xref: /linux/fs/nilfs2/the_nilfs.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
36 
37 
38 static LIST_HEAD(nilfs_objects);
39 static DEFINE_SPINLOCK(nilfs_lock);
40 
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 			    sector_t start_blocknr, u64 seq, __u64 cno)
43 {
44 	spin_lock(&nilfs->ns_last_segment_lock);
45 	nilfs->ns_last_pseg = start_blocknr;
46 	nilfs->ns_last_seq = seq;
47 	nilfs->ns_last_cno = cno;
48 	spin_unlock(&nilfs->ns_last_segment_lock);
49 }
50 
51 /**
52  * alloc_nilfs - allocate the_nilfs structure
53  * @bdev: block device to which the_nilfs is related
54  *
55  * alloc_nilfs() allocates memory for the_nilfs and
56  * initializes its reference count and locks.
57  *
58  * Return Value: On success, pointer to the_nilfs is returned.
59  * On error, NULL is returned.
60  */
61 static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
62 {
63 	struct the_nilfs *nilfs;
64 
65 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
66 	if (!nilfs)
67 		return NULL;
68 
69 	nilfs->ns_bdev = bdev;
70 	atomic_set(&nilfs->ns_count, 1);
71 	atomic_set(&nilfs->ns_writer_refcount, -1);
72 	atomic_set(&nilfs->ns_ndirtyblks, 0);
73 	init_rwsem(&nilfs->ns_sem);
74 	init_rwsem(&nilfs->ns_super_sem);
75 	mutex_init(&nilfs->ns_mount_mutex);
76 	mutex_init(&nilfs->ns_writer_mutex);
77 	INIT_LIST_HEAD(&nilfs->ns_list);
78 	INIT_LIST_HEAD(&nilfs->ns_supers);
79 	spin_lock_init(&nilfs->ns_last_segment_lock);
80 	nilfs->ns_gc_inodes_h = NULL;
81 	init_rwsem(&nilfs->ns_segctor_sem);
82 
83 	return nilfs;
84 }
85 
86 /**
87  * find_or_create_nilfs - find or create nilfs object
88  * @bdev: block device to which the_nilfs is related
89  *
90  * find_nilfs() looks up an existent nilfs object created on the
91  * device and gets the reference count of the object.  If no nilfs object
92  * is found on the device, a new nilfs object is allocated.
93  *
94  * Return Value: On success, pointer to the nilfs object is returned.
95  * On error, NULL is returned.
96  */
97 struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
98 {
99 	struct the_nilfs *nilfs, *new = NULL;
100 
101  retry:
102 	spin_lock(&nilfs_lock);
103 	list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
104 		if (nilfs->ns_bdev == bdev) {
105 			get_nilfs(nilfs);
106 			spin_unlock(&nilfs_lock);
107 			if (new)
108 				put_nilfs(new);
109 			return nilfs; /* existing object */
110 		}
111 	}
112 	if (new) {
113 		list_add_tail(&new->ns_list, &nilfs_objects);
114 		spin_unlock(&nilfs_lock);
115 		return new; /* new object */
116 	}
117 	spin_unlock(&nilfs_lock);
118 
119 	new = alloc_nilfs(bdev);
120 	if (new)
121 		goto retry;
122 	return NULL; /* insufficient memory */
123 }
124 
125 /**
126  * put_nilfs - release a reference to the_nilfs
127  * @nilfs: the_nilfs structure to be released
128  *
129  * put_nilfs() decrements a reference counter of the_nilfs.
130  * If the reference count reaches zero, the_nilfs is freed.
131  */
132 void put_nilfs(struct the_nilfs *nilfs)
133 {
134 	spin_lock(&nilfs_lock);
135 	if (!atomic_dec_and_test(&nilfs->ns_count)) {
136 		spin_unlock(&nilfs_lock);
137 		return;
138 	}
139 	list_del_init(&nilfs->ns_list);
140 	spin_unlock(&nilfs_lock);
141 
142 	/*
143 	 * Increment of ns_count never occurs below because the caller
144 	 * of get_nilfs() holds at least one reference to the_nilfs.
145 	 * Thus its exclusion control is not required here.
