1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fiemap.h> 11 #include <linux/fs.h> 12 #include <linux/nls.h> 13 #include <linux/vmalloc.h> 14 15 #include "debug.h" 16 #include "ntfs.h" 17 #include "ntfs_fs.h" 18 #ifdef CONFIG_NTFS3_LZX_XPRESS 19 #include "lib/lib.h" 20 #endif 21 22 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 23 CLST ino, struct rb_node *ins) 24 { 25 struct rb_node **p = &tree->rb_node; 26 struct rb_node *pr = NULL; 27 28 while (*p) { 29 struct mft_inode *mi; 30 31 pr = *p; 32 mi = rb_entry(pr, struct mft_inode, node); 33 if (mi->rno > ino) 34 p = &pr->rb_left; 35 else if (mi->rno < ino) 36 p = &pr->rb_right; 37 else 38 return mi; 39 } 40 41 if (!ins) 42 return NULL; 43 44 rb_link_node(ins, pr, p); 45 rb_insert_color(ins, tree); 46 return rb_entry(ins, struct mft_inode, node); 47 } 48 49 /* 50 * ni_find_mi - Find mft_inode by record number. 51 */ 52 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 53 { 54 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 55 } 56 57 /* 58 * ni_add_mi - Add new mft_inode into ntfs_inode. 59 */ 60 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 61 { 62 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 63 } 64 65 /* 66 * ni_remove_mi - Remove mft_inode from ntfs_inode. 67 */ 68 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 69 { 70 rb_erase(&mi->node, &ni->mi_tree); 71 } 72 73 /* 74 * ni_std - Return: Pointer into std_info from primary record. 75 */ 76 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 77 { 78 const struct ATTRIB *attr; 79 80 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 81 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) 82 : NULL; 83 } 84 85 /* 86 * ni_std5 87 * 88 * Return: Pointer into std_info from primary record. 89 */ 90 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 91 { 92 const struct ATTRIB *attr; 93 94 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 95 96 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) 97 : NULL; 98 } 99 100 /* 101 * ni_clear - Clear resources allocated by ntfs_inode. 102 */ 103 void ni_clear(struct ntfs_inode *ni) 104 { 105 struct rb_node *node; 106 107 if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec)) 108 ni_delete_all(ni); 109 110 al_destroy(ni); 111 112 for (node = rb_first(&ni->mi_tree); node;) { 113 struct rb_node *next = rb_next(node); 114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 115 116 rb_erase(node, &ni->mi_tree); 117 mi_put(mi); 118 node = next; 119 } 120 121 /* Bad inode always has mode == S_IFREG. */ 122 if (ni->ni_flags & NI_FLAG_DIR) 123 indx_clear(&ni->dir); 124 else { 125 run_close(&ni->file.run); 126 #ifdef CONFIG_NTFS3_LZX_XPRESS 127 if (ni->file.offs_page) { 128 /* On-demand allocated page for offsets. */ 129 put_page(ni->file.offs_page); 130 ni->file.offs_page = NULL; 131 } 132 #endif 133 } 134 135 mi_clear(&ni->mi); 136 } 137 138 /* 139 * ni_load_mi_ex - Find mft_inode by record number. 140 */ 141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 142 { 143 int err; 144 struct mft_inode *r; 145 146 r = ni_find_mi(ni, rno); 147 if (r) 148 goto out; 149 150 err = mi_get(ni->mi.sbi, rno, &r); 151 if (err) 152 return err; 153 154 ni_add_mi(ni, r); 155 156 out: 157 if (mi) 158 *mi = r; 159 return 0; 160 } 161 162 /* 163 * ni_load_mi - Load mft_inode corresponded list_entry. 164 */ 165 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 166 struct mft_inode **mi) 167 { 168 CLST rno; 169 170 if (!le) { 171 *mi = &ni->mi; 172 return 0; 173 } 174 175 rno = ino_get(&le->ref); 176 if (rno == ni->mi.rno) { 177 *mi = &ni->mi; 178 return 0; 179 } 180 return ni_load_mi_ex(ni, rno, mi); 181 } 182 183 /* 184 * ni_find_attr 185 * 186 * Return: Attribute and record this attribute belongs to. 187 */ 188 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 189 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 190 const __le16 *name, u8 name_len, const CLST *vcn, 191 struct mft_inode **mi) 192 { 193 struct ATTR_LIST_ENTRY *le; 194 struct mft_inode *m; 195 196 if (!ni->attr_list.size || 197 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 198 if (le_o) 199 *le_o = NULL; 200 if (mi) 201 *mi = &ni->mi; 202 203 /* Look for required attribute in primary record. */ 204 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 205 } 206 207 /* First look for list entry of required type. */ 208 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 209 if (!le) 210 return NULL; 211 212 if (le_o) 213 *le_o = le; 214 215 /* Load record that contains this attribute. */ 216 if (ni_load_mi(ni, le, &m)) 217 return NULL; 218 219 /* Look for required attribute. */ 220 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 221 222 if (!attr) 223 goto out; 224 225 if (!attr->non_res) { 226 if (vcn && *vcn) 227 goto out; 228 } else if (!vcn) { 229 if (attr->nres.svcn) 230 goto out; 231 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 232 *vcn > le64_to_cpu(attr->nres.evcn)) { 233 goto out; 234 } 235 236 if (mi) 237 *mi = m; 238 return attr; 239 240 out: 241 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 242 return NULL; 243 } 244 245 /* 246 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 247 */ 248 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 249 struct ATTR_LIST_ENTRY **le, 250 struct mft_inode **mi) 251 { 252 struct mft_inode *mi2; 253 struct ATTR_LIST_ENTRY *le2; 254 255 /* Do we have an attribute list? */ 256 if (!ni->attr_list.size) { 257 *le = NULL; 258 if (mi) 259 *mi = &ni->mi; 260 /* Enum attributes in primary record. */ 261 return mi_enum_attr(&ni->mi, attr); 262 } 263 264 /* Get next list entry. */ 265 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 266 if (!le2) 267 return NULL; 268 269 /* Load record that contains the required attribute. */ 270 if (ni_load_mi(ni, le2, &mi2)) 271 return NULL; 272 273 if (mi) 274 *mi = mi2; 275 276 /* Find attribute in loaded record. */ 277 return rec_find_attr_le(mi2, le2); 278 } 279 280 /* 281 * ni_load_attr - Load attribute that contains given VCN. 282 */ 283 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 284 const __le16 *name, u8 name_len, CLST vcn, 285 struct mft_inode **pmi) 286 { 287 struct ATTR_LIST_ENTRY *le; 288 struct ATTRIB *attr; 289 struct mft_inode *mi; 290 struct ATTR_LIST_ENTRY *next; 291 292 if (!ni->attr_list.size) { 293 if (pmi) 294 *pmi = &ni->mi; 295 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 296 } 297 298 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 299 if (!le) 300 return NULL; 301 302 /* 303 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 304 * So to find the ATTRIB segment that contains 'vcn' we should 305 * enumerate some entries. 306 */ 307 if (vcn) { 308 for (;; le = next) { 309 next = al_find_ex(ni, le, type, name, name_len, NULL); 310 if (!next || le64_to_cpu(next->vcn) > vcn) 311 break; 312 } 313 } 314 315 if (ni_load_mi(ni, le, &mi)) 316 return NULL; 317 318 if (pmi) 319 *pmi = mi; 320 321 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 322 if (!attr) 323 return NULL; 324 325 if (!attr->non_res) 326 return attr; 327 328 if (le64_to_cpu(attr->nres.svcn) <= vcn && 329 vcn <= le64_to_cpu(attr->nres.evcn)) 330 return attr; 331 332 return NULL; 333 } 334 335 /* 336 * ni_load_all_mi - Load all subrecords. 337 */ 338 int ni_load_all_mi(struct ntfs_inode *ni) 339 { 340 int err; 341 struct ATTR_LIST_ENTRY *le; 342 343 if (!ni->attr_list.size) 344 return 0; 345 346 le = NULL; 347 348 while ((le = al_enumerate(ni, le))) { 349 CLST rno = ino_get(&le->ref); 350 351 if (rno == ni->mi.rno) 352 continue; 353 354 err = ni_load_mi_ex(ni, rno, NULL); 355 if (err) 356 return err; 357 } 358 359 return 0; 360 } 361 362 /* 363 * ni_add_subrecord - Allocate + format + attach a new subrecord. 364 */ 365 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 366 { 367 struct mft_inode *m; 368 369 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 370 if (!m) 371 return false; 372 373 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 374 mi_put(m); 375 return false; 376 } 377 378 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 379 380 ni_add_mi(ni, m); 381 *mi = m; 382 return true; 383 } 384 385 /* 386 * ni_remove_attr - Remove all attributes for the given type/name/id. 387 */ 388 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 389 const __le16 *name, size_t name_len, bool base_only, 390 const __le16 *id) 391 { 392 int err; 393 struct ATTRIB *attr; 394 struct ATTR_LIST_ENTRY *le; 395 struct mft_inode *mi; 396 u32 type_in; 397 int diff; 398 399 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 400 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 401 if (!attr) 402 return -ENOENT; 403 404 mi_remove_attr(ni, &ni->mi, attr); 405 return 0; 406 } 407 408 type_in = le32_to_cpu(type); 409 le = NULL; 410 411 for (;;) { 412 le = al_enumerate(ni, le); 413 if (!le) 414 return 0; 415 416 next_le2: 417 diff = le32_to_cpu(le->type) - type_in; 418 if (diff < 0) 419 continue; 420 421 if (diff > 0) 422 return 0; 423 424 if (le->name_len != name_len) 425 continue; 426 427 if (name_len && 428 memcmp(le_name(le), name, name_len * sizeof(short))) 429 continue; 430 431 if (id && le->id != *id) 432 continue; 433 err = ni_load_mi(ni, le, &mi); 434 if (err) 435 return err; 436 437 al_remove_le(ni, le); 438 439 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 440 if (!attr) 441 return -ENOENT; 442 443 mi_remove_attr(ni, mi, attr); 444 445 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 446 return 0; 447 goto next_le2; 448 } 449 } 450 451 /* 452 * ni_ins_new_attr - Insert the attribute into record. 453 * 454 * Return: Not full constructed attribute or NULL if not possible to create. 