1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> 4 */ 5 6 /* 7 * fsnotify inode mark locking/lifetime/and refcnting 8 * 9 * REFCNT: 10 * The group->recnt and mark->refcnt tell how many "things" in the kernel 11 * currently are referencing the objects. Both kind of objects typically will 12 * live inside the kernel with a refcnt of 2, one for its creation and one for 13 * the reference a group and a mark hold to each other. 14 * If you are holding the appropriate locks, you can take a reference and the 15 * object itself is guaranteed to survive until the reference is dropped. 16 * 17 * LOCKING: 18 * There are 3 locks involved with fsnotify inode marks and they MUST be taken 19 * in order as follows: 20 * 21 * group->mark_mutex 22 * mark->lock 23 * mark->connector->lock 24 * 25 * group->mark_mutex protects the marks_list anchored inside a given group and 26 * each mark is hooked via the g_list. It also protects the groups private 27 * data (i.e group limits). 28 29 * mark->lock protects the marks attributes like its masks and flags. 30 * Furthermore it protects the access to a reference of the group that the mark 31 * is assigned to as well as the access to a reference of the inode/vfsmount 32 * that is being watched by the mark. 33 * 34 * mark->connector->lock protects the list of marks anchored inside an 35 * inode / vfsmount and each mark is hooked via the i_list. 36 * 37 * A list of notification marks relating to inode / mnt is contained in 38 * fsnotify_mark_connector. That structure is alive as long as there are any 39 * marks in the list and is also protected by fsnotify_mark_srcu. A mark gets 40 * detached from fsnotify_mark_connector when last reference to the mark is 41 * dropped. Thus having mark reference is enough to protect mark->connector 42 * pointer and to make sure fsnotify_mark_connector cannot disappear. Also 43 * because we remove mark from g_list before dropping mark reference associated 44 * with that, any mark found through g_list is guaranteed to have 45 * mark->connector set until we drop group->mark_mutex. 46 * 47 * LIFETIME: 48 * Inode marks survive between when they are added to an inode and when their 49 * refcnt==0. Marks are also protected by fsnotify_mark_srcu. 50 * 51 * The inode mark can be cleared for a number of different reasons including: 52 * - The inode is unlinked for the last time. (fsnotify_inode_remove) 53 * - The inode is being evicted from cache. (fsnotify_inode_delete) 54 * - The fs the inode is on is unmounted. (fsnotify_inode_delete/fsnotify_unmount_inodes) 55 * - Something explicitly requests that it be removed. (fsnotify_destroy_mark) 56 * - The fsnotify_group associated with the mark is going away and all such marks 57 * need to be cleaned up. (fsnotify_clear_marks_by_group) 58 * 59 * This has the very interesting property of being able to run concurrently with 60 * any (or all) other directions. 61 */ 62 63 #include <linux/fs.h> 64 #include <linux/init.h> 65 #include <linux/kernel.h> 66 #include <linux/kthread.h> 67 #include <linux/module.h> 68 #include <linux/mutex.h> 69 #include <linux/slab.h> 70 #include <linux/spinlock.h> 71 #include <linux/srcu.h> 72 #include <linux/ratelimit.h> 73 74 #include <linux/atomic.h> 75 76 #include <linux/fsnotify_backend.h> 77 #include "fsnotify.h" 78 79 #define FSNOTIFY_REAPER_DELAY (1) /* 1 jiffy */ 80 81 struct srcu_struct fsnotify_mark_srcu; 82 struct kmem_cache *fsnotify_mark_connector_cachep; 83 84 static DEFINE_SPINLOCK(destroy_lock); 85 static LIST_HEAD(destroy_list); 86 static struct fsnotify_mark_connector *connector_destroy_list; 87 88 static void fsnotify_mark_destroy_workfn(struct work_struct *work); 89 static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn); 90 91 static void fsnotify_connector_destroy_workfn(struct work_struct *work); 92 static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn); 93 94 void fsnotify_get_mark(struct