1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mount.h> 3 #include <linux/pseudo_fs.h> 4 #include <linux/file.h> 5 #include <linux/fs.h> 6 #include <linux/proc_fs.h> 7 #include <linux/proc_ns.h> 8 #include <linux/magic.h> 9 #include <linux/ktime.h> 10 #include <linux/seq_file.h> 11 #include <linux/pid_namespace.h> 12 #include <linux/user_namespace.h> 13 #include <linux/nsfs.h> 14 #include <linux/uaccess.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/ipc_namespace.h> 17 #include <linux/time_namespace.h> 18 #include <linux/utsname.h> 19 #include <linux/exportfs.h> 20 #include <linux/nstree.h> 21 #include <net/net_namespace.h> 22 23 #include "mount.h" 24 #include "internal.h" 25 26 static struct vfsmount *nsfs_mnt; 27 28 static struct path nsfs_root_path = {}; 29 30 void nsfs_get_root(struct path *path) 31 { 32 *path = nsfs_root_path; 33 path_get(path); 34 } 35 36 static long ns_ioctl(struct file *filp, unsigned int ioctl, 37 unsigned long arg); 38 static const struct file_operations ns_file_operations = { 39 .unlocked_ioctl = ns_ioctl, 40 .compat_ioctl = compat_ptr_ioctl, 41 }; 42 43 static char *ns_dname(struct dentry *dentry, char *buffer, int buflen) 44 { 45 struct inode *inode = d_inode(dentry); 46 struct ns_common *ns = inode->i_private; 47 const struct proc_ns_operations *ns_ops = ns->ops; 48 49 return dynamic_dname(buffer, buflen, "%s:[%lu]", 50 ns_ops->name, inode->i_ino); 51 } 52 53 const struct dentry_operations ns_dentry_operations = { 54 .d_dname = ns_dname, 55 .d_prune = stashed_dentry_prune, 56 }; 57 58 static void nsfs_evict(struct inode *inode) 59 { 60 struct ns_common *ns = inode->i_private; 61 62 __ns_ref_active_put(ns); 63 clear_inode(inode); 64 ns->ops->put(ns); 65 } 66 67 int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb, 68 void *private_data) 69 { 70 struct ns_common *ns; 71 72 ns = ns_get_cb(private_data); 73 if (!ns) 74 return -ENOENT; 75 76 return path_from_stashed(&ns->stashed, nsfs_mnt, ns, path); 77 } 78 79 struct ns_get_path_task_args { 80 const struct proc_ns_operations *ns_ops; 81 struct task_struct *task; 82 }; 83 84 static struct ns_common *ns_get_path_task(void *private_data) 85 { 86 struct ns_get_path_task_args *args = private_data; 87 88 return args->ns_ops->get(args->task); 89 } 90 91 int ns_get_path(struct path *path, struct task_struct *task, 92 const struct proc_ns_operations *ns_ops) 93 { 94 struct ns_get_path_task_args args = { 95 .ns_ops = ns_ops, 96 .task = task, 97 }; 98 99 return ns_get_path_cb(path, ns_get_path_task, &args); 100 } 101 102 /** 103 * open_namespace - open a namespace 104 * @ns: the namespace to open 105 * 106 * This will consume a reference to @ns indendent of success or failure. 107 * 108 * Return: A file descriptor on success or a negative error code on failure. 