455 */ 456 static struct ATTRIB * 457 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 458 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 459 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 460 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 461 { 462 int err; 463 struct ATTRIB *attr; 464 bool le_added = false; 465 struct MFT_REF ref; 466 467 mi_get_ref(mi, &ref); 468 469 if (type != ATTR_LIST && !le && ni->attr_list.size) { 470 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 471 &ref, &le); 472 if (err) { 473 /* No memory or no space. */ 474 return NULL; 475 } 476 le_added = true; 477 478 /* 479 * al_add_le -> attr_set_size (list) -> ni_expand_list 480 * which moves some attributes out of primary record 481 * this means that name may point into moved memory 482 * reinit 'name' from le. 483 */ 484 name = le->name; 485 } 486 487 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 488 if (!attr) { 489 if (le_added) 490 al_remove_le(ni, le); 491 return NULL; 492 } 493 494 if (type == ATTR_LIST) { 495 /* Attr list is not in list entry array. */ 496 goto out; 497 } 498 499 if (!le) 500 goto out; 501 502 /* Update ATTRIB Id and record reference. */ 503 le->id = attr->id; 504 ni->attr_list.dirty = true; 505 le->ref = ref; 506 507 out: 508 if (ins_le) 509 *ins_le = le; 510 return attr; 511 } 512 513 /* 514 * ni_repack 515 * 516 * Random write access to sparsed or compressed file may result to 517 * not optimized packed runs. 518 * Here is the place to optimize it. 519 */ 520 static int ni_repack(struct ntfs_inode *ni) 521 { 522 int err = 0; 523 struct ntfs_sb_info *sbi = ni->mi.sbi; 524 struct mft_inode *mi, *mi_p = NULL; 525 struct ATTRIB *attr = NULL, *attr_p; 526 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 527 CLST alloc = 0; 528 u8 cluster_bits = sbi->cluster_bits; 529 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 530 u32 roff, rs = sbi->record_size; 531 struct runs_tree run; 532 533 run_init(&run); 534 535 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 536 if (!attr->non_res) 537 continue; 538 539 svcn = le64_to_cpu(attr->nres.svcn); 540 if (svcn != le64_to_cpu(le->vcn)) { 541 err = -EINVAL; 542 break; 543 } 544 545 if (!svcn) { 546 alloc = le64_to_cpu(attr->nres.alloc_size) >> 547 cluster_bits; 548 mi_p = NULL; 549 } else if (svcn != evcn + 1) { 550 err = -EINVAL; 551 break; 552 } 553 554 evcn = le64_to_cpu(attr->nres.evcn); 555 556 if (svcn > evcn + 1) { 557 err = -EINVAL; 558 break; 559 } 560 561 if (!mi_p) { 562 /* Do not try if not enogh free space. */ 563 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 564 continue; 565 566 /* Do not try if last attribute segment. */ 567 if (evcn + 1 == alloc) 568 continue; 569 run_close(&run); 570 } 571 572 roff = le16_to_cpu(attr->nres.run_off); 573 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 574 Add2Ptr(attr, roff), 575 le32_to_cpu(attr->size) - roff); 576 if (err < 0) 577 break; 578 579 if (!mi_p) { 580 mi_p = mi; 581 attr_p = attr; 582 svcn_p = svcn; 583 evcn_p = evcn; 584 le_p = le; 585 err = 0; 586 continue; 587 } 588 589 /* 590 * Run contains data from two records: mi_p and mi 591 * Try to pack in one. 592 */ 593 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 594 if (err) 595 break; 596 597 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 598 599 if (next_svcn >= evcn + 1) { 600 /* We can remove this attribute segment. */ 601 al_remove_le(ni, le); 602 mi_remove_attr(NULL, mi, attr); 603 le = le_p; 604 continue; 605 } 606 607 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 608 mi->dirty = true; 609 ni->attr_list.dirty = true; 610 611 if (evcn + 1 == alloc) { 612 err = mi_pack_runs(mi, attr, &run, 613 evcn + 1 - next_svcn); 614 if (err) 615 break; 616 mi_p = NULL; 617 } else { 618 mi_p = mi; 619 attr_p = attr; 620 svcn_p = next_svcn; 621 evcn_p = evcn; 622 le_p = le; 623 run_truncate_head(&run, next_svcn); 624 } 625 } 626 627 if (err) { 628 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 629 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 630 631 /* Pack loaded but not packed runs. */ 632 if (mi_p) 633 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 634 } 635 636 run_close(&run); 637 return err; 638 } 639 640 /* 641 * ni_try_remove_attr_list 642 * 643 * Can we remove attribute list? 644 * Check the case when primary record contains enough space for all attributes. 645 */ 646 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 647 { 648 int err = 0; 649 struct ntfs_sb_info *sbi = ni->mi.sbi; 650 struct ATTRIB *attr, *attr_list, *attr_ins; 651 struct ATTR_LIST_ENTRY *le; 652 struct mft_inode *mi; 653 u32 asize, free; 654 struct MFT_REF ref; 655 __le16 id; 656 657 if (!ni->attr_list.dirty) 658 return 0; 659 660 err = ni_repack(ni); 661 if (err) 662 return err; 663 664 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 665 if (!attr_list) 666 return 0; 667 668 asize = le32_to_cpu(attr_list->size); 669 670 /* Free space in primary record without attribute list. */ 671 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 672 mi_get_ref(&ni->mi, &ref); 673 674 le = NULL; 675 while ((le = al_enumerate(ni, le))) { 676 if (!memcmp(&le->ref, &ref, sizeof(ref))) 677 continue; 678 679 if (le->vcn) 680 return 0; 681 682 mi = ni_find_mi(ni, ino_get(&le->ref)); 683 if (!mi) 684 return 0; 685 686 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 687 le->name_len, &le->id); 688 if (!attr) 689 return 0; 690 691 asize = le32_to_cpu(attr->size); 692 if (asize > free) 693 return 0; 694 695 free -= asize; 696 } 697 698 /* It seems that attribute list can be removed from primary record. */ 699 mi_remove_attr(NULL, &ni->mi, attr_list); 700 701 /* 702 * Repeat the cycle above and move all attributes to primary record. 703 * It should be success! 704 */ 705 le = NULL; 706 while ((le = al_enumerate(ni, le))) { 707 if (!memcmp(&le->ref, &ref, sizeof(ref))) 708 continue; 709 710 mi = ni_find_mi(ni, ino_get(&le->ref)); 711 712 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 713 le->name_len, &le->id); 714 asize = le32_to_cpu(attr->size); 715 716 /* Insert into primary record. */ 717 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 718 le->name_len, asize, 719 le16_to_cpu(attr->name_off)); 720 id = attr_ins->id; 721 722 /* Copy all except id. */ 723 memcpy(attr_ins, attr, asize); 724 attr_ins->id = id; 725 726 /* Remove from original record. */ 727 mi_remove_attr(NULL, mi, attr); 728 } 729 730 run_deallocate(sbi, &ni->attr_list.run, true); 731 run_close(&ni->attr_list.run); 732 ni->attr_list.size = 0; 733 kfree(ni->attr_list.le); 734 ni->attr_list.le = NULL; 735 ni->attr_list.dirty = false; 736 737 return 0; 738 } 739 740 /* 741 * ni_create_attr_list - Generates an attribute list for this primary record. 742 */ 743 int ni_create_attr_list(struct ntfs_inode *ni) 744 { 745 struct ntfs_sb_info *sbi = ni->mi.sbi; 746 int err; 747 u32 lsize; 748 struct ATTRIB *attr; 749 struct ATTRIB *arr_move[7]; 750 struct ATTR_LIST_ENTRY *le, *le_b[7]; 751 struct MFT_REC *rec; 752 bool is_mft; 753 CLST rno = 0; 754 struct mft_inode *mi; 755 u32 free_b, nb, to_free, rs; 756 u16 sz; 757 758 is_mft = ni->mi.rno == MFT_REC_MFT; 759 rec = ni->mi.mrec; 760 rs = sbi->record_size; 761 762 /* 763 * Skip estimating exact memory requirement. 764 * Looks like one record_size is always enough. 765 */ 766 le = kmalloc(al_aligned(rs), GFP_NOFS); 767 if (!le) { 768 err = -ENOMEM; 769 goto out; 770 } 771 772 mi_get_ref(&ni->mi, &le->ref); 773 ni->attr_list.le = le; 774 775 attr = NULL; 776 nb = 0; 777 free_b = 0; 778 attr = NULL; 779 780 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 781 sz = le_size(attr->name_len); 782 le->type = attr->type; 783 le->size = cpu_to_le16(sz); 784 le->name_len = attr->name_len; 785 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 786 le->vcn = 0; 787 if (le != ni->attr_list.le) 788 le->ref = ni->attr_list.le->ref; 789 le->id = attr->id; 790 791 if (attr->name_len) 792 memcpy(le->name, attr_name(attr), 793 sizeof(short) * attr->name_len); 794 else if (attr->type == ATTR_STD) 795 continue; 796 else if (attr->type == ATTR_LIST) 797 continue; 798 else if (is_mft && attr->type == ATTR_DATA) 799 continue; 800 801 if (!nb || nb < ARRAY_SIZE(arr_move)) { 802 le_b[nb] = le; 803 arr_move[nb++] = attr; 804 free_b += le32_to_cpu(attr->size); 805 } 806 } 807 808 lsize = PtrOffset(ni->attr_list.le, le); 809 ni->attr_list.size = lsize; 810 811 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 812 if (to_free <= rs) { 813 to_free = 0; 814 } else { 815 to_free -= rs; 816 817 if (to_free > free_b) { 818 err = -EINVAL; 819 goto out1; 820 } 821 } 822 823 /* Allocate child MFT. */ 824 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 825 if (err) 826 goto out1; 827 828 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 829 while (to_free > 0) { 830 struct ATTRIB *b = arr_move[--nb]; 831 u32 asize = le32_to_cpu(b->size); 832 u16 name_off = le16_to_cpu(b->name_off); 833 834 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 835 b->name_len, asize, name_off); 836 WARN_ON(!attr); 837 838 mi_get_ref(mi, &le_b[nb]->ref); 839 le_b[nb]->id = attr->id; 840 841 /* Copy all except id. */ 842 memcpy(attr, b, asize); 843 attr->id = le_b[nb]->id; 844 845 /* Remove from primary record. */ 846 WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); 847 848 if (to_free <= asize) 849 break; 850 to_free -= asize; 851 WARN_ON(!nb); 852 } 853 854 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 855 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 856 WARN_ON(!attr); 857 858 attr->non_res = 0; 859 attr->flags = 0; 860 attr->res.data_size = cpu_to_le32(lsize); 861 attr->res.data_off = SIZEOF_RESIDENT_LE; 862 attr->res.flags = 0; 863 attr->res.res = 0; 864 865 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 866 867 ni->attr_list.dirty = false; 868 869 mark_inode_dirty(&ni->vfs_inode); 870 goto out; 871 872 out1: 873 kfree(ni->attr_list.le); 874 ni->attr_list.le = NULL; 875 ni->attr_list.size = 0; 876 877 out: 878 return err; 879 } 880 881 /* 882 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 883 */ 884 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 885 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 886 u32 asize, CLST svcn, u16 name_off, bool force_ext, 887 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 888 struct ATTR_LIST_ENTRY **ins_le) 889 { 890 struct ATTRIB *attr; 891 struct mft_inode *mi; 892 CLST rno; 893 u64 vbo; 894 struct rb_node *node; 895 int err; 896 bool is_mft, is_mft_data; 897 struct ntfs_sb_info *sbi = ni->mi.sbi; 898 899 is_mft = ni->mi.rno == MFT_REC_MFT; 900 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 901 902 if (asize > sbi->max_bytes_per_attr) { 903 err = -EINVAL; 904 goto out; 905 } 906 907 /* 908 * Standard information and attr_list cannot be made external. 