fsnotify_mark *mark) 95 { 96 WARN_ON_ONCE(!refcount_read(&mark->refcnt)); 97 refcount_inc(&mark->refcnt); 98 } 99 100 static fsnotify_connp_t *fsnotify_object_connp(void *obj, 101 enum fsnotify_obj_type obj_type) 102 { 103 switch (obj_type) { 104 case FSNOTIFY_OBJ_TYPE_INODE: 105 return &((struct inode *)obj)->i_fsnotify_marks; 106 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 107 return &real_mount(obj)->mnt_fsnotify_marks; 108 case FSNOTIFY_OBJ_TYPE_SB: 109 return fsnotify_sb_marks(obj); 110 default: 111 return NULL; 112 } 113 } 114 115 static __u32 *fsnotify_conn_mask_p(struct fsnotify_mark_connector *conn) 116 { 117 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) 118 return &fsnotify_conn_inode(conn)->i_fsnotify_mask; 119 else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) 120 return &fsnotify_conn_mount(conn)->mnt_fsnotify_mask; 121 else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) 122 return &fsnotify_conn_sb(conn)->s_fsnotify_mask; 123 return NULL; 124 } 125 126 __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn) 127 { 128 if (WARN_ON(!fsnotify_valid_obj_type(conn->type))) 129 return 0; 130 131 return *fsnotify_conn_mask_p(conn); 132 } 133 134 static void fsnotify_get_sb_watched_objects(struct super_block *sb) 135 { 136 atomic_long_inc(fsnotify_sb_watched_objects(sb)); 137 } 138 139 static void fsnotify_put_sb_watched_objects(struct super_block *sb) 140 { 141 if (atomic_long_dec_and_test(fsnotify_sb_watched_objects(sb))) 142 wake_up_var(fsnotify_sb_watched_objects(sb)); 143 } 144 145 static void fsnotify_get_inode_ref(struct inode *inode) 146 { 147 ihold(inode); 148 fsnotify_get_sb_watched_objects(inode->i_sb); 149 } 150 151 static void fsnotify_put_inode_ref(struct inode *inode) 152 { 153 fsnotify_put_sb_watched_objects(inode->i_sb); 154 iput(inode); 155 } 156 157 /* 158 * Grab or drop watched objects reference depending on whether the connector 159 * is attached and has any marks attached. 160 */ 161 static void fsnotify_update_sb_watchers(struct super_block *sb, 162 struct fsnotify_mark_connector *conn) 163 { 164 struct fsnotify_sb_info *sbinfo = fsnotify_sb_info(sb); 165 bool is_watched = conn->flags & FSNOTIFY_CONN_FLAG_IS_WATCHED; 166 struct fsnotify_mark *first_mark = NULL; 167 unsigned int highest_prio = 0; 168 169 if (conn->obj) 170 first_mark = hlist_entry_safe(conn->list.first, 171 struct fsnotify_mark, obj_list); 172 if (first_mark) 173 highest_prio = first_mark->group->priority; 174 if (WARN_ON(highest_prio >= __FSNOTIFY_PRIO_NUM)) 175 highest_prio = 0; 176 177 /* 178 * If the highest priority of group watching this object is prio, 179 * then watched object has a reference on counters [0..prio]. 180 * Update priority >= 1 watched objects counters. 181 */ 182 for (unsigned int p = conn->prio + 1; p <= highest_prio; p++) 183 atomic_long_inc(&sbinfo->watched_objects[p]); 184 for (unsigned int p = conn->prio; p > highest_prio; p--) 185 atomic_long_dec(&sbinfo->watched_objects[p]); 186 conn->prio = highest_prio; 187 188 /* Update priority >= 0 (a.k.a total) watched objects counter */ 189 BUILD_BUG_ON(FSNOTIFY_PRIO_NORMAL != 0); 190 if (first_mark && !is_watched) { 191 conn->flags |= FSNOTIFY_CONN_FLAG_IS_WATCHED; 192 fsnotify_get_sb_watched_objects(sb); 193 } else if (!first_mark && is_watched) { 194 conn->flags &= ~FSNOTIFY_CONN_FLAG_IS_WATCHED; 195 fsnotify_put_sb_watched_objects(sb); 196 } 197 } 198 199 /* 200 * Grab or drop inode reference for the connector if needed. 201 * 202 * When it's time to drop the reference, we only clear the HAS_IREF flag and 203 * return the inode object. fsnotify_drop_object() will be resonsible for doing 204 * iput() outside of spinlocks. This happens when last mark that wanted iref is 205 * detached. 