1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : 80 NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : 95 NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && 106 is_rec_inuse(ni->mi.mrec) && 107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING)) 108 ni_delete_all(ni); 109 110 al_destroy(ni); 111 112 for (node = rb_first(&ni->mi_tree); node;) { 113 struct rb_node *next = rb_next(node); 114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 115 116 rb_erase(node, &ni->mi_tree); 117 mi_put(mi); 118 node = next; 119 } 120 121 /* Bad inode always has mode == S_IFREG. */ 122 if (ni->ni_flags & NI_FLAG_DIR) 123 indx_clear(&ni->dir); 124 else { 125 run_close(&ni->file.run); 126 #ifdef CONFIG_NTFS3_LZX_XPRESS 127 if (ni->file.offs_folio) { 128 /* On-demand allocated page for offsets. */ 129 folio_put(ni->file.offs_folio); 130 ni->file.offs_folio = NULL; 131 } 132 #endif 133 } 134 135 mi_clear(&ni->mi); 136 } 137 138 /* 139 * ni_load_mi_ex - Find mft_inode by record number. 140 */ 141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 142 { 143 int err; 144 struct mft_inode *r; 145 146 r = ni_find_mi(ni, rno); 147 if (r) 148 goto out; 149 150 err = mi_get(ni->mi.sbi, rno, &r); 151 if (err) { 152 _ntfs_bad_inode(&ni->vfs_inode); 153 return err; 154 } 155 156 ni_add_mi(ni, r); 157 158 out: 159 if (mi) 160 *mi = r; 161 return 0; 162 } 163 164 /* 165 * ni_load_mi - Load mft_inode corresponded list_entry. 166 */ 167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 168 struct mft_inode **mi) 169 { 170 CLST rno; 171 172 if (!le) { 173 *mi = &ni->mi; 174 return 0; 175 } 176 177 rno = ino_get(&le->ref); 178 if (rno == ni->mi.rno) { 179 *mi = &ni->mi; 180 return 0; 181 } 182 return ni_load_mi_ex(ni, rno, mi); 183 } 184 185 /* 186 * ni_find_attr 187 * 188 * Return: Attribute and record this attribute belongs to. 189 */ 190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 191 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 192 const __le16 *name, u8 name_len, const CLST *vcn, 193 struct mft_inode **mi) 194 { 195 struct ATTR_LIST_ENTRY *le; 196 struct mft_inode *m; 197 198 if (!ni->attr_list.size || 199 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 200 if (le_o) 201 *le_o = NULL; 202 if (mi) 203 *mi = &ni->mi; 204 205 /* Look for required attribute in primary record. */ 206 return mi_find_attr(ni, &ni->mi, attr, type, name, name_len, 207 NULL); 208 } 209 210 /* First look for list entry of required type. */ 211 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 212 if (!le) 213 return NULL; 214 215 if (le_o) 216 *le_o = le; 217 218 /* Load record that contains this attribute. */ 219 if (ni_load_mi(ni, le, &m)) 220 return NULL; 221 222 /* Look for required attribute. */ 223 attr = mi_find_attr(ni, m, NULL, type, name, name_len, &le->id); 224 225 if (!attr) 226 goto out; 227 228 if (!attr->non_res) { 229 if (vcn && *vcn) 230 goto out; 231 } else if (!vcn) { 232 if (attr->nres.svcn) 233 goto out; 234 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 235 *vcn > le64_to_cpu(attr->nres.evcn)) { 236 goto out; 237 } 238 239 if (mi) 240 *mi = m; 241 return attr; 242 243 out: 244 _ntfs_bad_inode(&ni->vfs_inode); 245 return NULL; 246 } 247 248 /* 249 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 250 */ 251 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 252 struct ATTR_LIST_ENTRY **le, 253 struct mft_inode **mi) 254 { 255 struct mft_inode *mi2; 256 struct ATTR_LIST_ENTRY *le2; 257 258 /* Do we have an attribute list? */ 259 if (!ni->attr_list.size) { 260 *le = NULL; 261 if (mi) 262 *mi = &ni->mi; 263 /* Enum attributes in primary record. */ 264 return mi_enum_attr(ni, &ni->mi, attr); 265 } 266 267 /* Get next list entry. */ 268 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 269 if (!le2) 270 return NULL; 271 272 /* Load record that contains the required attribute. */ 273 if (ni_load_mi(ni, le2, &mi2)) 274 return NULL; 275 276 if (mi) 277 *mi = mi2; 278 279 /* Find attribute in loaded record. */ 280 return rec_find_attr_le(ni, mi2, le2); 281 } 282 283 /* 284 * ni_load_attr - Load attribute that contains given VCN. 285 */ 286 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 287 const __le16 *name, u8 name_len, CLST vcn, 288 struct mft_inode **pmi) 289 { 290 struct ATTR_LIST_ENTRY *le; 291 struct ATTRIB *attr; 292 struct mft_inode *mi; 293 struct ATTR_LIST_ENTRY *next; 294 295 if (!ni->attr_list.size) { 296 if (pmi) 297 *pmi = &ni->mi; 298 return mi_find_attr(ni, &ni->mi, NULL, type, name, name_len, 299 NULL); 300 } 301 302 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 303 if (!le) 304 return NULL; 305 306 /* 307 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 308 * So to find the ATTRIB segment that contains 'vcn' we should 309 * enumerate some entries. 310 */ 311 if (vcn) { 312 for (;; le = next) { 313 next = al_find_ex(ni, le, type, name, name_len, NULL); 314 if (!next || le64_to_cpu(next->vcn) > vcn) 315 break; 316 } 317 } 318 319 if (ni_load_mi(ni, le, &mi)) 320 return NULL; 321 322 if (pmi) 323 *pmi = mi; 324 325 attr = mi_find_attr(ni, mi, NULL, type, name, name_len, &le->id); 326 if (!attr) 327 return NULL; 328 329 if (!attr->non_res) 330 return attr; 331 332 if (le64_to_cpu(attr->nres.svcn) <= vcn && 333 vcn <= le64_to_cpu(attr->nres.evcn)) 334 return attr; 335 336 _ntfs_bad_inode(&ni->vfs_inode); 337 return NULL; 338 } 339 340 /* 341 * ni_load_all_mi - Load all subrecords. 342 */ 343 int ni_load_all_mi(struct ntfs_inode *ni) 344 { 345 int err; 346 struct ATTR_LIST_ENTRY *le; 347 348 if (!ni->attr_list.size) 349 return 0; 350 351 le = NULL; 352 353 while ((le = al_enumerate(ni, le))) { 354 CLST rno = ino_get(&le->ref); 355 356 if (rno == ni->mi.rno) 357 continue; 358 359 err = ni_load_mi_ex(ni, rno, NULL); 360 if (err) 361 return err; 362 } 363 364 return 0; 365 } 366 367 /* 368 * ni_add_subrecord - Allocate + format + attach a new subrecord. 369 */ 370 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 371 { 372 struct mft_inode *m; 373 374 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 375 if (!m) 376 return false; 377 378 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 379 mi_put(m); 380 return false; 381 } 382 383 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 384 385 ni_add_mi(ni, m); 386 *mi = m; 387 return true; 388 } 389 390 /* 391 * ni_remove_attr - Remove all attributes for the given type/name/id. 392 */ 393 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 394 const __le16 *name, u8 name_len, bool base_only, 395 const __le16 *id) 396 { 397 int err; 398 struct ATTRIB *attr; 399 struct ATTR_LIST_ENTRY *le; 400 struct mft_inode *mi; 401 u32 type_in; 402 int diff; 403 404 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 405 attr = mi_find_attr(ni, &ni->mi, NULL, type, name, name_len, 406 id); 407 if (!attr) 408 return -ENOENT; 409 410 mi_remove_attr(ni, &ni->mi, attr); 411 return 0; 412 } 413 414 type_in = le32_to_cpu(type); 415 le = NULL; 416 417 for (;;) { 418 le = al_enumerate(ni, le); 419 if (!le) 420 return 0; 421 422 next_le2: 423 diff = le32_to_cpu(le->type) - type_in; 424 if (diff < 0) 425 continue; 426 427 if (diff > 0) 428 return 0; 429 430 if (le->name_len != name_len) 431 continue; 432 433 if (name_len && 434 memcmp(le_name(le), name, name_len * sizeof(short))) 435 continue; 436 437 if (id && le->id != *id) 438 continue; 439 err = ni_load_mi(ni, le, &mi); 440 if (err) 441 return err; 442 443 al_remove_le(ni, le); 444 445 attr = mi_find_attr(ni, mi, NULL, type, name, name_len, id); 446 if (!attr) 447 return -ENOENT; 448 449 mi_remove_attr(ni, mi, attr); 450 451 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 452 return 0; 453 goto next_le2; 454 } 455 } 456 457 /* 458 * ni_ins_new_attr - Insert the attribute into record. 459 * 460 * Return: Not full constructed attribute or NULL if not possible to create. 461 */ 462 static struct ATTRIB * 463 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 464 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 465 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 466 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 467 { 468 int err; 469 struct ATTRIB *attr; 470 bool le_added = false; 471 struct MFT_REF ref; 472 473 mi_get_ref(mi, &ref); 474 475 if (type != ATTR_LIST && !le && ni->attr_list.size) { 476 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 477 &ref, &le); 478 if (err) { 479 /* No memory or no space. */ 480 return ERR_PTR(err); 481 } 482 le_added = true; 483 484 /* 485 * al_add_le -> attr_set_size (list) -> ni_expand_list 486 * which moves some attributes out of primary record 487 * this means that name may point into moved memory 488 * reinit 'name' from le. 489 */ 490 name = le->name; 491 } 492 493 attr = mi_insert_attr(ni, mi, type, name, name_len, asize, name_off); 494 if (!attr) { 495 if (le_added) 496 al_remove_le(ni, le); 497 return NULL; 498 } 499 500 if (type == ATTR_LIST) { 501 /* Attr list is not in list entry array. */ 502 goto out; 503 } 504 505 if (!le) 506 goto out; 507 508 /* Update ATTRIB Id and record reference. */ 509 le->id = attr->id; 510 ni->attr_list.dirty = true; 511 le->ref = ref; 512 513 out: 514 if (ins_le) 515 *ins_le = le; 516 return attr; 517 } 518 519 /* 520 * ni_repack 521 * 522 * Random write access to sparsed or compressed file may result to 523 * not optimized packed runs. 524 * Here is the place to optimize it. 525 */ 526 static int ni_repack(struct ntfs_inode *ni) 527 { 528 #if 1 529 return 0; 530 #else 531 int err = 0; 532 struct ntfs_sb_info *sbi = ni->mi.sbi; 533 struct mft_inode *mi, *mi_p = NULL; 534 struct ATTRIB *attr = NULL, *attr_p; 535 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 536 CLST alloc = 0; 537 u8 cluster_bits = sbi->cluster_bits; 538 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 539 u32 roff, rs = sbi->record_size; 540 struct runs_tree run; 541 542 run_init(&run); 543 544 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 545 if (!attr->non_res) 546 continue; 547 548 svcn = le64_to_cpu(attr->nres.svcn); 549 if (svcn != le64_to_cpu(le->vcn)) { 550 err = -EINVAL; 551 break; 552 } 553 554 if (!svcn) { 555 alloc = le64_to_cpu(attr->nres.alloc_size) >> 556 cluster_bits; 557 mi_p = NULL; 558 } else if (svcn != evcn + 1) { 559 err = -EINVAL; 560 break; 561 } 562 563 evcn = le64_to_cpu(attr->nres.evcn); 564 565 if (svcn > evcn + 1) { 566 err = -EINVAL; 567 break; 568 } 569 570 if (!mi_p) { 