xref: /linux/fs/nsfs.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mount.h>
3 #include <linux/pseudo_fs.h>
4 #include <linux/file.h>
5 #include <linux/fs.h>
6 #include <linux/proc_fs.h>
7 #include <linux/proc_ns.h>
8 #include <linux/magic.h>
9 #include <linux/ktime.h>
10 #include <linux/seq_file.h>
11 #include <linux/pid_namespace.h>
12 #include <linux/user_namespace.h>
13 #include <linux/nsfs.h>
14 #include <linux/uaccess.h>
15 #include <linux/mnt_namespace.h>
16 
17 #include "mount.h"
18 #include "internal.h"
19 
20 static struct vfsmount *nsfs_mnt;
21 
22 static long ns_ioctl(struct file *filp, unsigned int ioctl,
23 			unsigned long arg);
24 static const struct file_operations ns_file_operations = {
25 	.llseek		= no_llseek,
26 	.unlocked_ioctl = ns_ioctl,
27 	.compat_ioctl   = compat_ptr_ioctl,
28 };
29 
30 static char *ns_dname(struct dentry *dentry, char *buffer, int buflen)
31 {
32 	struct inode *inode = d_inode(dentry);
33 	struct ns_common *ns = inode->i_private;
34 	const struct proc_ns_operations *ns_ops = ns->ops;
35 
36 	return dynamic_dname(buffer, buflen, "%s:[%lu]",
37 		ns_ops->name, inode->i_ino);
38 }
39 
40 const struct dentry_operations ns_dentry_operations = {
41 	.d_delete	= always_delete_dentry,
42 	.d_dname	= ns_dname,
43 	.d_prune	= stashed_dentry_prune,
44 };
45 
46 static void nsfs_evict(struct inode *inode)
47 {
48 	struct ns_common *ns = inode->i_private;
49 	clear_inode(inode);
50 	ns->ops->put(ns);
51 }
52 
53 int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb,
54 		     void *private_data)
55 {
56 	struct ns_common *ns;
57 
58 	ns = ns_get_cb(private_data);
59 	if (!ns)
60 		return -ENOENT;
61 
62 	return path_from_stashed(&ns->stashed, nsfs_mnt, ns, path);
63 }
64 
65 struct ns_get_path_task_args {
66 	const struct proc_ns_operations *ns_ops;
67 	struct task_struct *task;
68 };
69 
70 static struct ns_common *ns_get_path_task(void *private_data)
71 {
72 	struct ns_get_path_task_args *args = private_data;
73 
74 	return args->ns_ops->get(args->task);
75 }
76 
77 int ns_get_path(struct path *path, struct task_struct *task,
78 		  const struct proc_ns_operations *ns_ops)
79 {
80 	struct ns_get_path_task_args args = {
81 		.ns_ops	= ns_ops,
82 		.task	= task,
83 	};
84 
85 	return ns_get_path_cb(path, ns_get_path_task, &args);
86 }
87 
88 /**
89  * open_namespace - open a namespace
90  * @ns: the namespace to open
91  *
92  * This will consume a reference to @ns indendent of success or failure.
93  *
94  * Return: A file descriptor on success or a negative error code on failure.
95  */
96 int open_namespace(struct ns_common *ns)
97 {
98 	struct path path __free(path_put) = {};
99 	struct file *f;
100 	int err;
101 
102 	/* call first to consume reference */
103 	err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
104 	if (err < 0)
105 		return err;
106 
107 	CLASS(get_unused_fd, fd)(O_CLOEXEC);
108 	if (fd < 0)
109 		return fd;
110 
111 	f = dentry_open(&path, O_RDONLY, current_cred());
112 	if (IS_ERR(f))
113 		return PTR_ERR(f);
114 
115 	fd_install(fd, f);
116 	return take_fd(fd);
117 }
118 
119 int open_related_ns(struct ns_common *ns,
120 		   struct ns_common *(*get_ns)(struct ns_common *ns))
121 {
122 	struct ns_common *relative;
123 
124 	relative = get_ns(ns);
125 	if (IS_ERR(relative))
126 		return PTR_ERR(relative);
127 
128 	return open_namespace(relative);
129 }
130 EXPORT_SYMBOL_GPL(open_related_ns);
131 
132 static int copy_ns_info_to_user(const struct mnt_namespace *mnt_ns,
133 				struct mnt_ns_info __user *uinfo, size_t usize,
134 				struct mnt_ns_info *kinfo)
135 {
136 	/*
137 	 * If userspace and the kernel have the same struct size it can just
138 	 * be copied. If userspace provides an older struct, only the bits that
139 	 * userspace knows about will be copied. If userspace provides a new
140 	 * struct, only the bits that the kernel knows aobut will be copied and
141 	 * the size value will be set to the size the kernel knows about.
