1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mount.h>
3 #include <linux/pseudo_fs.h>
4 #include <linux/file.h>
5 #include <linux/fs.h>
6 #include <linux/proc_fs.h>
7 #include <linux/proc_ns.h>
8 #include <linux/magic.h>
9 #include <linux/ktime.h>
10 #include <linux/seq_file.h>
11 #include <linux/pid_namespace.h>
12 #include <linux/user_namespace.h>
13 #include <linux/nsfs.h>
14 #include <linux/uaccess.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/ipc_namespace.h>
17 #include <linux/time_namespace.h>
18 #include <linux/utsname.h>
19 #include <linux/exportfs.h>
20 #include <linux/nstree.h>
21 #include <net/net_namespace.h>
22
23 #include "mount.h"
24 #include "internal.h"
25
26 static struct vfsmount *nsfs_mnt;
27
28 static struct path nsfs_root_path = {};
29
nsfs_get_root(struct path * path)30 void nsfs_get_root(struct path *path)
31 {
32 *path = nsfs_root_path;
33 path_get(path);
34 }
35
36 static long ns_ioctl(struct file *filp, unsigned int ioctl,
37 unsigned long arg);
38 static const struct file_operations ns_file_operations = {
39 .unlocked_ioctl = ns_ioctl,
40 .compat_ioctl = compat_ptr_ioctl,
41 };
42
ns_dname(struct dentry * dentry,char * buffer,int buflen)43 static char *ns_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 struct inode *inode = d_inode(dentry);
46 struct ns_common *ns = inode->i_private;
47 const struct proc_ns_operations *ns_ops = ns->ops;
48
49 return dynamic_dname(buffer, buflen, "%s:[%lu]",
50 ns_ops->name, inode->i_ino);
51 }
52
53 const struct dentry_operations ns_dentry_operations = {
54 .d_dname = ns_dname,
55 .d_prune = stashed_dentry_prune,
56 };
57
nsfs_evict(struct inode * inode)58 static void nsfs_evict(struct inode *inode)
59 {
60 struct ns_common *ns = inode->i_private;
61
62 __ns_ref_active_put(ns);
63 clear_inode(inode);
64 ns->ops->put(ns);
65 }
66
ns_get_path_cb(struct path * path,ns_get_path_helper_t * ns_get_cb,void * private_data)67 int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb,
68 void *private_data)
69 {
70 struct ns_common *ns;
71
72 ns = ns_get_cb(private_data);
73 if (!ns)
74 return -ENOENT;
75
76 return path_from_stashed(&ns->stashed, nsfs_mnt, ns, path);
77 }
78
79 struct ns_get_path_task_args {
80 const struct proc_ns_operations *ns_ops;
81 struct task_struct *task;
82 };
83
ns_get_path_task(void * private_data)84 static struct ns_common *ns_get_path_task(void *private_data)
85 {
86 struct ns_get_path_task_args *args = private_data;
87
88 return args->ns_ops->get(args->task);
89 }
90
ns_get_path(struct path * path,struct task_struct * task,const struct proc_ns_operations * ns_ops)91 int ns_get_path(struct path *path, struct task_struct *task,
92 const struct proc_ns_operations *ns_ops)
93 {
94 struct ns_get_path_task_args args = {
95 .ns_ops = ns_ops,
96 .task = task,
97 };
98
99 return ns_get_path_cb(path, ns_get_path_task, &args);
100 }
101
102 /**
103 * open_namespace - open a namespace
104 * @ns: the namespace to open
105 *
106 * This will consume a reference to @ns indendent of success or failure.
107 *
108 * Return: A file descriptor on success or a negative error code on failure.
