xref: /linux/fs/nsfs.c (revision 88efd7c6997ee9da3e0274106f72b99fa105f45f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mount.h>
3 #include <linux/pseudo_fs.h>
4 #include <linux/file.h>
5 #include <linux/fs.h>
6 #include <linux/proc_fs.h>
7 #include <linux/proc_ns.h>
8 #include <linux/magic.h>
9 #include <linux/ktime.h>
10 #include <linux/seq_file.h>
11 #include <linux/pid_namespace.h>
12 #include <linux/user_namespace.h>
13 #include <linux/nsfs.h>
14 #include <linux/uaccess.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/ipc_namespace.h>
17 #include <linux/time_namespace.h>
18 #include <linux/utsname.h>
19 #include <linux/exportfs.h>
20 #include <linux/nstree.h>
21 #include <net/net_namespace.h>
22 
23 #include "mount.h"
24 #include "internal.h"
25 
26 static struct vfsmount *nsfs_mnt;
27 
28 static struct path nsfs_root_path = {};
29 
30 void nsfs_get_root(struct path *path)
31 {
32 	*path = nsfs_root_path;
33 	path_get(path);
34 }
35 
36 static long ns_ioctl(struct file *filp, unsigned int ioctl,
37 			unsigned long arg);
38 static const struct file_operations ns_file_operations = {
39 	.unlocked_ioctl = ns_ioctl,
40 	.compat_ioctl   = compat_ptr_ioctl,
41 };
42 
43 static char *ns_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 	struct inode *inode = d_inode(dentry);
46 	struct ns_common *ns = inode->i_private;
47 	const struct proc_ns_operations *ns_ops = ns->ops;
48 
49 	return dynamic_dname(buffer, buflen, "%s:[%lu]",
50 		ns_ops->name, inode->i_ino);
51 }
52 
53 const struct dentry_operations ns_dentry_operations = {
54 	.d_dname	= ns_dname,
55 	.d_prune	= stashed_dentry_prune,
56 };
57 
58 static void nsfs_evict(struct inode *inode)
59 {
60 	struct ns_common *ns = inode->i_private;
61 
62 	__ns_ref_active_put(ns);
63 	clear_inode(inode);
64 	ns->ops->put(ns);
65 }
66 
67 int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb,
68 		     void *private_data)
69 {
70 	struct ns_common *ns;
71 
72 	ns = ns_get_cb(private_data);
73 	if (!ns)
74 		return -ENOENT;
75 
76 	return path_from_stashed(&ns->stashed, nsfs_mnt, ns, path);
77 }
78 
79 struct ns_get_path_task_args {
80 	const struct proc_ns_operations *ns_ops;
81 	struct task_struct *task;
82 };
83 
84 static struct ns_common *ns_get_path_task(void *private_data)
85 {
86 	struct ns_get_path_task_args *args = private_data;
87 
88 	return args->ns_ops->get(args->task);
89 }
90 
91 int ns_get_path(struct path *path, struct task_struct *task,
92 		  const struct proc_ns_operations *ns_ops)
93 {
94 	struct ns_get_path_task_args args = {
95 		.ns_ops	= ns_ops,
96 		.task	= task,
97 	};
98 
99 	return ns_get_path_cb(path, ns_get_path_task, &args);
100 }
101 
102 /**
103  * open_namespace - open a namespace
104  * @ns: the namespace to open
105  *
106  * This will consume a reference to @ns indendent of success or failure.
107  *
108  * Return: A file descriptor on success or a negative error code on failure.
109  */
110 int open_namespace(struct ns_common *ns)
111 {
112 	struct path path __free(path_put) = {};
113 	struct file *f;
114 	int err;
115 
116 	/* call first to consume reference */
117 	err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
118 	if (err < 0)
119 		return err;
120 
121 	CLASS(get_unused_fd, fd)(O_CLOEXEC);
122 	if (fd < 0)
123 		return fd;
124 
125 	f = dentry_open(&path, O_RDONLY, current_cred());
126 	if (IS_ERR(f))
127 		return PTR_ERR(f);
128 
129 	fd_install(fd, f);
130 	return take_fd(fd);
131 }
132 
133 int open_related_ns(struct ns_common *ns,
134 		   struct ns_common *(*get_ns)(struct ns_common *ns))
135 {
136 	struct ns_common *relative;
137 
138 	relative = get_ns(ns);
139 	if (IS_ERR(relative))
140 		return PTR_ERR(relative);
141 
142 	return open_namespace(relative);
143 }
144 EXPORT_SYMBOL_GPL(open_related_ns);
145 
146 static int copy_ns_info_to_user(const struct mnt_namespace *mnt_ns,
147 				struct mnt_ns_info __user *uinfo, size_t usize,
148 				struct mnt_ns_info *kinfo)
149 {
150 	/*
151 	 * If userspace and the kernel have the same struct size it can just
152 	 * be copied. If userspace provides an older struct, only the bits that
153 	 * userspace knows about will be copied. If userspace provides a new
154 	 * struct, only the bits that the kernel knows aobut will be copied and
155 	 * the size value will be set to the size the kernel knows about.