109 */ 110 int open_namespace(struct ns_common *ns) 111 { 112 struct path path __free(path_put) = {}; 113 int err; 114 115 /* call first to consume reference */ 116 err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 117 if (err < 0) 118 return err; 119 120 return FD_ADD(O_CLOEXEC, dentry_open(&path, O_RDONLY, current_cred())); 121 } 122 123 int open_related_ns(struct ns_common *ns, 124 struct ns_common *(*get_ns)(struct ns_common *ns)) 125 { 126 struct ns_common *relative; 127 128 relative = get_ns(ns); 129 if (IS_ERR(relative)) 130 return PTR_ERR(relative); 131 132 return open_namespace(relative); 133 } 134 EXPORT_SYMBOL_GPL(open_related_ns); 135 136 static int copy_ns_info_to_user(const struct mnt_namespace *mnt_ns, 137 struct mnt_ns_info __user *uinfo, size_t usize, 138 struct mnt_ns_info *kinfo) 139 { 140 /* 141 * If userspace and the kernel have the same struct size it can just 142 * be copied. If userspace provides an older struct, only the bits that 143 * userspace knows about will be copied. If userspace provides a new 144 * struct, only the bits that the kernel knows aobut will be copied and 145 * the size value will be set to the size the kernel knows about. 146 */ 147 kinfo->size = min(usize, sizeof(*kinfo)); 148 kinfo->mnt_ns_id = mnt_ns->ns.ns_id; 149 kinfo->nr_mounts = READ_ONCE(mnt_ns->nr_mounts); 150 /* Subtract the root mount of the mount namespace. */ 151 if (kinfo->nr_mounts) 152 kinfo->nr_mounts--; 153 154 if (copy_to_user(uinfo, kinfo, kinfo->size)) 155 return -EFAULT; 156 157 return 0; 158 } 159 160 static bool nsfs_ioctl_valid(unsigned int cmd) 161 { 162 switch (cmd) { 163 case NS_GET_USERNS: 164 case NS_GET_PARENT: 165 case NS_GET_NSTYPE: 166 case NS_GET_OWNER_UID: 167 case NS_GET_MNTNS_ID: 168 case NS_GET_PID_FROM_PIDNS: 169 case NS_GET_TGID_FROM_PIDNS: 170 case NS_GET_PID_IN_PIDNS: 171 case NS_GET_TGID_IN_PIDNS: 172 case NS_GET_ID: 173 return true; 174 } 175 176 /* Extensible ioctls require some extra handling. */ 177 switch (_IOC_NR(cmd)) { 178 case _IOC_NR(NS_MNT_GET_INFO): 179 return extensible_ioctl_valid(cmd, NS_MNT_GET_INFO, MNT_NS_INFO_SIZE_VER0); 180 case _IOC_NR(NS_MNT_GET_NEXT): 181 return extensible_ioctl_valid(cmd, NS_MNT_GET_NEXT, MNT_NS_INFO_SIZE_VER0); 182 case _IOC_NR(NS_MNT_GET_PREV): 183 return extensible_ioctl_valid(cmd, NS_MNT_GET_PREV, MNT_NS_INFO_SIZE_VER0); 184 } 185 186 return false; 187 } 188 189 static long ns_ioctl(struct file *filp, unsigned int ioctl, 190 unsigned long arg) 191 { 192 struct user_namespace *user_ns; 193 struct pid_namespace *pid_ns; 194 struct task_struct *tsk; 195 struct ns_common *ns; 196 struct mnt_namespace *mnt_ns; 197 bool previous = false; 198 uid_t __user *argp; 199 uid_t uid; 200 int ret; 201 202 if (!nsfs_ioctl_valid(ioctl)) 203 return -ENOIOCTLCMD; 204 205 ns = get_proc_ns(file_inode(filp)); 206 switch (ioctl) { 207 case NS_GET_USERNS: 208 return open_related_ns(ns, ns_get_owner); 209 case NS_GET_PARENT: 210 if (!ns->ops->get_parent) 211 return -EINVAL; 212 return open_related_ns(ns, ns->ops->get_parent); 213 case NS_GET_NSTYPE: 214 return ns->ns_type; 215 case NS_GET_OWNER_UID: 216 if (ns->ns_type != CLONE_NEWUSER) 217 return -EINVAL; 218 user_ns = container_of(ns, struct user_namespace, ns); 219 argp = (uid_t __user *) arg; 220 uid = from_kuid_munged(current_user_ns(), user_ns->owner); 221 return put_user(uid, argp); 222 case NS_GET_PID_FROM_PIDNS: 223 fallthrough; 224 case NS_GET_TGID_FROM_PIDNS: 225 fallthrough; 226 