909 * The Log File cannot have any external attributes. 910 */ 911 if (type == ATTR_STD || type == ATTR_LIST || 912 ni->mi.rno == MFT_REC_LOG) { 913 err = -EINVAL; 914 goto out; 915 } 916 917 /* Create attribute list if it is not already existed. */ 918 if (!ni->attr_list.size) { 919 err = ni_create_attr_list(ni); 920 if (err) 921 goto out; 922 } 923 924 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 925 926 if (force_ext) 927 goto insert_ext; 928 929 /* Load all subrecords into memory. */ 930 err = ni_load_all_mi(ni); 931 if (err) 932 goto out; 933 934 /* Check each of loaded subrecord. */ 935 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 936 mi = rb_entry(node, struct mft_inode, node); 937 938 if (is_mft_data && 939 (mi_enum_attr(mi, NULL) || 940 vbo <= ((u64)mi->rno << sbi->record_bits))) { 941 /* We can't accept this record 'cause MFT's bootstrapping. */ 942 continue; 943 } 944 if (is_mft && 945 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 946 /* 947 * This child record already has a ATTR_DATA. 948 * So it can't accept any other records. 949 */ 950 continue; 951 } 952 953 if ((type != ATTR_NAME || name_len) && 954 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 955 /* Only indexed attributes can share same record. */ 956 continue; 957 } 958 959 /* Try to insert attribute into this subrecord. */ 960 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 961 name_off, svcn, ins_le); 962 if (!attr) 963 continue; 964 965 if (ins_attr) 966 *ins_attr = attr; 967 if (ins_mi) 968 *ins_mi = mi; 969 return 0; 970 } 971 972 insert_ext: 973 /* We have to allocate a new child subrecord. */ 974 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 975 if (err) 976 goto out; 977 978 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 979 err = -EINVAL; 980 goto out1; 981 } 982 983 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 984 name_off, svcn, ins_le); 985 if (!attr) 986 goto out2; 987 988 if (ins_attr) 989 *ins_attr = attr; 990 if (ins_mi) 991 *ins_mi = mi; 992 993 return 0; 994 995 out2: 996 ni_remove_mi(ni, mi); 997 mi_put(mi); 998 err = -EINVAL; 999 1000 out1: 1001 ntfs_mark_rec_free(sbi, rno); 1002 1003 out: 1004 return err; 1005 } 1006 1007 /* 1008 * ni_insert_attr - Insert an attribute into the file. 1009 * 1010 * If the primary record has room, it will just insert the attribute. 1011 * If not, it may make the attribute external. 1012 * For $MFT::Data it may make room for the attribute by 1013 * making other attributes external. 1014 * 1015 * NOTE: 1016 * The ATTR_LIST and ATTR_STD cannot be made external. 1017 * This function does not fill new attribute full. 1018 * It only fills 'size'/'type'/'id'/'name_len' fields. 1019 */ 1020 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1021 const __le16 *name, u8 name_len, u32 asize, 1022 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1023 struct mft_inode **ins_mi, 1024 struct ATTR_LIST_ENTRY **ins_le) 1025 { 1026 struct ntfs_sb_info *sbi = ni->mi.sbi; 1027 int err; 1028 struct ATTRIB *attr, *eattr; 1029 struct MFT_REC *rec; 1030 bool is_mft; 1031 struct ATTR_LIST_ENTRY *le; 1032 u32 list_reserve, max_free, free, used, t32; 1033 __le16 id; 1034 u16 t16; 1035 1036 is_mft = ni->mi.rno == MFT_REC_MFT; 1037 rec = ni->mi.mrec; 1038 1039 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1040 used = le32_to_cpu(rec->used); 1041 free = sbi->record_size - used; 1042 1043 if (is_mft && type != ATTR_LIST) { 1044 /* Reserve space for the ATTRIB list. */ 1045 if (free < list_reserve) 1046 free = 0; 1047 else 1048 free -= list_reserve; 1049 } 1050 1051 if (asize <= free) { 1052 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1053 asize, name_off, svcn, ins_le); 1054 if (attr) { 1055 if (ins_attr) 1056 *ins_attr = attr; 1057 if (ins_mi) 1058 *ins_mi = &ni->mi; 1059 err = 0; 1060 goto out; 1061 } 1062 } 1063 1064 if (!is_mft || type != ATTR_DATA || svcn) { 1065 /* This ATTRIB will be external. */ 1066 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1067 svcn, name_off, false, ins_attr, ins_mi, 1068 ins_le); 1069 goto out; 1070 } 1071 1072 /* 1073 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1074 * 1075 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1076 * Evict as many other attributes as possible. 1077 */ 1078 max_free = free; 1079 1080 /* Estimate the result of moving all possible attributes away. */ 1081 attr = NULL; 1082 1083 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1084 if (attr->type == ATTR_STD) 1085 continue; 1086 if (attr->type == ATTR_LIST) 1087 continue; 1088 max_free += le32_to_cpu(attr->size); 1089 } 1090 1091 if (max_free < asize + list_reserve) { 1092 /* Impossible to insert this attribute into primary record. */ 1093 err = -EINVAL; 1094 goto out; 1095 } 1096 1097 /* Start real attribute moving. */ 1098 attr = NULL; 1099 1100 for (;;) { 1101 attr = mi_enum_attr(&ni->mi, attr); 1102 if (!attr) { 1103 /* We should never be here 'cause we have already check this case. */ 1104 err = -EINVAL; 1105 goto out; 1106 } 1107 1108 /* Skip attributes that MUST be primary record. */ 1109 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1110 continue; 1111 1112 le = NULL; 1113 if (ni->attr_list.size) { 1114 le = al_find_le(ni, NULL, attr); 1115 if (!le) { 1116 /* Really this is a serious bug. */ 1117 err = -EINVAL; 1118 goto out; 1119 } 1120 } 1121 1122 t32 = le32_to_cpu(attr->size); 1123 t16 = le16_to_cpu(attr->name_off); 1124 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1125 attr->name_len, t32, attr_svcn(attr), t16, 1126 false, &eattr, NULL, NULL); 1127 if (err) 1128 return err; 1129 1130 id = eattr->id; 1131 memcpy(eattr, attr, t32); 1132 eattr->id = id; 1133 1134 /* Remove from primary record. */ 1135 mi_remove_attr(NULL, &ni->mi, attr); 1136 1137 /* attr now points to next attribute. */ 1138 if (attr->type == ATTR_END) 1139 goto out; 1140 } 1141 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1142 ; 1143 1144 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1145 name_off, svcn, ins_le); 1146 if (!attr) { 1147 err = -EINVAL; 1148 goto out; 1149 } 1150 1151 if (ins_attr) 1152 *ins_attr = attr; 1153 if (ins_mi) 1154 *ins_mi = &ni->mi; 1155 1156 out: 1157 return err; 1158 } 1159 1160 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1161 static int ni_expand_mft_list(struct ntfs_inode *ni) 1162 { 1163 int err = 0; 1164 struct runs_tree *run = &ni->file.run; 1165 u32 asize, run_size, done = 0; 1166 struct ATTRIB *attr; 1167 struct rb_node *node; 1168 CLST mft_min, mft_new, svcn, evcn, plen; 1169 struct mft_inode *mi, *mi_min, *mi_new; 1170 struct ntfs_sb_info *sbi = ni->mi.sbi; 1171 1172 /* Find the nearest MFT. */ 1173 mft_min = 0; 1174 mft_new = 0; 1175 mi_min = NULL; 1176 1177 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1178 mi = rb_entry(node, struct mft_inode, node); 1179 1180 attr = mi_enum_attr(mi, NULL); 1181 1182 if (!attr) { 1183 mft_min = mi->rno; 1184 mi_min = mi; 1185 break; 1186 } 1187 } 1188 1189 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1190 mft_new = 0; 1191 /* Really this is not critical. */ 1192 } else if (mft_min > mft_new) { 1193 mft_min = mft_new; 1194 mi_min = mi_new; 1195 } else { 1196 ntfs_mark_rec_free(sbi, mft_new); 1197 mft_new = 0; 1198 ni_remove_mi(ni, mi_new); 1199 } 1200 1201 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1202 if (!attr) { 1203 err = -EINVAL; 1204 goto out; 1205 } 1206 1207 asize = le32_to_cpu(attr->size); 1208 1209 evcn = le64_to_cpu(attr->nres.evcn); 1210 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1211 if (evcn + 1 >= svcn) { 1212 err = -EINVAL; 1213 goto out; 1214 } 1215 1216 /* 1217 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1218 * 1219 * Update first part of ATTR_DATA in 'primary MFT. 1220 */ 1221 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1222 asize - SIZEOF_NONRESIDENT, &plen); 1223 if (err < 0) 1224 goto out; 1225 1226 run_size = ALIGN(err, 8); 1227 err = 0; 1228 1229 if (plen < svcn) { 1230 err = -EINVAL; 1231 goto out; 1232 } 1233 1234 attr->nres.evcn = cpu_to_le64(svcn - 1); 1235 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1236 /* 'done' - How many bytes of primary MFT becomes free. */ 1237 done = asize - run_size - SIZEOF_NONRESIDENT; 1238 le32_sub_cpu(&ni->mi.mrec->used, done); 1239 1240 /* Estimate the size of second part: run_buf=NULL. */ 1241 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1242 &plen); 1243 if (err < 0) 1244 goto out; 1245 1246 run_size = ALIGN(err, 8); 1247 err = 0; 1248 1249 if (plen < evcn + 1 - svcn) { 1250 err = -EINVAL; 1251 goto out; 1252 } 1253 1254 /* 1255 * This function may implicitly call expand attr_list. 1256 * Insert second part of ATTR_DATA in 'mi_min'. 1257 */ 1258 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1259 SIZEOF_NONRESIDENT + run_size, 1260 SIZEOF_NONRESIDENT, svcn, NULL); 1261 if (!attr) { 1262 err = -EINVAL; 1263 goto out; 1264 } 1265 1266 attr->non_res = 1; 1267 attr->name_off = SIZEOF_NONRESIDENT_LE; 1268 attr->flags = 0; 1269 1270 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1271 run_size, &plen); 1272 1273 attr->nres.svcn = cpu_to_le64(svcn); 1274 attr->nres.evcn = cpu_to_le64(evcn); 1275 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1276 1277 out: 1278 if (mft_new) { 1279 ntfs_mark_rec_free(sbi, mft_new); 1280 ni_remove_mi(ni, mi_new); 1281 } 1282 1283 return !err && !done ? -EOPNOTSUPP : err; 1284 } 1285 1286 /* 1287 * ni_expand_list - Move all possible attributes out of primary record. 