156 	 */
157 	kinfo->size		= min(usize, sizeof(*kinfo));
158 	kinfo->mnt_ns_id	= mnt_ns->ns.ns_id;
159 	kinfo->nr_mounts	= READ_ONCE(mnt_ns->nr_mounts);
160 	/* Subtract the root mount of the mount namespace. */
161 	if (kinfo->nr_mounts)
162 		kinfo->nr_mounts--;
163 
164 	if (copy_to_user(uinfo, kinfo, kinfo->size))
165 		return -EFAULT;
166 
167 	return 0;
168 }
169 
170 static bool nsfs_ioctl_valid(unsigned int cmd)
171 {
172 	switch (cmd) {
173 	case NS_GET_USERNS:
174 	case NS_GET_PARENT:
175 	case NS_GET_NSTYPE:
176 	case NS_GET_OWNER_UID:
177 	case NS_GET_MNTNS_ID:
178 	case NS_GET_PID_FROM_PIDNS:
179 	case NS_GET_TGID_FROM_PIDNS:
180 	case NS_GET_PID_IN_PIDNS:
181 	case NS_GET_TGID_IN_PIDNS:
182 	case NS_GET_ID:
183 		return true;
184 	}
185 
186 	/* Extensible ioctls require some extra handling. */
187 	switch (_IOC_NR(cmd)) {
188 	case _IOC_NR(NS_MNT_GET_INFO):
189 		return extensible_ioctl_valid(cmd, NS_MNT_GET_INFO, MNT_NS_INFO_SIZE_VER0);
190 	case _IOC_NR(NS_MNT_GET_NEXT):
191 		return extensible_ioctl_valid(cmd, NS_MNT_GET_NEXT, MNT_NS_INFO_SIZE_VER0);
192 	case _IOC_NR(NS_MNT_GET_PREV):
193 		return extensible_ioctl_valid(cmd, NS_MNT_GET_PREV, MNT_NS_INFO_SIZE_VER0);
194 	}
195 
196 	return false;
197 }
198 
199 static long ns_ioctl(struct file *filp, unsigned int ioctl,
200 			unsigned long arg)
201 {
202 	struct user_namespace *user_ns;
203 	struct pid_namespace *pid_ns;
204 	struct task_struct *tsk;
205 	struct ns_common *ns;
206 	struct mnt_namespace *mnt_ns;
207 	bool previous = false;
208 	uid_t __user *argp;
209 	uid_t uid;
210 	int ret;
211 
212 	if (!nsfs_ioctl_valid(ioctl))
213 		return -ENOIOCTLCMD;
214 
215 	ns = get_proc_ns(file_inode(filp));
216 	switch (ioctl) {
217 	case NS_GET_USERNS:
218 		return open_related_ns(ns, ns_get_owner);
219 	case NS_GET_PARENT:
220 		if (!ns->ops->get_parent)
221 			return -EINVAL;
222 		return open_related_ns(ns, ns->ops->get_parent);
223 	case NS_GET_NSTYPE:
224 		return ns->ns_type;
225 	case NS_GET_OWNER_UID:
226 		if (ns->ns_type != CLONE_NEWUSER)
227 			return -EINVAL;
228 		user_ns = container_of(ns, struct user_namespace, ns);
229 		argp = (uid_t __user *) arg;
230 		uid = from_kuid_munged(current_user_ns(), user_ns->owner);
231 		return put_user(uid, argp);
232 	case NS_GET_PID_FROM_PIDNS:
233 		fallthrough;
234 	case NS_GET_TGID_FROM_PIDNS:
235 		fallthrough;
236 	case NS_GET_PID_IN_PIDNS:
237 		fallthrough;
238 	case NS_GET_TGID_IN_PIDNS: {
239 		if (ns->ns_type != CLONE_NEWPID)
240 			return -EINVAL;
241 
242 		ret = -ESRCH;
243 		pid_ns = container_of(ns, struct pid_namespace, ns);
244 
245 		guard(rcu)();