206 */ 207 static struct inode *fsnotify_update_iref(struct fsnotify_mark_connector *conn, 208 bool want_iref) 209 { 210 bool has_iref = conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF; 211 struct inode *inode = NULL; 212 213 if (conn->type != FSNOTIFY_OBJ_TYPE_INODE || 214 want_iref == has_iref) 215 return NULL; 216 217 if (want_iref) { 218 /* Pin inode if any mark wants inode refcount held */ 219 fsnotify_get_inode_ref(fsnotify_conn_inode(conn)); 220 conn->flags |= FSNOTIFY_CONN_FLAG_HAS_IREF; 221 } else { 222 /* Unpin inode after detach of last mark that wanted iref */ 223 inode = fsnotify_conn_inode(conn); 224 conn->flags &= ~FSNOTIFY_CONN_FLAG_HAS_IREF; 225 } 226 227 return inode; 228 } 229 230 static void *__fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) 231 { 232 u32 new_mask = 0; 233 bool want_iref = false; 234 struct fsnotify_mark *mark; 235 236 assert_spin_locked(&conn->lock); 237 /* We can get detached connector here when inode is getting unlinked. */ 238 if (!fsnotify_valid_obj_type(conn->type)) 239 return NULL; 240 hlist_for_each_entry(mark, &conn->list, obj_list) { 241 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) 242 continue; 243 new_mask |= fsnotify_calc_mask(mark); 244 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE && 245 !(mark->flags & FSNOTIFY_MARK_FLAG_NO_IREF)) 246 want_iref = true; 247 } 248 *fsnotify_conn_mask_p(conn) = new_mask; 249 250 return fsnotify_update_iref(conn, want_iref); 251 } 252 253 /* 254 * Calculate mask of events for a list of marks. The caller must make sure 255 * connector and connector->obj cannot disappear under us. Callers achieve 256 * this by holding a mark->lock or mark->group->mark_mutex for a mark on this 257 * list. 258 */ 259 void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) 260 { 261 if (!conn) 262 return; 263 264 spin_lock(&conn->lock); 265 __fsnotify_recalc_mask(conn); 266 spin_unlock(&conn->lock); 267 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) 268 __fsnotify_update_child_dentry_flags( 269 fsnotify_conn_inode(conn)); 270 } 271 272 /* Free all connectors queued for freeing once SRCU period ends */ 273 static void fsnotify_connector_destroy_workfn(struct work_struct *work) 274 { 275 struct fsnotify_mark_connector *conn, *free; 276 277 spin_lock(&destroy_lock); 278 conn = connector_destroy_list; 279 connector_destroy_list = NULL; 280 spin_unlock(&destroy_lock); 281 282 synchronize_srcu(&fsnotify_mark_srcu); 283 while (conn) { 284 free = conn; 285 conn = conn->destroy_next; 286 kmem_cache_free(fsnotify_mark_connector_cachep, free); 287 } 288 } 289 290 static void *fsnotify_detach_connector_from_object( 291 struct fsnotify_mark_connector *conn, 292 unsigned int *type) 293 { 294 fsnotify_connp_t *connp = fsnotify_object_connp(conn->obj, conn->type); 295 struct super_block *sb = fsnotify_connector_sb(conn); 296 struct inode *inode = NULL; 297 298 *type = conn->type; 299 if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) 300 return NULL; 301 302 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) { 303 inode = fsnotify_conn_inode(conn); 304 inode->i_fsnotify_mask = 0; 305 306 /* Unpin inode when detaching from connector */ 307 if (!(conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF)) 308 inode = NULL; 309 } else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) { 310 fsnotify_conn_mount(conn)->mnt_fsnotify_mask = 0; 311 } else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) { 312 fsnotify_conn_sb(conn)->s_fsnotify_mask = 0; 313 } 314 315 rcu_assign_pointer(*connp, NULL); 316 conn->obj = NULL; 317 conn->type = FSNOTIFY_OBJ_TYPE_DETACHED; 318 fsnotify_update_sb_watchers(sb, conn); 319 320 return inode; 321 } 322 323 static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark) 324 { 325 struct fsnotify_group *group = mark->group; 326 327 if (WARN_ON_ONCE(!group)) 328 return; 329 group->ops->free_mark(mark); 330 fsnotify_put_group(group); 331 } 332 333 /* Drop object reference originally held by a connector */ 334 static void fsnotify_drop_object(unsigned int