1288 */ 1289 int ni_expand_list(struct ntfs_inode *ni) 1290 { 1291 int err = 0; 1292 u32 asize, done = 0; 1293 struct ATTRIB *attr, *ins_attr; 1294 struct ATTR_LIST_ENTRY *le; 1295 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1296 struct MFT_REF ref; 1297 1298 mi_get_ref(&ni->mi, &ref); 1299 le = NULL; 1300 1301 while ((le = al_enumerate(ni, le))) { 1302 if (le->type == ATTR_STD) 1303 continue; 1304 1305 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1306 continue; 1307 1308 if (is_mft && le->type == ATTR_DATA) 1309 continue; 1310 1311 /* Find attribute in primary record. */ 1312 attr = rec_find_attr_le(&ni->mi, le); 1313 if (!attr) { 1314 err = -EINVAL; 1315 goto out; 1316 } 1317 1318 asize = le32_to_cpu(attr->size); 1319 1320 /* Always insert into new record to avoid collisions (deep recursive). */ 1321 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1322 attr->name_len, asize, attr_svcn(attr), 1323 le16_to_cpu(attr->name_off), true, 1324 &ins_attr, NULL, NULL); 1325 1326 if (err) 1327 goto out; 1328 1329 memcpy(ins_attr, attr, asize); 1330 ins_attr->id = le->id; 1331 /* Remove from primary record. */ 1332 mi_remove_attr(NULL, &ni->mi, attr); 1333 1334 done += asize; 1335 goto out; 1336 } 1337 1338 if (!is_mft) { 1339 err = -EFBIG; /* Attr list is too big(?) */ 1340 goto out; 1341 } 1342 1343 /* Split MFT data as much as possible. */ 1344 err = ni_expand_mft_list(ni); 1345 if (err) 1346 goto out; 1347 1348 out: 1349 return !err && !done ? -EOPNOTSUPP : err; 1350 } 1351 1352 /* 1353 * ni_insert_nonresident - Insert new nonresident attribute. 1354 */ 1355 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1356 const __le16 *name, u8 name_len, 1357 const struct runs_tree *run, CLST svcn, CLST len, 1358 __le16 flags, struct ATTRIB **new_attr, 1359 struct mft_inode **mi) 1360 { 1361 int err; 1362 CLST plen; 1363 struct ATTRIB *attr; 1364 bool is_ext = 1365 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; 1366 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1367 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1368 u32 run_off = name_off + name_size; 1369 u32 run_size, asize; 1370 struct ntfs_sb_info *sbi = ni->mi.sbi; 1371 1372 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1373 &plen); 1374 if (err < 0) 1375 goto out; 1376 1377 run_size = ALIGN(err, 8); 1378 1379 if (plen < len) { 1380 err = -EINVAL; 1381 goto out; 1382 } 1383 1384 asize = run_off + run_size; 1385 1386 if (asize > sbi->max_bytes_per_attr) { 1387 err = -EINVAL; 1388 goto out; 1389 } 1390 1391 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1392 &attr, mi, NULL); 1393 1394 if (err) 1395 goto out; 1396 1397 attr->non_res = 1; 1398 attr->name_off = cpu_to_le16(name_off); 1399 attr->flags = flags; 1400 1401 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1402 1403 attr->nres.svcn = cpu_to_le64(svcn); 1404 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1405 1406 err = 0; 1407 if (new_attr) 1408 *new_attr = attr; 1409 1410 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1411 1412 attr->nres.alloc_size = 1413 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1414 attr->nres.data_size = attr->nres.alloc_size; 1415 attr->nres.valid_size = attr->nres.alloc_size; 1416 1417 if (is_ext) { 1418 if (flags & ATTR_FLAG_COMPRESSED) 1419 attr->nres.c_unit = COMPRESSION_UNIT; 1420 attr->nres.total_size = attr->nres.alloc_size; 1421 } 1422 1423 out: 1424 return err; 1425 } 1426 1427 /* 1428 * ni_insert_resident - Inserts new resident attribute. 1429 */ 1430 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1431 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1432 struct ATTRIB **new_attr, struct mft_inode **mi, 1433 struct ATTR_LIST_ENTRY **le) 1434 { 1435 int err; 1436 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1437 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1438 struct ATTRIB *attr; 1439 1440 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1441 0, &attr, mi, le); 1442 if (err) 1443 return err; 1444 1445 attr->non_res = 0; 1446 attr->flags = 0; 1447 1448 attr->res.data_size = cpu_to_le32(data_size); 1449 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1450 if (type == ATTR_NAME) { 1451 attr->res.flags = RESIDENT_FLAG_INDEXED; 1452 1453 /* is_attr_indexed(attr)) == true */ 1454 le16_add_cpu(&ni->mi.mrec->hard_links, +1); 1455 ni->mi.dirty = true; 1456 } 1457 attr->res.res = 0; 1458 1459 if (new_attr) 1460 *new_attr = attr; 1461 1462 return 0; 1463 } 1464 1465 /* 1466 * ni_remove_attr_le - Remove attribute from record. 1467 */ 1468 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1469 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1470 { 1471 mi_remove_attr(ni, mi, attr); 1472 1473 if (le) 1474 al_remove_le(ni, le); 1475 } 1476 1477 /* 1478 * ni_delete_all - Remove all attributes and frees allocates space. 1479 * 1480 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1481 */ 1482 int ni_delete_all(struct ntfs_inode *ni) 1483 { 1484 int err; 1485 struct ATTR_LIST_ENTRY *le = NULL; 1486 struct ATTRIB *attr = NULL; 1487 struct rb_node *node; 1488 u16 roff; 1489 u32 asize; 1490 CLST svcn, evcn; 1491 struct ntfs_sb_info *sbi = ni->mi.sbi; 1492 bool nt3 = is_ntfs3(sbi); 1493 struct MFT_REF ref; 1494 1495 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1496 if (!nt3 || attr->name_len) { 1497 ; 1498 } else if (attr->type == ATTR_REPARSE) { 1499 mi_get_ref(&ni->mi, &ref); 1500 ntfs_remove_reparse(sbi, 0, &ref); 1501 } else if (attr->type == ATTR_ID && !attr->non_res && 1502 le32_to_cpu(attr->res.data_size) >= 1503 sizeof(struct GUID)) { 1504 ntfs_objid_remove(sbi, resident_data(attr)); 1505 } 1506 1507 if (!attr->non_res) 1508 continue; 1509 1510 svcn = le64_to_cpu(attr->nres.svcn); 1511 evcn = le64_to_cpu(attr->nres.evcn); 1512 1513 if (evcn + 1 <= svcn) 1514 continue; 1515 1516 asize = le32_to_cpu(attr->size); 1517 roff = le16_to_cpu(attr->nres.run_off); 1518 1519 /* run==1 means unpack and deallocate. */ 1520 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1521 Add2Ptr(attr, roff), asize - roff); 1522 } 1523 1524 if (ni->attr_list.size) { 1525 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1526 al_destroy(ni); 1527 } 1528 1529 /* Free all subrecords. */ 1530 for (node = rb_first(&ni->mi_tree); node;) { 1531 struct rb_node *next = rb_next(node); 1532 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1533 1534 clear_rec_inuse(mi->mrec); 1535 mi->dirty = true; 1536 mi_write(mi, 0); 1537 1538 ntfs_mark_rec_free(sbi, mi->rno); 1539 ni_remove_mi(ni, mi); 1540 mi_put(mi); 1541 node = next; 1542 } 1543 1544 /* Free base record. */ 1545 clear_rec_inuse(ni->mi.mrec); 1546 ni->mi.dirty = true; 1547 err = mi_write(&ni->mi, 0); 1548 1549 ntfs_mark_rec_free(sbi, ni->mi.rno); 1550 1551 return err; 1552 } 1553 1554 /* ni_fname_name 1555 * 1556 * Return: File name attribute by its value. 1557 */ 1558 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1559 const struct cpu_str *uni, 1560 const struct MFT_REF *home_dir, 1561 struct mft_inode **mi, 1562 struct ATTR_LIST_ENTRY **le) 1563 { 1564 struct ATTRIB *attr = NULL; 1565 struct ATTR_FILE_NAME *fname; 1566 1567 *le = NULL; 1568 1569 /* Enumerate all names. */ 1570 next: 1571 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1572 if (!attr) 1573 return NULL; 1574 1575 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1576 if (!fname) 1577 goto next; 1578 1579 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1580 goto next; 1581 1582 if (!uni) 1583 goto next; 1584 1585 if (uni->len != fname->name_len) 1586 goto next; 1587 1588 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL, 1589 false)) 1590 goto next; 1591 1592 return fname; 1593 } 1594 1595 /* 1596 * ni_fname_type 1597 * 1598 * Return: File name attribute with given type. 1599 */ 1600 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1601 struct mft_inode **mi, 1602 struct ATTR_LIST_ENTRY **le) 1603 { 1604 struct ATTRIB *attr = NULL; 1605 struct ATTR_FILE_NAME *fname; 1606 1607 *le = NULL; 1608 1609 if (FILE_NAME_POSIX == name_type) 1610 return NULL; 1611 1612 /* Enumerate all names. */ 1613 for (;;) { 1614 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1615 if (!attr) 1616 return NULL; 1617 1618 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1619 if (fname && name_type == fname->type) 1620 return fname; 1621 } 1622 } 1623 1624 /* 1625 * ni_new_attr_flags 1626 * 1627 * Process compressed/sparsed in special way. 1628 * NOTE: You need to set ni->std_fa = new_fa 1629 * after this function to keep internal structures in consistency. 1630 */ 1631 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1632 { 1633 struct ATTRIB *attr; 1634 struct mft_inode *mi; 1635 __le16 new_aflags; 1636 u32 new_asize; 1637 1638 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1639 if (!attr) 1640 return -EINVAL; 1641 1642 new_aflags = attr->flags; 1643 1644 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1645 new_aflags |= ATTR_FLAG_SPARSED; 1646 else 1647 new_aflags &= ~ATTR_FLAG_SPARSED; 1648 1649 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1650 new_aflags |= ATTR_FLAG_COMPRESSED; 1651 else 1652 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1653 1654 if (new_aflags == attr->flags) 1655 return 0; 1656 1657 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1658 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1659 ntfs_inode_warn(&ni->vfs_inode, 1660 "file can't be sparsed and compressed"); 1661 return -EOPNOTSUPP; 1662 } 1663 1664 if (!attr->non_res) 1665 goto out; 1666 1667 if (attr->nres.data_size) { 1668 ntfs_inode_warn( 1669 &ni->vfs_inode, 1670 "one can change sparsed/compressed only for empty files"); 1671 return -EOPNOTSUPP; 1672 } 1673 1674 /* Resize nonresident empty attribute in-place only. */ 1675 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) 1676 ? (SIZEOF_NONRESIDENT_EX + 8) 1677 : (SIZEOF_NONRESIDENT + 8); 1678 1679 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1680 return -EOPNOTSUPP; 1681 1682 if (new_aflags & ATTR_FLAG_SPARSED) { 1683 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1684 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1685 attr->nres.c_unit = 0; 1686 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1687 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1688 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1689 /* The only allowed: 16 clusters per frame. */ 1690 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1691 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1692 } else { 1693 attr->name_off = SIZEOF_NONRESIDENT_LE; 1694 /* Normal files. */ 1695 attr->nres.c_unit = 0; 1696 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1697 } 1698 attr->nres.run_off = attr->name_off; 1699 out: 1700 attr->flags = new_aflags; 1701 mi->dirty = true; 1702 1703 return 0; 1704 } 1705 1706 /* 1707 * ni_parse_reparse 1708 * 1709 * Buffer is at least 24 bytes. 