146 	 */
147 
148 	might_sleep();
149 	if (nilfs_loaded(nilfs)) {
150 		nilfs_mdt_clear(nilfs->ns_sufile);
151 		nilfs_mdt_destroy(nilfs->ns_sufile);
152 		nilfs_mdt_clear(nilfs->ns_cpfile);
153 		nilfs_mdt_destroy(nilfs->ns_cpfile);
154 		nilfs_mdt_clear(nilfs->ns_dat);
155 		nilfs_mdt_destroy(nilfs->ns_dat);
156 		/* XXX: how and when to clear nilfs->ns_gc_dat? */
157 		nilfs_mdt_destroy(nilfs->ns_gc_dat);
158 	}
159 	if (nilfs_init(nilfs)) {
160 		nilfs_destroy_gccache(nilfs);
161 		brelse(nilfs->ns_sbh[0]);
162 		brelse(nilfs->ns_sbh[1]);
163 	}
164 	kfree(nilfs);
165 }
166 
167 static int nilfs_load_super_root(struct the_nilfs *nilfs,
168 				 struct nilfs_sb_info *sbi, sector_t sr_block)
169 {
170 	static struct lock_class_key dat_lock_key;
171 	struct buffer_head *bh_sr;
172 	struct nilfs_super_root *raw_sr;
173 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
174 	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
175 	unsigned inode_size;
176 	int err;
177 
178 	err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
179 	if (unlikely(err))
180 		return err;
181 
182 	down_read(&nilfs->ns_sem);
183 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
184 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
185 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
186 	up_read(&nilfs->ns_sem);
187 
188 	inode_size = nilfs->ns_inode_size;
189 
190 	err = -ENOMEM;
191 	nilfs->ns_dat = nilfs_mdt_new(
192 		nilfs, NULL, NILFS_DAT_INO, NILFS_DAT_GFP);
193 	if (unlikely(!nilfs->ns_dat))
194 		goto failed;
195 
196 	nilfs->ns_gc_dat = nilfs_mdt_new(
197 		nilfs, NULL, NILFS_DAT_INO, NILFS_DAT_GFP);
198 	if (unlikely(!nilfs->ns_gc_dat))
199 		goto failed_dat;
200 
201 	nilfs->ns_cpfile = nilfs_mdt_new(
202 		nilfs, NULL, NILFS_CPFILE_INO, NILFS_CPFILE_GFP);
203 	if (unlikely(!nilfs->ns_cpfile))
204 		goto failed_gc_dat;
205 
206 	nilfs->ns_sufile = nilfs_mdt_new(
207 		nilfs, NULL, NILFS_SUFILE_INO, NILFS_SUFILE_GFP);
208 	if (unlikely(!nilfs->ns_sufile))
209 		goto failed_cpfile;
210 
211 	err = nilfs_palloc_init_blockgroup(nilfs->ns_dat, dat_entry_size);
212 	if (unlikely(err))
213 		goto failed_sufile;
214 
215 	err = nilfs_palloc_init_blockgroup(nilfs->ns_gc_dat, dat_entry_size);
216 	if (unlikely(err))
217 		goto failed_sufile;
218 
219 	lockdep_set_class(&NILFS_MDT(nilfs->ns_dat)->mi_sem, &dat_lock_key);
220 	lockdep_set_class(&NILFS_MDT(nilfs->ns_gc_dat)->mi_sem, &dat_lock_key);
221 
222 	nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
223 	nilfs_mdt_set_entry_size(nilfs->ns_cpfile, checkpoint_size,
224 				 sizeof(struct nilfs_cpfile_header));
225 	nilfs_mdt_set_entry_size(nilfs->ns_sufile, segment_usage_size,
226 				 sizeof(struct nilfs_sufile_header));
227 
228 	err = nilfs_mdt_read_inode_direct(
229 		nilfs->ns_dat, bh_sr, NILFS_SR_DAT_OFFSET(inode_size));
230 	if (unlikely(err))
231 		goto failed_sufile;
232 
233 	err = nilfs_mdt_read_inode_direct(
234 		nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(inode_size));
235 	if (unlikely(err))
236 		goto failed_sufile;
237 
238 	err = nilfs_mdt_read_inode_direct(
239 		nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(inode_size));
240 	if (unlikely(err))
241 		goto failed_sufile;
242 
243 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
244 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
245 
246  failed:
247 	brelse(bh_sr);
248 	return err;
249 
250  failed_sufile:
251 	nilfs_mdt_destroy(nilfs->ns_sufile);
252 
253  failed_cpfile:
254 	nilfs_mdt_destroy(nilfs->ns_cpfile);
255 
256  failed_gc_dat:
257 	nilfs_mdt_destroy(nilfs->ns_gc_dat);
258 
259  failed_dat:
260 	nilfs_mdt_destroy(nilfs->ns_dat);
261 	goto failed;
262 }
263 
264 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
265 {
266 	memset(ri, 0, sizeof(*ri));
267 	INIT_LIST_HEAD(&ri->ri_used_segments);
268 }
269 
270 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
271 {
272 	nilfs_dispose_segment_list(&ri->ri_used_segments);
273 }
274 
275 /**
276  * load_nilfs - load and recover the nilfs
277  * @nilfs: the_nilfs structure to be released
278  * @sbi: nilfs_sb_info used to recover past segment
279  *
280  * load_nilfs() searches and load the latest super root,
281  * attaches the last segment, and does recovery if needed.