type, void *objp) 335 { 336 if (!objp) 337 return; 338 /* Currently only inode references are passed to be dropped */ 339 if (WARN_ON_ONCE(type != FSNOTIFY_OBJ_TYPE_INODE)) 340 return; 341 fsnotify_put_inode_ref(objp); 342 } 343 344 void fsnotify_put_mark(struct fsnotify_mark *mark) 345 { 346 struct fsnotify_mark_connector *conn = READ_ONCE(mark->connector); 347 void *objp = NULL; 348 unsigned int type = FSNOTIFY_OBJ_TYPE_DETACHED; 349 bool free_conn = false; 350 351 /* Catch marks that were actually never attached to object */ 352 if (!conn) { 353 if (refcount_dec_and_test(&mark->refcnt)) 354 fsnotify_final_mark_destroy(mark); 355 return; 356 } 357 358 /* 359 * We have to be careful so that traversals of obj_list under lock can 360 * safely grab mark reference. 361 */ 362 if (!refcount_dec_and_lock(&mark->refcnt, &conn->lock)) 363 return; 364 365 hlist_del_init_rcu(&mark->obj_list); 366 if (hlist_empty(&conn->list)) { 367 objp = fsnotify_detach_connector_from_object(conn, &type); 368 free_conn = true; 369 } else { 370 struct super_block *sb = fsnotify_connector_sb(conn); 371 372 /* Update watched objects after detaching mark */ 373 if (sb) 374 fsnotify_update_sb_watchers(sb, conn); 375 objp = __fsnotify_recalc_mask(conn); 376 type = conn->type; 377 } 378 WRITE_ONCE(mark->connector, NULL); 379 spin_unlock(&conn->lock); 380 381 fsnotify_drop_object(type, objp); 382 383 if (free_conn) { 384 spin_lock(&destroy_lock); 385 conn->destroy_next = connector_destroy_list; 386 connector_destroy_list = conn; 387 spin_unlock(&destroy_lock); 388 queue_work(system_unbound_wq, &connector_reaper_work); 389 } 390 /* 391 * Note that we didn't update flags telling whether inode cares about 392 * what's happening with children. We update these flags from 393 * __fsnotify_parent() lazily when next event happens on one of our 394 * children. 395 */ 396 spin_lock(&destroy_lock); 397 list_add(&mark->g_list, &destroy_list); 398 spin_unlock(&destroy_lock); 399 queue_delayed_work(system_unbound_wq, &reaper_work, 400 FSNOTIFY_REAPER_DELAY); 401 } 402 EXPORT_SYMBOL_GPL(fsnotify_put_mark); 403 404 /* 405 * Get mark reference when we found the mark via lockless traversal of object 406 * list. Mark can be already removed from the list by now and on its way to be 407 * destroyed once SRCU period ends. 408 * 409 * Also pin the group so it doesn't disappear under us. 410 */ 411 static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark) 412 { 413 if (!mark) 414 return true; 415 416 if (refcount_inc_not_zero(&mark->refcnt)) { 417 spin_lock(&mark->lock); 418 if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) { 419 /* mark is attached, group is still alive then */ 420 atomic_inc(&mark->group->user_waits); 421 spin_unlock(&mark->lock); 422 return true; 423 } 424 spin_unlock(&mark->lock); 425 fsnotify_put_mark(mark); 426 } 427 return false; 428 } 429 430 /* 431 * Puts marks and wakes up group destruction if necessary. 432 * 433 * Pairs with fsnotify_get_mark_safe() 434 */ 435 static void fsnotify_put_mark_wake(struct fsnotify_mark *mark) 436 { 437 if (mark) { 438 struct fsnotify_group *group = mark->group; 439 440 fsnotify_put_mark(mark); 441 /* 442 * We abuse notification_waitq on group shutdown for waiting for 443 * all marks pinned when waiting for userspace. 444 */ 445 if (atomic_dec_and_test(&group->user_waits) && group->shutdown) 446 wake_up(&group->notification_waitq); 447 } 448 } 449 450 bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info) 451 __releases(&fsnotify_mark_srcu) 452 { 453 int type; 454 455 fsnotify_foreach_iter_type(type) { 456 /* This can fail if mark is being removed */ 457 if (!fsnotify_get_mark_safe(iter_info->marks[type])) { 458 __release(&fsnotify_mark_srcu); 459 goto fail; 460 } 461 } 462 463 /* 464 * Now that both marks are pinned by refcount in the inode / vfsmount 465 * lists, we can drop SRCU lock, and safely resume the list iteration 466 * once userspace returns. 