1710 */ 1711 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1712 void *buffer) 1713 { 1714 const struct REPARSE_DATA_BUFFER *rp = NULL; 1715 u8 bits; 1716 u16 len; 1717 typeof(rp->CompressReparseBuffer) *cmpr; 1718 1719 static_assert(sizeof(struct REPARSE_DATA_BUFFER) <= 24); 1720 1721 /* Try to estimate reparse point. */ 1722 if (!attr->non_res) { 1723 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1724 } else if (le64_to_cpu(attr->nres.data_size) >= 1725 sizeof(struct REPARSE_DATA_BUFFER)) { 1726 struct runs_tree run; 1727 1728 run_init(&run); 1729 1730 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1731 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1732 sizeof(struct REPARSE_DATA_BUFFER), 1733 NULL)) { 1734 rp = buffer; 1735 } 1736 1737 run_close(&run); 1738 } 1739 1740 if (!rp) 1741 return REPARSE_NONE; 1742 1743 len = le16_to_cpu(rp->ReparseDataLength); 1744 switch (rp->ReparseTag) { 1745 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1746 break; /* Symbolic link. */ 1747 case IO_REPARSE_TAG_MOUNT_POINT: 1748 break; /* Mount points and junctions. */ 1749 case IO_REPARSE_TAG_SYMLINK: 1750 break; 1751 case IO_REPARSE_TAG_COMPRESS: 1752 /* 1753 * WOF - Windows Overlay Filter - Used to compress files with 1754 * LZX/Xpress. 1755 * 1756 * Unlike native NTFS file compression, the Windows 1757 * Overlay Filter supports only read operations. This means 1758 * that it doesn't need to sector-align each compressed chunk, 1759 * so the compressed data can be packed more tightly together. 1760 * If you open the file for writing, the WOF just decompresses 1761 * the entire file, turning it back into a plain file. 1762 * 1763 * Ntfs3 driver decompresses the entire file only on write or 1764 * change size requests. 1765 */ 1766 1767 cmpr = &rp->CompressReparseBuffer; 1768 if (len < sizeof(*cmpr) || 1769 cmpr->WofVersion != WOF_CURRENT_VERSION || 1770 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1771 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1772 return REPARSE_NONE; 1773 } 1774 1775 switch (cmpr->CompressionFormat) { 1776 case WOF_COMPRESSION_XPRESS4K: 1777 bits = 0xc; // 4k 1778 break; 1779 case WOF_COMPRESSION_XPRESS8K: 1780 bits = 0xd; // 8k 1781 break; 1782 case WOF_COMPRESSION_XPRESS16K: 1783 bits = 0xe; // 16k 1784 break; 1785 case WOF_COMPRESSION_LZX32K: 1786 bits = 0xf; // 32k 1787 break; 1788 default: 1789 bits = 0x10; // 64k 1790 break; 1791 } 1792 ni_set_ext_compress_bits(ni, bits); 1793 return REPARSE_COMPRESSED; 1794 1795 case IO_REPARSE_TAG_DEDUP: 1796 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1797 return REPARSE_DEDUPLICATED; 1798 1799 default: 1800 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1801 break; 1802 1803 return REPARSE_NONE; 1804 } 1805 1806 /* Looks like normal symlink. */ 1807 return REPARSE_LINK; 1808 } 1809 1810 /* 1811 * ni_fiemap - Helper for file_fiemap(). 1812 * 1813 * Assumed ni_lock. 1814 * TODO: Less aggressive locks. 1815 */ 1816 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1817 __u64 vbo, __u64 len) 1818 { 1819 int err = 0; 1820 struct ntfs_sb_info *sbi = ni->mi.sbi; 1821 u8 cluster_bits = sbi->cluster_bits; 1822 struct runs_tree *run; 1823 struct rw_semaphore *run_lock; 1824 struct ATTRIB *attr; 1825 CLST vcn = vbo >> cluster_bits; 1826 CLST lcn, clen; 1827 u64 valid = ni->i_valid; 1828 u64 lbo, bytes; 1829 u64 end, alloc_size; 1830 size_t idx = -1; 1831 u32 flags; 1832 bool ok; 1833 1834 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1835 run = &ni->dir.alloc_run; 1836 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1837 ARRAY_SIZE(I30_NAME), NULL, NULL); 1838 run_lock = &ni->dir.run_lock; 1839 } else { 1840 run = &ni->file.run; 1841 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1842 NULL); 1843 if (!attr) { 1844 err = -EINVAL; 1845 goto out; 1846 } 1847 if (is_attr_compressed(attr)) { 1848 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1849 err = -EOPNOTSUPP; 1850 ntfs_inode_warn( 1851 &ni->vfs_inode, 1852 "fiemap is not supported for compressed file (cp -r)"); 1853 goto out; 1854 } 1855 run_lock = &ni->file.run_lock; 1856 } 1857 1858 if (!attr || !attr->non_res) { 1859 err = fiemap_fill_next_extent( 1860 fieinfo, 0, 0, 1861 attr ? le32_to_cpu(attr->res.data_size) : 0, 1862 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1863 FIEMAP_EXTENT_MERGED); 1864 goto out; 1865 } 1866 1867 end = vbo + len; 1868 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1869 if (end > alloc_size) 1870 end = alloc_size; 1871 1872 down_read(run_lock); 1873 1874 while (vbo < end) { 1875 if (idx == -1) { 1876 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1877 } else { 1878 CLST vcn_next = vcn; 1879 1880 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 1881 vcn == vcn_next; 1882 if (!ok) 1883 vcn = vcn_next; 1884 } 1885 1886 if (!ok) { 1887 up_read(run_lock); 1888 down_write(run_lock); 1889 1890 err = attr_load_runs_vcn(ni, attr->type, 1891 attr_name(attr), 1892 attr->name_len, run, vcn); 1893 1894 up_write(run_lock); 1895 down_read(run_lock); 1896 1897 if (err) 1898 break; 1899 1900 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1901 1902 if (!ok) { 1903 err = -EINVAL; 1904 break; 1905 } 1906 } 1907 1908 if (!clen) { 1909 err = -EINVAL; // ? 1910 break; 1911 } 1912 1913 if (lcn == SPARSE_LCN) { 1914 vcn += clen; 1915 vbo = (u64)vcn << cluster_bits; 1916 continue; 1917 } 1918 1919 flags = FIEMAP_EXTENT_MERGED; 1920 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1921 ; 1922 } else if (is_attr_compressed(attr)) { 1923 CLST clst_data; 1924 1925 err = attr_is_frame_compressed( 1926 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 1927 if (err) 1928 break; 1929 if (clst_data < NTFS_LZNT_CLUSTERS) 1930 flags |= FIEMAP_EXTENT_ENCODED; 1931 } else if (is_attr_encrypted(attr)) { 1932 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1933 } 1934 1935 vbo = (u64)vcn << cluster_bits; 1936 bytes = (u64)clen << cluster_bits; 1937 lbo = (u64)lcn << cluster_bits; 1938 1939 vcn += clen; 1940 1941 if (vbo + bytes >= end) { 1942 bytes = end - vbo; 1943 flags |= FIEMAP_EXTENT_LAST; 1944 } 1945 1946 if (vbo + bytes <= valid) { 1947 ; 1948 } else if (vbo >= valid) { 1949 flags |= FIEMAP_EXTENT_UNWRITTEN; 1950 } else { 1951 /* vbo < valid && valid < vbo + bytes */ 1952 u64 dlen = valid - vbo; 1953 1954 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 1955 flags); 1956 if (err < 0) 1957 break; 1958 if (err == 1) { 1959 err = 0; 1960 break; 1961 } 1962 1963 vbo = valid; 1964 bytes -= dlen; 1965 if (!bytes) 1966 continue; 1967 1968 lbo += dlen; 1969 flags |= FIEMAP_EXTENT_UNWRITTEN; 1970 } 1971 1972 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 1973 if (err < 0) 1974 break; 1975 if (err == 1) { 1976 err = 0; 1977 break; 1978 } 1979 1980 vbo += bytes; 1981 } 1982 1983 up_read(run_lock); 1984 1985 out: 1986 return err; 1987 } 1988 1989 /* 1990 * ni_readpage_cmpr 1991 * 1992 * When decompressing, we typically obtain more than one page per reference. 1993 * We inject the additional pages into the page cache. 1994 */ 1995 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 1996 { 1997 int err; 1998 struct ntfs_sb_info *sbi = ni->mi.sbi; 1999 struct address_space *mapping = page->mapping; 2000 pgoff_t index = page->index; 2001 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2002 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2003 u8 frame_bits; 2004 CLST frame; 2005 u32 i, idx, frame_size, pages_per_frame; 2006 gfp_t gfp_mask; 2007 struct page *pg; 2008 2009 if (vbo >= ni->vfs_inode.i_size) { 2010 SetPageUptodate(page); 2011 err = 0; 2012 goto out; 2013 } 2014 2015 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2016 /* Xpress or LZX. */ 2017 frame_bits = ni_ext_compress_bits(ni); 2018 } else { 2019 /* LZNT compression. */ 2020 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2021 } 2022 frame_size = 1u << frame_bits; 2023 frame = vbo >> frame_bits; 2024 frame_vbo = (u64)frame << frame_bits; 2025 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2026 2027 pages_per_frame = frame_size >> PAGE_SHIFT; 2028 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2029 if (!pages) { 2030 err = -ENOMEM; 2031 goto out; 2032 } 2033 2034 pages[idx] = page; 2035 index = frame_vbo >> PAGE_SHIFT; 2036 gfp_mask = mapping_gfp_mask(mapping); 2037 2038 for (i = 0; i < pages_per_frame; i++, index++) { 2039 if (i == idx) 2040 continue; 2041 2042 pg = find_or_create_page(mapping, index, gfp_mask); 2043 if (!pg) { 2044 err = -ENOMEM; 2045 goto out1; 2046 } 2047 pages[i] = pg; 2048 } 2049 2050 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2051 2052 out1: 2053 if (err) 2054 SetPageError(page); 2055 2056 for (i = 0; i < pages_per_frame; i++) { 2057 pg = pages[i]; 2058 if (i == idx) 2059 continue; 2060 unlock_page(pg); 2061 put_page(pg); 2062 } 2063 2064 out: 2065 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2066 kfree(pages); 2067 unlock_page(page); 2068 2069 return err; 2070 } 2071 2072 #ifdef CONFIG_NTFS3_LZX_XPRESS 2073 /* 2074 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2075 * 2076 * Remove ATTR_DATA::WofCompressedData. 