571 /* Do not try if not enough free space. */ 572 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 573 continue; 574 575 /* Do not try if last attribute segment. */ 576 if (evcn + 1 == alloc) 577 continue; 578 run_close(&run); 579 } 580 581 roff = le16_to_cpu(attr->nres.run_off); 582 583 if (roff > le32_to_cpu(attr->size)) { 584 err = -EINVAL; 585 break; 586 } 587 588 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 589 Add2Ptr(attr, roff), 590 le32_to_cpu(attr->size) - roff); 591 if (err < 0) 592 break; 593 594 if (!mi_p) { 595 mi_p = mi; 596 attr_p = attr; 597 svcn_p = svcn; 598 evcn_p = evcn; 599 le_p = le; 600 err = 0; 601 continue; 602 } 603 604 /* 605 * Run contains data from two records: mi_p and mi 606 * Try to pack in one. 607 */ 608 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 609 if (err) 610 break; 611 612 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 613 614 if (next_svcn >= evcn + 1) { 615 /* We can remove this attribute segment. */ 616 al_remove_le(ni, le); 617 mi_remove_attr(NULL, mi, attr); 618 le = le_p; 619 continue; 620 } 621 622 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 623 mi->dirty = true; 624 ni->attr_list.dirty = true; 625 626 if (evcn + 1 == alloc) { 627 err = mi_pack_runs(mi, attr, &run, 628 evcn + 1 - next_svcn); 629 if (err) 630 break; 631 mi_p = NULL; 632 } else { 633 mi_p = mi; 634 attr_p = attr; 635 svcn_p = next_svcn; 636 evcn_p = evcn; 637 le_p = le; 638 run_truncate_head(&run, next_svcn); 639 } 640 } 641 642 if (err) { 643 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 644 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 645 646 /* Pack loaded but not packed runs. */ 647 if (mi_p) 648 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 649 } 650 651 run_close(&run); 652 return err; 653 #endif 654 } 655 656 /* 657 * ni_try_remove_attr_list 658 * 659 * Can we remove attribute list? 660 * Check the case when primary record contains enough space for all attributes. 661 */ 662 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 663 { 664 int err = 0; 665 struct ntfs_sb_info *sbi = ni->mi.sbi; 666 struct ATTRIB *attr, *attr_list, *attr_ins; 667 struct ATTR_LIST_ENTRY *le; 668 struct mft_inode *mi; 669 u32 asize, free; 670 struct MFT_REF ref; 671 struct MFT_REC *mrec; 672 __le16 id; 673 674 if (!ni->attr_list.dirty) 675 return 0; 676 677 err = ni_repack(ni); 678 if (err) 679 return err; 680 681 attr_list = mi_find_attr(ni, &ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 682 if (!attr_list) 683 return 0; 684 685 asize = le32_to_cpu(attr_list->size); 686 687 /* Free space in primary record without attribute list. */ 688 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 689 mi_get_ref(&ni->mi, &ref); 690 691 le = NULL; 692 while ((le = al_enumerate(ni, le))) { 693 if (!memcmp(&le->ref, &ref, sizeof(ref))) 694 continue; 695 696 if (le->vcn) 697 return 0; 698 699 mi = ni_find_mi(ni, ino_get(&le->ref)); 700 if (!mi) 701 return 0; 702 703 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le), 704 le->name_len, &le->id); 705 if (!attr) 706 return 0; 707 708 asize = le32_to_cpu(attr->size); 709 if (asize > free) 710 return 0; 711 712 free -= asize; 713 } 714 715 /* Make a copy of primary record to restore if error. */ 716 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 717 if (!mrec) 718 return 0; /* Not critical. */ 719 720 /* It seems that attribute list can be removed from primary record. */ 721 mi_remove_attr(NULL, &ni->mi, attr_list); 722 723 /* 724 * Repeat the cycle above and copy all attributes to primary record. 725 * Do not remove original attributes from subrecords! 726 * It should be success! 727 */ 728 le = NULL; 729 while ((le = al_enumerate(ni, le))) { 730 if (!memcmp(&le->ref, &ref, sizeof(ref))) 731 continue; 732 733 mi = ni_find_mi(ni, ino_get(&le->ref)); 734 if (!mi) { 735 /* Should never happened, 'cause already checked. */ 736 goto out; 737 } 738 739 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le), 740 le->name_len, &le->id); 741 if (!attr) { 742 /* Should never happened, 'cause already checked. */ 743 goto out; 744 } 745 asize = le32_to_cpu(attr->size); 746 747 /* Insert into primary record. */ 748 attr_ins = mi_insert_attr(ni, &ni->mi, le->type, le_name(le), 749 le->name_len, asize, 750 le16_to_cpu(attr->name_off)); 751 if (!attr_ins) { 752 /* 753 * No space in primary record (already checked). 754 */ 755 goto out; 756 } 757 758 /* Copy all except id. */ 759 id = attr_ins->id; 760 memcpy(attr_ins, attr, asize); 761 attr_ins->id = id; 762 } 763 764 /* 765 * Repeat the cycle above and remove all attributes from subrecords. 766 */ 767 le = NULL; 768 while ((le = al_enumerate(ni, le))) { 769 if (!memcmp(&le->ref, &ref, sizeof(ref))) 770 continue; 771 772 mi = ni_find_mi(ni, ino_get(&le->ref)); 773 if (!mi) 774 continue; 775 776 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le), 777 le->name_len, &le->id); 778 if (!attr) 779 continue; 780 781 /* Remove from original record. */ 782 mi_remove_attr(NULL, mi, attr); 783 } 784 785 run_deallocate(sbi, &ni->attr_list.run, true); 786 run_close(&ni->attr_list.run); 787 ni->attr_list.size = 0; 788 kvfree(ni->attr_list.le); 789 ni->attr_list.le = NULL; 790 ni->attr_list.dirty = false; 791 792 kfree(mrec); 793 return 0; 794 out: 795 /* Restore primary record. */ 796 swap(mrec, ni->mi.mrec); 797 kfree(mrec); 798 return 0; 799 } 800 801 /* 802 * ni_create_attr_list - Generates an attribute list for this primary record. 803 */ 804 int ni_create_attr_list(struct ntfs_inode *ni) 805 { 806 struct ntfs_sb_info *sbi = ni->mi.sbi; 807 int err; 808 u32 lsize; 809 struct ATTRIB *attr; 810 struct ATTRIB *arr_move[7]; 811 struct ATTR_LIST_ENTRY *le, *le_b[7]; 812 struct MFT_REC *rec; 813 bool is_mft; 814 CLST rno = 0; 815 struct mft_inode *mi; 816 u32 free_b, nb, to_free, rs; 817 u16 sz; 818 819 is_mft = ni->mi.rno == MFT_REC_MFT; 820 rec = ni->mi.mrec; 821 rs = sbi->record_size; 822 823 /* 824 * Skip estimating exact memory requirement. 825 * Looks like one record_size is always enough. 826 */ 827 le = kmalloc(al_aligned(rs), GFP_NOFS); 828 if (!le) 829 return -ENOMEM; 830 831 mi_get_ref(&ni->mi, &le->ref); 832 ni->attr_list.le = le; 833 834 attr = NULL; 835 nb = 0; 836 free_b = 0; 837 attr = NULL; 838 839 for (; (attr = mi_enum_attr(ni, &ni->mi, attr)); le = Add2Ptr(le, sz)) { 840 sz = le_size(attr->name_len); 841 le->type = attr->type; 842 le->size = cpu_to_le16(sz); 843 le->name_len = attr->name_len; 844 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 845 le->vcn = 0; 846 if (le != ni->attr_list.le) 847 le->ref = ni->attr_list.le->ref; 848 le->id = attr->id; 849 850 if (attr->name_len) 851 memcpy(le->name, attr_name(attr), 852 sizeof(short) * attr->name_len); 853 else if (attr->type == ATTR_STD) 854 continue; 855 else if (attr->type == ATTR_LIST) 856 continue; 857 else if (is_mft && attr->type == ATTR_DATA) 858 continue; 859 860 if (!nb || nb < ARRAY_SIZE(arr_move)) { 861 le_b[nb] = le; 862 arr_move[nb++] = attr; 863 free_b += le32_to_cpu(attr->size); 864 } 865 } 866 867 lsize = PtrOffset(ni->attr_list.le, le); 868 ni->attr_list.size = lsize; 869 870 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 871 if (to_free <= rs) { 872 to_free = 0; 873 } else { 874 to_free -= rs; 875 876 if (to_free > free_b) { 877 err = -EINVAL; 878 goto out; 879 } 880 } 881 882 /* Allocate child MFT. */ 883 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 884 if (err) 885 goto out; 886 887 err = -EINVAL; 888 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 889 while (to_free > 0) { 890 struct ATTRIB *b = arr_move[--nb]; 891 u32 asize = le32_to_cpu(b->size); 892 u16 name_off = le16_to_cpu(b->name_off); 893 894 attr = mi_insert_attr(ni, mi, b->type, Add2Ptr(b, name_off), 895 b->name_len, asize, name_off); 896 if (!attr) 897 goto out; 898 899 mi_get_ref(mi, &le_b[nb]->ref); 900 le_b[nb]->id = attr->id; 901 902 /* Copy all except id. */ 903 memcpy(attr, b, asize); 904 attr->id = le_b[nb]->id; 905 906 /* Remove from primary record. */ 907 if (!mi_remove_attr(NULL, &ni->mi, b)) 908 goto out; 909 910 if (to_free <= asize) 911 break; 912 to_free -= asize; 913 if (!nb) 914 goto out; 915 } 916 917 attr = mi_insert_attr(ni, &ni->mi, ATTR_LIST, NULL, 0, 918 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 919 if (!attr) 920 goto out; 921 922 attr->non_res = 0; 923 attr->flags = 0; 924 attr->res.data_size = cpu_to_le32(lsize); 925 attr->res.data_off = SIZEOF_RESIDENT_LE; 926 attr->res.flags = 0; 927 attr->res.res = 0; 928 929 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 930 931 ni->attr_list.dirty = false; 932 933 mark_inode_dirty(&ni->vfs_inode); 934 return 0; 935 936 out: 937 kvfree(ni->attr_list.le); 938 ni->attr_list.le = NULL; 939 ni->attr_list.size = 0; 940 return err; 941 } 942 943 /* 944 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 945 */ 946 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 947 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 948 u32 asize, CLST svcn, u16 name_off, bool force_ext, 949 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 950 struct ATTR_LIST_ENTRY **ins_le) 951 { 952 struct ATTRIB *attr; 953 struct mft_inode *mi; 954 CLST rno; 955 u64 vbo; 956 struct rb_node *node; 957 int err; 958 bool is_mft, is_mft_data; 959 struct ntfs_sb_info *sbi = ni->mi.sbi; 960 961 is_mft = ni->mi.rno == MFT_REC_MFT; 962 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 963 964 if (asize > sbi->max_bytes_per_attr) { 965 err = -EINVAL; 966 goto out; 967 } 968 969 /* 970 * Standard information and attr_list cannot be made external. 971 * The Log File cannot have any external attributes. 972 */ 973 if (type == ATTR_STD || type == ATTR_LIST || 974 ni->mi.rno == MFT_REC_LOG) { 975 err = -EINVAL; 976 goto out; 977 } 978 979 /* Create attribute list if it is not already existed. */ 980 if (!ni->attr_list.size) { 981 err = ni_create_attr_list(ni); 982 if (err) 983 goto out; 984 } 985 986 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 987 988 if (force_ext) 989 goto insert_ext; 990 991 /* Load all subrecords into memory. */ 992 err = ni_load_all_mi(ni); 993 if (err) 994 goto out; 995 996 /* Check each of loaded subrecord. */ 997 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 998 mi = rb_entry(node, struct mft_inode, node); 999 1000 if (is_mft_data && 1001 (mi_enum_attr(ni, mi, NULL) || 1002 vbo <= ((u64)mi->rno << sbi->record_bits))) { 1003 /* We can't accept this record 'cause MFT's bootstrapping. */ 1004 continue; 1005 } 1006 if (is_mft && 1007 mi_find_attr(ni, mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 1008 /* 1009 * This child record already has a ATTR_DATA. 1010 * So it can't accept any other records. 