xref: /linux/fs/nilfs2/the_nilfs.c (revision 529d6dad5bc69de14cdd24831e2a14264e93daa4)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
36 
37 
38 static LIST_HEAD(nilfs_objects);
39 static DEFINE_SPINLOCK(nilfs_lock);
40 
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 			    sector_t start_blocknr, u64 seq, __u64 cno)
43 {
44 	spin_lock(&nilfs->ns_last_segment_lock);
45 	nilfs->ns_last_pseg = start_blocknr;
46 	nilfs->ns_last_seq = seq;
47 	nilfs->ns_last_cno = cno;
48 	spin_unlock(&nilfs->ns_last_segment_lock);
49 }
50 
51 /**
52  * alloc_nilfs - allocate the_nilfs structure
53  * @bdev: block device to which the_nilfs is related
54  *
55  * alloc_nilfs() allocates memory for the_nilfs and
56  * initializes its reference count and locks.
57  *
58  * Return Value: On success, pointer to the_nilfs is returned.
59  * On error, NULL is returned.
60  */
61 static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
62 {
63 	struct the_nilfs *nilfs;
64 
65 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
66 	if (!nilfs)
67 		return NULL;
68 
69 	nilfs->ns_bdev = bdev;
70 	atomic_set(&nilfs->ns_count, 1);
71 	atomic_set(&nilfs->ns_ndirtyblks, 0);
72 	init_rwsem(&nilfs->ns_sem);
73 	init_rwsem(&nilfs->ns_super_sem);
74 	mutex_init(&nilfs->ns_mount_mutex);
75 	init_rwsem(&nilfs->ns_writer_sem);
76 	INIT_LIST_HEAD(&nilfs->ns_list);
77 	INIT_LIST_HEAD(&nilfs->ns_supers);
78 	spin_lock_init(&nilfs->ns_last_segment_lock);
79 	nilfs->ns_gc_inodes_h = NULL;
80 	init_rwsem(&nilfs->ns_segctor_sem);
81 
82 	return nilfs;
83 }
84 
85 /**
86  * find_or_create_nilfs - find or create nilfs object
87  * @bdev: block device to which the_nilfs is related
88  *
89  * find_nilfs() looks up an existent nilfs object created on the
90  * device and gets the reference count of the object.  If no nilfs object
91  * is found on the device, a new nilfs object is allocated.
92  *
93  * Return Value: On success, pointer to the nilfs object is returned.
94  * On error, NULL is returned.
95  */
96 struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
97 {
98 	struct the_nilfs *nilfs, *new = NULL;
99 
100  retry:
101 	spin_lock(&nilfs_lock);
102 	list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
103 		if (nilfs->ns_bdev == bdev) {
104 			get_nilfs(nilfs);
105 			spin_unlock(&nilfs_lock);
106 			if (new)
107 				put_nilfs(new);
108 			return nilfs; /* existing object */
109 		}
110 	}
111 	if (new) {
112 		list_add_tail(&new->ns_list, &nilfs_objects);
113 		spin_unlock(&nilfs_lock);
114 		return new; /* new object */
115 	}
116 	spin_unlock(&nilfs_lock);
117 
118 	new = alloc_nilfs(bdev);
119 	if (new)
120 		goto retry;
121 	return NULL; /* insufficient memory */
122 }
123 
124 /**
125  * put_nilfs - release a reference to the_nilfs
126  * @nilfs: the_nilfs structure to be released
127  *
128  * put_nilfs() decrements a reference counter of the_nilfs.
129  * If the reference count reaches zero, the_nilfs is freed.
130  */
131 void put_nilfs(struct the_nilfs *nilfs)
132 {
133 	spin_lock(&nilfs_lock);
134 	if (!atomic_dec_and_test(&nilfs->ns_count)) {
135 		spin_unlock(&nilfs_lock);
136 		return;
137 	}
138 	list_del_init(&nilfs->ns_list);
139 	spin_unlock(&nilfs_lock);
140 
141 	/*
142 	 * Increment of ns_count never occurs below because the caller
143 	 * of get_nilfs() holds at least one reference to the_nilfs.