2077 * Remove ATTR_REPARSE. 2078 */ 2079 int ni_decompress_file(struct ntfs_inode *ni) 2080 { 2081 struct ntfs_sb_info *sbi = ni->mi.sbi; 2082 struct inode *inode = &ni->vfs_inode; 2083 loff_t i_size = inode->i_size; 2084 struct address_space *mapping = inode->i_mapping; 2085 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2086 struct page **pages = NULL; 2087 struct ATTR_LIST_ENTRY *le; 2088 struct ATTRIB *attr; 2089 CLST vcn, cend, lcn, clen, end; 2090 pgoff_t index; 2091 u64 vbo; 2092 u8 frame_bits; 2093 u32 i, frame_size, pages_per_frame, bytes; 2094 struct mft_inode *mi; 2095 int err; 2096 2097 /* Clusters for decompressed data. */ 2098 cend = bytes_to_cluster(sbi, i_size); 2099 2100 if (!i_size) 2101 goto remove_wof; 2102 2103 /* Check in advance. */ 2104 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2105 err = -ENOSPC; 2106 goto out; 2107 } 2108 2109 frame_bits = ni_ext_compress_bits(ni); 2110 frame_size = 1u << frame_bits; 2111 pages_per_frame = frame_size >> PAGE_SHIFT; 2112 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2113 if (!pages) { 2114 err = -ENOMEM; 2115 goto out; 2116 } 2117 2118 /* 2119 * Step 1: Decompress data and copy to new allocated clusters. 2120 */ 2121 index = 0; 2122 for (vbo = 0; vbo < i_size; vbo += bytes) { 2123 u32 nr_pages; 2124 bool new; 2125 2126 if (vbo + frame_size > i_size) { 2127 bytes = i_size - vbo; 2128 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2129 } else { 2130 nr_pages = pages_per_frame; 2131 bytes = frame_size; 2132 } 2133 2134 end = bytes_to_cluster(sbi, vbo + bytes); 2135 2136 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2137 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2138 &clen, &new); 2139 if (err) 2140 goto out; 2141 } 2142 2143 for (i = 0; i < pages_per_frame; i++, index++) { 2144 struct page *pg; 2145 2146 pg = find_or_create_page(mapping, index, gfp_mask); 2147 if (!pg) { 2148 while (i--) { 2149 unlock_page(pages[i]); 2150 put_page(pages[i]); 2151 } 2152 err = -ENOMEM; 2153 goto out; 2154 } 2155 pages[i] = pg; 2156 } 2157 2158 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2159 2160 if (!err) { 2161 down_read(&ni->file.run_lock); 2162 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2163 nr_pages, vbo, bytes, 2164 REQ_OP_WRITE); 2165 up_read(&ni->file.run_lock); 2166 } 2167 2168 for (i = 0; i < pages_per_frame; i++) { 2169 unlock_page(pages[i]); 2170 put_page(pages[i]); 2171 } 2172 2173 if (err) 2174 goto out; 2175 2176 cond_resched(); 2177 } 2178 2179 remove_wof: 2180 /* 2181 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2182 * and ATTR_REPARSE. 2183 */ 2184 attr = NULL; 2185 le = NULL; 2186 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2187 CLST svcn, evcn; 2188 u32 asize, roff; 2189 2190 if (attr->type == ATTR_REPARSE) { 2191 struct MFT_REF ref; 2192 2193 mi_get_ref(&ni->mi, &ref); 2194 ntfs_remove_reparse(sbi, 0, &ref); 2195 } 2196 2197 if (!attr->non_res) 2198 continue; 2199 2200 if (attr->type != ATTR_REPARSE && 2201 (attr->type != ATTR_DATA || 2202 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2203 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2204 continue; 2205 2206 svcn = le64_to_cpu(attr->nres.svcn); 2207 evcn = le64_to_cpu(attr->nres.evcn); 2208 2209 if (evcn + 1 <= svcn) 2210 continue; 2211 2212 asize = le32_to_cpu(attr->size); 2213 roff = le16_to_cpu(attr->nres.run_off); 2214 2215 /*run==1 Means unpack and deallocate. */ 2216 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2217 Add2Ptr(attr, roff), asize - roff); 2218 } 2219 2220 /* 2221 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2222 */ 2223 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2224 false, NULL); 2225 if (err) 2226 goto out; 2227 2228 /* 2229 * Step 4: Remove ATTR_REPARSE. 2230 */ 2231 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2232 if (err) 2233 goto out; 2234 2235 /* 2236 * Step 5: Remove sparse flag from data attribute. 2237 */ 2238 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2239 if (!attr) { 2240 err = -EINVAL; 2241 goto out; 2242 } 2243 2244 if (attr->non_res && is_attr_sparsed(attr)) { 2245 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2246 struct MFT_REC *rec = mi->mrec; 2247 u32 used = le32_to_cpu(rec->used); 2248 u32 asize = le32_to_cpu(attr->size); 2249 u16 roff = le16_to_cpu(attr->nres.run_off); 2250 char *rbuf = Add2Ptr(attr, roff); 2251 2252 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2253 attr->size = cpu_to_le32(asize - 8); 2254 attr->flags &= ~ATTR_FLAG_SPARSED; 2255 attr->nres.run_off = cpu_to_le16(roff - 8); 2256 attr->nres.c_unit = 0; 2257 rec->used = cpu_to_le32(used - 8); 2258 mi->dirty = true; 2259 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2260 FILE_ATTRIBUTE_REPARSE_POINT); 2261 2262 mark_inode_dirty(inode); 2263 } 2264 2265 /* Clear cached flag. */ 2266 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2267 if (ni->file.offs_page) { 2268 put_page(ni->file.offs_page); 2269 ni->file.offs_page = NULL; 2270 } 2271 mapping->a_ops = &ntfs_aops; 2272 2273 out: 2274 kfree(pages); 2275 if (err) { 2276 make_bad_inode(inode); 2277 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 2278 } 2279 2280 return err; 2281 } 2282 2283 /* 2284 * decompress_lzx_xpress - External compression LZX/Xpress. 2285 */ 2286 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2287 size_t cmpr_size, void *unc, size_t unc_size, 2288 u32 frame_size) 2289 { 2290 int err; 2291 void *ctx; 2292 2293 if (cmpr_size == unc_size) { 2294 /* Frame not compressed. */ 2295 memcpy(unc, cmpr, unc_size); 2296 return 0; 2297 } 2298 2299 err = 0; 2300 if (frame_size == 0x8000) { 2301 mutex_lock(&sbi->compress.mtx_lzx); 2302 /* LZX: Frame compressed. */ 2303 ctx = sbi->compress.lzx; 2304 if (!ctx) { 2305 /* Lazy initialize LZX decompress context. */ 2306 ctx = lzx_allocate_decompressor(); 2307 if (!ctx) { 2308 err = -ENOMEM; 2309 goto out1; 2310 } 2311 2312 sbi->compress.lzx = ctx; 2313 } 2314 2315 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2316 /* Treat all errors as "invalid argument". */ 2317 err = -EINVAL; 2318 } 2319 out1: 2320 mutex_unlock(&sbi->compress.mtx_lzx); 2321 } else { 2322 /* XPRESS: Frame compressed. */ 2323 mutex_lock(&sbi->compress.mtx_xpress); 2324 ctx = sbi->compress.xpress; 2325 if (!ctx) { 2326 /* Lazy initialize Xpress decompress context. */ 2327 ctx = xpress_allocate_decompressor(); 2328 if (!ctx) { 2329 err = -ENOMEM; 2330 goto out2; 2331 } 2332 2333 sbi->compress.xpress = ctx; 2334 } 2335 2336 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2337 /* Treat all errors as "invalid argument". */ 2338 err = -EINVAL; 2339 } 2340 out2: 2341 mutex_unlock(&sbi->compress.mtx_xpress); 2342 } 2343 return err; 2344 } 2345 #endif 2346 2347 /* 2348 * ni_read_frame 2349 * 2350 * Pages - Array of locked pages. 2351 */ 2352 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2353 u32 pages_per_frame) 2354 { 2355 int err; 2356 struct ntfs_sb_info *sbi = ni->mi.sbi; 2357 u8 cluster_bits = sbi->cluster_bits; 2358 char *frame_ondisk = NULL; 2359 char *frame_mem = NULL; 2360 struct page **pages_disk = NULL; 2361 struct ATTR_LIST_ENTRY *le = NULL; 2362 struct runs_tree *run = &ni->file.run; 2363 u64 valid_size = ni->i_valid; 2364 u64 vbo_disk; 2365 size_t unc_size; 2366 u32 frame_size, i, npages_disk, ondisk_size; 2367 struct page *pg; 2368 struct ATTRIB *attr; 2369 CLST frame, clst_data; 2370 2371 /* 2372 * To simplify decompress algorithm do vmap for source 2373 * and target pages. 2374 */ 2375 for (i = 0; i < pages_per_frame; i++) 2376 kmap(pages[i]); 2377 2378 frame_size = pages_per_frame << PAGE_SHIFT; 2379 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2380 if (!frame_mem) { 2381 err = -ENOMEM; 2382 goto out; 2383 } 2384 2385 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2386 if (!attr) { 2387 err = -ENOENT; 2388 goto out1; 2389 } 2390 2391 if (!attr->non_res) { 2392 u32 data_size = le32_to_cpu(attr->res.data_size); 2393 2394 memset(frame_mem, 0, frame_size); 2395 if (frame_vbo < data_size) { 2396 ondisk_size = data_size - frame_vbo; 2397 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2398 min(ondisk_size, frame_size)); 2399 } 2400 err = 0; 2401 goto out1; 2402 } 2403 2404 if (frame_vbo >= valid_size) { 2405 memset(frame_mem, 0, frame_size); 2406 err = 0; 2407 goto out1; 2408 } 2409 2410 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2411 #ifndef CONFIG_NTFS3_LZX_XPRESS 2412 err = -EOPNOTSUPP; 2413 goto out1; 2414 #else 2415 u32 frame_bits = ni_ext_compress_bits(ni); 2416 u64 frame64 = frame_vbo >> frame_bits; 2417 u64 frames, vbo_data; 2418 2419 if (frame_size != (1u << frame_bits)) { 2420 err = -EINVAL; 2421 goto out1; 2422 } 2423 switch (frame_size) { 2424 case 0x1000: 2425 case 0x2000: 2426 case 0x4000: 2427 case 0x8000: 2428 break; 2429 default: 2430 /* Unknown compression. */ 2431 err = -EOPNOTSUPP; 2432 goto out1; 2433 } 2434 2435 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2436 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2437 if (!attr) { 2438 ntfs_inode_err( 2439 &ni->vfs_inode, 2440 "external compressed file should contains data attribute \"WofCompressedData\""); 2441 err = -EINVAL; 2442 goto out1; 2443 } 2444 2445 if (!attr->non_res) { 2446 run = NULL; 2447 } else { 2448 run = run_alloc(); 2449 if (!run) { 2450 err = -ENOMEM; 2451 goto out1; 2452 } 2453 } 2454 2455 frames = (ni->vfs_inode.i_size - 1) >> frame_bits; 2456 2457 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2458 frame_bits, &ondisk_size, &vbo_data); 2459 if (err) 2460 goto out2; 2461 2462 if (frame64 == frames) { 2463 unc_size = 1 + ((ni->vfs_inode.i_size - 1) & 2464 (frame_size - 1)); 2465 ondisk_size = attr_size(attr) - vbo_data; 2466 } else { 2467 unc_size = frame_size; 2468 } 2469 2470 if (ondisk_size > frame_size) { 2471 err = -EINVAL; 2472 goto out2; 2473 } 2474 2475 if (!attr->non_res) { 2476 if (vbo_data + ondisk_size > 2477 le32_to_cpu(attr->res.data_size)) { 2478 err = -EINVAL; 2479 goto out1; 