1011 */ 1012 continue; 1013 } 1014 1015 if ((type != ATTR_NAME || name_len) && 1016 mi_find_attr(ni, mi, NULL, type, name, name_len, NULL)) { 1017 /* Only indexed attributes can share same record. */ 1018 continue; 1019 } 1020 1021 /* 1022 * Do not try to insert this attribute 1023 * if there is no room in record. 1024 */ 1025 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 1026 continue; 1027 1028 /* Try to insert attribute into this subrecord. */ 1029 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1030 name_off, svcn, ins_le); 1031 if (!attr) 1032 continue; 1033 if (IS_ERR(attr)) 1034 return PTR_ERR(attr); 1035 1036 if (ins_attr) 1037 *ins_attr = attr; 1038 if (ins_mi) 1039 *ins_mi = mi; 1040 return 0; 1041 } 1042 1043 insert_ext: 1044 /* We have to allocate a new child subrecord. */ 1045 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1046 if (err) 1047 goto out; 1048 1049 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1050 err = -EINVAL; 1051 goto out1; 1052 } 1053 1054 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1055 name_off, svcn, ins_le); 1056 if (!attr) { 1057 err = -EINVAL; 1058 goto out2; 1059 } 1060 1061 if (IS_ERR(attr)) { 1062 err = PTR_ERR(attr); 1063 goto out2; 1064 } 1065 1066 if (ins_attr) 1067 *ins_attr = attr; 1068 if (ins_mi) 1069 *ins_mi = mi; 1070 1071 return 0; 1072 1073 out2: 1074 ni_remove_mi(ni, mi); 1075 mi_put(mi); 1076 1077 out1: 1078 ntfs_mark_rec_free(sbi, rno, is_mft); 1079 1080 out: 1081 return err; 1082 } 1083 1084 /* 1085 * ni_insert_attr - Insert an attribute into the file. 1086 * 1087 * If the primary record has room, it will just insert the attribute. 1088 * If not, it may make the attribute external. 1089 * For $MFT::Data it may make room for the attribute by 1090 * making other attributes external. 1091 * 1092 * NOTE: 1093 * The ATTR_LIST and ATTR_STD cannot be made external. 1094 * This function does not fill new attribute full. 1095 * It only fills 'size'/'type'/'id'/'name_len' fields. 1096 */ 1097 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1098 const __le16 *name, u8 name_len, u32 asize, 1099 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1100 struct mft_inode **ins_mi, 1101 struct ATTR_LIST_ENTRY **ins_le) 1102 { 1103 struct ntfs_sb_info *sbi = ni->mi.sbi; 1104 int err; 1105 struct ATTRIB *attr, *eattr; 1106 struct MFT_REC *rec; 1107 bool is_mft; 1108 struct ATTR_LIST_ENTRY *le; 1109 u32 list_reserve, max_free, free, used, t32; 1110 __le16 id; 1111 u16 t16; 1112 1113 is_mft = ni->mi.rno == MFT_REC_MFT; 1114 rec = ni->mi.mrec; 1115 1116 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1117 used = le32_to_cpu(rec->used); 1118 free = sbi->record_size - used; 1119 1120 if (is_mft && type != ATTR_LIST) { 1121 /* Reserve space for the ATTRIB list. */ 1122 if (free < list_reserve) 1123 free = 0; 1124 else 1125 free -= list_reserve; 1126 } 1127 1128 if (asize <= free) { 1129 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1130 asize, name_off, svcn, ins_le); 1131 if (IS_ERR(attr)) { 1132 err = PTR_ERR(attr); 1133 goto out; 1134 } 1135 1136 if (attr) { 1137 if (ins_attr) 1138 *ins_attr = attr; 1139 if (ins_mi) 1140 *ins_mi = &ni->mi; 1141 err = 0; 1142 goto out; 1143 } 1144 } 1145 1146 if (!is_mft || type != ATTR_DATA || svcn) { 1147 /* This ATTRIB will be external. */ 1148 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1149 svcn, name_off, false, ins_attr, ins_mi, 1150 ins_le); 1151 goto out; 1152 } 1153 1154 /* 1155 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1156 * 1157 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1158 * Evict as many other attributes as possible. 1159 */ 1160 max_free = free; 1161 1162 /* Estimate the result of moving all possible attributes away. */ 1163 attr = NULL; 1164 1165 while ((attr = mi_enum_attr(ni, &ni->mi, attr))) { 1166 if (attr->type == ATTR_STD) 1167 continue; 1168 if (attr->type == ATTR_LIST) 1169 continue; 1170 max_free += le32_to_cpu(attr->size); 1171 } 1172 1173 if (max_free < asize + list_reserve) { 1174 /* Impossible to insert this attribute into primary record. */ 1175 err = -EINVAL; 1176 goto out; 1177 } 1178 1179 /* Start real attribute moving. */ 1180 attr = NULL; 1181 1182 for (;;) { 1183 attr = mi_enum_attr(ni, &ni->mi, attr); 1184 if (!attr) { 1185 /* We should never be here 'cause we have already check this case. */ 1186 err = -EINVAL; 1187 goto out; 1188 } 1189 1190 /* Skip attributes that MUST be primary record. */ 1191 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1192 continue; 1193 1194 le = NULL; 1195 if (ni->attr_list.size) { 1196 le = al_find_le(ni, NULL, attr); 1197 if (!le) { 1198 /* Really this is a serious bug. */ 1199 err = -EINVAL; 1200 goto out; 1201 } 1202 } 1203 1204 t32 = le32_to_cpu(attr->size); 1205 t16 = le16_to_cpu(attr->name_off); 1206 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1207 attr->name_len, t32, attr_svcn(attr), t16, 1208 false, &eattr, NULL, NULL); 1209 if (err) 1210 return err; 1211 1212 id = eattr->id; 1213 memcpy(eattr, attr, t32); 1214 eattr->id = id; 1215 1216 /* Remove from primary record. */ 1217 mi_remove_attr(NULL, &ni->mi, attr); 1218 1219 /* attr now points to next attribute. */ 1220 if (attr->type == ATTR_END) 1221 goto out; 1222 } 1223 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1224 ; 1225 1226 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1227 name_off, svcn, ins_le); 1228 if (!attr) { 1229 err = -EINVAL; 1230 goto out; 1231 } 1232 1233 if (IS_ERR(attr)) { 1234 err = PTR_ERR(attr); 1235 goto out; 1236 } 1237 1238 if (ins_attr) 1239 *ins_attr = attr; 1240 if (ins_mi) 1241 *ins_mi = &ni->mi; 1242 1243 out: 1244 return err; 1245 } 1246 1247 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1248 static int ni_expand_mft_list(struct ntfs_inode *ni) 1249 { 1250 int err = 0; 1251 struct runs_tree *run = &ni->file.run; 1252 u32 asize, run_size, done = 0; 1253 struct ATTRIB *attr; 1254 struct rb_node *node; 1255 CLST mft_min, mft_new, svcn, evcn, plen; 1256 struct mft_inode *mi, *mi_min, *mi_new; 1257 struct ntfs_sb_info *sbi = ni->mi.sbi; 1258 1259 /* Find the nearest MFT. */ 1260 mft_min = 0; 1261 mft_new = 0; 1262 mi_min = NULL; 1263 1264 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1265 mi = rb_entry(node, struct mft_inode, node); 1266 1267 attr = mi_enum_attr(ni, mi, NULL); 1268 1269 if (!attr) { 1270 mft_min = mi->rno; 1271 mi_min = mi; 1272 break; 1273 } 1274 } 1275 1276 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1277 mft_new = 0; 1278 /* Really this is not critical. */ 1279 } else if (mft_min > mft_new) { 1280 mft_min = mft_new; 1281 mi_min = mi_new; 1282 } else { 1283 ntfs_mark_rec_free(sbi, mft_new, true); 1284 mft_new = 0; 1285 ni_remove_mi(ni, mi_new); 1286 } 1287 1288 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1289 if (!attr) { 1290 err = -EINVAL; 1291 goto out; 1292 } 1293 1294 asize = le32_to_cpu(attr->size); 1295 1296 evcn = le64_to_cpu(attr->nres.evcn); 1297 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1298 if (evcn + 1 >= svcn) { 1299 err = -EINVAL; 1300 goto out; 1301 } 1302 1303 /* 1304 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1305 * 1306 * Update first part of ATTR_DATA in 'primary MFT. 1307 */ 1308 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1309 asize - SIZEOF_NONRESIDENT, &plen); 1310 if (err < 0) 1311 goto out; 1312 1313 run_size = ALIGN(err, 8); 1314 err = 0; 1315 1316 if (plen < svcn) { 1317 err = -EINVAL; 1318 goto out; 1319 } 1320 1321 attr->nres.evcn = cpu_to_le64(svcn - 1); 1322 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1323 /* 'done' - How many bytes of primary MFT becomes free. */ 1324 done = asize - run_size - SIZEOF_NONRESIDENT; 1325 le32_sub_cpu(&ni->mi.mrec->used, done); 1326 1327 /* Estimate packed size (run_buf=NULL). */ 1328 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1329 &plen); 1330 if (err < 0) 1331 goto out; 1332 1333 run_size = ALIGN(err, 8); 1334 err = 0; 1335 1336 if (plen < evcn + 1 - svcn) { 1337 err = -EINVAL; 1338 goto out; 1339 } 1340 1341 /* 1342 * This function may implicitly call expand attr_list. 1343 * Insert second part of ATTR_DATA in 'mi_min'. 1344 */ 1345 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1346 SIZEOF_NONRESIDENT + run_size, 1347 SIZEOF_NONRESIDENT, svcn, NULL); 1348 if (!attr) { 1349 err = -EINVAL; 1350 goto out; 1351 } 1352 1353 if (IS_ERR(attr)) { 1354 err = PTR_ERR(attr); 1355 goto out; 1356 } 1357 1358 attr->non_res = 1; 1359 attr->name_off = SIZEOF_NONRESIDENT_LE; 1360 attr->flags = 0; 1361 1362 /* This function can't fail - cause already checked above. */ 1363 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1364 run_size, &plen); 1365 1366 attr->nres.svcn = cpu_to_le64(svcn); 1367 attr->nres.evcn = cpu_to_le64(evcn); 1368 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1369 1370 out: 1371 if (mft_new) { 1372 ntfs_mark_rec_free(sbi, mft_new, true); 1373 ni_remove_mi(ni, mi_new); 1374 } 1375 1376 return !err && !done ? -EOPNOTSUPP : err; 1377 } 1378 1379 /* 1380 * ni_expand_list - Move all possible attributes out of primary record. 1381 */ 1382 int ni_expand_list(struct ntfs_inode *ni) 1383 { 1384 int err = 0; 1385 u32 asize, done = 0; 1386 struct ATTRIB *attr, *ins_attr; 1387 struct ATTR_LIST_ENTRY *le; 1388 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1389 struct MFT_REF ref; 1390 1391 mi_get_ref(&ni->mi, &ref); 1392 le = NULL; 1393 1394 while ((le = al_enumerate(ni, le))) { 1395 if (le->type == ATTR_STD) 1396 continue; 1397 1398 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1399 continue; 1400 1401 if (is_mft && le->type == ATTR_DATA) 1402 continue; 1403 1404 /* Find attribute in primary record. */ 1405 attr = rec_find_attr_le(ni, &ni->mi, le); 1406 if (!attr) { 1407 err = -EINVAL; 1408 goto out; 1409 } 1410 1411 asize = le32_to_cpu(attr->size); 1412 1413 /* Always insert into new record to avoid collisions (deep recursive). */ 1414 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1415 attr->name_len, asize, attr_svcn(attr), 1416 le16_to_cpu(attr->name_off), true, 1417 &ins_attr, NULL, NULL); 1418 1419 if (err) 1420 goto out; 1421 1422 memcpy(ins_attr, attr, asize); 1423 ins_attr->id = le->id; 1424 /* Remove from primary record. */ 1425 mi_remove_attr(NULL, &ni->mi, attr); 1426 1427 done += asize; 1428 goto out; 1429 } 1430 1431 if (!is_mft) { 1432 err = -EFBIG; /* Attr list is too big(?) */ 1433 goto out; 1434 } 1435 1436 /* Split MFT data as much as possible. */ 1437 err = ni_expand_mft_list(ni); 1438 1439 out: 1440 return !err && !done ? -EOPNOTSUPP : err; 1441 } 1442 1443 /* 1444 * ni_insert_nonresident - Insert new nonresident attribute. 