144 	 * Thus its exclusion control is not required here.
145 	 */
146 
147 	might_sleep();
148 	if (nilfs_loaded(nilfs)) {
149 		nilfs_mdt_destroy(nilfs->ns_sufile);
150 		nilfs_mdt_destroy(nilfs->ns_cpfile);
151 		nilfs_mdt_destroy(nilfs->ns_dat);
152 		nilfs_mdt_destroy(nilfs->ns_gc_dat);
153 	}
154 	if (nilfs_init(nilfs)) {
155 		nilfs_destroy_gccache(nilfs);
156 		brelse(nilfs->ns_sbh[0]);
157 		brelse(nilfs->ns_sbh[1]);
158 	}
159 	kfree(nilfs);
160 }
161 
162 static int nilfs_load_super_root(struct the_nilfs *nilfs,
163 				 struct nilfs_sb_info *sbi, sector_t sr_block)
164 {
165 	struct buffer_head *bh_sr;
166 	struct nilfs_super_root *raw_sr;
167 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
168 	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
169 	unsigned inode_size;
170 	int err;
171 
172 	err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
173 	if (unlikely(err))
174 		return err;
175 
176 	down_read(&nilfs->ns_sem);
177 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
178 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
179 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
180 	up_read(&nilfs->ns_sem);
181 
182 	inode_size = nilfs->ns_inode_size;
183 
184 	err = -ENOMEM;
185 	nilfs->ns_dat = nilfs_dat_new(nilfs, dat_entry_size);
186 	if (unlikely(!nilfs->ns_dat))
187 		goto failed;
188 
189 	nilfs->ns_gc_dat = nilfs_dat_new(nilfs, dat_entry_size);
190 	if (unlikely(!nilfs->ns_gc_dat))
191 		goto failed_dat;
192 
193 	nilfs->ns_cpfile = nilfs_cpfile_new(nilfs, checkpoint_size);
194 	if (unlikely(!nilfs->ns_cpfile))
195 		goto failed_gc_dat;
196 
197 	nilfs->ns_sufile = nilfs_sufile_new(nilfs, segment_usage_size);
198 	if (unlikely(!nilfs->ns_sufile))
199 		goto failed_cpfile;
200 
201 	nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
202 
203 	err = nilfs_dat_read(nilfs->ns_dat, (void *)bh_sr->b_data +
204 			     NILFS_SR_DAT_OFFSET(inode_size));
205 	if (unlikely(err))
206 		goto failed_sufile;
207 
208 	err = nilfs_cpfile_read(nilfs->ns_cpfile, (void *)bh_sr->b_data +
209 				NILFS_SR_CPFILE_OFFSET(inode_size));
210 	if (unlikely(err))
211 		goto failed_sufile;
212 
213 	err = nilfs_sufile_read(nilfs->ns_sufile, (void *)bh_sr->b_data +
214 				NILFS_SR_SUFILE_OFFSET(inode_size));
215 	if (unlikely(err))
216 		goto failed_sufile;
217 
218 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
219 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
220 
221  failed:
222 	brelse(bh_sr);
223 	return err;
224 
225  failed_sufile:
226 	nilfs_mdt_destroy(nilfs->ns_sufile);
227 
228  failed_cpfile:
229 	nilfs_mdt_destroy(nilfs->ns_cpfile);
230 
231  failed_gc_dat:
232 	nilfs_mdt_destroy(nilfs->ns_gc_dat);
233 
234  failed_dat:
235 	nilfs_mdt_destroy(nilfs->ns_dat);
236 	goto failed;
237 }
238 
239 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
240 {
241 	memset(ri, 0, sizeof(*ri));
242 	INIT_LIST_HEAD(&ri->ri_used_segments);
243 }
244 
245 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
246 {
247 	nilfs_dispose_segment_list(&ri->ri_used_segments);
248 }
249 
250 /**
251  * load_nilfs - load and recover the nilfs
252  * @nilfs: the_nilfs structure to be released
253  * @sbi: nilfs_sb_info used to recover past segment
254  *
255  * load_nilfs() searches and load the latest super root,
256  * attaches the last segment, and does recovery if needed.