case NS_GET_PID_IN_PIDNS: 227 fallthrough; 228 case NS_GET_TGID_IN_PIDNS: { 229 if (ns->ns_type != CLONE_NEWPID) 230 return -EINVAL; 231 232 ret = -ESRCH; 233 pid_ns = container_of(ns, struct pid_namespace, ns); 234 235 guard(rcu)(); 236 237 if (ioctl == NS_GET_PID_IN_PIDNS || 238 ioctl == NS_GET_TGID_IN_PIDNS) 239 tsk = find_task_by_vpid(arg); 240 else 241 tsk = find_task_by_pid_ns(arg, pid_ns); 242 if (!tsk) 243 break; 244 245 switch (ioctl) { 246 case NS_GET_PID_FROM_PIDNS: 247 ret = task_pid_vnr(tsk); 248 break; 249 case NS_GET_TGID_FROM_PIDNS: 250 ret = task_tgid_vnr(tsk); 251 break; 252 case NS_GET_PID_IN_PIDNS: 253 ret = task_pid_nr_ns(tsk, pid_ns); 254 break; 255 case NS_GET_TGID_IN_PIDNS: 256 ret = task_tgid_nr_ns(tsk, pid_ns); 257 break; 258 default: 259 ret = 0; 260 break; 261 } 262 263 if (!ret) 264 ret = -ESRCH; 265 return ret; 266 } 267 case NS_GET_MNTNS_ID: 268 if (ns->ns_type != CLONE_NEWNS) 269 return -EINVAL; 270 fallthrough; 271 case NS_GET_ID: { 272 __u64 __user *idp; 273 __u64 id; 274 275 idp = (__u64 __user *)arg; 276 id = ns->ns_id; 277 return put_user(id, idp); 278 } 279 } 280 281 /* extensible ioctls */ 282 switch (_IOC_NR(ioctl)) { 283 case _IOC_NR(NS_MNT_GET_INFO): { 284 struct mnt_ns_info kinfo = {}; 285 struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg; 286 size_t usize = _IOC_SIZE(ioctl); 287 288 if (ns->ns_type != CLONE_NEWNS) 289 return -EINVAL; 290 291 if (!uinfo) 292 return -EINVAL; 293 294 if (usize < MNT_NS_INFO_SIZE_VER0) 295 return -EINVAL; 296 297 return copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo); 298 } 299 case _IOC_NR(NS_MNT_GET_PREV): 300 previous = true; 301 fallthrough; 302 case _IOC_NR(NS_MNT_GET_NEXT): { 303 struct mnt_ns_info kinfo = {}; 304 struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg; 305 struct path path __free(path_put) = {}; 306 size_t usize = _IOC_SIZE(ioctl); 307 308 if (ns->ns_type != CLONE_NEWNS) 309 return -EINVAL; 310 311 if (usize < MNT_NS_INFO_SIZE_VER0) 312 return -EINVAL; 313 314 mnt_ns = get_sequential_mnt_ns(to_mnt_ns(ns), previous); 315 if (IS_ERR(mnt_ns)) 316 return PTR_ERR(mnt_ns); 317 318 ns = to_ns_common(mnt_ns); 319 /* Transfer ownership of @mnt_ns reference to @path. */ 320 ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 321 if (ret) 322 return ret; 323 324 FD_PREPARE(fdf, O_CLOEXEC, dentry_open(&path, O_RDONLY, current_cred())); 325 if (fdf.err) 326 return fdf.err; 327 /* 328 * If @uinfo is passed return all information about the 329 * mount namespace as well. 330 */ 331 ret = copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo); 332 if (ret) 333 return ret; 334 ret = fd_publish(fdf); 335 break; 336 } 337 default: 338 ret = -ENOTTY; 339 } 340 341 return ret; 342 } 343 344 int ns_get_name(char *buf, size_t size, struct task_struct *task, 345 const struct proc_ns_operations *ns_ops) 346 { 347 struct ns_common *ns; 348 int res = -ENOENT; 349 const char *name; 350 ns = ns_ops->get(task); 351 if (ns) { 352 name = ns_ops->real_ns_name ? : ns_ops->name; 353 res = snprintf(buf, size, "%s:[%u]", name, ns->inum); 354 ns_ops->put(ns); 355 } 356 return res; 357 } 358 359 bool proc_ns_file(const struct file *file) 360 { 361 return file->f_op == &ns_file_operations; 362 } 363 364 /** 365 * ns_match() - Returns true if current namespace matches dev/ino provided. 