109 */
open_namespace(struct ns_common * ns)110 int open_namespace(struct ns_common *ns)
111 {
112 struct path path __free(path_put) = {};
113 int err;
114
115 /* call first to consume reference */
116 err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
117 if (err < 0)
118 return err;
119
120 return FD_ADD(O_CLOEXEC, dentry_open(&path, O_RDONLY, current_cred()));
121 }
122
open_related_ns(struct ns_common * ns,struct ns_common * (* get_ns)(struct ns_common * ns))123 int open_related_ns(struct ns_common *ns,
124 struct ns_common *(*get_ns)(struct ns_common *ns))
125 {
126 struct ns_common *relative;
127
128 relative = get_ns(ns);
129 if (IS_ERR(relative))
130 return PTR_ERR(relative);
131
132 return open_namespace(relative);
133 }
134 EXPORT_SYMBOL_GPL(open_related_ns);
135
copy_ns_info_to_user(const struct mnt_namespace * mnt_ns,struct mnt_ns_info __user * uinfo,size_t usize,struct mnt_ns_info * kinfo)136 static int copy_ns_info_to_user(const struct mnt_namespace *mnt_ns,
137 struct mnt_ns_info __user *uinfo, size_t usize,
138 struct mnt_ns_info *kinfo)
139 {
140 /*
141 * If userspace and the kernel have the same struct size it can just
142 * be copied. If userspace provides an older struct, only the bits that
143 * userspace knows about will be copied. If userspace provides a new
144 * struct, only the bits that the kernel knows aobut will be copied and
145 * the size value will be set to the size the kernel knows about.
146 */
147 kinfo->size = min(usize, sizeof(*kinfo));
148 kinfo->mnt_ns_id = mnt_ns->ns.ns_id;
149 kinfo->nr_mounts = READ_ONCE(mnt_ns->nr_mounts);
150 /* Subtract the root mount of the mount namespace. */
151 if (kinfo->nr_mounts)
152 kinfo->nr_mounts--;
153
154 if (copy_to_user(uinfo, kinfo, kinfo->size))
155 return -EFAULT;
156
157 return 0;
158 }
159
nsfs_ioctl_valid(unsigned int cmd)160 static bool nsfs_ioctl_valid(unsigned int cmd)
161 {
162 switch (cmd) {
163 case NS_GET_USERNS:
164 case NS_GET_PARENT:
165 case NS_GET_NSTYPE:
166 case NS_GET_OWNER_UID:
167 case NS_GET_MNTNS_ID:
168 case NS_GET_PID_FROM_PIDNS:
169 case NS_GET_TGID_FROM_PIDNS:
170 case NS_GET_PID_IN_PIDNS:
171 case NS_GET_TGID_IN_PIDNS:
172 case NS_GET_ID:
173 return true;
174 }
175
176 /* Extensible ioctls require some extra handling. */
177 switch (_IOC_NR(cmd)) {
178 case _IOC_NR(NS_MNT_GET_INFO):
179 return extensible_ioctl_valid(cmd, NS_MNT_GET_INFO, MNT_NS_INFO_SIZE_VER0);
180 case _IOC_NR(NS_MNT_GET_NEXT):
181 return extensible_ioctl_valid(cmd, NS_MNT_GET_NEXT, MNT_NS_INFO_SIZE_VER0);
182 case _IOC_NR(NS_MNT_GET_PREV):
183 return extensible_ioctl_valid(cmd, NS_MNT_GET_PREV, MNT_NS_INFO_SIZE_VER0);
184 }
185
186 return false;
187 }
188
ns_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)189 static long ns_ioctl(struct file *filp, unsigned int ioctl,
190 unsigned long arg)
191 {
192 struct user_namespace *user_ns;
193 struct pid_namespace *pid_ns;
194 struct task_struct *tsk;
195 struct ns_common *ns;
196 struct mnt_namespace *mnt_ns;
197 bool previous = false;
198 uid_t __user *argp;
199 uid_t uid;
200 int ret;
201
202 if (!nsfs_ioctl_valid(ioctl))
203 return -ENOIOCTLCMD;
204
205 ns = get_proc_ns(file_inode(filp));
206 switch (ioctl) {
207 case NS_GET_USERNS:
208 return open_related_ns(ns, ns_get_owner);
209 case NS_GET_PARENT:
210 if (!ns->ops->get_parent)
211 return -EINVAL;
212 return open_related_ns(ns, ns->ops->get_parent);
213 case NS_GET_NSTYPE:
214 return ns->ns_type;
215 case NS_GET_OWNER_UID:
216 if (ns->ns_type != CLONE_NEWUSER)
217 return -EINVAL;
218 user_ns = container_of(ns, struct user_namespace, ns);
219 argp = (uid_t __user *) arg;