282  * The caller must call this exclusively for simultaneous mounts.
283  */
284 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
285 {
286 	struct nilfs_recovery_info ri;
287 	unsigned int s_flags = sbi->s_super->s_flags;
288 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
289 	unsigned valid_fs;
290 	int err = 0;
291 
292 	nilfs_init_recovery_info(&ri);
293 
294 	down_write(&nilfs->ns_sem);
295 	valid_fs = (nilfs->ns_mount_state & NILFS_VALID_FS);
296 	up_write(&nilfs->ns_sem);
297 
298 	if (!valid_fs && (s_flags & MS_RDONLY)) {
299 		printk(KERN_INFO "NILFS: INFO: recovery "
300 		       "required for readonly filesystem.\n");
301 		if (really_read_only) {
302 			printk(KERN_ERR "NILFS: write access "
303 			       "unavailable, cannot proceed.\n");
304 			err = -EROFS;
305 			goto failed;
306 		}
307 		printk(KERN_INFO "NILFS: write access will "
308 		       "be enabled during recovery.\n");
309 		sbi->s_super->s_flags &= ~MS_RDONLY;
310 	}
311 
312 	err = nilfs_search_super_root(nilfs, sbi, &ri);
313 	if (unlikely(err)) {
314 		printk(KERN_ERR "NILFS: error searching super root.\n");
315 		goto failed;
316 	}
317 
318 	err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
319 	if (unlikely(err)) {
320 		printk(KERN_ERR "NILFS: error loading super root.\n");
321 		goto failed;
322 	}
323 
324 	if (!valid_fs) {
325 		err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
326 		if (unlikely(err)) {
327 			nilfs_mdt_destroy(nilfs->ns_cpfile);
328 			nilfs_mdt_destroy(nilfs->ns_sufile);
329 			nilfs_mdt_destroy(nilfs->ns_dat);
330 			goto failed;
331 		}
332 		if (ri.ri_need_recovery == NILFS_RECOVERY_SR_UPDATED)
333 			sbi->s_super->s_dirt = 1;
334 	}
335 
336 	set_nilfs_loaded(nilfs);
337 
338  failed:
339 	nilfs_clear_recovery_info(&ri);
340 	sbi->s_super->s_flags = s_flags;
341 	return err;
342 }
343 
344 static unsigned long long nilfs_max_size(unsigned int blkbits)
345 {
346 	unsigned int max_bits;
347 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
348 
349 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
350 	if (max_bits < 64)
351 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
352 	return res;
353 }
354 
355 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
356 				   struct nilfs_super_block *sbp)
357 {
358 	if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
359 		printk(KERN_ERR "NILFS: revision mismatch "
360 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
361 		       "Please check the version of mkfs.nilfs.\n",
362 		       le32_to_cpu(sbp->s_rev_level),
363 		       le16_to_cpu(sbp->s_minor_rev_level),
364 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
365 		return -EINVAL;
366 	}
367 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
368 	if (nilfs->ns_sbsize > BLOCK_SIZE)
369 		return -EINVAL;
370 
371 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
372 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
373 
374 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
375 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
376 		printk(KERN_ERR "NILFS: too short segment. \n");
377 		return -EINVAL;
378 	}
379 
380 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
381 	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
382 	nilfs->ns_r_segments_percentage =
383 		le32_to_cpu(sbp->s_r_segments_percentage);
384 	nilfs->ns_nrsvsegs =
385 		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
386 		      DIV_ROUND_UP(nilfs->ns_nsegments *
387 				   nilfs->ns_r_segments_percentage, 100));
388 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
389 	return 0;
390 }
391 
392 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
393 {
394 	static unsigned char sum[4];