1445 */ 1446 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1447 const __le16 *name, u8 name_len, 1448 const struct runs_tree *run, CLST svcn, CLST len, 1449 __le16 flags, struct ATTRIB **new_attr, 1450 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1451 { 1452 int err; 1453 CLST plen; 1454 struct ATTRIB *attr; 1455 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && 1456 !svcn; 1457 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1458 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1459 u32 run_off = name_off + name_size; 1460 u32 run_size, asize; 1461 struct ntfs_sb_info *sbi = ni->mi.sbi; 1462 1463 /* Estimate packed size (run_buf=NULL). */ 1464 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1465 &plen); 1466 if (err < 0) 1467 goto out; 1468 1469 run_size = ALIGN(err, 8); 1470 1471 if (plen < len) { 1472 err = -EINVAL; 1473 goto out; 1474 } 1475 1476 asize = run_off + run_size; 1477 1478 if (asize > sbi->max_bytes_per_attr) { 1479 err = -EINVAL; 1480 goto out; 1481 } 1482 1483 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1484 &attr, mi, le); 1485 1486 if (err) 1487 goto out; 1488 1489 attr->non_res = 1; 1490 attr->name_off = cpu_to_le16(name_off); 1491 attr->flags = flags; 1492 1493 /* This function can't fail - cause already checked above. */ 1494 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1495 1496 attr->nres.svcn = cpu_to_le64(svcn); 1497 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1498 1499 if (new_attr) 1500 *new_attr = attr; 1501 1502 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1503 1504 attr->nres.alloc_size = 1505 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1506 attr->nres.data_size = attr->nres.alloc_size; 1507 attr->nres.valid_size = attr->nres.alloc_size; 1508 1509 if (is_ext) { 1510 if (flags & ATTR_FLAG_COMPRESSED) 1511 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1512 attr->nres.total_size = attr->nres.alloc_size; 1513 } 1514 1515 out: 1516 return err; 1517 } 1518 1519 /* 1520 * ni_insert_resident - Inserts new resident attribute. 1521 */ 1522 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1523 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1524 struct ATTRIB **new_attr, struct mft_inode **mi, 1525 struct ATTR_LIST_ENTRY **le) 1526 { 1527 int err; 1528 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1529 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1530 struct ATTRIB *attr; 1531 1532 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1533 0, &attr, mi, le); 1534 if (err) 1535 return err; 1536 1537 attr->non_res = 0; 1538 attr->flags = 0; 1539 1540 attr->res.data_size = cpu_to_le32(data_size); 1541 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1542 if (type == ATTR_NAME) { 1543 attr->res.flags = RESIDENT_FLAG_INDEXED; 1544 1545 /* is_attr_indexed(attr)) == true */ 1546 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1547 ni->mi.dirty = true; 1548 } 1549 attr->res.res = 0; 1550 1551 if (new_attr) 1552 *new_attr = attr; 1553 1554 return 0; 1555 } 1556 1557 /* 1558 * ni_remove_attr_le - Remove attribute from record. 1559 */ 1560 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1561 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1562 { 1563 mi_remove_attr(ni, mi, attr); 1564 1565 if (le) 1566 al_remove_le(ni, le); 1567 } 1568 1569 /* 1570 * ni_delete_all - Remove all attributes and frees allocates space. 1571 * 1572 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1573 */ 1574 int ni_delete_all(struct ntfs_inode *ni) 1575 { 1576 int err; 1577 struct ATTR_LIST_ENTRY *le = NULL; 1578 struct ATTRIB *attr = NULL; 1579 struct rb_node *node; 1580 u16 roff; 1581 u32 asize; 1582 CLST svcn, evcn; 1583 struct ntfs_sb_info *sbi = ni->mi.sbi; 1584 bool nt3 = is_ntfs3(sbi); 1585 struct MFT_REF ref; 1586 1587 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1588 if (!nt3 || attr->name_len) { 1589 ; 1590 } else if (attr->type == ATTR_REPARSE) { 1591 mi_get_ref(&ni->mi, &ref); 1592 ntfs_remove_reparse(sbi, 0, &ref); 1593 } else if (attr->type == ATTR_ID && !attr->non_res && 1594 le32_to_cpu(attr->res.data_size) >= 1595 sizeof(struct GUID)) { 1596 ntfs_objid_remove(sbi, resident_data(attr)); 1597 } 1598 1599 if (!attr->non_res) 1600 continue; 1601 1602 svcn = le64_to_cpu(attr->nres.svcn); 1603 evcn = le64_to_cpu(attr->nres.evcn); 1604 1605 if (evcn + 1 <= svcn) 1606 continue; 1607 1608 asize = le32_to_cpu(attr->size); 1609 roff = le16_to_cpu(attr->nres.run_off); 1610 1611 if (roff > asize) { 1612 /* ni_enum_attr_ex checks this case. */ 1613 continue; 1614 } 1615 1616 /* run==1 means unpack and deallocate. */ 1617 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1618 Add2Ptr(attr, roff), asize - roff); 1619 } 1620 1621 if (ni->attr_list.size) { 1622 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1623 al_destroy(ni); 1624 } 1625 1626 /* Free all subrecords. */ 1627 for (node = rb_first(&ni->mi_tree); node;) { 1628 struct rb_node *next = rb_next(node); 1629 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1630 1631 clear_rec_inuse(mi->mrec); 1632 mi->dirty = true; 1633 mi_write(mi, 0); 1634 1635 ntfs_mark_rec_free(sbi, mi->rno, false); 1636 ni_remove_mi(ni, mi); 1637 mi_put(mi); 1638 node = next; 1639 } 1640 1641 /* Free base record. */ 1642 clear_rec_inuse(ni->mi.mrec); 1643 ni->mi.dirty = true; 1644 err = mi_write(&ni->mi, 0); 1645 1646 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1647 1648 return err; 1649 } 1650 1651 /* ni_fname_name 1652 * 1653 * Return: File name attribute by its value. 1654 */ 1655 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1656 const struct le_str *uni, 1657 const struct MFT_REF *home_dir, 1658 struct mft_inode **mi, 1659 struct ATTR_LIST_ENTRY **le) 1660 { 1661 struct ATTRIB *attr = NULL; 1662 struct ATTR_FILE_NAME *fname; 1663 1664 if (le) 1665 *le = NULL; 1666 1667 /* Enumerate all names. */ 1668 next: 1669 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1670 if (!attr) 1671 return NULL; 1672 1673 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1674 if (!fname) 1675 goto next; 1676 1677 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1678 goto next; 1679 1680 if (!uni) 1681 return fname; 1682 1683 if (uni->len != fname->name_len) 1684 goto next; 1685 1686 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL, 1687 false)) 1688 goto next; 1689 return fname; 1690 } 1691 1692 /* 1693 * ni_fname_type 1694 * 1695 * Return: File name attribute with given type. 1696 */ 1697 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1698 struct mft_inode **mi, 1699 struct ATTR_LIST_ENTRY **le) 1700 { 1701 struct ATTRIB *attr = NULL; 1702 struct ATTR_FILE_NAME *fname; 1703 1704 *le = NULL; 1705 1706 if (name_type == FILE_NAME_POSIX) 1707 return NULL; 1708 1709 /* Enumerate all names. */ 1710 for (;;) { 1711 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1712 if (!attr) 1713 return NULL; 1714 1715 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1716 if (fname && name_type == fname->type) 1717 return fname; 1718 } 1719 } 1720 1721 /* 1722 * ni_new_attr_flags 1723 * 1724 * Process compressed/sparsed in special way. 1725 * NOTE: You need to set ni->std_fa = new_fa 1726 * after this function to keep internal structures in consistency. 1727 */ 1728 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1729 { 1730 struct ATTRIB *attr; 1731 struct mft_inode *mi; 1732 __le16 new_aflags; 1733 u32 new_asize; 1734 1735 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1736 if (!attr) 1737 return -EINVAL; 1738 1739 new_aflags = attr->flags; 1740 1741 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1742 new_aflags |= ATTR_FLAG_SPARSED; 1743 else 1744 new_aflags &= ~ATTR_FLAG_SPARSED; 1745 1746 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1747 new_aflags |= ATTR_FLAG_COMPRESSED; 1748 else 1749 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1750 1751 if (new_aflags == attr->flags) 1752 return 0; 1753 1754 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1755 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1756 ntfs_inode_warn(&ni->vfs_inode, 1757 "file can't be sparsed and compressed"); 1758 return -EOPNOTSUPP; 1759 } 1760 1761 if (!attr->non_res) 1762 goto out; 1763 1764 if (attr->nres.data_size) { 1765 ntfs_inode_warn( 1766 &ni->vfs_inode, 1767 "one can change sparsed/compressed only for empty files"); 1768 return -EOPNOTSUPP; 1769 } 1770 1771 /* Resize nonresident empty attribute in-place only. */ 1772 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 1773 (SIZEOF_NONRESIDENT_EX + 8) : 1774 (SIZEOF_NONRESIDENT + 8); 1775 1776 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1777 return -EOPNOTSUPP; 1778 1779 if (new_aflags & ATTR_FLAG_SPARSED) { 1780 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1781 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1782 attr->nres.c_unit = 0; 1783 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1784 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1785 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1786 /* The only allowed: 16 clusters per frame. */ 1787 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1788 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1789 } else { 1790 attr->name_off = SIZEOF_NONRESIDENT_LE; 1791 /* Normal files. */ 1792 attr->nres.c_unit = 0; 1793 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1794 } 1795 attr->nres.run_off = attr->name_off; 1796 out: 1797 attr->flags = new_aflags; 1798 mi->dirty = true; 1799 1800 return 0; 1801 } 1802 1803 /* 1804 * ni_parse_reparse 1805 * 1806 * buffer - memory for reparse buffer header 1807 */ 1808 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1809 struct REPARSE_DATA_BUFFER *buffer) 1810 { 1811 const struct REPARSE_DATA_BUFFER *rp = NULL; 1812 u8 bits; 1813 u16 len; 1814 typeof(rp->CompressReparseBuffer) *cmpr; 1815 1816 /* Try to estimate reparse point. */ 1817 if (!attr->non_res) { 1818 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1819 } else if (le64_to_cpu(attr->nres.data_size) >= 1820 sizeof(struct REPARSE_DATA_BUFFER)) { 1821 struct runs_tree run; 1822 1823 run_init(&run); 1824 1825 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1826 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1827 sizeof(struct REPARSE_DATA_BUFFER), 1828 NULL)) { 1829 rp = buffer; 1830 } 1831 1832 run_close(&run); 1833 } 1834 1835 if (!rp) 1836 return REPARSE_NONE; 1837 1838 len = le16_to_cpu(rp->ReparseDataLength); 1839 switch (rp->ReparseTag) { 1840 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1841 break; /* Symbolic link. */ 1842 case IO_REPARSE_TAG_MOUNT_POINT: 1843 break; /* Mount points and junctions. */ 1844 case IO_REPARSE_TAG_SYMLINK: 1845 break; 1846 case IO_REPARSE_TAG_COMPRESS: 1847 /* 1848 * WOF - Windows Overlay Filter - Used to compress files with 1849 * LZX/Xpress. 