467 */ 468 srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx); 469 470 return true; 471 472 fail: 473 for (type--; type >= 0; type--) 474 fsnotify_put_mark_wake(iter_info->marks[type]); 475 return false; 476 } 477 478 void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info) 479 __acquires(&fsnotify_mark_srcu) 480 { 481 int type; 482 483 iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu); 484 fsnotify_foreach_iter_type(type) 485 fsnotify_put_mark_wake(iter_info->marks[type]); 486 } 487 488 /* 489 * Mark mark as detached, remove it from group list. Mark still stays in object 490 * list until its last reference is dropped. Note that we rely on mark being 491 * removed from group list before corresponding reference to it is dropped. In 492 * particular we rely on mark->connector being valid while we hold 493 * group->mark_mutex if we found the mark through g_list. 494 * 495 * Must be called with group->mark_mutex held. The caller must either hold 496 * reference to the mark or be protected by fsnotify_mark_srcu. 497 */ 498 void fsnotify_detach_mark(struct fsnotify_mark *mark) 499 { 500 fsnotify_group_assert_locked(mark->group); 501 WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) && 502 refcount_read(&mark->refcnt) < 1 + 503 !!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)); 504 505 spin_lock(&mark->lock); 506 /* something else already called this function on this mark */ 507 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { 508 spin_unlock(&mark->lock); 509 return; 510 } 511 mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED; 512 list_del_init(&mark->g_list); 513 spin_unlock(&mark->lock); 514 515 /* Drop mark reference acquired in fsnotify_add_mark_locked() */ 516 fsnotify_put_mark(mark); 517 } 518 519 /* 520 * Free fsnotify mark. The mark is actually only marked as being freed. The 521 * freeing is actually happening only once last reference to the mark is 522 * dropped from a workqueue which first waits for srcu period end. 523 * 524 * Caller must have a reference to the mark or be protected by 525 * fsnotify_mark_srcu. 526 */ 527 void fsnotify_free_mark(struct fsnotify_mark *mark) 528 { 529 struct fsnotify_group *group = mark->group; 530 531 spin_lock(&mark->lock); 532 /* something else already called this function on this mark */ 533 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) { 534 spin_unlock(&mark->lock); 535 return; 536 } 537 mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE; 538 spin_unlock(&mark->lock); 539 540 /* 541 * Some groups like to know that marks are being freed. This is a 542 * callback to the group function to let it know that this mark 543 * is being freed. 544 */ 545 if (group->ops->freeing_mark) 546 group->ops->freeing_mark(mark, group); 547 } 548 549 void fsnotify_destroy_mark(struct fsnotify_mark *mark, 550 struct fsnotify_group *group) 551 { 552 fsnotify_group_lock(group); 553 fsnotify_detach_mark(mark); 554 fsnotify_group_unlock(group); 555 fsnotify_free_mark(mark); 556 } 557 EXPORT_SYMBOL_GPL(fsnotify_destroy_mark); 558 559 /* 560 * Sorting function for lists of fsnotify marks. 561 * 562 * Fanotify supports different notification classes (reflected as priority of 563 * notification group). Events shall be passed to notification groups in 564 * decreasing priority order. To achieve this marks in notification lists for 565 * inodes and vfsmounts are sorted so that priorities of corresponding groups 566 * are descending. 567 * 568 * Furthermore correct handling of the ignore mask requires processing inode 569 * and vfsmount marks of each group together. Using the group address as 570 * further sort criterion provides a unique sorting order and thus we can 571 * merge inode and vfsmount lists of marks in linear time and find groups 572 * present in both lists. 