142 	 */
143 	kinfo->size		= min(usize, sizeof(*kinfo));
144 	kinfo->mnt_ns_id	= mnt_ns->seq;
145 	kinfo->nr_mounts	= READ_ONCE(mnt_ns->nr_mounts);
146 	/* Subtract the root mount of the mount namespace. */
147 	if (kinfo->nr_mounts)
148 		kinfo->nr_mounts--;
149 
150 	if (copy_to_user(uinfo, kinfo, kinfo->size))
151 		return -EFAULT;
152 
153 	return 0;
154 }
155 
156 static long ns_ioctl(struct file *filp, unsigned int ioctl,
157 			unsigned long arg)
158 {
159 	struct user_namespace *user_ns;
160 	struct pid_namespace *pid_ns;
161 	struct task_struct *tsk;
162 	struct ns_common *ns = get_proc_ns(file_inode(filp));
163 	struct mnt_namespace *mnt_ns;
164 	bool previous = false;
165 	uid_t __user *argp;
166 	uid_t uid;
167 	int ret;
168 
169 	switch (ioctl) {
170 	case NS_GET_USERNS:
171 		return open_related_ns(ns, ns_get_owner);
172 	case NS_GET_PARENT:
173 		if (!ns->ops->get_parent)
174 			return -EINVAL;
175 		return open_related_ns(ns, ns->ops->get_parent);
176 	case NS_GET_NSTYPE:
177 		return ns->ops->type;
178 	case NS_GET_OWNER_UID:
179 		if (ns->ops->type != CLONE_NEWUSER)
180 			return -EINVAL;
181 		user_ns = container_of(ns, struct user_namespace, ns);
182 		argp = (uid_t __user *) arg;
183 		uid = from_kuid_munged(current_user_ns(), user_ns->owner);
184 		return put_user(uid, argp);
185 	case NS_GET_MNTNS_ID: {
186 		__u64 __user *idp;
187 		__u64 id;
188 
189 		if (ns->ops->type != CLONE_NEWNS)
190 			return -EINVAL;
191 
192 		mnt_ns = container_of(ns, struct mnt_namespace, ns);
193 		idp = (__u64 __user *)arg;
194 		id = mnt_ns->seq;
195 		return put_user(id, idp);
196 	}
197 	case NS_GET_PID_FROM_PIDNS:
198 		fallthrough;
199 	case NS_GET_TGID_FROM_PIDNS:
200 		fallthrough;
201 	case NS_GET_PID_IN_PIDNS:
202 		fallthrough;
203 	case NS_GET_TGID_IN_PIDNS: {
204 		if (ns->ops->type != CLONE_NEWPID)
205 			return -EINVAL;
206 
207 		ret = -ESRCH;
208 		pid_ns = container_of(ns, struct pid_namespace, ns);
209 
210 		guard(rcu)();
211 
212 		if (ioctl == NS_GET_PID_IN_PIDNS ||
213 		    ioctl == NS_GET_TGID_IN_PIDNS)
214 			tsk = find_task_by_vpid(arg);
215 		else
216 			tsk = find_task_by_pid_ns(arg, pid_ns);
217 		if (!tsk)
218 			break;
219 
220 		switch (ioctl) {
221 		case NS_GET_PID_FROM_PIDNS:
222 			ret = task_pid_vnr(tsk);
223 			break;
224 		case NS_GET_TGID_FROM_PIDNS:
225 			ret = task_tgid_vnr(tsk);
226 			break;
227 		case NS_GET_PID_IN_PIDNS:
228 			ret = task_pid_nr_ns(tsk, pid_ns);
229 			break;
230 		case NS_GET_TGID_IN_PIDNS:
231 			ret = task_tgid_nr_ns(tsk, pid_ns);
232 			break;
233 		default:
234 			ret = 0;
235 			break;
236 		}
237 
238 		if (!ret)
239 			ret = -ESRCH;
240 		return ret;
241 	}
242 	}
243 
244 	/* extensible ioctls */
245 	switch (_IOC_NR(ioctl)) {
246 	case _IOC_NR(NS_MNT_GET_INFO): {
247 		struct mnt_ns_info kinfo = {};
248 		struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg;
249 		size_t usize = _IOC_SIZE(ioctl);
250 
251 		if (ns->ops->type != CLONE_NEWNS)
252 			return -EINVAL;
253 
254 		if (!uinfo)
255 			return -EINVAL;
256 
257 		if (usize < MNT_NS_INFO_SIZE_VER0)
258 			return -EINVAL;
259 
260 		return copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo);
261 	}
262 	case _IOC_NR(NS_MNT_GET_PREV):
263 		previous = true;
264 		fallthrough;
265 	case _IOC_NR(NS_MNT_GET_NEXT): {
266 		struct mnt_ns_info kinfo = {};
267 		struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg;
268 		struct path path __free(path_put) = {};
269 		struct file *f __free(fput) = NULL;
270 		size_t usize = _IOC_SIZE(ioctl);
271 
272 		if (ns->ops->type != CLONE_NEWNS)
273 			return -EINVAL;
274 
275 		if (usize < MNT_NS_INFO_SIZE_VER0)
276 			return -EINVAL;
277 
278 		if (previous)
279 			mnt_ns = lookup_prev_mnt_ns(to_mnt_ns(ns));
280 		else
281 			mnt_ns = lookup_next_mnt_ns(to_mnt_ns(ns));
282 		if (IS_ERR(mnt_ns))
283 			return PTR_ERR(mnt_ns);
284 
285 		ns = to_ns_common(mnt_ns);
286 		/* Transfer ownership of @mnt_ns reference to @path. */
287 		ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
288 		if (ret)
289 			return ret;
290 
291 		CLASS(get_unused_fd, fd)(O_CLOEXEC);
292 		if (fd < 0)
293 			return fd;
294 
295 		f = dentry_open(&path, O_RDONLY, current_cred());
296 		if (IS_ERR(f))
297 			return PTR_ERR(f);
298 
299 		if (uinfo) {
300 			/*
301 			 * If @uinfo is passed return all information about the
302 			 * mount namespace as well.