1850 * 1851 * Unlike native NTFS file compression, the Windows 1852 * Overlay Filter supports only read operations. This means 1853 * that it doesn't need to sector-align each compressed chunk, 1854 * so the compressed data can be packed more tightly together. 1855 * If you open the file for writing, the WOF just decompresses 1856 * the entire file, turning it back into a plain file. 1857 * 1858 * Ntfs3 driver decompresses the entire file only on write or 1859 * change size requests. 1860 */ 1861 1862 cmpr = &rp->CompressReparseBuffer; 1863 if (len < sizeof(*cmpr) || 1864 cmpr->WofVersion != WOF_CURRENT_VERSION || 1865 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1866 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1867 return REPARSE_NONE; 1868 } 1869 1870 switch (cmpr->CompressionFormat) { 1871 case WOF_COMPRESSION_XPRESS4K: 1872 bits = 0xc; // 4k 1873 break; 1874 case WOF_COMPRESSION_XPRESS8K: 1875 bits = 0xd; // 8k 1876 break; 1877 case WOF_COMPRESSION_XPRESS16K: 1878 bits = 0xe; // 16k 1879 break; 1880 case WOF_COMPRESSION_LZX32K: 1881 bits = 0xf; // 32k 1882 break; 1883 default: 1884 bits = 0x10; // 64k 1885 break; 1886 } 1887 ni_set_ext_compress_bits(ni, bits); 1888 return REPARSE_COMPRESSED; 1889 1890 case IO_REPARSE_TAG_DEDUP: 1891 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1892 return REPARSE_DEDUPLICATED; 1893 1894 default: 1895 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1896 break; 1897 1898 return REPARSE_NONE; 1899 } 1900 1901 if (buffer != rp) 1902 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1903 1904 /* Looks like normal symlink. */ 1905 return REPARSE_LINK; 1906 } 1907 1908 /* 1909 * ni_fiemap - Helper for file_fiemap(). 1910 * 1911 * Assumed ni_lock. 1912 * TODO: Less aggressive locks. 1913 */ 1914 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1915 __u64 vbo, __u64 len) 1916 { 1917 int err = 0; 1918 struct ntfs_sb_info *sbi = ni->mi.sbi; 1919 u8 cluster_bits = sbi->cluster_bits; 1920 struct runs_tree run; 1921 struct ATTRIB *attr; 1922 CLST vcn = vbo >> cluster_bits; 1923 CLST lcn, clen; 1924 u64 valid = ni->i_valid; 1925 u64 lbo, bytes; 1926 u64 end, alloc_size; 1927 size_t idx = -1; 1928 u32 flags; 1929 bool ok; 1930 1931 run_init(&run); 1932 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1933 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1934 ARRAY_SIZE(I30_NAME), NULL, NULL); 1935 } else { 1936 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1937 NULL); 1938 if (!attr) { 1939 err = -EINVAL; 1940 goto out; 1941 } 1942 if (is_attr_compressed(attr)) { 1943 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1944 err = -EOPNOTSUPP; 1945 ntfs_inode_warn( 1946 &ni->vfs_inode, 1947 "fiemap is not supported for compressed file (cp -r)"); 1948 goto out; 1949 } 1950 } 1951 1952 if (!attr || !attr->non_res) { 1953 err = fiemap_fill_next_extent( 1954 fieinfo, 0, 0, 1955 attr ? le32_to_cpu(attr->res.data_size) : 0, 1956 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1957 FIEMAP_EXTENT_MERGED); 1958 goto out; 1959 } 1960 1961 end = vbo + len; 1962 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1963 if (end > alloc_size) 1964 end = alloc_size; 1965 1966 while (vbo < end) { 1967 if (idx == -1) { 1968 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx); 1969 } else { 1970 CLST vcn_next = vcn; 1971 1972 ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) && 1973 vcn == vcn_next; 1974 if (!ok) 1975 vcn = vcn_next; 1976 } 1977 1978 if (!ok) { 1979 err = attr_load_runs_vcn(ni, attr->type, 1980 attr_name(attr), 1981 attr->name_len, &run, vcn); 1982 1983 if (err) 1984 break; 1985 1986 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx); 1987 1988 if (!ok) { 1989 err = -EINVAL; 1990 break; 1991 } 1992 } 1993 1994 if (!clen) { 1995 err = -EINVAL; // ? 1996 break; 1997 } 1998 1999 if (lcn == SPARSE_LCN) { 2000 vcn += clen; 2001 vbo = (u64)vcn << cluster_bits; 2002 continue; 2003 } 2004 2005 flags = FIEMAP_EXTENT_MERGED; 2006 if (S_ISDIR(ni->vfs_inode.i_mode)) { 2007 ; 2008 } else if (is_attr_compressed(attr)) { 2009 CLST clst_data; 2010 2011 err = attr_is_frame_compressed(ni, attr, 2012 vcn >> attr->nres.c_unit, 2013 &clst_data, &run); 2014 if (err) 2015 break; 2016 if (clst_data < NTFS_LZNT_CLUSTERS) 2017 flags |= FIEMAP_EXTENT_ENCODED; 2018 } else if (is_attr_encrypted(attr)) { 2019 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2020 } 2021 2022 vbo = (u64)vcn << cluster_bits; 2023 bytes = (u64)clen << cluster_bits; 2024 lbo = (u64)lcn << cluster_bits; 2025 2026 vcn += clen; 2027 2028 if (vbo + bytes >= end) 2029 bytes = end - vbo; 2030 2031 if (vbo + bytes <= valid) { 2032 ; 2033 } else if (vbo >= valid) { 2034 flags |= FIEMAP_EXTENT_UNWRITTEN; 2035 } else { 2036 /* vbo < valid && valid < vbo + bytes */ 2037 u64 dlen = valid - vbo; 2038 2039 if (vbo + dlen >= end) 2040 flags |= FIEMAP_EXTENT_LAST; 2041 2042 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 2043 flags); 2044 2045 if (err < 0) 2046 break; 2047 if (err == 1) { 2048 err = 0; 2049 break; 2050 } 2051 2052 vbo = valid; 2053 bytes -= dlen; 2054 if (!bytes) 2055 continue; 2056 2057 lbo += dlen; 2058 flags |= FIEMAP_EXTENT_UNWRITTEN; 2059 } 2060 2061 if (vbo + bytes >= end) 2062 flags |= FIEMAP_EXTENT_LAST; 2063 2064 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 2065 if (err < 0) 2066 break; 2067 if (err == 1) { 2068 err = 0; 2069 break; 2070 } 2071 2072 vbo += bytes; 2073 } 2074 2075 out: 2076 run_close(&run); 2077 return err; 2078 } 2079 2080 /* 2081 * ni_readpage_cmpr 2082 * 2083 * When decompressing, we typically obtain more than one page per reference. 2084 * We inject the additional pages into the page cache. 2085 */ 2086 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio) 2087 { 2088 int err; 2089 struct ntfs_sb_info *sbi = ni->mi.sbi; 2090 struct address_space *mapping = folio->mapping; 2091 pgoff_t index = folio->index; 2092 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2093 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2094 u8 frame_bits; 2095 CLST frame; 2096 u32 i, idx, frame_size, pages_per_frame; 2097 gfp_t gfp_mask; 2098 struct page *pg; 2099 2100 if (vbo >= i_size_read(&ni->vfs_inode)) { 2101 folio_zero_range(folio, 0, folio_size(folio)); 2102 folio_mark_uptodate(folio); 2103 err = 0; 2104 goto out; 2105 } 2106 2107 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2108 /* Xpress or LZX. */ 2109 frame_bits = ni_ext_compress_bits(ni); 2110 } else { 2111 /* LZNT compression. */ 2112 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2113 } 2114 frame_size = 1u << frame_bits; 2115 frame = vbo >> frame_bits; 2116 frame_vbo = (u64)frame << frame_bits; 2117 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2118 2119 pages_per_frame = frame_size >> PAGE_SHIFT; 2120 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2121 if (!pages) { 2122 err = -ENOMEM; 2123 goto out; 2124 } 2125 2126 pages[idx] = &folio->page; 2127 index = frame_vbo >> PAGE_SHIFT; 2128 gfp_mask = mapping_gfp_mask(mapping); 2129 2130 for (i = 0; i < pages_per_frame; i++, index++) { 2131 if (i == idx) 2132 continue; 2133 2134 pg = find_or_create_page(mapping, index, gfp_mask); 2135 if (!pg) { 2136 err = -ENOMEM; 2137 goto out1; 2138 } 2139 pages[i] = pg; 2140 } 2141 2142 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2143 2144 out1: 2145 for (i = 0; i < pages_per_frame; i++) { 2146 pg = pages[i]; 2147 if (i == idx || !pg) 2148 continue; 2149 unlock_page(pg); 2150 put_page(pg); 2151 } 2152 2153 out: 2154 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2155 kfree(pages); 2156 folio_unlock(folio); 2157 2158 return err; 2159 } 2160 2161 #ifdef CONFIG_NTFS3_LZX_XPRESS 2162 /* 2163 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2164 * 2165 * Remove ATTR_DATA::WofCompressedData. 2166 * Remove ATTR_REPARSE. 2167 */ 2168 int ni_decompress_file(struct ntfs_inode *ni) 2169 { 2170 struct ntfs_sb_info *sbi = ni->mi.sbi; 2171 struct inode *inode = &ni->vfs_inode; 2172 loff_t i_size = i_size_read(inode); 2173 struct address_space *mapping = inode->i_mapping; 2174 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2175 struct page **pages = NULL; 2176 struct ATTR_LIST_ENTRY *le; 2177 struct ATTRIB *attr; 2178 CLST vcn, cend, lcn, clen, end; 2179 pgoff_t index; 2180 u64 vbo; 2181 u8 frame_bits; 2182 u32 i, frame_size, pages_per_frame, bytes; 2183 struct mft_inode *mi; 2184 int err; 2185 2186 /* Clusters for decompressed data. */ 2187 cend = bytes_to_cluster(sbi, i_size); 2188 2189 if (!i_size) 2190 goto remove_wof; 2191 2192 /* Check in advance. */ 2193 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2194 err = -ENOSPC; 2195 goto out; 2196 } 2197 2198 frame_bits = ni_ext_compress_bits(ni); 2199 frame_size = 1u << frame_bits; 2200 pages_per_frame = frame_size >> PAGE_SHIFT; 2201 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2202 if (!pages) { 2203 err = -ENOMEM; 2204 goto out; 2205 } 2206 2207 /* 2208 * Step 1: Decompress data and copy to new allocated clusters. 