573 * 574 * A return value of 1 signifies that b has priority over a. 575 * A return value of 0 signifies that the two marks have to be handled together. 576 * A return value of -1 signifies that a has priority over b. 577 */ 578 int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b) 579 { 580 if (a == b) 581 return 0; 582 if (!a) 583 return 1; 584 if (!b) 585 return -1; 586 if (a->priority < b->priority) 587 return 1; 588 if (a->priority > b->priority) 589 return -1; 590 if (a < b) 591 return 1; 592 return -1; 593 } 594 595 static int fsnotify_attach_info_to_sb(struct super_block *sb) 596 { 597 struct fsnotify_sb_info *sbinfo; 598 599 /* sb info is freed on fsnotify_sb_delete() */ 600 sbinfo = kzalloc(sizeof(*sbinfo), GFP_KERNEL); 601 if (!sbinfo) 602 return -ENOMEM; 603 604 /* 605 * cmpxchg() provides the barrier so that callers of fsnotify_sb_info() 606 * will observe an initialized structure 607 */ 608 if (cmpxchg(&sb->s_fsnotify_info, NULL, sbinfo)) { 609 /* Someone else created sbinfo for us */ 610 kfree(sbinfo); 611 } 612 return 0; 613 } 614 615 static int fsnotify_attach_connector_to_object(fsnotify_connp_t *connp, 616 void *obj, unsigned int obj_type) 617 { 618 struct fsnotify_mark_connector *conn; 619 620 conn = kmem_cache_alloc(fsnotify_mark_connector_cachep, GFP_KERNEL); 621 if (!conn) 622 return -ENOMEM; 623 spin_lock_init(&conn->lock); 624 INIT_HLIST_HEAD(&conn->list); 625 conn->flags = 0; 626 conn->prio = 0; 627 conn->type = obj_type; 628 conn->obj = obj; 629 630 /* 631 * cmpxchg() provides the barrier so that readers of *connp can see 632 * only initialized structure 633 */ 634 if (cmpxchg(connp, NULL, conn)) { 635 /* Someone else created list structure for us */ 636 kmem_cache_free(fsnotify_mark_connector_cachep, conn); 637 } 638 return 0; 639 } 640 641 /* 642 * Get mark connector, make sure it is alive and return with its lock held. 643 * This is for users that get connector pointer from inode or mount. Users that 644 * hold reference to a mark on the list may directly lock connector->lock as 645 * they are sure list cannot go away under them. 646 */ 647 static struct fsnotify_mark_connector *fsnotify_grab_connector( 648 fsnotify_connp_t *connp) 649 { 650 struct fsnotify_mark_connector *conn; 651 int idx; 652 653 idx = srcu_read_lock(&fsnotify_mark_srcu); 654 conn = srcu_dereference(*connp, &fsnotify_mark_srcu); 655 if (!conn) 656 goto out; 657 spin_lock(&conn->lock); 658 if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) { 659 spin_unlock(&conn->lock); 660 srcu_read_unlock(&fsnotify_mark_srcu, idx); 661 return NULL; 662 } 663 out: 664 srcu_read_unlock(&fsnotify_mark_srcu, idx); 665 return conn; 666 } 667 668 /* 669 * Add mark into proper place in given list of marks. These marks may be used 670 * for the fsnotify backend to determine which event types should be delivered 671 * to which group and for which inodes. These marks are ordered according to 672 * priority, highest number first, and then by the group's location in memory. 673 */ 674 static int fsnotify_add_mark_list(struct fsnotify_mark *mark, void *obj, 675 unsigned int obj_type, int add_flags) 676 { 677 struct super_block *sb = fsnotify_object_sb(obj, obj_type); 678 struct fsnotify_mark *lmark, *last = NULL; 679 struct fsnotify_mark_connector *conn; 680 fsnotify_connp_t *connp; 681 int cmp; 682 int err = 0; 683 684 if (WARN_ON(!fsnotify_valid_obj_type(obj_type))) 685 return -EINVAL; 686 687 /* 688 * Attach the sb info before attaching a connector to any object on sb. 689 * The sb info will remain attached as long as sb lives. 