303 			 */
304 			ret = copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo);
305 			if (ret)
306 				return ret;
307 		}
308 
309 		/* Transfer reference of @f to caller's fdtable. */
310 		fd_install(fd, no_free_ptr(f));
311 		/* File descriptor is live so hand it off to the caller. */
312 		return take_fd(fd);
313 	}
314 	default:
315 		ret = -ENOTTY;
316 	}
317 
318 	return ret;
319 }
320 
321 int ns_get_name(char *buf, size_t size, struct task_struct *task,
322 			const struct proc_ns_operations *ns_ops)
323 {
324 	struct ns_common *ns;
325 	int res = -ENOENT;
326 	const char *name;
327 	ns = ns_ops->get(task);
328 	if (ns) {
329 		name = ns_ops->real_ns_name ? : ns_ops->name;
330 		res = snprintf(buf, size, "%s:[%u]", name, ns->inum);
331 		ns_ops->put(ns);
332 	}
333 	return res;
334 }
335 
336 bool proc_ns_file(const struct file *file)
337 {
338 	return file->f_op == &ns_file_operations;
339 }
340 
341 /**
342  * ns_match() - Returns true if current namespace matches dev/ino provided.
343  * @ns: current namespace
344  * @dev: dev_t from nsfs that will be matched against current nsfs
345  * @ino: ino_t from nsfs that will be matched against current nsfs
346  *
347  * Return: true if dev and ino matches the current nsfs.
348  */
349 bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino)
350 {
351 	return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev);
352 }
353 
354 
355 static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry)
356 {
357 	struct inode *inode = d_inode(dentry);
358 	const struct ns_common *ns = inode->i_private;
359 	const struct proc_ns_operations *ns_ops = ns->ops;
360 
361 	seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino);
362 	return 0;
363 }
364 
365 static const struct super_operations nsfs_ops = {
366 	.statfs = simple_statfs,
367 	.evict_inode = nsfs_evict,
368 	.show_path = nsfs_show_path,
369 };
370 
371 static int nsfs_init_inode(struct inode *inode, void *data)
372 {
373 	struct ns_common *ns = data;
374 
375 	inode->i_private = data;
376 	inode->i_mode |= S_IRUGO;
377 	inode->i_fop = &ns_file_operations;
378 	inode->i_ino = ns->inum;
379 	return 0;
380 }
381 
382 static void nsfs_put_data(void *data)
383 {
384 	struct ns_common *ns = data;
385 	ns->ops->put(ns);
386 }
387 
388 static const struct stashed_operations nsfs_stashed_ops = {
389 	.init_inode = nsfs_init_inode,
390 	.put_data = nsfs_put_data,
391 };
392 
393 static int nsfs_init_fs_context(struct fs_context *fc)
394 {
395 	struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC);
396 	if (!ctx)
397 		return -ENOMEM;
398 	ctx->ops = &nsfs_ops;
399 	ctx->dops = &ns_dentry_operations;
400 	fc->s_fs_info = (void *)&nsfs_stashed_ops;
401 	return 0;
402 }
403 
404 static struct file_system_type nsfs = {
405 	.name = "nsfs",
406 	.init_fs_context = nsfs_init_fs_context,
407 	.kill_sb = kill_anon_super,
408 };
409 
410 void __init nsfs_init(void)
411 {
412 	nsfs_mnt = kern_mount(&nsfs);
413 	if (IS_ERR(nsfs_mnt))
414 		panic("can't set nsfs up\n");
415 	nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER;
416 }
417