2209 */ 2210 index = 0; 2211 for (vbo = 0; vbo < i_size; vbo += bytes) { 2212 u32 nr_pages; 2213 bool new; 2214 2215 if (vbo + frame_size > i_size) { 2216 bytes = i_size - vbo; 2217 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2218 } else { 2219 nr_pages = pages_per_frame; 2220 bytes = frame_size; 2221 } 2222 2223 end = bytes_to_cluster(sbi, vbo + bytes); 2224 2225 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2226 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2227 &clen, &new, false); 2228 if (err) 2229 goto out; 2230 } 2231 2232 for (i = 0; i < pages_per_frame; i++, index++) { 2233 struct page *pg; 2234 2235 pg = find_or_create_page(mapping, index, gfp_mask); 2236 if (!pg) { 2237 while (i--) { 2238 unlock_page(pages[i]); 2239 put_page(pages[i]); 2240 } 2241 err = -ENOMEM; 2242 goto out; 2243 } 2244 pages[i] = pg; 2245 } 2246 2247 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2248 2249 if (!err) { 2250 down_read(&ni->file.run_lock); 2251 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2252 nr_pages, vbo, bytes, 2253 REQ_OP_WRITE); 2254 up_read(&ni->file.run_lock); 2255 } 2256 2257 for (i = 0; i < pages_per_frame; i++) { 2258 unlock_page(pages[i]); 2259 put_page(pages[i]); 2260 } 2261 2262 if (err) 2263 goto out; 2264 2265 cond_resched(); 2266 } 2267 2268 remove_wof: 2269 /* 2270 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2271 * and ATTR_REPARSE. 2272 */ 2273 attr = NULL; 2274 le = NULL; 2275 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2276 CLST svcn, evcn; 2277 u32 asize, roff; 2278 2279 if (attr->type == ATTR_REPARSE) { 2280 struct MFT_REF ref; 2281 2282 mi_get_ref(&ni->mi, &ref); 2283 ntfs_remove_reparse(sbi, 0, &ref); 2284 } 2285 2286 if (!attr->non_res) 2287 continue; 2288 2289 if (attr->type != ATTR_REPARSE && 2290 (attr->type != ATTR_DATA || 2291 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2292 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2293 continue; 2294 2295 svcn = le64_to_cpu(attr->nres.svcn); 2296 evcn = le64_to_cpu(attr->nres.evcn); 2297 2298 if (evcn + 1 <= svcn) 2299 continue; 2300 2301 asize = le32_to_cpu(attr->size); 2302 roff = le16_to_cpu(attr->nres.run_off); 2303 2304 if (roff > asize) { 2305 err = -EINVAL; 2306 goto out; 2307 } 2308 2309 /*run==1 Means unpack and deallocate. */ 2310 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2311 Add2Ptr(attr, roff), asize - roff); 2312 } 2313 2314 /* 2315 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2316 */ 2317 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2318 false, NULL); 2319 if (err) 2320 goto out; 2321 2322 /* 2323 * Step 4: Remove ATTR_REPARSE. 2324 */ 2325 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2326 if (err) 2327 goto out; 2328 2329 /* 2330 * Step 5: Remove sparse flag from data attribute. 2331 */ 2332 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2333 if (!attr) { 2334 err = -EINVAL; 2335 goto out; 2336 } 2337 2338 if (attr->non_res && is_attr_sparsed(attr)) { 2339 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2340 struct MFT_REC *rec = mi->mrec; 2341 u32 used = le32_to_cpu(rec->used); 2342 u32 asize = le32_to_cpu(attr->size); 2343 u16 roff = le16_to_cpu(attr->nres.run_off); 2344 char *rbuf = Add2Ptr(attr, roff); 2345 2346 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2347 attr->size = cpu_to_le32(asize - 8); 2348 attr->flags &= ~ATTR_FLAG_SPARSED; 2349 attr->nres.run_off = cpu_to_le16(roff - 8); 2350 attr->nres.c_unit = 0; 2351 rec->used = cpu_to_le32(used - 8); 2352 mi->dirty = true; 2353 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2354 FILE_ATTRIBUTE_REPARSE_POINT); 2355 2356 mark_inode_dirty(inode); 2357 } 2358 2359 /* Clear cached flag. */ 2360 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2361 if (ni->file.offs_folio) { 2362 folio_put(ni->file.offs_folio); 2363 ni->file.offs_folio = NULL; 2364 } 2365 mapping->a_ops = &ntfs_aops; 2366 2367 out: 2368 kfree(pages); 2369 if (err) 2370 _ntfs_bad_inode(inode); 2371 2372 return err; 2373 } 2374 2375 /* 2376 * decompress_lzx_xpress - External compression LZX/Xpress. 2377 */ 2378 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2379 size_t cmpr_size, void *unc, size_t unc_size, 2380 u32 frame_size) 2381 { 2382 int err; 2383 void *ctx; 2384 2385 if (cmpr_size == unc_size) { 2386 /* Frame not compressed. */ 2387 memcpy(unc, cmpr, unc_size); 2388 return 0; 2389 } 2390 2391 err = 0; 2392 if (frame_size == 0x8000) { 2393 mutex_lock(&sbi->compress.mtx_lzx); 2394 /* LZX: Frame compressed. */ 2395 ctx = sbi->compress.lzx; 2396 if (!ctx) { 2397 /* Lazy initialize LZX decompress context. */ 2398 ctx = lzx_allocate_decompressor(); 2399 if (!ctx) { 2400 err = -ENOMEM; 2401 goto out1; 2402 } 2403 2404 sbi->compress.lzx = ctx; 2405 } 2406 2407 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2408 /* Treat all errors as "invalid argument". */ 2409 err = -EINVAL; 2410 } 2411 out1: 2412 mutex_unlock(&sbi->compress.mtx_lzx); 2413 } else { 2414 /* XPRESS: Frame compressed. */ 2415 mutex_lock(&sbi->compress.mtx_xpress); 2416 ctx = sbi->compress.xpress; 2417 if (!ctx) { 2418 /* Lazy initialize Xpress decompress context. */ 2419 ctx = xpress_allocate_decompressor(); 2420 if (!ctx) { 2421 err = -ENOMEM; 2422 goto out2; 2423 } 2424 2425 sbi->compress.xpress = ctx; 2426 } 2427 2428 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2429 /* Treat all errors as "invalid argument". */ 2430 err = -EINVAL; 2431 } 2432 out2: 2433 mutex_unlock(&sbi->compress.mtx_xpress); 2434 } 2435 return err; 2436 } 2437 #endif 2438 2439 /* 2440 * ni_read_frame 2441 * 2442 * Pages - Array of locked pages. 2443 */ 2444 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2445 u32 pages_per_frame) 2446 { 2447 int err; 2448 struct ntfs_sb_info *sbi = ni->mi.sbi; 2449 u8 cluster_bits = sbi->cluster_bits; 2450 char *frame_ondisk = NULL; 2451 char *frame_mem = NULL; 2452 struct page **pages_disk = NULL; 2453 struct ATTR_LIST_ENTRY *le = NULL; 2454 struct runs_tree *run = &ni->file.run; 2455 u64 valid_size = ni->i_valid; 2456 u64 vbo_disk; 2457 size_t unc_size; 2458 u32 frame_size, i, npages_disk, ondisk_size; 2459 struct page *pg; 2460 struct ATTRIB *attr; 2461 CLST frame, clst_data; 2462 2463 /* 2464 * To simplify decompress algorithm do vmap for source 2465 * and target pages. 2466 */ 2467 for (i = 0; i < pages_per_frame; i++) 2468 kmap(pages[i]); 2469 2470 frame_size = pages_per_frame << PAGE_SHIFT; 2471 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2472 if (!frame_mem) { 2473 err = -ENOMEM; 2474 goto out; 2475 } 2476 2477 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2478 if (!attr) { 2479 err = -ENOENT; 2480 goto out1; 2481 } 2482 2483 if (!attr->non_res) { 2484 u32 data_size = le32_to_cpu(attr->res.data_size); 2485 2486 memset(frame_mem, 0, frame_size); 2487 if (frame_vbo < data_size) { 2488 ondisk_size = data_size - frame_vbo; 2489 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2490 min(ondisk_size, frame_size)); 2491 } 2492 err = 0; 2493 goto out1; 2494 } 2495 2496 if (frame_vbo >= valid_size) { 2497 memset(frame_mem, 0, frame_size); 2498 err = 0; 2499 goto out1; 2500 } 2501 2502 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2503 #ifndef CONFIG_NTFS3_LZX_XPRESS 2504 err = -EOPNOTSUPP; 2505 goto out1; 2506 #else 2507 loff_t i_size = i_size_read(&ni->vfs_inode); 2508 u32 frame_bits = ni_ext_compress_bits(ni); 2509 u64 frame64 = frame_vbo >> frame_bits; 2510 u64 frames, vbo_data; 2511 2512 if (frame_size != (1u << frame_bits)) { 2513 err = -EINVAL; 2514 goto out1; 2515 } 2516 switch (frame_size) { 2517 case 0x1000: 2518 case 0x2000: 2519 case 0x4000: 2520 case 0x8000: 2521 break; 2522 default: 2523 /* Unknown compression. */ 2524 err = -EOPNOTSUPP; 2525 goto out1; 2526 } 2527 2528 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2529 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2530 if (!attr) { 2531 ntfs_inode_err( 2532 &ni->vfs_inode, 2533 "external compressed file should contains data attribute \"WofCompressedData\""); 2534 err = -EINVAL; 2535 goto out1; 2536 } 2537 2538 if (!attr->non_res) { 2539 run = NULL; 2540 } else { 2541 run = run_alloc(); 2542 if (!run) { 2543 err = -ENOMEM; 2544 goto out1; 2545 } 2546 } 2547 2548 frames = (i_size - 1) >> frame_bits; 2549 2550 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2551 frame_bits, &ondisk_size, &vbo_data); 2552 if (err) 2553 goto out2; 2554 2555 if (frame64 == frames) { 2556 unc_size = 1 + ((i_size - 1) & (frame_size - 1)); 2557 ondisk_size = attr_size(attr) - vbo_data; 2558 } else { 2559 unc_size = frame_size; 2560 } 2561 2562 if (ondisk_size > frame_size) { 2563 err = -EINVAL; 2564 goto out2; 2565 } 2566 2567 if (!attr->non_res) { 2568 if (vbo_data + ondisk_size > 2569 le32_to_cpu(attr->res.data_size)) { 2570 err = -EINVAL; 2571 goto out1; 2572 } 2573 2574 err = decompress_lzx_xpress( 2575 sbi, Add2Ptr(resident_data(attr), vbo_data), 2576 ondisk_size, frame_mem, unc_size, frame_size); 2577 goto out1; 2578 } 2579 vbo_disk = vbo_data; 2580 /* Load all runs to read [vbo_disk-vbo_to). */ 2581 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2582 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2583 vbo_data + ondisk_size); 2584 if (err) 2585 goto out2; 2586 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2587 PAGE_SIZE - 1) >> 2588 PAGE_SHIFT; 2589 #endif 2590 } else if (is_attr_compressed(attr)) { 2591 /* LZNT compression. */ 2592 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2593 err = -EOPNOTSUPP; 2594 goto out1; 2595 } 2596 2597 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2598 err = -EOPNOTSUPP; 2599 goto out1; 2600 } 2601 2602 down_write(&ni->file.run_lock); 2603 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2604 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2605 err = attr_is_frame_compressed(ni, attr, frame, &clst_data, 2606 run); 2607 up_write(&ni->file.run_lock); 2608 if (err) 2609 goto out1; 2610 2611 if (!clst_data) { 2612 memset(frame_mem, 0, frame_size); 2613 goto out1; 2614 } 2615 2616 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2617 ondisk_size = clst_data << cluster_bits; 2618 2619 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2620 /* Frame is not compressed. */ 2621 down_read(&ni->file.run_lock); 2622 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2623 frame_vbo, ondisk_size, 2624 REQ_OP_READ); 2625 up_read(&ni->file.run_lock); 2626 goto out1; 2627 } 2628 vbo_disk = frame_vbo; 2629 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2630 } else { 2631 __builtin_unreachable(); 2632 err = -EINVAL; 2633 goto out1; 2634 } 2635 2636 pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS); 2637 if (!pages_disk) { 2638 err = -ENOMEM; 2639 goto out2; 2640 } 2641 2642 for (i = 0; i < npages_disk; i++) { 2643 pg = alloc_page(GFP_KERNEL); 2644 if (!pg) { 2645 err = -ENOMEM; 2646 goto out3; 2647 } 2648 pages_disk[i] = pg; 2649 lock_page(pg); 2650 kmap(pg); 2651 } 2652 2653 /* Read 'ondisk_size' bytes from disk. */ 2654 down_read(&ni->file.run_lock); 2655 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2656 ondisk_size, REQ_OP_READ); 2657 up_read(&ni->file.run_lock); 2658 if (err) 2659 goto out3; 2660 2661 /* 2662 * To simplify decompress algorithm do vmap for source and target pages. 