690 */ 691 if (!fsnotify_sb_info(sb)) { 692 err = fsnotify_attach_info_to_sb(sb); 693 if (err) 694 return err; 695 } 696 697 connp = fsnotify_object_connp(obj, obj_type); 698 restart: 699 spin_lock(&mark->lock); 700 conn = fsnotify_grab_connector(connp); 701 if (!conn) { 702 spin_unlock(&mark->lock); 703 err = fsnotify_attach_connector_to_object(connp, obj, obj_type); 704 if (err) 705 return err; 706 goto restart; 707 } 708 709 /* is mark the first mark? */ 710 if (hlist_empty(&conn->list)) { 711 hlist_add_head_rcu(&mark->obj_list, &conn->list); 712 goto added; 713 } 714 715 /* should mark be in the middle of the current list? */ 716 hlist_for_each_entry(lmark, &conn->list, obj_list) { 717 last = lmark; 718 719 if ((lmark->group == mark->group) && 720 (lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) && 721 !(mark->group->flags & FSNOTIFY_GROUP_DUPS)) { 722 err = -EEXIST; 723 goto out_err; 724 } 725 726 cmp = fsnotify_compare_groups(lmark->group, mark->group); 727 if (cmp >= 0) { 728 hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list); 729 goto added; 730 } 731 } 732 733 BUG_ON(last == NULL); 734 /* mark should be the last entry. last is the current last entry */ 735 hlist_add_behind_rcu(&mark->obj_list, &last->obj_list); 736 added: 737 fsnotify_update_sb_watchers(sb, conn); 738 /* 739 * Since connector is attached to object using cmpxchg() we are 740 * guaranteed that connector initialization is fully visible by anyone 741 * seeing mark->connector set. 742 */ 743 WRITE_ONCE(mark->connector, conn); 744 out_err: 745 spin_unlock(&conn->lock); 746 spin_unlock(&mark->lock); 747 return err; 748 } 749 750 /* 751 * Attach an initialized mark to a given group and fs object. 752 * These marks may be used for the fsnotify backend to determine which 753 * event types should be delivered to which group. 754 */ 755 int fsnotify_add_mark_locked(struct fsnotify_mark *mark, 756 void *obj, unsigned int obj_type, 757 int add_flags) 758 { 759 struct fsnotify_group *group = mark->group; 760 int ret = 0; 761 762 fsnotify_group_assert_locked(group); 763 764 /* 765 * LOCKING ORDER!!!! 766 * group->mark_mutex 767 * mark->lock 768 * mark->connector->lock 769 */ 770 spin_lock(&mark->lock); 771 mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED; 772 773 list_add(&mark->g_list, &group->marks_list); 774 fsnotify_get_mark(mark); /* for g_list */ 775 spin_unlock(&mark->lock); 776 777 ret = fsnotify_add_mark_list(mark, obj, obj_type, add_flags); 778 if (ret) 779 goto err; 780 781 fsnotify_recalc_mask(mark->connector); 782 783 return ret; 784 err: 785 spin_lock(&mark->lock); 786 mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE | 787 FSNOTIFY_MARK_FLAG_ATTACHED); 788 list_del_init(&mark->g_list); 789 spin_unlock(&mark->lock); 790 791 fsnotify_put_mark(mark); 792 return ret; 793 } 794 795 int fsnotify_add_mark(struct fsnotify_mark *mark, void *obj, 796 unsigned int obj_type, int add_flags) 797 { 798 int ret; 799 struct fsnotify_group *group = mark->group; 800 801 fsnotify_group_lock(group); 802 ret = fsnotify_add_mark_locked(mark, obj, obj_type, add_flags); 803 fsnotify_group_unlock(group); 804 return ret; 805 } 806 EXPORT_SYMBOL_GPL(fsnotify_add_mark); 807 808 /* 809 * Given a list of marks, find the mark associated with given group. If found 810 * take a reference to that mark and return it, else return NULL. 811 */ 812 struct fsnotify_mark *fsnotify_find_mark(void *obj, unsigned int obj_type, 813 struct fsnotify_group *group) 814 { 815 fsnotify_connp_t *connp = fsnotify_object_connp(obj, obj_type); 816 struct fsnotify_mark_connector *conn; 817 struct fsnotify_mark *mark; 818 819 if (!connp) 820 return NULL; 821 822 conn = fsnotify_grab_connector(connp); 823 if (!conn) 824 return NULL; 825 826 hlist_for_each_entry(mark, &conn->list, obj_list) { 827 if (mark->group == group && 828 (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { 829 fsnotify_get_mark(mark); 830 spin_unlock(&conn->lock); 831 return mark; 832 } 833 } 834 spin_unlock(&conn->lock); 835 return NULL; 836 } 837 EXPORT_SYMBOL_GPL(fsnotify_find_mark); 838 839 /* Clear any marks in a group with given type mask */ 840 void fsnotify_clear_marks_by_group(struct fsnotify_group *group, 841 unsigned int obj_type) 842 { 843 struct fsnotify_mark *lmark, *mark; 844 LIST_HEAD(to_free); 845 struct