257  * The caller must call this exclusively for simultaneous mounts.
258  */
259 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
260 {
261 	struct nilfs_recovery_info ri;
262 	unsigned int s_flags = sbi->s_super->s_flags;
263 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
264 	int valid_fs = nilfs_valid_fs(nilfs);
265 	int err;
266 
267 	if (nilfs_loaded(nilfs)) {
268 		if (valid_fs ||
269 		    ((s_flags & MS_RDONLY) && nilfs_test_opt(sbi, NORECOVERY)))
270 			return 0;
271 		printk(KERN_ERR "NILFS: the filesystem is in an incomplete "
272 		       "recovery state.\n");
273 		return -EINVAL;
274 	}
275 
276 	if (!valid_fs) {
277 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
278 		if (s_flags & MS_RDONLY) {
279 			printk(KERN_INFO "NILFS: INFO: recovery "
280 			       "required for readonly filesystem.\n");
281 			printk(KERN_INFO "NILFS: write access will "
282 			       "be enabled during recovery.\n");
283 		}
284 	}
285 
286 	nilfs_init_recovery_info(&ri);
287 
288 	err = nilfs_search_super_root(nilfs, sbi, &ri);
289 	if (unlikely(err)) {
290 		printk(KERN_ERR "NILFS: error searching super root.\n");
291 		goto failed;
292 	}
293 
294 	err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
295 	if (unlikely(err)) {
296 		printk(KERN_ERR "NILFS: error loading super root.\n");
297 		goto failed;
298 	}
299 
300 	if (valid_fs)
301 		goto skip_recovery;
302 
303 	if (s_flags & MS_RDONLY) {
304 		if (nilfs_test_opt(sbi, NORECOVERY)) {
305 			printk(KERN_INFO "NILFS: norecovery option specified. "
306 			       "skipping roll-forward recovery\n");
307 			goto skip_recovery;
308 		}
309 		if (really_read_only) {
310 			printk(KERN_ERR "NILFS: write access "
311 			       "unavailable, cannot proceed.\n");
312 			err = -EROFS;
313 			goto failed_unload;
314 		}
315 		sbi->s_super->s_flags &= ~MS_RDONLY;
316 	} else if (nilfs_test_opt(sbi, NORECOVERY)) {
317 		printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
318 		       "option was specified for a read/write mount\n");
319 		err = -EINVAL;
320 		goto failed_unload;
321 	}
322 
323 	err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
324 	if (err)
325 		goto failed_unload;
326 
327 	down_write(&nilfs->ns_sem);
328 	nilfs->ns_mount_state |= NILFS_VALID_FS;
329 	nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
330 	err = nilfs_commit_super(sbi, 1);
331 	up_write(&nilfs->ns_sem);
332 
333 	if (err) {
334 		printk(KERN_ERR "NILFS: failed to update super block. "
335 		       "recovery unfinished.\n");
336 		goto failed_unload;
337 	}
338 	printk(KERN_INFO "NILFS: recovery complete.\n");
339 
340  skip_recovery:
341 	set_nilfs_loaded(nilfs);
342 	nilfs_clear_recovery_info(&ri);
343 	sbi->s_super->s_flags = s_flags;
344 	return 0;
345 
346  failed_unload:
347 	nilfs_mdt_destroy(nilfs->ns_cpfile);
348 	nilfs_mdt_destroy(nilfs->ns_sufile);
349 	nilfs_mdt_destroy(nilfs->ns_dat);
350 
351  failed:
352 	nilfs_clear_recovery_info(&ri);
353 	sbi->s_super->s_flags = s_flags;
354 	return err;
355 }
356 
357 static unsigned long long nilfs_max_size(unsigned int blkbits)
358 {
359 	unsigned int max_bits;
360 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
361 
362 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
363 	if (max_bits < 64)
364 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
365 	return res;
366 }
367 
368 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
369 				   struct nilfs_super_block *sbp)
370 {
371 	if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
372 		printk(KERN_ERR "NILFS: revision mismatch "
373 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
374 		       "Please check the version of mkfs.nilfs.\n",
375 		       le32_to_cpu(sbp->s_rev_level),
376 		       le16_to_cpu(sbp->s_minor_rev_level),
377 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
378 		return -EINVAL;
379 	}
380 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
381 	if (nilfs->ns_sbsize > BLOCK_SIZE)
382 		return -EINVAL;
383 
384 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
385 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
386 
387 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
388 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
389 		printk(KERN_ERR "NILFS: too short segment.\n");