2663 */ 2664 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2665 if (!frame_ondisk) { 2666 err = -ENOMEM; 2667 goto out3; 2668 } 2669 2670 /* Decompress: Frame_ondisk -> frame_mem. */ 2671 #ifdef CONFIG_NTFS3_LZX_XPRESS 2672 if (run != &ni->file.run) { 2673 /* LZX or XPRESS */ 2674 err = decompress_lzx_xpress( 2675 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2676 ondisk_size, frame_mem, unc_size, frame_size); 2677 } else 2678 #endif 2679 { 2680 /* LZNT - Native NTFS compression. */ 2681 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2682 frame_size); 2683 if ((ssize_t)unc_size < 0) 2684 err = unc_size; 2685 else if (!unc_size || unc_size > frame_size) 2686 err = -EINVAL; 2687 } 2688 if (!err && valid_size < frame_vbo + frame_size) { 2689 size_t ok = valid_size - frame_vbo; 2690 2691 memset(frame_mem + ok, 0, frame_size - ok); 2692 } 2693 2694 vunmap(frame_ondisk); 2695 2696 out3: 2697 for (i = 0; i < npages_disk; i++) { 2698 pg = pages_disk[i]; 2699 if (pg) { 2700 kunmap(pg); 2701 unlock_page(pg); 2702 put_page(pg); 2703 } 2704 } 2705 kfree(pages_disk); 2706 2707 out2: 2708 #ifdef CONFIG_NTFS3_LZX_XPRESS 2709 if (run != &ni->file.run) 2710 run_free(run); 2711 #endif 2712 out1: 2713 vunmap(frame_mem); 2714 out: 2715 for (i = 0; i < pages_per_frame; i++) { 2716 pg = pages[i]; 2717 kunmap(pg); 2718 SetPageUptodate(pg); 2719 } 2720 2721 return err; 2722 } 2723 2724 /* 2725 * ni_write_frame 2726 * 2727 * Pages - Array of locked pages. 2728 */ 2729 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2730 u32 pages_per_frame) 2731 { 2732 int err; 2733 struct ntfs_sb_info *sbi = ni->mi.sbi; 2734 struct folio *folio = page_folio(pages[0]); 2735 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2736 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2737 u64 frame_vbo = folio_pos(folio); 2738 CLST frame = frame_vbo >> frame_bits; 2739 char *frame_ondisk = NULL; 2740 struct page **pages_disk = NULL; 2741 struct ATTR_LIST_ENTRY *le = NULL; 2742 char *frame_mem; 2743 struct ATTRIB *attr; 2744 struct mft_inode *mi; 2745 u32 i; 2746 struct page *pg; 2747 size_t compr_size, ondisk_size; 2748 struct lznt *lznt; 2749 2750 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2751 if (!attr) { 2752 err = -ENOENT; 2753 goto out; 2754 } 2755 2756 if (WARN_ON(!is_attr_compressed(attr))) { 2757 err = -EINVAL; 2758 goto out; 2759 } 2760 2761 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2762 err = -EOPNOTSUPP; 2763 goto out; 2764 } 2765 2766 if (!attr->non_res) { 2767 down_write(&ni->file.run_lock); 2768 err = attr_make_nonresident(ni, attr, le, mi, 2769 le32_to_cpu(attr->res.data_size), 2770 &ni->file.run, &attr, pages[0]); 2771 up_write(&ni->file.run_lock); 2772 if (err) 2773 goto out; 2774 } 2775 2776 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2777 err = -EOPNOTSUPP; 2778 goto out; 2779 } 2780 2781 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2782 if (!pages_disk) { 2783 err = -ENOMEM; 2784 goto out; 2785 } 2786 2787 for (i = 0; i < pages_per_frame; i++) { 2788 pg = alloc_page(GFP_KERNEL); 2789 if (!pg) { 2790 err = -ENOMEM; 2791 goto out1; 2792 } 2793 pages_disk[i] = pg; 2794 lock_page(pg); 2795 kmap(pg); 2796 } 2797 2798 /* To simplify compress algorithm do vmap for source and target pages. */ 2799 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2800 if (!frame_ondisk) { 2801 err = -ENOMEM; 2802 goto out1; 2803 } 2804 2805 for (i = 0; i < pages_per_frame; i++) 2806 kmap(pages[i]); 2807 2808 /* Map in-memory frame for read-only. */ 2809 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2810 if (!frame_mem) { 2811 err = -ENOMEM; 2812 goto out2; 2813 } 2814 2815 mutex_lock(&sbi->compress.mtx_lznt); 2816 lznt = NULL; 2817 if (!sbi->compress.lznt) { 2818 /* 2819 * LZNT implements two levels of compression: 2820 * 0 - Standard compression 2821 * 1 - Best compression, requires a lot of cpu 2822 * use mount option? 2823 */ 2824 lznt = get_lznt_ctx(0); 2825 if (!lznt) { 2826 mutex_unlock(&sbi->compress.mtx_lznt); 2827 err = -ENOMEM; 2828 goto out3; 2829 } 2830 2831 sbi->compress.lznt = lznt; 2832 lznt = NULL; 2833 } 2834 2835 /* Compress: frame_mem -> frame_ondisk */ 2836 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2837 frame_size, sbi->compress.lznt); 2838 mutex_unlock(&sbi->compress.mtx_lznt); 2839 kfree(lznt); 2840 2841 if (compr_size + sbi->cluster_size > frame_size) { 2842 /* Frame is not compressed. */ 2843 compr_size = frame_size; 2844 ondisk_size = frame_size; 2845 } else if (compr_size) { 2846 /* Frame is compressed. */ 2847 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2848 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2849 } else { 2850 /* Frame is sparsed. */ 2851 ondisk_size = 0; 2852 } 2853 2854 down_write(&ni->file.run_lock); 2855 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2856 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2857 up_write(&ni->file.run_lock); 2858 if (err) 2859 goto out2; 2860 2861 if (!ondisk_size) 2862 goto out2; 2863 2864 down_read(&ni->file.run_lock); 2865 err = ntfs_bio_pages(sbi, &ni->file.run, 2866 ondisk_size < frame_size ? pages_disk : pages, 2867 pages_per_frame, frame_vbo, ondisk_size, 2868 REQ_OP_WRITE); 2869 up_read(&ni->file.run_lock); 2870 2871 out3: 2872 vunmap(frame_mem); 2873 2874 out2: 2875 for (i = 0; i < pages_per_frame; i++) 2876 kunmap(pages[i]); 2877 2878 vunmap(frame_ondisk); 2879 out1: 2880 for (i = 0; i < pages_per_frame; i++) { 2881 pg = pages_disk[i]; 2882 if (pg) { 2883 kunmap(pg); 2884 unlock_page(pg); 2885 put_page(pg); 2886 } 2887 } 2888 kfree(pages_disk); 2889 out: 2890 return err; 2891 } 2892 2893 /* 2894 * ni_remove_name - Removes name 'de' from MFT and from directory. 2895 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2896 */ 2897 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2898 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2899 { 2900 int err; 2901 struct ntfs_sb_info *sbi = ni->mi.sbi; 2902 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2903 struct ATTR_FILE_NAME *fname; 2904 struct ATTR_LIST_ENTRY *le; 2905 struct mft_inode *mi; 2906 u16 de_key_size = le16_to_cpu(de->key_size); 2907 u8 name_type; 2908 2909 *undo_step = 0; 2910 2911 /* Find name in record. */ 2912 mi_get_ref(&dir_ni->mi, &de_name->home); 2913 2914 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len, 2915 &de_name->home, &mi, &le); 2916 if (!fname) 2917 return -ENOENT; 2918 2919 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2920 name_type = paired_name(fname->type); 2921 2922 /* Mark ntfs as dirty. It will be cleared at umount. */ 2923 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2924 2925 /* Step 1: Remove name from directory. */ 2926 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2927 if (err) 2928 return err; 2929 2930 /* Step 2: Remove name from MFT. */ 2931 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2932 2933 *undo_step = 2; 2934 2935 /* Get paired name. */ 2936 fname = ni_fname_type(ni, name_type, &mi, &le); 2937 if (fname) { 2938 u16 de2_key_size = fname_full_size(fname); 2939 2940 *de2 = Add2Ptr(de, 1024); 2941 (*de2)->key_size = cpu_to_le16(de2_key_size); 2942 2943 memcpy(*de2 + 1, fname, de2_key_size); 2944 2945 /* Step 3: Remove paired name from directory. */ 2946 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2947 de2_key_size, sbi); 2948 if (err) 2949 return err; 2950 2951 /* Step 4: Remove paired name from MFT. */ 2952 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2953 2954 *undo_step = 4; 2955 } 2956 return 0; 2957 } 2958 2959 /* 2960 * ni_remove_name_undo - Paired function for ni_remove_name. 2961 * 2962 * Return: True if ok 2963 */ 2964 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2965 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2966 { 2967 struct ntfs_sb_info *sbi = ni->mi.sbi; 2968 struct ATTRIB *attr; 2969 u16 de_key_size; 2970 2971 switch (undo_step) { 2972 case 4: 2973 de_key_size = le16_to_cpu(de2->key_size); 2974 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2975 &attr, NULL, NULL)) 2976 return false; 2977 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2978 2979 mi_get_ref(&ni->mi, &de2->ref); 2980 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2981 sizeof(struct NTFS_DE)); 2982 de2->flags = 0; 2983 de2->res = 0; 2984 2985 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) 2986 return false; 2987 fallthrough; 2988 2989 case 2: 2990 de_key_size = le16_to_cpu(de->key_size); 2991 2992 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2993 &attr, NULL, NULL)) 2994 return false; 2995 2996 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2997 mi_get_ref(&ni->mi, &de->ref); 2998 2999 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 3000 return false; 3001 } 3002 3003 return true; 3004 } 3005 3006 /* 3007 * ni_add_name - Add new name into MFT and into directory. 3008 */ 3009 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3010 struct NTFS_DE *de) 3011 { 3012 int err; 3013 struct ntfs_sb_info *sbi = ni->mi.sbi; 3014 struct ATTRIB *attr; 3015 struct ATTR_LIST_ENTRY *le; 3016 struct mft_inode *mi; 3017 struct ATTR_FILE_NAME *fname; 3018 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 3019 u16 de_key_size = le16_to_cpu(de->key_size); 3020 3021 if (sbi->options->windows_names && 3022 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) 3023 return -EINVAL; 3024 3025 /* If option "hide_dot_files" then set hidden attribute for dot files. */ 3026 if (ni->mi.sbi->options->hide_dot_files) { 3027 if (de_name->name_len > 0 && 3028 le16_to_cpu(de_name->name[0]) == '.') 