2480 } 2481 2482 err = decompress_lzx_xpress( 2483 sbi, Add2Ptr(resident_data(attr), vbo_data), 2484 ondisk_size, frame_mem, unc_size, frame_size); 2485 goto out1; 2486 } 2487 vbo_disk = vbo_data; 2488 /* Load all runs to read [vbo_disk-vbo_to). */ 2489 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2490 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2491 vbo_data + ondisk_size); 2492 if (err) 2493 goto out2; 2494 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2495 PAGE_SIZE - 1) >> 2496 PAGE_SHIFT; 2497 #endif 2498 } else if (is_attr_compressed(attr)) { 2499 /* LZNT compression. */ 2500 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2501 err = -EOPNOTSUPP; 2502 goto out1; 2503 } 2504 2505 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2506 err = -EOPNOTSUPP; 2507 goto out1; 2508 } 2509 2510 down_write(&ni->file.run_lock); 2511 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2512 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2513 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2514 up_write(&ni->file.run_lock); 2515 if (err) 2516 goto out1; 2517 2518 if (!clst_data) { 2519 memset(frame_mem, 0, frame_size); 2520 goto out1; 2521 } 2522 2523 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2524 ondisk_size = clst_data << cluster_bits; 2525 2526 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2527 /* Frame is not compressed. */ 2528 down_read(&ni->file.run_lock); 2529 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2530 frame_vbo, ondisk_size, 2531 REQ_OP_READ); 2532 up_read(&ni->file.run_lock); 2533 goto out1; 2534 } 2535 vbo_disk = frame_vbo; 2536 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2537 } else { 2538 __builtin_unreachable(); 2539 err = -EINVAL; 2540 goto out1; 2541 } 2542 2543 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2544 if (!pages_disk) { 2545 err = -ENOMEM; 2546 goto out2; 2547 } 2548 2549 for (i = 0; i < npages_disk; i++) { 2550 pg = alloc_page(GFP_KERNEL); 2551 if (!pg) { 2552 err = -ENOMEM; 2553 goto out3; 2554 } 2555 pages_disk[i] = pg; 2556 lock_page(pg); 2557 kmap(pg); 2558 } 2559 2560 /* Read 'ondisk_size' bytes from disk. */ 2561 down_read(&ni->file.run_lock); 2562 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2563 ondisk_size, REQ_OP_READ); 2564 up_read(&ni->file.run_lock); 2565 if (err) 2566 goto out3; 2567 2568 /* 2569 * To simplify decompress algorithm do vmap for source and target pages. 2570 */ 2571 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2572 if (!frame_ondisk) { 2573 err = -ENOMEM; 2574 goto out3; 2575 } 2576 2577 /* Decompress: Frame_ondisk -> frame_mem. */ 2578 #ifdef CONFIG_NTFS3_LZX_XPRESS 2579 if (run != &ni->file.run) { 2580 /* LZX or XPRESS */ 2581 err = decompress_lzx_xpress( 2582 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2583 ondisk_size, frame_mem, unc_size, frame_size); 2584 } else 2585 #endif 2586 { 2587 /* LZNT - Native NTFS compression. */ 2588 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2589 frame_size); 2590 if ((ssize_t)unc_size < 0) 2591 err = unc_size; 2592 else if (!unc_size || unc_size > frame_size) 2593 err = -EINVAL; 2594 } 2595 if (!err && valid_size < frame_vbo + frame_size) { 2596 size_t ok = valid_size - frame_vbo; 2597 2598 memset(frame_mem + ok, 0, frame_size - ok); 2599 } 2600 2601 vunmap(frame_ondisk); 2602 2603 out3: 2604 for (i = 0; i < npages_disk; i++) { 2605 pg = pages_disk[i]; 2606 if (pg) { 2607 kunmap(pg); 2608 unlock_page(pg); 2609 put_page(pg); 2610 } 2611 } 2612 kfree(pages_disk); 2613 2614 out2: 2615 #ifdef CONFIG_NTFS3_LZX_XPRESS 2616 if (run != &ni->file.run) 2617 run_free(run); 2618 #endif 2619 out1: 2620 vunmap(frame_mem); 2621 out: 2622 for (i = 0; i < pages_per_frame; i++) { 2623 pg = pages[i]; 2624 kunmap(pg); 2625 ClearPageError(pg); 2626 SetPageUptodate(pg); 2627 } 2628 2629 return err; 2630 } 2631 2632 /* 2633 * ni_write_frame 2634 * 2635 * Pages - Array of locked pages. 2636 */ 2637 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2638 u32 pages_per_frame) 2639 { 2640 int err; 2641 struct ntfs_sb_info *sbi = ni->mi.sbi; 2642 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2643 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2644 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2645 CLST frame = frame_vbo >> frame_bits; 2646 char *frame_ondisk = NULL; 2647 struct page **pages_disk = NULL; 2648 struct ATTR_LIST_ENTRY *le = NULL; 2649 char *frame_mem; 2650 struct ATTRIB *attr; 2651 struct mft_inode *mi; 2652 u32 i; 2653 struct page *pg; 2654 size_t compr_size, ondisk_size; 2655 struct lznt *lznt; 2656 2657 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2658 if (!attr) { 2659 err = -ENOENT; 2660 goto out; 2661 } 2662 2663 if (WARN_ON(!is_attr_compressed(attr))) { 2664 err = -EINVAL; 2665 goto out; 2666 } 2667 2668 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2669 err = -EOPNOTSUPP; 2670 goto out; 2671 } 2672 2673 if (!attr->non_res) { 2674 down_write(&ni->file.run_lock); 2675 err = attr_make_nonresident(ni, attr, le, mi, 2676 le32_to_cpu(attr->res.data_size), 2677 &ni->file.run, &attr, pages[0]); 2678 up_write(&ni->file.run_lock); 2679 if (err) 2680 goto out; 2681 } 2682 2683 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2684 err = -EOPNOTSUPP; 2685 goto out; 2686 } 2687 2688 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2689 if (!pages_disk) { 2690 err = -ENOMEM; 2691 goto out; 2692 } 2693 2694 for (i = 0; i < pages_per_frame; i++) { 2695 pg = alloc_page(GFP_KERNEL); 2696 if (!pg) { 2697 err = -ENOMEM; 2698 goto out1; 2699 } 2700 pages_disk[i] = pg; 2701 lock_page(pg); 2702 kmap(pg); 2703 } 2704 2705 /* To simplify compress algorithm do vmap for source and target pages. */ 2706 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2707 if (!frame_ondisk) { 2708 err = -ENOMEM; 2709 goto out1; 2710 } 2711 2712 for (i = 0; i < pages_per_frame; i++) 2713 kmap(pages[i]); 2714 2715 /* Map in-memory frame for read-only. */ 2716 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2717 if (!frame_mem) { 2718 err = -ENOMEM; 2719 goto out2; 2720 } 2721 2722 mutex_lock(&sbi->compress.mtx_lznt); 2723 lznt = NULL; 2724 if (!sbi->compress.lznt) { 2725 /* 2726 * LZNT implements two levels of compression: 2727 * 0 - Standard compression 2728 * 1 - Best compression, requires a lot of cpu 2729 * use mount option? 2730 */ 2731 lznt = get_lznt_ctx(0); 2732 if (!lznt) { 2733 mutex_unlock(&sbi->compress.mtx_lznt); 2734 err = -ENOMEM; 2735 goto out3; 2736 } 2737 2738 sbi->compress.lznt = lznt; 2739 lznt = NULL; 2740 } 2741 2742 /* Compress: frame_mem -> frame_ondisk */ 2743 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2744 frame_size, sbi->compress.lznt); 2745 mutex_unlock(&sbi->compress.mtx_lznt); 2746 kfree(lznt); 2747 2748 if (compr_size + sbi->cluster_size > frame_size) { 2749 /* Frame is not compressed. */ 2750 compr_size = frame_size; 2751 ondisk_size = frame_size; 2752 } else if (compr_size) { 2753 /* Frame is compressed. */ 2754 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2755 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2756 } else { 2757 /* Frame is sparsed. */ 2758 ondisk_size = 0; 2759 } 2760 2761 down_write(&ni->file.run_lock); 2762 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2763 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2764 up_write(&ni->file.run_lock); 2765 if (err) 2766 goto out2; 2767 2768 if (!ondisk_size) 2769 goto out2; 2770 2771 down_read(&ni->file.run_lock); 2772 err = ntfs_bio_pages(sbi, &ni->file.run, 2773 ondisk_size < frame_size ? pages_disk : pages, 2774 pages_per_frame, frame_vbo, ondisk_size, 2775 REQ_OP_WRITE); 2776 up_read(&ni->file.run_lock); 2777 2778 out3: 2779 vunmap(frame_mem); 2780 2781 out2: 2782 for (i = 0; i < pages_per_frame; i++) 2783 kunmap(pages[i]); 2784 2785 vunmap(frame_ondisk); 2786 out1: 2787 for (i = 0; i < pages_per_frame; i++) { 2788 pg = pages_disk[i]; 2789 if (pg) { 2790 kunmap(pg); 2791 unlock_page(pg); 2792 put_page(pg); 2793 } 2794 } 2795 kfree(pages_disk); 2796 out: 2797 return err; 2798 } 2799 2800 /* 2801 * ni_remove_name - Removes name 'de' from MFT and from directory. 2802 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2803 */ 2804 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2805 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2806 { 2807 int err; 2808 struct ntfs_sb_info *sbi = ni->mi.sbi; 2809 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2810 struct ATTR_FILE_NAME *fname; 2811 struct ATTR_LIST_ENTRY *le; 2812 struct mft_inode *mi; 2813 u16 de_key_size = le16_to_cpu(de->key_size); 2814 u8 name_type; 2815 2816 *undo_step = 0; 2817 2818 /* Find name in record. */ 2819 mi_get_ref(&dir_ni->mi, &de_name->home); 2820 2821 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, 2822 &de_name->home, &mi, &le); 2823 if (!fname) 2824 return -ENOENT; 2825 2826 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2827 name_type = paired_name(fname->type); 2828 2829 /* Mark ntfs as dirty. It will be cleared at umount. */ 2830 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2831 2832 /* Step 1: Remove name from directory. */ 2833 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2834 if (err) 2835 return err; 2836 2837 /* Step 2: Remove name from MFT. */ 2838 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2839 2840 *undo_step = 2; 2841 2842 /* Get paired name. */ 2843 fname = ni_fname_type(ni, name_type, &mi, &le); 2844 if (fname) { 2845 u16 de2_key_size = fname_full_size(fname); 2846 2847 *de2 = Add2Ptr(de, 1024); 2848 (*de2)->key_size = cpu_to_le16(de2_key_size); 2849 2850 memcpy(*de2 + 1, fname, de2_key_size); 2851 2852 /* Step 3: Remove paired name from directory. */ 2853 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2854 de2_key_size, sbi); 2855 if (err) 2856 return err; 2857 2858 /* Step 4: Remove paired name from MFT. */ 2859 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2860 2861 *undo_step = 4; 2862 } 2863 return 0; 2864 } 2865 2866 /* 2867 * ni_remove_name_undo - Paired function for ni_remove_name. 2868 * 2869 * Return: True if ok 2870 */ 2871 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2872 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2873 { 2874 struct ntfs_sb_info *sbi = ni->mi.sbi; 2875 struct ATTRIB *attr; 2876 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0; 2877 2878 switch (undo_step) { 2879 case 4: 2880 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2881 &attr, NULL, NULL)) { 2882 return false; 2883 } 2884 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2885 2886 mi_get_ref(&ni->mi, &de2->ref); 2887 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2888 sizeof(struct NTFS_DE)); 2889 de2->flags = 0; 2890 de2->res = 0; 2891 2892 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 2893 1)) { 2894 return false; 2895 } 2896 fallthrough; 2897 2898 case 2: 2899 de_key_size = le16_to_cpu(de->key_size); 2900 2901 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2902 &attr, NULL, NULL)) { 2903 return false; 2904 } 2905 2906 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2907 mi_get_ref(&ni->mi, &de->ref); 2908 2909 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) { 2910 return false; 2911 } 2912 } 2913 2914 return true; 2915 } 2916 2917 /* 2918 * ni_add_name - Add new name in MFT and in directory. 