390 		return -EINVAL;
391 	}
392 
393 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
394 	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
395 	nilfs->ns_r_segments_percentage =
396 		le32_to_cpu(sbp->s_r_segments_percentage);
397 	nilfs->ns_nrsvsegs =
398 		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
399 		      DIV_ROUND_UP(nilfs->ns_nsegments *
400 				   nilfs->ns_r_segments_percentage, 100));
401 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
402 	return 0;
403 }
404 
405 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
406 {
407 	static unsigned char sum[4];
408 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
409 	size_t bytes;
410 	u32 crc;
411 
412 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
413 		return 0;
414 	bytes = le16_to_cpu(sbp->s_bytes);
415 	if (bytes > BLOCK_SIZE)
416 		return 0;
417 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
418 		       sumoff);
419 	crc = crc32_le(crc, sum, 4);
420 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
421 		       bytes - sumoff - 4);
422 	return crc == le32_to_cpu(sbp->s_sum);
423 }
424 
425 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
426 {
427 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
428 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
429 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
430 }
431 
432 static void nilfs_release_super_block(struct the_nilfs *nilfs)
433 {
434 	int i;
435 
436 	for (i = 0; i < 2; i++) {
437 		if (nilfs->ns_sbp[i]) {
438 			brelse(nilfs->ns_sbh[i]);
439 			nilfs->ns_sbh[i] = NULL;
440 			nilfs->ns_sbp[i] = NULL;
441 		}
442 	}
443 }
444 
445 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
446 {
447 	brelse(nilfs->ns_sbh[0]);
448 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
449 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
450 	nilfs->ns_sbh[1] = NULL;
451 	nilfs->ns_sbp[1] = NULL;
452 }
453 
454 void nilfs_swap_super_block(struct the_nilfs *nilfs)
455 {
456 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
457 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
458 
459 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
460 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
461 	nilfs->ns_sbh[1] = tsbh;
462 	nilfs->ns_sbp[1] = tsbp;
463 }
464 
465 static int nilfs_load_super_block(struct the_nilfs *nilfs,
466 				  struct super_block *sb, int blocksize,
467 				  struct nilfs_super_block **sbpp)
468 {
469 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
470 	struct buffer_head **sbh = nilfs->ns_sbh;
471 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
472 	int valid[2], swp = 0;
473 
474 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
475 					&sbh[0]);
476 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
477 
478 	if (!sbp[0]) {
479 		if (!sbp[1]) {
480 			printk(KERN_ERR "NILFS: unable to read superblock\n");
481 			return -EIO;
482 		}
483 		printk(KERN_WARNING
484 		       "NILFS warning: unable to read primary superblock\n");
485 	} else if (!sbp[1])
486 		printk(KERN_WARNING
487 		       "NILFS warning: unable to read secondary superblock\n");
488 
489 	/*
490 	 * Compare two super blocks and set 1 in swp if the secondary
491 	 * super block is valid and newer.  Otherwise, set 0 in swp.
492 	 */
493 	valid[0] = nilfs_valid_sb(sbp[0]);
494 	valid[1] = nilfs_valid_sb(sbp[1]);
495 	swp = valid[1] && (!valid[0] ||
496 			   le64_to_cpu(sbp[1]->s_last_cno) >
497 			   le64_to_cpu(sbp[0]->s_last_cno));
498 
499 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
500 		brelse(sbh[1]);
501 		sbh[1] = NULL;
502 		sbp[1] = NULL;
503 		swp = 0;
504 	}
505 	if (!valid[swp]) {
506 		nilfs_release_super_block(nilfs);
507 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
508 		       sb->s_id);
509 		return -EINVAL;
510 	}
511 
512 	if (swp) {
513 		printk(KERN_WARNING "NILFS warning: broken superblock. "
514 		       "using spare superblock.\n");
515 		nilfs_swap_super_block(nilfs);
516 	}
517 
518 	nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
519 	nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
520 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
521 	*sbpp = sbp[0];
522 	return 0;
523 }
524 
525 /**
526  * init_nilfs - initialize a NILFS instance.