list_head *head = &to_free; 846 847 /* Skip selection step if we want to clear all marks. */ 848 if (obj_type == FSNOTIFY_OBJ_TYPE_ANY) { 849 head = &group->marks_list; 850 goto clear; 851 } 852 /* 853 * We have to be really careful here. Anytime we drop mark_mutex, e.g. 854 * fsnotify_clear_marks_by_inode() can come and free marks. Even in our 855 * to_free list so we have to use mark_mutex even when accessing that 856 * list. And freeing mark requires us to drop mark_mutex. So we can 857 * reliably free only the first mark in the list. That's why we first 858 * move marks to free to to_free list in one go and then free marks in 859 * to_free list one by one. 860 */ 861 fsnotify_group_lock(group); 862 list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) { 863 if (mark->connector->type == obj_type) 864 list_move(&mark->g_list, &to_free); 865 } 866 fsnotify_group_unlock(group); 867 868 clear: 869 while (1) { 870 fsnotify_group_lock(group); 871 if (list_empty(head)) { 872 fsnotify_group_unlock(group); 873 break; 874 } 875 mark = list_first_entry(head, struct fsnotify_mark, g_list); 876 fsnotify_get_mark(mark); 877 fsnotify_detach_mark(mark); 878 fsnotify_group_unlock(group); 879 fsnotify_free_mark(mark); 880 fsnotify_put_mark(mark); 881 } 882 } 883 884 /* Destroy all marks attached to an object via connector */ 885 void fsnotify_destroy_marks(fsnotify_connp_t *connp) 886 { 887 struct fsnotify_mark_connector *conn; 888 struct fsnotify_mark *mark, *old_mark = NULL; 889 void *objp; 890 unsigned int type; 891 892 conn = fsnotify_grab_connector(connp); 893 if (!conn) 894 return; 895 /* 896 * We have to be careful since we can race with e.g. 897 * fsnotify_clear_marks_by_group() and once we drop the conn->lock, the 898 * list can get modified. However we are holding mark reference and 899 * thus our mark cannot be removed from obj_list so we can continue 900 * iteration after regaining conn->lock. 901 */ 902 hlist_for_each_entry(mark, &conn->list, obj_list) { 903 fsnotify_get_mark(mark); 904 spin_unlock(&conn->lock); 905 if (old_mark) 906 fsnotify_put_mark(old_mark); 907 old_mark = mark; 908 fsnotify_destroy_mark(mark, mark->group); 909 spin_lock(&conn->lock); 910 } 911 /* 912 * Detach list from object now so that we don't pin inode until all 913 * mark references get dropped. It would lead to strange results such 914 * as delaying inode deletion or blocking unmount. 915 */ 916 objp = fsnotify_detach_connector_from_object(conn, &type); 917 spin_unlock(&conn->lock); 918 if (old_mark) 919 fsnotify_put_mark(old_mark); 920 fsnotify_drop_object(type, objp); 921 } 922 923 /* 924 * Nothing fancy, just initialize lists and locks and counters. 925 */ 926 void fsnotify_init_mark(struct fsnotify_mark *mark, 927 struct fsnotify_group *group) 928 { 929 memset(mark, 0, sizeof(*mark)); 930 spin_lock_init(&mark->lock); 931 refcount_set(&mark->refcnt, 1); 932 fsnotify_get_group(group); 933 mark->group = group; 934 WRITE_ONCE(mark->connector, NULL); 935 } 936 EXPORT_SYMBOL_GPL(fsnotify_init_mark); 937 938 /* 939 * Destroy all marks in destroy_list, waits for SRCU period to finish before 940 * actually freeing marks. 941 */ 942 static void fsnotify_mark_destroy_workfn(struct work_struct *work) 943 { 944 struct fsnotify_mark *mark, *next; 945 struct list_head private_destroy_list; 946 947 spin_lock(&destroy_lock); 948 /* exchange the list head */ 949 list_replace_init(&destroy_list, &private_destroy_list); 950 spin_unlock(&destroy_lock); 951 952 synchronize_srcu(&fsnotify_mark_srcu); 953 954 list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) { 955 list_del_init(&mark->g_list); 956 fsnotify_final_mark_destroy(mark); 957 } 958 } 959 960 /* Wait for all marks queued for destruction to be actually destroyed */ 961 void fsnotify_wait_marks_destroyed(void) 962 { 963 flush_delayed_work(&reaper_work); 964 } 965 EXPORT_SYMBOL_GPL(fsnotify_wait_marks_destroyed); 966