3029 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; 3030 else 3031 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; 3032 } 3033 3034 mi_get_ref(&ni->mi, &de->ref); 3035 mi_get_ref(&dir_ni->mi, &de_name->home); 3036 3037 /* Fill duplicate from any ATTR_NAME. */ 3038 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 3039 if (fname) 3040 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 3041 de_name->dup.fa = ni->std_fa; 3042 3043 /* Insert new name into MFT. */ 3044 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 3045 &mi, &le); 3046 if (err) 3047 return err; 3048 3049 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 3050 3051 /* Insert new name into directory. */ 3052 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); 3053 if (err) 3054 ni_remove_attr_le(ni, attr, mi, le); 3055 3056 return err; 3057 } 3058 3059 /* 3060 * ni_rename - Remove one name and insert new name. 3061 */ 3062 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 3063 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 3064 bool *is_bad) 3065 { 3066 int err; 3067 struct NTFS_DE *de2 = NULL; 3068 int undo = 0; 3069 3070 /* 3071 * There are two possible ways to rename: 3072 * 1) Add new name and remove old name. 3073 * 2) Remove old name and add new name. 3074 * 3075 * In most cases (not all!) adding new name into MFT and into directory can 3076 * allocate additional cluster(s). 3077 * Second way may result to bad inode if we can't add new name 3078 * and then can't restore (add) old name. 3079 */ 3080 3081 /* 3082 * Way 1 - Add new + remove old. 3083 */ 3084 err = ni_add_name(new_dir_ni, ni, new_de); 3085 if (!err) { 3086 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3087 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3088 *is_bad = true; 3089 } 3090 3091 /* 3092 * Way 2 - Remove old + add new. 3093 */ 3094 /* 3095 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3096 * if (!err) { 3097 * err = ni_add_name(new_dir_ni, ni, new_de); 3098 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3099 * *is_bad = true; 3100 * } 3101 */ 3102 3103 return err; 3104 } 3105 3106 /* 3107 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3108 */ 3109 bool ni_is_dirty(struct inode *inode) 3110 { 3111 struct ntfs_inode *ni = ntfs_i(inode); 3112 struct rb_node *node; 3113 3114 if (ni->mi.dirty || ni->attr_list.dirty || 3115 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3116 return true; 3117 3118 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3119 if (rb_entry(node, struct mft_inode, node)->dirty) 3120 return true; 3121 } 3122 3123 return false; 3124 } 3125 3126 /* 3127 * ni_update_parent 3128 * 3129 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3130 */ 3131 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3132 int sync) 3133 { 3134 struct ATTRIB *attr; 3135 struct mft_inode *mi; 3136 struct ATTR_LIST_ENTRY *le = NULL; 3137 struct ntfs_sb_info *sbi = ni->mi.sbi; 3138 struct super_block *sb = sbi->sb; 3139 bool re_dirty = false; 3140 3141 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3142 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3143 attr = NULL; 3144 dup->alloc_size = 0; 3145 dup->data_size = 0; 3146 } else { 3147 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3148 3149 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3150 &mi); 3151 if (!attr) { 3152 dup->alloc_size = dup->data_size = 0; 3153 } else if (!attr->non_res) { 3154 u32 data_size = le32_to_cpu(attr->res.data_size); 3155 3156 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3157 dup->data_size = cpu_to_le64(data_size); 3158 } else { 3159 u64 new_valid = ni->i_valid; 3160 u64 data_size = le64_to_cpu(attr->nres.data_size); 3161 __le64 valid_le; 3162 3163 dup->alloc_size = is_attr_ext(attr) ? 3164 attr->nres.total_size : 3165 attr->nres.alloc_size; 3166 dup->data_size = attr->nres.data_size; 3167 3168 if (new_valid > data_size) 3169 new_valid = data_size; 3170 3171 valid_le = cpu_to_le64(new_valid); 3172 if (valid_le != attr->nres.valid_size) { 3173 attr->nres.valid_size = valid_le; 3174 mi->dirty = true; 3175 } 3176 } 3177 } 3178 3179 /* TODO: Fill reparse info. */ 3180 dup->reparse = 0; 3181 dup->ea_size = 0; 3182 3183 if (ni->ni_flags & NI_FLAG_EA) { 3184 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3185 NULL); 3186 if (attr) { 3187 const struct EA_INFO *info; 3188 3189 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3190 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3191 if (info) 3192 dup->ea_size = info->size_pack; 3193 } 3194 } 3195 3196 attr = NULL; 3197 le = NULL; 3198 3199 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3200 &mi))) { 3201 struct inode *dir; 3202 struct ATTR_FILE_NAME *fname; 3203 3204 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3205 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3206 continue; 3207 3208 /* Check simple case when parent inode equals current inode. */ 3209 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) { 3210 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3211 continue; 3212 } 3213 3214 /* ntfs_iget5 may sleep. */ 3215 dir = ntfs_iget5(sb, &fname->home, NULL); 3216 if (IS_ERR(dir)) { 3217 ntfs_inode_warn( 3218 &ni->vfs_inode, 3219 "failed to open parent directory r=%lx to update", 3220 (long)ino_get(&fname->home)); 3221 continue; 3222 } 3223 3224 if (!is_bad_inode(dir)) { 3225 struct ntfs_inode *dir_ni = ntfs_i(dir); 3226 3227 if (!ni_trylock(dir_ni)) { 3228 re_dirty = true; 3229 } else { 3230 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3231 ni_unlock(dir_ni); 3232 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3233 mi->dirty = true; 3234 } 3235 } 3236 iput(dir); 3237 } 3238 3239 return re_dirty; 3240 } 3241 3242 /* 3243 * ni_write_inode - Write MFT base record and all subrecords to disk. 3244 */ 3245 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3246 { 3247 int err = 0, err2; 3248 struct ntfs_inode *ni = ntfs_i(inode); 3249 struct super_block *sb = inode->i_sb; 3250 struct ntfs_sb_info *sbi = sb->s_fs_info; 3251 bool re_dirty = false; 3252 struct ATTR_STD_INFO *std; 3253 struct rb_node *node, *next; 3254 struct NTFS_DUP_INFO dup; 3255 3256 if (is_bad_inode(inode) || sb_rdonly(sb)) 3257 return 0; 3258 3259 if (unlikely(ntfs3_forced_shutdown(sb))) 3260 return -EIO; 3261 3262 if (!ni_trylock(ni)) { 3263 /* 'ni' is under modification, skip for now. */ 3264 mark_inode_dirty_sync(inode); 3265 return 0; 3266 } 3267 3268 if (!ni->mi.mrec) 3269 goto out; 3270 3271 if (is_rec_inuse(ni->mi.mrec) && 3272 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3273 bool modified = false; 3274 struct timespec64 ts; 3275 3276 /* Update times in standard attribute. */ 3277 std = ni_std(ni); 3278 if (!std) { 3279 err = -EINVAL; 3280 goto out; 3281 } 3282 3283 /* Update the access times if they have changed. */ 3284 ts = inode_get_mtime(inode); 3285 dup.m_time = kernel2nt(&ts); 3286 if (std->m_time != dup.m_time) { 3287 std->m_time = dup.m_time; 3288 modified = true; 3289 } 3290 3291 ts = inode_get_ctime(inode); 3292 dup.c_time = kernel2nt(&ts); 3293 if (std->c_time != dup.c_time) { 3294 std->c_time = dup.c_time; 3295 modified = true; 3296 } 3297 3298 ts = inode_get_atime(inode); 3299 dup.a_time = kernel2nt(&ts); 3300 if (std->a_time != dup.a_time) { 3301 std->a_time = dup.a_time; 3302 modified = true; 3303 } 3304 3305 dup.fa = ni->std_fa; 3306 if (std->fa != dup.fa) { 3307 std->fa = dup.fa; 3308 modified = true; 3309 } 3310 3311 /* std attribute is always in primary MFT record. */ 3312 if (modified) 3313 ni->mi.dirty = true; 3314 3315 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3316 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3317 /* Avoid __wait_on_freeing_inode(inode). */ 3318 && (sb->s_flags & SB_ACTIVE)) { 3319 dup.cr_time = std->cr_time; 3320 /* Not critical if this function fail. */ 3321 re_dirty = ni_update_parent(ni, &dup, sync); 3322 3323 if (re_dirty) 3324 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3325 else 3326 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3327 } 3328 3329 /* Update attribute list. */ 3330 if (ni->attr_list.size && ni->attr_list.dirty) { 3331 if (inode->i_ino != MFT_REC_MFT || sync) { 3332 err = ni_try_remove_attr_list(ni); 3333 if (err) 3334 goto out; 3335 } 3336 3337 err = al_update(ni, sync); 3338 if (err) 3339 goto out; 3340 } 3341 } 3342 3343 for (node = rb_first(&ni->mi_tree); node; node = next) { 3344 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3345 bool is_empty; 3346 3347 next = rb_next(node); 3348 3349 if (!mi->dirty) 3350 continue; 3351 3352 is_empty = !mi_enum_attr(ni, mi, NULL); 3353 3354 if (is_empty) 3355 clear_rec_inuse(mi->mrec); 3356 3357 err2 = mi_write(mi, sync); 3358 if (!err && err2) 3359 err = err2; 3360 3361 if (is_empty) { 3362 ntfs_mark_rec_free(sbi, mi->rno, false); 3363 rb_erase(node, &ni->mi_tree); 3364 mi_put(mi); 3365 } 3366 } 3367 3368 if (ni->mi.dirty) { 3369 err2 = mi_write(&ni->mi, sync); 3370 if (!err && err2) 3371 err = err2; 3372 } 3373 out: 3374 ni_unlock(ni); 3375 3376 if (err) { 3377 ntfs_inode_err(inode, "%s failed, %d.", hint, err); 3378 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3379 return err; 3380 } 3381 3382 if (re_dirty) 3383 mark_inode_dirty_sync(inode); 3384 3385 return 0; 3386 } 3387 3388 /* 3389 * ni_set_compress 3390 * 3391 * Helper for 'ntfs_fileattr_set'. 3392 * Changes compression for empty files and directories only. 3393 */ 3394 int ni_set_compress(struct inode *inode, bool compr) 3395 { 3396 int err; 3397 struct ntfs_inode *ni = ntfs_i(inode); 3398 struct ATTR_STD_INFO *std; 3399 const char *bad_inode; 3400 3401 if (is_compressed(ni) == !!compr) 3402 return 0; 3403 3404 if (is_sparsed(ni)) { 3405 /* sparse and compress not compatible. */ 3406 return -EOPNOTSUPP; 3407 } 3408 3409 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) { 3410 /*Skip other inodes. (symlink,fifo,...) */ 3411 return -EOPNOTSUPP; 3412 } 3413 3414 bad_inode = NULL; 3415 3416 ni_lock(ni); 3417 3418 std = ni_std(ni); 3419 if (!std) { 3420 bad_inode = "no std"; 3421 goto out; 3422 } 3423 3424 if (S_ISREG(inode->i_mode)) { 3425 err = attr_set_compress(ni, compr); 3426 if (err) { 3427 if (err == -ENOENT) { 3428 /* Fix on the fly? */ 3429 /* Each file must contain data attribute. */ 3430 bad_inode = "no data attribute"; 3431 } 3432 goto out; 3433 } 3434 } 3435 3436 ni->std_fa = std->fa; 3437 if (compr) 3438 std->fa |= FILE_ATTRIBUTE_COMPRESSED; 3439 else 3440 std->fa &= ~FILE_ATTRIBUTE_COMPRESSED; 3441 3442 if (ni->std_fa != std->fa) { 3443 ni->std_fa = std->fa; 3444 ni->mi.dirty = true; 3445 } 3446 /* update duplicate information and directory entries in ni_write_inode.*/ 3447 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3448 err = 0; 3449 3450 out: 3451 ni_unlock(ni); 3452 if (bad_inode) { 3453 ntfs_bad_inode(inode, bad_inode); 3454 err = -EINVAL; 3455 } 3456 3457 return err; 3458 } 3459