246 
247 		if (ioctl == NS_GET_PID_IN_PIDNS ||
248 		    ioctl == NS_GET_TGID_IN_PIDNS)
249 			tsk = find_task_by_vpid(arg);
250 		else
251 			tsk = find_task_by_pid_ns(arg, pid_ns);
252 		if (!tsk)
253 			break;
254 
255 		switch (ioctl) {
256 		case NS_GET_PID_FROM_PIDNS:
257 			ret = task_pid_vnr(tsk);
258 			break;
259 		case NS_GET_TGID_FROM_PIDNS:
260 			ret = task_tgid_vnr(tsk);
261 			break;
262 		case NS_GET_PID_IN_PIDNS:
263 			ret = task_pid_nr_ns(tsk, pid_ns);
264 			break;
265 		case NS_GET_TGID_IN_PIDNS:
266 			ret = task_tgid_nr_ns(tsk, pid_ns);
267 			break;
268 		default:
269 			ret = 0;
270 			break;
271 		}
272 
273 		if (!ret)
274 			ret = -ESRCH;
275 		return ret;
276 	}
277 	case NS_GET_MNTNS_ID:
278 		if (ns->ns_type != CLONE_NEWNS)
279 			return -EINVAL;
280 		fallthrough;
281 	case NS_GET_ID: {
282 		__u64 __user *idp;
283 		__u64 id;
284 
285 		idp = (__u64 __user *)arg;
286 		id = ns->ns_id;
287 		return put_user(id, idp);
288 	}
289 	}
290 
291 	/* extensible ioctls */
292 	switch (_IOC_NR(ioctl)) {
293 	case _IOC_NR(NS_MNT_GET_INFO): {
294 		struct mnt_ns_info kinfo = {};
295 		struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg;
296 		size_t usize = _IOC_SIZE(ioctl);
297 
298 		if (ns->ns_type != CLONE_NEWNS)
299 			return -EINVAL;
300 
301 		if (!uinfo)
302 			return -EINVAL;
303 
304 		if (usize < MNT_NS_INFO_SIZE_VER0)
305 			return -EINVAL;
306 
307 		return copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo);
308 	}
309 	case _IOC_NR(NS_MNT_GET_PREV):
310 		previous = true;
311 		fallthrough;
312 	case _IOC_NR(NS_MNT_GET_NEXT): {
313 		struct mnt_ns_info kinfo = {};
314 		struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg;
315 		struct path path __free(path_put) = {};
316 		struct file *f __free(fput) = NULL;
317 		size_t usize = _IOC_SIZE(ioctl);
318 
319 		if (ns->ns_type != CLONE_NEWNS)
320 			return -EINVAL;
321 
322 		if (usize < MNT_NS_INFO_SIZE_VER0)
323 			return -EINVAL;
324 
325 		mnt_ns = get_sequential_mnt_ns(to_mnt_ns(ns), previous);
326 		if (IS_ERR(mnt_ns))
327 			return PTR_ERR(mnt_ns);
328 
329 		ns = to_ns_common(mnt_ns);
330 		/* Transfer ownership of @mnt_ns reference to @path. */
331 		ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
332 		if (ret)
333 			return ret;
334 
335 		CLASS(get_unused_fd, fd)(O_CLOEXEC);
336 		if (fd < 0)
337 			return fd;
338 
339 		f = dentry_open(&path, O_RDONLY, current_cred());
340 		if (IS_ERR(f))
341 			return PTR_ERR(f);
342 
343 		if (uinfo) {
344 			/*
345 			 * If @uinfo is passed return all information about the
346 			 * mount namespace as well.
