207 3208 /* ntfs_iget5 may sleep. */ 3209 dir = ntfs_iget5(sb, &fname->home, NULL); 3210 if (IS_ERR(dir)) { 3211 ntfs_inode_warn( 3212 &ni->vfs_inode, 3213 "failed to open parent directory r=%lx to update", 3214 (long)ino_get(&fname->home)); 3215 continue; 3216 } 3217 3218 if (!is_bad_inode(dir)) { 3219 struct ntfs_inode *dir_ni = ntfs_i(dir); 3220 3221 if (!ni_trylock(dir_ni)) { 3222 re_dirty = true; 3223 } else { 3224 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3225 ni_unlock(dir_ni); 3226 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3227 mi->dirty = true; 3228 } 3229 } 3230 iput(dir); 3231 } 3232 3233 return re_dirty; 3234 } 3235 3236 /* 3237 * ni_write_inode - Write MFT base record and all subrecords to disk. 3238 */ 3239 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3240 { 3241 int err = 0, err2; 3242 struct ntfs_inode *ni = ntfs_i(inode); 3243 struct super_block *sb = inode->i_sb; 3244 struct ntfs_sb_info *sbi = sb->s_fs_info; 3245 bool re_dirty = false; 3246 struct ATTR_STD_INFO *std; 3247 struct rb_node *node, *next; 3248 struct NTFS_DUP_INFO dup; 3249 3250 if (is_bad_inode(inode) || sb_rdonly(sb)) 3251 return 0; 3252 3253 if (unlikely(ntfs3_forced_shutdown(sb))) 3254 return -EIO; 3255 3256 if (!ni_trylock(ni)) { 3257 /* 'ni' is under modification, skip for now. */ 3258 mark_inode_dirty_sync(inode); 3259 return 0; 3260 } 3261 3262 if (!ni->mi.mrec) 3263 goto out; 3264 3265 if (is_rec_inuse(ni->mi.mrec) && 3266 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3267 bool modified = false; 3268 struct timespec64 ts; 3269 3270 /* Update times in standard attribute. */ 3271 std = ni_std(ni); 3272 if (!std) { 3273 err = -EINVAL; 3274 goto out; 3275 } 3276 3277 /* Update the access times if they have changed. */ 3278 ts = inode_get_mtime(inode); 3279 dup.m_time = kernel2nt(&ts); 3280 if (std->m_time != dup.m_time) { 3281 std->m_time = dup.m_time; 3282 modified = true; 3283 } 3284 3285 ts = inode_get_ctime(inode); 3286 dup.c_time = kernel2nt(&ts); 3287 if (std->c_time != dup.c_time) { 3288 std->c_time = dup.c_time; 3289 modified = true; 3290 } 3291 3292 ts = inode_get_atime(inode); 3293 dup.a_time = kernel2nt(&ts); 3294 if (std->a_time != dup.a_time) { 3295 std->a_time = dup.a_time; 3296 modified = true; 3297 } 3298 3299 dup.fa = ni->std_fa; 3300 if (std->fa != dup.fa) { 3301 std->fa = dup.fa; 3302 modified = true; 3303 } 3304 3305 /* std attribute is always in primary MFT record. */ 3306 if (modified) 3307 ni->mi.dirty = true; 3308 3309 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3310 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3311 /* Avoid __wait_on_freeing_inode(inode). */ 3312 && (sb->s_flags & SB_ACTIVE)) { 3313 dup.cr_time = std->cr_time; 3314 /* Not critical if this function fail. */ 3315 re_dirty = ni_update_parent(ni, &dup, sync); 3316 3317 if (re_dirty) 3318 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3319 else 3320 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3321 } 3322 3323 /* Update attribute list. */ 3324 if (ni->attr_list.size && ni->attr_list.dirty) { 3325 if (inode->i_ino != MFT_REC_MFT || sync) { 3326 err = ni_try_remove_attr_list(ni); 3327 if (err) 3328 goto out; 3329 } 3330 3331 err = al_update(ni, sync); 3332 if (err) 3333 goto out; 3334 } 3335 } 3336 3337 for (node = rb_first(&ni->mi_tree); node; node = next) { 3338 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3339 bool is_empty; 3340 3341 next = rb_next(node); 3342 3343 if (!mi->dirty) 3344 continue; 3345 3346 is_empty = !mi_enum_attr(mi, NULL); 3347 3348 if (is_empty) 3349 clear_rec_inuse(mi->mrec); 3350 3351 err2 = mi_write(mi, sync); 3352 if (!err && err2) 3353 err = err2; 3354 3355 if (is_empty) { 3356 ntfs_mark_rec_free(sbi, mi->rno, false); 3357 rb_erase(node, &ni->mi_tree); 3358 mi_put(mi); 3359 } 3360 } 3361 3362 if (ni->mi.dirty) { 3363 err2 = mi_write(&ni->mi, sync); 3364 if (!err && err2) 3365 err = err2; 3366 } 3367 out: 3368 ni_unlock(ni); 3369 3370 if (err) { 3371 ntfs_inode_err(inode, "%s failed, %d.", hint, err); 3372 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3373 return err; 3374 } 3375 3376 if (re_dirty) 3377 mark_inode_dirty_sync(inode); 3378 3379 return 0; 3380 } 3381 3382 /* 3383 * ni_set_compress 3384 * 3385 * Helper for 'ntfs_fileattr_set'. 3386 * Changes compression for empty files and directories only. 3387 */ 3388 int ni_set_compress(struct inode *inode, bool compr) 3389 { 3390 int err; 3391 struct ntfs_inode *ni = ntfs_i(inode); 3392 struct ATTR_STD_INFO *std; 3393 const char *bad_inode; 3394 3395 if (is_compressed(ni) == !!compr) 3396 return 0; 3397 3398 if (is_sparsed(ni)) { 3399 /* sparse and compress not compatible. */ 3400 return -EOPNOTSUPP; 3401 } 3402 3403 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) { 3404 /*Skip other inodes. (symlink,fifo,...) */ 3405 return -EOPNOTSUPP; 3406 } 3407 3408 bad_inode = NULL; 3409 3410 ni_lock(ni); 3411 3412 std = ni_std(ni); 3413 if (!std) { 3414 bad_inode = "no std"; 3415 goto out; 3416 } 3417 3418 if (S_ISREG(inode->i_mode)) { 3419 err = attr_set_compress(ni, compr); 3420 if (err) { 3421 if (err == -ENOENT) { 3422 /* Fix on the fly? */ 3423 /* Each file must contain data attribute. */ 3424 bad_inode = "no data attribute"; 3425 } 3426 goto out; 3427 } 3428 } 3429 3430 ni->std_fa = std->fa; 3431 if (compr) 3432 std->fa |= FILE_ATTRIBUTE_COMPRESSED; 3433 else 3434 std->fa &= ~FILE_ATTRIBUTE_COMPRESSED; 3435 3436 if (ni->std_fa != std->fa) { 3437 ni->std_fa = std->fa; 3438 ni->mi.dirty = true; 3439 } 3440 /* update duplicate information and directory entries in ni_write_inode.*/ 3441 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3442 err = 0; 3443 3444 out: 3445 ni_unlock(ni); 3446 if (bad_inode) { 3447 ntfs_bad_inode(inode, bad_inode); 3448 err = -EINVAL; 3449 } 3450 3451 return err; 3452 } 3453