220 uid = from_kuid_munged(current_user_ns(), user_ns->owner);
221 return put_user(uid, argp);
222 case NS_GET_PID_FROM_PIDNS:
223 fallthrough;
224 case NS_GET_TGID_FROM_PIDNS:
225 fallthrough;
226 case NS_GET_PID_IN_PIDNS:
227 fallthrough;
228 case NS_GET_TGID_IN_PIDNS: {
229 if (ns->ns_type != CLONE_NEWPID)
230 return -EINVAL;
231
232 ret = -ESRCH;
233 pid_ns = container_of(ns, struct pid_namespace, ns);
234
235 guard(rcu)();
236
237 if (ioctl == NS_GET_PID_IN_PIDNS ||
238 ioctl == NS_GET_TGID_IN_PIDNS)
239 tsk = find_task_by_vpid(arg);
240 else
241 tsk = find_task_by_pid_ns(arg, pid_ns);
242 if (!tsk)
243 break;
244
245 switch (ioctl) {
246 case NS_GET_PID_FROM_PIDNS:
247 ret = task_pid_vnr(tsk);
248 break;
249 case NS_GET_TGID_FROM_PIDNS:
250 ret = task_tgid_vnr(tsk);
251 break;
252 case NS_GET_PID_IN_PIDNS:
253 ret = task_pid_nr_ns(tsk, pid_ns);
254 break;
255 case NS_GET_TGID_IN_PIDNS:
256 ret = task_tgid_nr_ns(tsk, pid_ns);
257 break;
258 default:
259 ret = 0;
260 break;
261 }
262
263 if (!ret)
264 ret = -ESRCH;
265 return ret;
266 }
267 case NS_GET_MNTNS_ID:
268 if (ns->ns_type != CLONE_NEWNS)
269 return -EINVAL;
270 fallthrough;
271 case NS_GET_ID: {
272 __u64 __user *idp;
273 __u64 id;
274
275 idp = (__u64 __user *)arg;
276 id = ns->ns_id;
277 return put_user(id, idp);
278 }
279 }
280
281 /* extensible ioctls */
282 switch (_IOC_NR(ioctl)) {
283 case _IOC_NR(NS_MNT_GET_INFO): {
284 struct mnt_ns_info kinfo = {};
285 struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg;
286 size_t usize = _IOC_SIZE(ioctl);
287
288 if (ns->ns_type != CLONE_NEWNS)
289 return -EINVAL;
290
291 if (!uinfo)
292 return -EINVAL;
293
294 if (usize < MNT_NS_INFO_SIZE_VER0)
295 return -EINVAL;
296
297 return copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo);
298 }
299 case _IOC_NR(NS_MNT_GET_PREV):
300 previous = true;
301 fallthrough;
302 case _IOC_NR(NS_MNT_GET_NEXT): {
303 struct mnt_ns_info kinfo = {};
304 struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg;
305 struct path path __free(path_put) = {};
306 size_t usize = _IOC_SIZE(ioctl);
307
308 if (ns->ns_type != CLONE_NEWNS)
309 return -EINVAL;
310
311 if (usize < MNT_NS_INFO_SIZE_VER0)
312 return -EINVAL;
313
314 mnt_ns = get_sequential_mnt_ns(to_mnt_ns(ns), previous);
315 if (IS_ERR(mnt_ns))
316 return PTR_ERR(mnt_ns);
317
318 ns = to_ns_common(mnt_ns);
319 /* Transfer ownership of @mnt_ns reference to @path. */
320 ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
321 if (ret)
322 return ret;
323
324 FD_PREPARE(fdf, O_CLOEXEC, dentry_open(&path, O_RDONLY, current_cred()));
325 if (fdf.err)
326 return fdf.err;
327 /*
328 * If @uinfo is passed return all information about the
329 * mount namespace as well.
330 */
331 ret = copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo);
332 if (ret)
333 return ret;
334 ret = fd_publish(fdf);
335 break;
336 }
337 default:
338 ret = -ENOTTY;
339 }
340
341 return ret;
342 }
343
ns_get_name(char * buf,size_t size,struct task_struct * task,const struct proc_ns_operations * ns_ops)344 int ns_get_name(char *buf, size_t size, struct task_struct *task,
345 const struct proc_ns_operations *ns_ops)
346 {
347 struct ns_common *ns;
348 int res = -ENOENT;
349 const char *name;
350 ns = ns_ops->get(task);
351 if (ns) {
352 name = ns_ops->real_ns_name ? : ns_ops->name;
353 res = snprintf(buf, size, "%s:[%u]", name, ns->inum);
354 ns_ops->put(ns);
355 }
356 return res;
357 }
358
proc_ns_file(const struct file * file)359 bool proc_ns_file(const struct file *file)
360 {
361 return file->f_op == &ns_file_operations;
362 }
363
364 /**
365 * ns_match() - Returns true if current namespace matches dev/ino provided.