366 * @ns: current namespace 367 * @dev: dev_t from nsfs that will be matched against current nsfs 368 * @ino: ino_t from nsfs that will be matched against current nsfs 369 * 370 * Return: true if dev and ino matches the current nsfs. 371 */ 372 bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino) 373 { 374 return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev); 375 } 376 377 378 static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry) 379 { 380 struct inode *inode = d_inode(dentry); 381 const struct ns_common *ns = inode->i_private; 382 const struct proc_ns_operations *ns_ops = ns->ops; 383 384 seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino); 385 return 0; 386 } 387 388 static const struct super_operations nsfs_ops = { 389 .statfs = simple_statfs, 390 .evict_inode = nsfs_evict, 391 .show_path = nsfs_show_path, 392 .drop_inode = inode_just_drop, 393 }; 394 395 static int nsfs_init_inode(struct inode *inode, void *data) 396 { 397 struct ns_common *ns = data; 398 399 inode->i_private = data; 400 inode->i_mode |= S_IRUGO; 401 inode->i_fop = &ns_file_operations; 402 inode->i_ino = ns->inum; 403 404 /* 405 * Bring the namespace subtree back to life if we have to. This 406 * can happen when e.g., all processes using a network namespace 407 * and all namespace files or namespace file bind-mounts have 408 * died but there are still sockets pinning it. The SIOCGSKNS 409 * ioctl on such a socket will resurrect the relevant namespace 410 * subtree. 411 */ 412 __ns_ref_active_get(ns); 413 return 0; 414 } 415 416 static void nsfs_put_data(void *data) 417 { 418 struct ns_common *ns = data; 419 ns->ops->put(ns); 420 } 421 422 static const struct stashed_operations nsfs_stashed_ops = { 423 .init_inode = nsfs_init_inode, 424 .put_data = nsfs_put_data, 425 }; 426 427 #define NSFS_FID_SIZE_U32_VER0 (NSFS_FILE_HANDLE_SIZE_VER0 / sizeof(u32)) 428 #define NSFS_FID_SIZE_U32_LATEST (NSFS_FILE_HANDLE_SIZE_LATEST / sizeof(u32)) 429 430 static int nsfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, 431 struct inode *parent) 432 { 433 struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh; 434 struct ns_common *ns = inode->i_private; 435 int len = *max_len; 436 437 if (parent) 438 return FILEID_INVALID; 439 440 if (len < NSFS_FID_SIZE_U32_VER0) { 441 *max_len = NSFS_FID_SIZE_U32_LATEST; 442 return FILEID_INVALID; 443 } else if (len > NSFS_FID_SIZE_U32_LATEST) { 444 *max_len = NSFS_FID_SIZE_U32_LATEST; 445 } 446 447 fid->ns_id = ns->ns_id; 448 fid->ns_type = ns->ns_type; 449 fid->ns_inum = inode->i_ino; 450 return FILEID_NSFS; 451 } 452 453 bool is_current_namespace(struct ns_common *ns) 454 { 455 switch (ns->ns_type) { 456 #ifdef CONFIG_CGROUPS 457 case CLONE_NEWCGROUP: 458 return current_in_namespace(to_cg_ns(ns)); 459 #endif 460 #ifdef CONFIG_IPC_NS 461 case CLONE_NEWIPC: 462 return current_in_namespace(to_ipc_ns(ns)); 463 #endif 464 case CLONE_NEWNS: 465 return