347 			 */
348 			ret = copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo);
349 			if (ret)
350 				return ret;
351 		}
352 
353 		/* Transfer reference of @f to caller's fdtable. */
354 		fd_install(fd, no_free_ptr(f));
355 		/* File descriptor is live so hand it off to the caller. */
356 		return take_fd(fd);
357 	}
358 	default:
359 		ret = -ENOTTY;
360 	}
361 
362 	return ret;
363 }
364 
365 int ns_get_name(char *buf, size_t size, struct task_struct *task,
366 			const struct proc_ns_operations *ns_ops)
367 {
368 	struct ns_common *ns;
369 	int res = -ENOENT;
370 	const char *name;
371 	ns = ns_ops->get(task);
372 	if (ns) {
373 		name = ns_ops->real_ns_name ? : ns_ops->name;
374 		res = snprintf(buf, size, "%s:[%u]", name, ns->inum);
375 		ns_ops->put(ns);
376 	}
377 	return res;
378 }
379 
380 bool proc_ns_file(const struct file *file)
381 {
382 	return file->f_op == &ns_file_operations;
383 }
384 
385 /**
386  * ns_match() - Returns true if current namespace matches dev/ino provided.
387  * @ns: current namespace
388  * @dev: dev_t from nsfs that will be matched against current nsfs
389  * @ino: ino_t from nsfs that will be matched against current nsfs
390  *
391  * Return: true if dev and ino matches the current nsfs.
392  */
393 bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino)
394 {
395 	return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev);
396 }
397 
398 
399 static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry)
400 {
401 	struct inode *inode = d_inode(dentry);
402 	const struct ns_common *ns = inode->i_private;
403 	const struct proc_ns_operations *ns_ops = ns->ops;
404 
405 	seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino);
406 	return 0;
407 }
408 
409 static const struct super_operations nsfs_ops = {
410 	.statfs = simple_statfs,
411 	.evict_inode = nsfs_evict,
412 	.show_path = nsfs_show_path,
413 	.drop_inode = inode_just_drop,
414 };
415 
416 static int nsfs_init_inode(struct inode *inode, void *data)
417 {
418 	struct ns_common *ns = data;
419 
420 	inode->i_private = data;
421 	inode->i_mode |= S_IRUGO;
422 	inode->i_fop = &ns_file_operations;
423 	inode->i_ino = ns->inum;
424 
425 	/*
426 	 * Bring the namespace subtree back to life if we have to. This
427 	 * can happen when e.g., all processes using a network namespace
428 	 * and all namespace files or namespace file bind-mounts have
429 	 * died but there are still sockets pinning it. The SIOCGSKNS
430 	 * ioctl on such a socket will resurrect the relevant namespace
431 	 * subtree.
432 	 */
433 	__ns_ref_active_get(ns);
434 	return 0;
435 }
436 
437 static void nsfs_put_data(void *data)
438 {
439 	struct ns_common *ns = data;
440 	ns->ops->put(ns);
441 }
442 
443 static const struct stashed_operations nsfs_stashed_ops = {
444 	.init_inode = nsfs_init_inode,
445 	.put_data = nsfs_put_data,
446 };
447 
448 #define NSFS_FID_SIZE_U32_VER0 (NSFS_FILE_HANDLE_SIZE_VER0 / sizeof(u32))
449 #define NSFS_FID_SIZE_U32_LATEST (NSFS_FILE_HANDLE_SIZE_LATEST / sizeof(u32))
450 
451 static int nsfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
452 			  struct inode *parent)
453 {
454 	struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh;
455 	struct ns_common *ns = inode->i_private;
456 	int len = *max_len;
457 
458 	if (parent)
459 		return FILEID_INVALID;
460 
461 	if (len < NSFS_FID_SIZE_U32_VER0) {
462 		*max_len = NSFS_FID_SIZE_U32_LATEST;
463 		return FILEID_INVALID;
464 	} else if (len > NSFS_FID_SIZE_U32_LATEST) {
465 		*max_len = NSFS_FID_SIZE_U32_LATEST;