2919 */ 2920 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2921 struct NTFS_DE *de) 2922 { 2923 int err; 2924 struct ATTRIB *attr; 2925 struct ATTR_LIST_ENTRY *le; 2926 struct mft_inode *mi; 2927 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2928 u16 de_key_size = le16_to_cpu(de->key_size); 2929 2930 mi_get_ref(&ni->mi, &de->ref); 2931 mi_get_ref(&dir_ni->mi, &de_name->home); 2932 2933 /* Insert new name in MFT. */ 2934 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 2935 &mi, &le); 2936 if (err) 2937 return err; 2938 2939 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 2940 2941 /* Insert new name in directory. */ 2942 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0); 2943 if (err) 2944 ni_remove_attr_le(ni, attr, mi, le); 2945 2946 return err; 2947 } 2948 2949 /* 2950 * ni_rename - Remove one name and insert new name. 2951 */ 2952 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 2953 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 2954 bool *is_bad) 2955 { 2956 int err; 2957 struct NTFS_DE *de2 = NULL; 2958 int undo = 0; 2959 2960 /* 2961 * There are two possible ways to rename: 2962 * 1) Add new name and remove old name. 2963 * 2) Remove old name and add new name. 2964 * 2965 * In most cases (not all!) adding new name in MFT and in directory can 2966 * allocate additional cluster(s). 2967 * Second way may result to bad inode if we can't add new name 2968 * and then can't restore (add) old name. 2969 */ 2970 2971 /* 2972 * Way 1 - Add new + remove old. 2973 */ 2974 err = ni_add_name(new_dir_ni, ni, new_de); 2975 if (!err) { 2976 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 2977 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 2978 *is_bad = true; 2979 } 2980 2981 /* 2982 * Way 2 - Remove old + add new. 2983 */ 2984 /* 2985 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 2986 * if (!err) { 2987 * err = ni_add_name(new_dir_ni, ni, new_de); 2988 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 2989 * *is_bad = true; 2990 * } 2991 */ 2992 2993 return err; 2994 } 2995 2996 /* 2997 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 2998 */ 2999 bool ni_is_dirty(struct inode *inode) 3000 { 3001 struct ntfs_inode *ni = ntfs_i(inode); 3002 struct rb_node *node; 3003 3004 if (ni->mi.dirty || ni->attr_list.dirty || 3005 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3006 return true; 3007 3008 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3009 if (rb_entry(node, struct mft_inode, node)->dirty) 3010 return true; 3011 } 3012 3013 return false; 3014 } 3015 3016 /* 3017 * ni_update_parent 3018 * 3019 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3020 */ 3021 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3022 int sync) 3023 { 3024 struct ATTRIB *attr; 3025 struct mft_inode *mi; 3026 struct ATTR_LIST_ENTRY *le = NULL; 3027 struct ntfs_sb_info *sbi = ni->mi.sbi; 3028 struct super_block *sb = sbi->sb; 3029 bool re_dirty = false; 3030 3031 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3032 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3033 attr = NULL; 3034 dup->alloc_size = 0; 3035 dup->data_size = 0; 3036 } else { 3037 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3038 3039 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3040 &mi); 3041 if (!attr) { 3042 dup->alloc_size = dup->data_size = 0; 3043 } else if (!attr->non_res) { 3044 u32 data_size = le32_to_cpu(attr->res.data_size); 3045 3046 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3047 dup->data_size = cpu_to_le64(data_size); 3048 } else { 3049 u64 new_valid = ni->i_valid; 3050 u64 data_size = le64_to_cpu(attr->nres.data_size); 3051 __le64 valid_le; 3052 3053 dup->alloc_size = is_attr_ext(attr) 3054 ? attr->nres.total_size 3055 : attr->nres.alloc_size; 3056 dup->data_size = attr->nres.data_size; 3057 3058 if (new_valid > data_size) 3059 new_valid = data_size; 3060 3061 valid_le = cpu_to_le64(new_valid); 3062 if (valid_le != attr->nres.valid_size) { 3063 attr->nres.valid_size = valid_le; 3064 mi->dirty = true; 3065 } 3066 } 3067 } 3068 3069 /* TODO: Fill reparse info. */ 3070 dup->reparse = 0; 3071 dup->ea_size = 0; 3072 3073 if (ni->ni_flags & NI_FLAG_EA) { 3074 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3075 NULL); 3076 if (attr) { 3077 const struct EA_INFO *info; 3078 3079 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3080 dup->ea_size = info->size_pack; 3081 } 3082 } 3083 3084 attr = NULL; 3085 le = NULL; 3086 3087 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3088 &mi))) { 3089 struct inode *dir; 3090 struct ATTR_FILE_NAME *fname; 3091 3092 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3093 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3094 continue; 3095 3096 /* ntfs_iget5 may sleep. */ 3097 dir = ntfs_iget5(sb, &fname->home, NULL); 3098 if (IS_ERR(dir)) { 3099 ntfs_inode_warn( 3100 &ni->vfs_inode, 3101 "failed to open parent directory r=%lx to update", 3102 (long)ino_get(&fname->home)); 3103 continue; 3104 } 3105 3106 if (!is_bad_inode(dir)) { 3107 struct ntfs_inode *dir_ni = ntfs_i(dir); 3108 3109 if (!ni_trylock(dir_ni)) { 3110 re_dirty = true; 3111 } else { 3112 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3113 ni_unlock(dir_ni); 3114 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3115 mi->dirty = true; 3116 } 3117 } 3118 iput(dir); 3119 } 3120 3121 return re_dirty; 3122 } 3123 3124 /* 3125 * ni_write_inode - Write MFT base record and all subrecords to disk. 3126 */ 3127 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3128 { 3129 int err = 0, err2; 3130 struct ntfs_inode *ni = ntfs_i(inode); 3131 struct super_block *sb = inode->i_sb; 3132 struct ntfs_sb_info *sbi = sb->s_fs_info; 3133 bool re_dirty = false; 3134 struct ATTR_STD_INFO *std; 3135 struct rb_node *node, *next; 3136 struct NTFS_DUP_INFO dup; 3137 3138 if (is_bad_inode(inode) || sb_rdonly(sb)) 3139 return 0; 3140 3141 if (!ni_trylock(ni)) { 3142 /* 'ni' is under modification, skip for now. */ 3143 mark_inode_dirty_sync(inode); 3144 return 0; 3145 } 3146 3147 if (is_rec_inuse(ni->mi.mrec) && 3148 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3149 bool modified = false; 3150 3151 /* Update times in standard attribute. */ 3152 std = ni_std(ni); 3153 if (!std) { 3154 err = -EINVAL; 3155 goto out; 3156 } 3157 3158 /* Update the access times if they have changed. */ 3159 dup.m_time = kernel2nt(&inode->i_mtime); 3160 if (std->m_time != dup.m_time) { 3161 std->m_time = dup.m_time; 3162 modified = true; 3163 } 3164 3165 dup.c_time = kernel2nt(&inode->i_ctime); 3166 if (std->c_time != dup.c_time) { 3167 std->c_time = dup.c_time; 3168 modified = true; 3169 } 3170 3171 dup.a_time = kernel2nt(&inode->i_atime); 3172 if (std->a_time != dup.a_time) { 3173 std->a_time = dup.a_time; 3174 modified = true; 3175 } 3176 3177 dup.fa = ni->std_fa; 3178 if (std->fa != dup.fa) { 3179 std->fa = dup.fa; 3180 modified = true; 3181 } 3182 3183 if (modified) 3184 ni->mi.dirty = true; 3185 3186 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3187 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3188 /* Avoid __wait_on_freeing_inode(inode). */ 3189 && (sb->s_flags & SB_ACTIVE)) { 3190 dup.cr_time = std->cr_time; 3191 /* Not critical if this function fail. */ 3192 re_dirty = ni_update_parent(ni, &dup, sync); 3193 3194 if (re_dirty) 3195 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3196 else 3197 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3198 } 3199 3200 /* Update attribute list. */ 3201 if (ni->attr_list.size && ni->attr_list.dirty) { 3202 if (inode->i_ino != MFT_REC_MFT || sync) { 3203 err = ni_try_remove_attr_list(ni); 3204 if (err) 3205 goto out; 3206 } 3207 3208 err = al_update(ni); 3209 if (err) 3210 goto out; 3211 } 3212 } 3213 3214 for (node = rb_first(&ni->mi_tree); node; node = next) { 3215 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3216 bool is_empty; 3217 3218 next = rb_next(node); 3219 3220 if (!mi->dirty) 3221 continue; 3222 3223 is_empty = !mi_enum_attr(mi, NULL); 3224 3225 if (is_empty) 3226 clear_rec_inuse(mi->mrec); 3227 3228 err2 = mi_write(mi, sync); 3229 if (!err && err2) 3230 err = err2; 3231 3232 if (is_empty) { 3233 ntfs_mark_rec_free(sbi, mi->rno); 3234 rb_erase(node, &ni->mi_tree); 3235 mi_put(mi); 3236 } 3237 } 3238 3239 if (ni->mi.dirty) { 3240 err2 = mi_write(&ni->mi, sync); 3241 if (!err && err2) 3242 err = err2; 3243 } 3244 out: 3245 ni_unlock(ni); 3246 3247 if (err) { 3248 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err); 3249 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3250 return err; 3251 } 3252 3253 if (re_dirty) 3254 mark_inode_dirty_sync(inode); 3255 3256 return 0; 3257 } 3258