current_in_namespace(to_mnt_ns(ns)); 466 #ifdef CONFIG_NET_NS 467 case CLONE_NEWNET: 468 return current_in_namespace(to_net_ns(ns)); 469 #endif 470 #ifdef CONFIG_PID_NS 471 case CLONE_NEWPID: 472 return current_in_namespace(to_pid_ns(ns)); 473 #endif 474 #ifdef CONFIG_TIME_NS 475 case CLONE_NEWTIME: 476 return current_in_namespace(to_time_ns(ns)); 477 #endif 478 #ifdef CONFIG_USER_NS 479 case CLONE_NEWUSER: 480 return current_in_namespace(to_user_ns(ns)); 481 #endif 482 #ifdef CONFIG_UTS_NS 483 case CLONE_NEWUTS: 484 return current_in_namespace(to_uts_ns(ns)); 485 #endif 486 default: 487 VFS_WARN_ON_ONCE(true); 488 return false; 489 } 490 } 491 492 static struct dentry *nsfs_fh_to_dentry(struct super_block *sb, struct fid *fh, 493 int fh_len, int fh_type) 494 { 495 struct path path __free(path_put) = {}; 496 struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh; 497 struct user_namespace *owning_ns = NULL; 498 struct ns_common *ns; 499 int ret; 500 501 if (fh_len < NSFS_FID_SIZE_U32_VER0) 502 return NULL; 503 504 /* Check that any trailing bytes are zero. */ 505 if ((fh_len > NSFS_FID_SIZE_U32_LATEST) && 506 memchr_inv((void *)fid + NSFS_FID_SIZE_U32_LATEST, 0, 507 fh_len - NSFS_FID_SIZE_U32_LATEST)) 508 return NULL; 509 510 switch (fh_type) { 511 case FILEID_NSFS: 512 break; 513 default: 514 return NULL; 515 } 516 517 if (!fid->ns_id) 518 return NULL; 519 /* Either both are set or both are unset. */ 520 if (!fid->ns_inum != !fid->ns_type) 521 return NULL; 522 523 scoped_guard(rcu) { 524 ns = ns_tree_lookup_rcu(fid->ns_id, fid->ns_type); 525 if (!ns) 526 return NULL; 527 528 VFS_WARN_ON_ONCE(ns->ns_id != fid->ns_id); 529 530 if (fid->ns_inum && (fid->ns_inum != ns->inum)) 531 return NULL; 532 if (fid->ns_type && (fid->ns_type != ns->ns_type)) 533 return NULL; 534 535 /* 536 * This is racy because we're not actually taking an 537 * active reference. IOW, it could happen that the 538 * namespace becomes inactive after this check. 539 * We don't care because nsfs_init_inode() will just 540 * resurrect the relevant namespace tree for us. If it 541 * has been active here we just allow it's resurrection. 542 * We could try to take an active reference here and 543 * then drop it again. But really, why bother. 544 */ 545 if (!ns_get_unless_inactive(ns)) 546 return NULL; 547 } 548 549 switch (ns->ns_type) { 550 #ifdef CONFIG_CGROUPS 551 case CLONE_NEWCGROUP: 552 if (!current_in_namespace(to_cg_ns(ns))) 553 owning_ns = to_cg_ns(ns)->user_ns; 554 break; 555 #endif 556 #ifdef CONFIG_IPC_NS 557 case CLONE_NEWIPC: 558 if (!current_in_namespace(to_ipc_ns(ns))) 559 owning_ns = to_ipc_ns(ns)->user_ns; 560 break; 561 #endif 562 case CLONE_NEWNS: 563 if (!current_in_namespace(to_mnt_ns(ns))) 564 owning_ns = to_mnt_ns(ns)->user_ns; 565 break; 566 #ifdef CONFIG_NET_NS 567 case CLONE_NEWNET: 568 if (!current_in_namespace(to_net_ns(ns))) 569 owning_ns = to_net_ns(ns)->user_ns; 570 break; 571 #endif 572 #ifdef CONFIG_PID_NS 573 case CLONE_NEWPID: 574 if (!current_in_namespace(to_pid_ns(ns))) { 575 owning_ns = to_pid_ns(ns)->user_ns; 576 } else if (!READ_ONCE(to_pid_ns(ns)->child_reaper)) { 577 