466 	}
467 
468 	fid->ns_id	= ns->ns_id;
469 	fid->ns_type	= ns->ns_type;
470 	fid->ns_inum	= inode->i_ino;
471 	return FILEID_NSFS;
472 }
473 
474 bool is_current_namespace(struct ns_common *ns)
475 {
476 	switch (ns->ns_type) {
477 #ifdef CONFIG_CGROUPS
478 	case CLONE_NEWCGROUP:
479 		return current_in_namespace(to_cg_ns(ns));
480 #endif
481 #ifdef CONFIG_IPC_NS
482 	case CLONE_NEWIPC:
483 		return current_in_namespace(to_ipc_ns(ns));
484 #endif
485 	case CLONE_NEWNS:
486 		return current_in_namespace(to_mnt_ns(ns));
487 #ifdef CONFIG_NET_NS
488 	case CLONE_NEWNET:
489 		return current_in_namespace(to_net_ns(ns));
490 #endif
491 #ifdef CONFIG_PID_NS
492 	case CLONE_NEWPID:
493 		return current_in_namespace(to_pid_ns(ns));
494 #endif
495 #ifdef CONFIG_TIME_NS
496 	case CLONE_NEWTIME:
497 		return current_in_namespace(to_time_ns(ns));
498 #endif
499 #ifdef CONFIG_USER_NS
500 	case CLONE_NEWUSER:
501 		return current_in_namespace(to_user_ns(ns));
502 #endif
503 #ifdef CONFIG_UTS_NS
504 	case CLONE_NEWUTS:
505 		return current_in_namespace(to_uts_ns(ns));
506 #endif
507 	default:
508 		VFS_WARN_ON_ONCE(true);
509 		return false;
510 	}
511 }
512 
513 static struct dentry *nsfs_fh_to_dentry(struct super_block *sb, struct fid *fh,
514 					int fh_len, int fh_type)
515 {
516 	struct path path __free(path_put) = {};
517 	struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh;
518 	struct user_namespace *owning_ns = NULL;
519 	struct ns_common *ns;
520 	int ret;
521 
522 	if (fh_len < NSFS_FID_SIZE_U32_VER0)
523 		return NULL;
524 
525 	/* Check that any trailing bytes are zero. */
526 	if ((fh_len > NSFS_FID_SIZE_U32_LATEST) &&
527 	    memchr_inv((void *)fid + NSFS_FID_SIZE_U32_LATEST, 0,
528 		       fh_len - NSFS_FID_SIZE_U32_LATEST))
529 		return NULL;
530 
531 	switch (fh_type) {
532 	case FILEID_NSFS:
533 		break;
534 	default:
535 		return NULL;
536 	}
537 
538 	if (!fid->ns_id)
539 		return NULL;
540 	/* Either both are set or both are unset. */
541 	if (!fid->ns_inum != !fid->ns_type)
542 		return NULL;
543 
544 	scoped_guard(rcu) {
545 		ns = ns_tree_lookup_rcu(fid->ns_id, fid->ns_type);
546 		if (!ns)
547 			return NULL;
548 
549 		VFS_WARN_ON_ONCE(ns->ns_id != fid->ns_id);
550 
551 		if (fid->ns_inum && (fid->ns_inum != ns->inum))
552 			return NULL;
553 		if (fid->ns_type && (fid->ns_type != ns->ns_type))
554 			return NULL;
555 
556 		/*
557 		 * This is racy because we're not actually taking an
558 		 * active reference. IOW, it could happen that the
559 		 * namespace becomes inactive after this check.
560 		 * We don't care because nsfs_init_inode() will just
561 		 * resurrect the relevant namespace tree for us. If it
562 		 * has been active here we just allow it's resurrection.
563 		 * We could try to take an active reference here and
564 		 * then drop it again. But really, why bother.
565 		 */
566 		if (!ns_get_unless_inactive(ns))
567 			return NULL;
568 	}
569 
570 	switch (ns->ns_type) {
571 #ifdef CONFIG_CGROUPS
572 	case CLONE_NEWCGROUP:
573 		if (!current_in_namespace(to_cg_ns(ns)))
574 			owning_ns = to_cg_ns(ns)->user_ns;
575 		break;
576 #endif
577 #ifdef CONFIG_IPC_NS
578 	case CLONE_NEWIPC:
579 		if (!current_in_namespace(to_ipc_ns(ns)))
580 			owning_ns = to_ipc_ns(ns)->user_ns;
581 		break;
582 #endif
583 	case CLONE_NEWNS:
584 		if (!current_in_namespace(to_mnt_ns(ns)))
585 			owning_ns = to_mnt_ns(ns)->user_ns;
586 		break;
587 #ifdef CONFIG_NET_NS
588 	case CLONE_NEWNET:
589 		if (!current_in_namespace(to_net_ns(ns)))