366 * @ns: current namespace
367 * @dev: dev_t from nsfs that will be matched against current nsfs
368 * @ino: ino_t from nsfs that will be matched against current nsfs
369 *
370 * Return: true if dev and ino matches the current nsfs.
371 */
ns_match(const struct ns_common * ns,dev_t dev,ino_t ino)372 bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino)
373 {
374 return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev);
375 }
376
377
nsfs_show_path(struct seq_file * seq,struct dentry * dentry)378 static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry)
379 {
380 struct inode *inode = d_inode(dentry);
381 const struct ns_common *ns = inode->i_private;
382 const struct proc_ns_operations *ns_ops = ns->ops;
383
384 seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino);
385 return 0;
386 }
387
388 static const struct super_operations nsfs_ops = {
389 .statfs = simple_statfs,
390 .evict_inode = nsfs_evict,
391 .show_path = nsfs_show_path,
392 .drop_inode = inode_just_drop,
393 };
394
nsfs_init_inode(struct inode * inode,void * data)395 static int nsfs_init_inode(struct inode *inode, void *data)
396 {
397 struct ns_common *ns = data;
398
399 inode->i_private = data;
400 inode->i_mode |= S_IRUGO;
401 inode->i_fop = &ns_file_operations;
402 inode->i_ino = ns->inum;
403
404 /*
405 * Bring the namespace subtree back to life if we have to. This
406 * can happen when e.g., all processes using a network namespace
407 * and all namespace files or namespace file bind-mounts have
408 * died but there are still sockets pinning it. The SIOCGSKNS
409 * ioctl on such a socket will resurrect the relevant namespace
410 * subtree.
411 */
412 __ns_ref_active_get(ns);
413 return 0;
414 }
415
nsfs_put_data(void * data)416 static void nsfs_put_data(void *data)
417 {
418 struct ns_common *ns = data;
419 ns->ops->put(ns);
420 }
421
422 static const struct stashed_operations nsfs_stashed_ops = {
423 .init_inode = nsfs_init_inode,
424 .put_data = nsfs_put_data,
425 };
426
427 #define NSFS_FID_SIZE_U32_VER0 (NSFS_FILE_HANDLE_SIZE_VER0 / sizeof(u32))
428 #define NSFS_FID_SIZE_U32_LATEST (NSFS_FILE_HANDLE_SIZE_LATEST / sizeof(u32))
429
nsfs_encode_fh(struct inode * inode,u32 * fh,int * max_len,struct inode * parent)430 static int nsfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
431 struct inode *parent)
432 {
433 struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh;
434 struct ns_common *ns = inode->i_private;
435 int len = *max_len;
436
437 if (parent)
438 return FILEID_INVALID;
439
440 if (len < NSFS_FID_SIZE_U32_VER0) {
441 *max_len = NSFS_FID_SIZE_U32_LATEST;
442 return FILEID_INVALID;
443 } else if (len > NSFS_FID_SIZE_U32_LATEST) {
444 *max_len = NSFS_FID_SIZE_U32_LATEST;
445 }
446
447 fid->ns_id = ns->ns_id;
448 fid->ns_type = ns->ns_type;
449 fid->ns_inum = inode->i_ino;
450 return FILEID_NSFS;
451 }
452
is_current_namespace(struct ns_common * ns)453 bool is_current_namespace(struct ns_common *ns)
454 {
455 switch (ns->ns_type) {
456 #ifdef CONFIG_CGROUPS
457 case CLONE_NEWCGROUP:
458 return current_in_namespace(to_cg_ns(ns));
459 #endif
460 #ifdef CONFIG_IPC_NS
461 case CLONE_NEWIPC:
462 return current_in_namespace(to_ipc_ns(ns));
463 #endif
464 case CLONE_NEWNS:
465 return current_in_namespace(to_mnt_ns(ns));