395 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
396 	size_t bytes;
397 	u32 crc;
398 
399 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
400 		return 0;
401 	bytes = le16_to_cpu(sbp->s_bytes);
402 	if (bytes > BLOCK_SIZE)
403 		return 0;
404 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
405 		       sumoff);
406 	crc = crc32_le(crc, sum, 4);
407 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
408 		       bytes - sumoff - 4);
409 	return crc == le32_to_cpu(sbp->s_sum);
410 }
411 
412 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
413 {
414 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
415 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
416 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
417 }
418 
419 static void nilfs_release_super_block(struct the_nilfs *nilfs)
420 {
421 	int i;
422 
423 	for (i = 0; i < 2; i++) {
424 		if (nilfs->ns_sbp[i]) {
425 			brelse(nilfs->ns_sbh[i]);
426 			nilfs->ns_sbh[i] = NULL;
427 			nilfs->ns_sbp[i] = NULL;
428 		}
429 	}
430 }
431 
432 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
433 {
434 	brelse(nilfs->ns_sbh[0]);
435 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
436 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
437 	nilfs->ns_sbh[1] = NULL;
438 	nilfs->ns_sbp[1] = NULL;
439 }
440 
441 void nilfs_swap_super_block(struct the_nilfs *nilfs)
442 {
443 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
444 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
445 
446 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
447 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
448 	nilfs->ns_sbh[1] = tsbh;
449 	nilfs->ns_sbp[1] = tsbp;
450 }
451 
452 static int nilfs_load_super_block(struct the_nilfs *nilfs,
453 				  struct super_block *sb, int blocksize,
454 				  struct nilfs_super_block **sbpp)
455 {
456 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
457 	struct buffer_head **sbh = nilfs->ns_sbh;
458 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
459 	int valid[2], swp = 0;
460 
461 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
462 					&sbh[0]);
463 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
464 
465 	if (!sbp[0]) {
466 		if (!sbp[1]) {
467 			printk(KERN_ERR "NILFS: unable to read superblock\n");
468 			return -EIO;
469 		}
470 		printk(KERN_WARNING
471 		       "NILFS warning: unable to read primary superblock\n");
472 	} else if (!sbp[1])
473 		printk(KERN_WARNING
474 		       "NILFS warning: unable to read secondary superblock\n");
475 
476 	valid[0] = nilfs_valid_sb(sbp[0]);
477 	valid[1] = nilfs_valid_sb(sbp[1]);
478 	swp = valid[1] &&
479 		(!valid[0] ||
480 		 le64_to_cpu(sbp[1]->s_wtime) > le64_to_cpu(sbp[0]->s_wtime));
481 
482 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
483 		brelse(sbh[1]);
484 		sbh[1] = NULL;
485 		sbp[1] = NULL;
486 		swp = 0;
487 	}
488 	if (!valid[swp]) {
489 		nilfs_release_super_block(nilfs);
490 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
491 		       sb->s_id);
492 		return -EINVAL;
493 	}
494 
495 	if (swp) {
496 		printk(KERN_WARNING "NILFS warning: broken superblock. "
497 		       "using spare superblock.\n");
498 		nilfs_swap_super_block(nilfs);
499 	}
500 
501 	nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
502 	nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
503 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
504 	*sbpp = sbp[0];
505 	return 0;
506 }
507 
508 /**
509  * init_nilfs - initialize a NILFS instance.
510  * @nilfs: the_nilfs structure
511  * @sbi: nilfs_sb_info
512  * @sb: super block
513  * @data: mount options
514  *
515  * init_nilfs() performs common initialization per block device (e.g.