527  * @nilfs: the_nilfs structure
528  * @sbi: nilfs_sb_info
529  * @sb: super block
530  * @data: mount options
531  *
532  * init_nilfs() performs common initialization per block device (e.g.
533  * reading the super block, getting disk layout information, initializing
534  * shared fields in the_nilfs). It takes on some portion of the jobs
535  * typically done by a fill_super() routine. This division arises from
536  * the nature that multiple NILFS instances may be simultaneously
537  * mounted on a device.
538  * For multiple mounts on the same device, only the first mount
539  * invokes these tasks.
540  *
541  * Return Value: On success, 0 is returned. On error, a negative error
542  * code is returned.
543  */
544 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
545 {
546 	struct super_block *sb = sbi->s_super;
547 	struct nilfs_super_block *sbp;
548 	struct backing_dev_info *bdi;
549 	int blocksize;
550 	int err;
551 
552 	down_write(&nilfs->ns_sem);
553 	if (nilfs_init(nilfs)) {
554 		/* Load values from existing the_nilfs */
555 		sbp = nilfs->ns_sbp[0];
556 		err = nilfs_store_magic_and_option(sb, sbp, data);
557 		if (err)
558 			goto out;
559 
560 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
561 		if (sb->s_blocksize != blocksize &&
562 		    !sb_set_blocksize(sb, blocksize)) {
563 			printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
564 			       blocksize);
565 			err = -EINVAL;
566 		}
567 		sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
568 		goto out;
569 	}
570 
571 	blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
572 	if (!blocksize) {
573 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
574 		err = -EINVAL;
575 		goto out;
576 	}
577 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
578 	if (err)
579 		goto out;
580 
581 	err = nilfs_store_magic_and_option(sb, sbp, data);
582 	if (err)
583 		goto failed_sbh;
584 
585 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
586 	if (sb->s_blocksize != blocksize) {
587 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
588 
589 		if (blocksize < hw_blocksize) {
590 			printk(KERN_ERR
591 			       "NILFS: blocksize %d too small for device "
592 			       "(sector-size = %d).\n",
593 			       blocksize, hw_blocksize);
594 			err = -EINVAL;
595 			goto failed_sbh;
596 		}
597 		nilfs_release_super_block(nilfs);
598 		sb_set_blocksize(sb, blocksize);
599 
600 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
601 		if (err)
602 			goto out;
603 			/* not failed_sbh; sbh is released automatically
604 			   when reloading fails. */
605 	}
606 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
607 
608 	err = nilfs_store_disk_layout(nilfs, sbp);
609 	if (err)
610 		goto failed_sbh;
611 
612 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
613 
614 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
615 
616 	bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
617 	nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
618 
619 	/* Finding last segment */
620 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
621 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
622 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
623 
624 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
625 	nilfs->ns_segnum =
626 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
627 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
628 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
629 		printk(KERN_ERR "NILFS invalid last segment number.\n");
630 		err = -EINVAL;
631 		goto failed_sbh;
632 	}
633 	/* Dummy values  */
634 	nilfs->ns_free_segments_count =
635 		nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
636 
637 	/* Initialize gcinode cache */
638 	err = nilfs_init_gccache(nilfs);
639 	if (err)
640 		goto failed_sbh;
641 
642 	set_nilfs_init(nilfs);
643 	err = 0;
644  out:
645 	up_write(&nilfs->ns_sem);
646 	return err;
647 
648  failed_sbh:
649 	nilfs_release_super_block(nilfs);
650 	goto out;
651 }
652 
653 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
654 			    size_t nsegs)