466 #ifdef CONFIG_NET_NS
467 case CLONE_NEWNET:
468 return current_in_namespace(to_net_ns(ns));
469 #endif
470 #ifdef CONFIG_PID_NS
471 case CLONE_NEWPID:
472 return current_in_namespace(to_pid_ns(ns));
473 #endif
474 #ifdef CONFIG_TIME_NS
475 case CLONE_NEWTIME:
476 return current_in_namespace(to_time_ns(ns));
477 #endif
478 #ifdef CONFIG_USER_NS
479 case CLONE_NEWUSER:
480 return current_in_namespace(to_user_ns(ns));
481 #endif
482 #ifdef CONFIG_UTS_NS
483 case CLONE_NEWUTS:
484 return current_in_namespace(to_uts_ns(ns));
485 #endif
486 default:
487 VFS_WARN_ON_ONCE(true);
488 return false;
489 }
490 }
491
nsfs_fh_to_dentry(struct super_block * sb,struct fid * fh,int fh_len,int fh_type)492 static struct dentry *nsfs_fh_to_dentry(struct super_block *sb, struct fid *fh,
493 int fh_len, int fh_type)
494 {
495 struct path path __free(path_put) = {};
496 struct nsfs_file_handle *fid = (struct nsfs_file_handle *)fh;
497 struct user_namespace *owning_ns = NULL;
498 struct ns_common *ns;
499 int ret;
500
501 if (fh_len < NSFS_FID_SIZE_U32_VER0)
502 return NULL;
503
504 /* Check that any trailing bytes are zero. */
505 if ((fh_len > NSFS_FID_SIZE_U32_LATEST) &&
506 memchr_inv((void *)fid + NSFS_FID_SIZE_U32_LATEST, 0,
507 fh_len - NSFS_FID_SIZE_U32_LATEST))
508 return NULL;
509
510 switch (fh_type) {
511 case FILEID_NSFS:
512 break;
513 default:
514 return NULL;
515 }
516
517 if (!fid->ns_id)
518 return NULL;
519 /* Either both are set or both are unset. */
520 if (!fid->ns_inum != !fid->ns_type)
521 return NULL;
522
523 scoped_guard(rcu) {
524 ns = ns_tree_lookup_rcu(fid->ns_id, fid->ns_type);
525 if (!ns)
526 return NULL;
527
528 VFS_WARN_ON_ONCE(ns->ns_id != fid->ns_id);
529
530 if (fid->ns_inum && (fid->ns_inum != ns->inum))
531 return NULL;
532 if (fid->ns_type && (fid->ns_type != ns->ns_type))
533 return NULL;
534
535 /*
536 * This is racy because we're not actually taking an
537 * active reference. IOW, it could happen that the
538 * namespace becomes inactive after this check.
539 * We don't care because nsfs_init_inode() will just
540 * resurrect the relevant namespace tree for us. If it
541 * has been active here we just allow it's resurrection.
542 * We could try to take an active reference here and
543 * then drop it again. But really, why bother.
544 */
545 if (!ns_get_unless_inactive(ns))
546 return NULL;
547 }
548
549 switch (ns->ns_type) {
550 #ifdef CONFIG_CGROUPS
551 case CLONE_NEWCGROUP:
552 if (!current_in_namespace(to_cg_ns(ns)))
553 owning_ns = to_cg_ns(ns)->user_ns;
554 break;
555 #endif
556 #ifdef CONFIG_IPC_NS
557 case CLONE_NEWIPC:
558 if (!current_in_namespace(to_ipc_ns(ns)))
559 owning_ns = to_ipc_ns(ns)->user_ns;
560 break;
561 #endif
562 case CLONE_NEWNS:
563 if (!current_in_namespace(to_mnt_ns(ns)))
564 owning_ns = to_mnt_ns(ns)->user_ns;
565 break;
566 #ifdef CONFIG_NET_NS
567 case CLONE_NEWNET:
568 if (!current_in_namespace(to_net_ns(ns)))
569 owning_ns = to_net_ns(ns)->user_ns;
570 break;
571 #endif
572 #ifdef CONFIG_PID_NS
573 case CLONE_NEWPID:
574 if (!current_in_namespace(to_pid_ns(ns))) {
575 owning_ns = to_pid_ns(ns)->user_ns;
576 } else if (!READ_ONCE(to_pid_ns(ns)->child_reaper)) {
577 ns->ops->put(ns);
578 return ERR_PTR(-EPERM);
579 }
580 break;
581 #endif
582 #ifdef CONFIG_TIME_NS
583 case CLONE_NEWTIME:
584 if (!current_in_namespace(to_time_ns(ns)))
585 owning_ns = to_time_ns(ns)->user_ns;
586 break;
587 #endif
588 #ifdef CONFIG_USER_NS
589 case CLONE_NEWUSER:
590 if (!current_in_namespace(to_user_ns(ns)))
591 owning_ns = to_user_ns(ns);
592 break;
593 #endif
594 #ifdef CONFIG_UTS_NS
595 case CLONE_NEWUTS:
596 if (!current_in_namespace(to_uts_ns(ns)))
597 owning_ns = to_uts_ns(ns)->user_ns;
598 break;
599 #endif
600 default:
601 return ERR_PTR(-EOPNOTSUPP);
602 }
603
604 if (owning_ns && !ns_capable(owning_ns, CAP_SYS_ADMIN)) {
605 ns->ops->put(ns);
606 return ERR_PTR(-EPERM);
607 }
608
609 /* path_from_stashed() unconditionally consumes the reference. */
610 ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path);
611 if (ret)
612 return ERR_PTR(ret);
613
614 return no_free_ptr(path.dentry);
615 }
616
nsfs_export_permission(struct handle_to_path_ctx * ctx,unsigned int oflags)617 static int nsfs_export_permission(struct handle_to_path_ctx *ctx,
618 unsigned int oflags)
619 {
620 /* nsfs_fh_to_dentry() performs all permission checks. */
621 return 0;
622 }
623
nsfs_export_open(const struct path * path,unsigned int oflags)624 static struct file *nsfs_export_open(const struct path *path, unsigned int oflags)
625 {
626 return file_open_root(path, "", oflags, 0);
627 }
628
629 static const struct export_operations nsfs_export_operations = {
630 .encode_fh = nsfs_encode_fh,
631 .fh_to_dentry = nsfs_fh_to_dentry,
632 .open = nsfs_export_open,
633 .permission = nsfs_export_permission,
634 };
635
nsfs_init_fs_context(struct fs_context * fc)636 static int nsfs_init_fs_context(struct fs_context *fc)
637 {
638 struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC);
639 if (!ctx)
640 return -ENOMEM;
641 fc->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
642 ctx->s_d_flags |= DCACHE_DONTCACHE;
643 ctx->ops = &nsfs_ops;
644 ctx->eops = &nsfs_export_operations;
645 ctx->dops = &ns_dentry_operations;
646 fc->s_fs_info = (void *)&nsfs_stashed_ops;
647 return 0;
648 }
649
650 static struct file_system_type nsfs = {
651 .name = "nsfs",
652 .init_fs_context = nsfs_init_fs_context,
653 .kill_sb = kill_anon_super,
654 };
655
nsfs_init(void)656 void __init nsfs_init(void)
657 {
658 nsfs_mnt = kern_mount(&nsfs);
659 if (IS_ERR(nsfs_mnt))
660 panic("can't set nsfs up\n");
661 nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER;
662 nsfs_root_path.mnt = nsfs_mnt;
663 nsfs_root_path.dentry = nsfs_mnt->mnt_root;
664 }
665
nsproxy_ns_active_get(struct nsproxy * ns)666 void nsproxy_ns_active_get(struct nsproxy *ns)
667 {
668 ns_ref_active_get(ns->mnt_ns);
669 ns_ref_active_get(ns->uts_ns);
670 ns_ref_active_get(ns->ipc_ns);
671 ns_ref_active_get(ns->pid_ns_for_children);
672 ns_ref_active_get(ns->cgroup_ns);
673 ns_ref_active_get(ns->net_ns);
674 ns_ref_active_get(ns->time_ns);
675 ns_ref_active_get(ns->time_ns_for_children);
676 }
677
nsproxy_ns_active_put(struct nsproxy * ns)678 void nsproxy_ns_active_put(struct nsproxy *ns)
679 {
680 ns_ref_active_put(ns->mnt_ns);
681 ns_ref_active_put(ns->uts_ns);
682 ns_ref_active_put(ns->ipc_ns);
683 ns_ref_active_put(ns->pid_ns_for_children);
684 ns_ref_active_put(ns->cgroup_ns);
685 ns_ref_active_put(ns->net_ns);
686 ns_ref_active_put(ns->time_ns);
687 ns_ref_active_put(ns->time_ns_for_children);
688 }
689