ns->ops->put(ns); 578 return ERR_PTR(-EPERM); 579 } 580 break; 581 #endif 582 #ifdef CONFIG_TIME_NS 583 case CLONE_NEWTIME: 584 if (!current_in_namespace(to_time_ns(ns))) 585 owning_ns = to_time_ns(ns)->user_ns; 586 break; 587 #endif 588 #ifdef CONFIG_USER_NS 589 case CLONE_NEWUSER: 590 if (!current_in_namespace(to_user_ns(ns))) 591 owning_ns = to_user_ns(ns); 592 break; 593 #endif 594 #ifdef CONFIG_UTS_NS 595 case CLONE_NEWUTS: 596 if (!current_in_namespace(to_uts_ns(ns))) 597 owning_ns = to_uts_ns(ns)->user_ns; 598 break; 599 #endif 600 default: 601 return ERR_PTR(-EOPNOTSUPP); 602 } 603 604 if (owning_ns && !ns_capable(owning_ns, CAP_SYS_ADMIN)) { 605 ns->ops->put(ns); 606 return ERR_PTR(-EPERM); 607 } 608 609 /* path_from_stashed() unconditionally consumes the reference. */ 610 ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); 611 if (ret) 612 return ERR_PTR(ret); 613 614 return no_free_ptr(path.dentry); 615 } 616 617 static int nsfs_export_permission(struct handle_to_path_ctx *ctx, 618 unsigned int oflags) 619 { 620 /* nsfs_fh_to_dentry() performs all permission checks. */ 621 return 0; 622 } 623 624 static struct file *nsfs_export_open(const struct path *path, unsigned int oflags) 625 { 626 return file_open_root(path, "", oflags, 0); 627 } 628 629 static const struct export_operations nsfs_export_operations = { 630 .encode_fh = nsfs_encode_fh, 631 .fh_to_dentry = nsfs_fh_to_dentry, 632 .open = nsfs_export_open, 633 .permission = nsfs_export_permission, 634 }; 635 636 static int nsfs_init_fs_context(struct fs_context *fc) 637 { 638 struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC); 639 if (!ctx) 640 return -ENOMEM; 641 fc->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 642 ctx->s_d_flags |= DCACHE_DONTCACHE; 643 ctx->ops = &nsfs_ops; 644 ctx->eops = &nsfs_export_operations; 645 ctx->dops = &ns_dentry_operations; 646 fc->s_fs_info = (void *)&nsfs_stashed_ops; 647 return 0; 648 } 649 650 static struct file_system_type nsfs = { 651 .name = "nsfs", 652 .init_fs_context = nsfs_init_fs_context, 653 .kill_sb = kill_anon_super, 654 }; 655 656 void __init nsfs_init(void) 657 { 658 nsfs_mnt = kern_mount(&nsfs); 659 if (IS_ERR(nsfs_mnt)) 660 panic("can't set nsfs up\n"); 661 nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER; 662 nsfs_root_path.mnt = nsfs_mnt; 663 nsfs_root_path.dentry = nsfs_mnt->mnt_root; 664 } 665 666 void nsproxy_ns_active_get(struct nsproxy *ns) 667 { 668 ns_ref_active_get(ns->mnt_ns); 669 ns_ref_active_get(ns->uts_ns); 670 ns_ref_active_get(ns->ipc_ns); 671 ns_ref_active_get(ns->pid_ns_for_children); 672 ns_ref_active_get(ns->cgroup_ns); 673 ns_ref_active_get(ns->net_ns); 674 ns_ref_active_get(ns->time_ns); 675 ns_ref_active_get(ns->time_ns_for_children); 676 } 677 678 void nsproxy_ns_active_put(struct nsproxy *ns) 679 { 680 ns_ref_active_put(ns->mnt_ns); 681 ns_ref_active_put(ns->uts_ns); 682 ns_ref_active_put(ns->ipc_ns); 683 ns_ref_active_put(ns->pid_ns_for_children); 684 ns_ref_active_put(ns->cgroup_ns); 685 ns_ref_active_put(ns->net_ns); 686 ns_ref_active_put(ns->time_ns); 687 ns_ref_active_put(ns->time_ns_for_children); 688 } 689