655 {
656 	sector_t seg_start, seg_end;
657 	sector_t start = 0, nblocks = 0;
658 	unsigned int sects_per_block;
659 	__u64 *sn;
660 	int ret = 0;
661 
662 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
663 		bdev_logical_block_size(nilfs->ns_bdev);
664 	for (sn = segnump; sn < segnump + nsegs; sn++) {
665 		nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
666 
667 		if (!nblocks) {
668 			start = seg_start;
669 			nblocks = seg_end - seg_start + 1;
670 		} else if (start + nblocks == seg_start) {
671 			nblocks += seg_end - seg_start + 1;
672 		} else {
673 			ret = blkdev_issue_discard(nilfs->ns_bdev,
674 						   start * sects_per_block,
675 						   nblocks * sects_per_block,
676 						   GFP_NOFS,
677 						   BLKDEV_IFL_BARRIER);
678 			if (ret < 0)
679 				return ret;
680 			nblocks = 0;
681 		}
682 	}
683 	if (nblocks)
684 		ret = blkdev_issue_discard(nilfs->ns_bdev,
685 					   start * sects_per_block,
686 					   nblocks * sects_per_block,
687 					   GFP_NOFS, BLKDEV_IFL_BARRIER);
688 	return ret;
689 }
690 
691 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
692 {
693 	struct inode *dat = nilfs_dat_inode(nilfs);
694 	unsigned long ncleansegs;
695 
696 	down_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
697 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
698 	up_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
699 	*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
700 	return 0;
701 }
702 
703 int nilfs_near_disk_full(struct the_nilfs *nilfs)
704 {
705 	unsigned long ncleansegs, nincsegs;
706 
707 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
708 	nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
709 		nilfs->ns_blocks_per_segment + 1;
710 
711 	return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
712 }
713 
714 /**
715  * nilfs_find_sbinfo - find existing nilfs_sb_info structure
716  * @nilfs: nilfs object
717  * @rw_mount: mount type (non-zero value for read/write mount)
718  * @cno: checkpoint number (zero for read-only mount)
719  *
720  * nilfs_find_sbinfo() returns the nilfs_sb_info structure which
721  * @rw_mount and @cno (in case of snapshots) matched.  If no instance
722  * was found, NULL is returned.  Although the super block instance can
723  * be unmounted after this function returns, the nilfs_sb_info struct
724  * is kept on memory until nilfs_put_sbinfo() is called.
725  */
726 struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
727 					int rw_mount, __u64 cno)
728 {
729 	struct nilfs_sb_info *sbi;
730 
731 	down_read(&nilfs->ns_super_sem);
732 	/*
733 	 * The SNAPSHOT flag and sb->s_flags are supposed to be
734 	 * protected with nilfs->ns_super_sem.
735 	 */
736 	sbi = nilfs->ns_current;
737 	if (rw_mount) {
738 		if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
739 			goto found; /* read/write mount */
740 		else
741 			goto out;
742 	} else if (cno == 0) {
743 		if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
744 			goto found; /* read-only mount */
745 		else
746 			goto out;
747 	}
748 
749 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
750 		if (nilfs_test_opt(sbi, SNAPSHOT) &&
751 		    sbi->s_snapshot_cno == cno)
752 			goto found; /* snapshot mount */
753 	}
754  out:
755 	up_read(&nilfs->ns_super_sem);
756 	return NULL;
757 
758  found:
759 	atomic_inc(&sbi->s_count);
760 	up_read(&nilfs->ns_super_sem);
761 	return sbi;
762 }
763 
764 int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
765 				int snapshot_mount)
766 {
767 	struct nilfs_sb_info *sbi;
768 	int ret = 0;
769 
770 	down_read(&nilfs->ns_super_sem);
771 	if (cno == 0 || cno > nilfs->ns_cno)
772 		goto out_unlock;
773 
774 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
775 		if (sbi->s_snapshot_cno == cno &&
776 		    (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
777 					/* exclude read-only mounts */
778 			ret++;
779 			break;
780 		}
781 	}
782 	/* for protecting recent checkpoints */
783 	if (cno >= nilfs_last_cno(nilfs))
784 		ret++;
785 
786  out_unlock:
787 	up_read(&nilfs->ns_super_sem);
788 	return ret;
789 }
790