590 			owning_ns = to_net_ns(ns)->user_ns;
591 		break;
592 #endif
593 #ifdef CONFIG_PID_NS
594 	case CLONE_NEWPID:
595 		if (!current_in_namespace(to_pid_ns(ns))) {
596 			owning_ns = to_pid_ns(ns)->user_ns;
597 		} else if (!READ_ONCE(to_pid_ns(ns)->child_reaper)) {
598 			ns->ops->put(ns);
599 			return ERR_PTR(-EPERM);
600 		}
601 		break;
602 #endif
603 #ifdef CONFIG_TIME_NS
604 	case CLONE_NEWTIME:
605 		if (!current_in_namespace(to_time_ns(ns)))
606 			owning_ns = to_time_ns(ns)->user_ns;
607 		break;
608 #endif
609 #ifdef CONFIG_USER_NS
610 	case CLONE_NEWUSER:
611 		if (!current_in_namespace(to_user_ns(ns)))
612 			owning_ns = to_user_ns(ns);
613 		break;
614 #endif
615 #ifdef CONFIG_UTS_NS
616 	case CLONE_NEWUTS:
617 		if (!current_in_namespace(to_uts_ns(ns)))
618 			owning_ns = to_uts_ns(ns)->user_ns;
619 		break;
620 #endif
621 	default:
622 		return ERR_PTR(-EOPNOTSUPP);
623 	}
624 
625 	if (owning_ns && !ns_capable(owning_ns, CAP_SYS_ADMIN)) {
626 		ns->ops->put(ns);
627 		return ERR_PTR(-EPERM);
628 	}
629 
630 	/* path_from_stashed() unconditionally consumes the reference. */
631 	ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
632 	if (ret)
633 		return ERR_PTR(ret);
634 
635 	return no_free_ptr(path.dentry);
636 }
637 
638 static int nsfs_export_permission(struct handle_to_path_ctx *ctx,
639 				   unsigned int oflags)
640 {
641 	/* nsfs_fh_to_dentry() performs all permission checks. */
642 	return 0;
643 }
644 
645 static struct file *nsfs_export_open(const struct path *path, unsigned int oflags)
646 {
647 	return file_open_root(path, "", oflags, 0);
648 }
649 
650 static const struct export_operations nsfs_export_operations = {
651 	.encode_fh	= nsfs_encode_fh,
652 	.fh_to_dentry	= nsfs_fh_to_dentry,
653 	.open		= nsfs_export_open,
654 	.permission	= nsfs_export_permission,
655 };
656 
657 static int nsfs_init_fs_context(struct fs_context *fc)
658 {
659 	struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC);
660 	if (!ctx)
661 		return -ENOMEM;
662 	fc->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
663 	ctx->s_d_flags |= DCACHE_DONTCACHE;
664 	ctx->ops = &nsfs_ops;
665 	ctx->eops = &nsfs_export_operations;
666 	ctx->dops = &ns_dentry_operations;
667 	fc->s_fs_info = (void *)&nsfs_stashed_ops;
668 	return 0;
669 }
670 
671 static struct file_system_type nsfs = {
672 	.name = "nsfs",
673 	.init_fs_context = nsfs_init_fs_context,
674 	.kill_sb = kill_anon_super,
675 };
676 
677 void __init nsfs_init(void)
678 {
679 	nsfs_mnt = kern_mount(&nsfs);
680 	if (IS_ERR(nsfs_mnt))
681 		panic("can't set nsfs up\n");
682 	nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER;
683 	nsfs_root_path.mnt = nsfs_mnt;
684 	nsfs_root_path.dentry = nsfs_mnt->mnt_root;
685 }
686 
687 void nsproxy_ns_active_get(struct nsproxy *ns)
688 {
689 	ns_ref_active_get(ns->mnt_ns);
690 	ns_ref_active_get(ns->uts_ns);
691 	ns_ref_active_get(ns->ipc_ns);
692 	ns_ref_active_get(ns->pid_ns_for_children);
693 	ns_ref_active_get(ns->cgroup_ns);
694 	ns_ref_active_get(ns->net_ns);
695 	ns_ref_active_get(ns->time_ns);
696 	ns_ref_active_get(ns->time_ns_for_children);
697 }
698 
699 void nsproxy_ns_active_put(struct nsproxy *ns)
700 {
701 	ns_ref_active_put(ns->mnt_ns);
702 	ns_ref_active_put(ns->uts_ns);
703 	ns_ref_active_put(ns->ipc_ns);
704 	ns_ref_active_put(ns->pid_ns_for_children);
705 	ns_ref_active_put(ns->cgroup_ns);
706 	ns_ref_active_put(ns->net_ns);
707 	ns_ref_active_put(ns->time_ns);
708 	ns_ref_active_put(ns->time_ns_for_children);
709 }
710