516  * reading the super block, getting disk layout information, initializing
517  * shared fields in the_nilfs). It takes on some portion of the jobs
518  * typically done by a fill_super() routine. This division arises from
519  * the nature that multiple NILFS instances may be simultaneously
520  * mounted on a device.
521  * For multiple mounts on the same device, only the first mount
522  * invokes these tasks.
523  *
524  * Return Value: On success, 0 is returned. On error, a negative error
525  * code is returned.
526  */
527 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
528 {
529 	struct super_block *sb = sbi->s_super;
530 	struct nilfs_super_block *sbp;
531 	struct backing_dev_info *bdi;
532 	int blocksize;
533 	int err;
534 
535 	down_write(&nilfs->ns_sem);
536 	if (nilfs_init(nilfs)) {
537 		/* Load values from existing the_nilfs */
538 		sbp = nilfs->ns_sbp[0];
539 		err = nilfs_store_magic_and_option(sb, sbp, data);
540 		if (err)
541 			goto out;
542 
543 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
544 		if (sb->s_blocksize != blocksize &&
545 		    !sb_set_blocksize(sb, blocksize)) {
546 			printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
547 			       blocksize);
548 			err = -EINVAL;
549 		}
550 		sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
551 		goto out;
552 	}
553 
554 	blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
555 	if (!blocksize) {
556 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
557 		err = -EINVAL;
558 		goto out;
559 	}
560 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
561 	if (err)
562 		goto out;
563 
564 	err = nilfs_store_magic_and_option(sb, sbp, data);
565 	if (err)
566 		goto failed_sbh;
567 
568 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
569 	if (sb->s_blocksize != blocksize) {
570 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
571 
572 		if (blocksize < hw_blocksize) {
573 			printk(KERN_ERR
574 			       "NILFS: blocksize %d too small for device "
575 			       "(sector-size = %d).\n",
576 			       blocksize, hw_blocksize);
577 			err = -EINVAL;
578 			goto failed_sbh;
579 		}
580 		nilfs_release_super_block(nilfs);
581 		sb_set_blocksize(sb, blocksize);
582 
583 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
584 		if (err)
585 			goto out;
586 			/* not failed_sbh; sbh is released automatically
587 			   when reloading fails. */
588 	}
589 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
590 
591 	err = nilfs_store_disk_layout(nilfs, sbp);
592 	if (err)
593 		goto failed_sbh;
594 
595 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
596 
597 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
598 
599 	bdi = nilfs->ns_bdev->bd_inode_backing_dev_info;
600 	if (!bdi)
601 		bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
602 	nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
603 
604 	/* Finding last segment */
605 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
606 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
607 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
608 
609 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
610 	nilfs->ns_segnum =
611 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
612 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
613 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
614 		printk(KERN_ERR "NILFS invalid last segment number.\n");
615 		err = -EINVAL;
616 		goto failed_sbh;
617 	}
618 	/* Dummy values  */
619 	nilfs->ns_free_segments_count =
620 		nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
621 
622 	/* Initialize gcinode cache */
623 	err = nilfs_init_gccache(nilfs);
624 	if (err)
625 		goto failed_sbh;
626 
627 	set_nilfs_init(nilfs);
628 	err = 0;
629  out:
630 	up_write(&nilfs->ns_sem);
631 	return err;
632 
633  failed_sbh:
634 	nilfs_release_super_block(nilfs);
635 	goto out;
636 }
637 
638 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
639 {
640 	struct inode *dat = nilfs_dat_inode(nilfs);
641 	unsigned long ncleansegs;
642 	int err;
643 
644 	down_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
645 	err = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile, &ncleansegs);
646 	up_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
647 	if (likely(!err))
648 		*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
649 	return err;
650 }
651 
652 int nilfs_near_disk_full(struct the_nilfs *nilfs)
653 {
654 	struct inode *sufile = nilfs->ns_sufile;
655 	unsigned long ncleansegs, nincsegs;
656 	int ret;
657 
658 	ret = nilfs_sufile_get_ncleansegs(sufile, &ncleansegs);
659 	if (likely(!ret)) {
660 		nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
661 			nilfs->ns_blocks_per_segment + 1;
662 		if (ncleansegs <= nilfs->ns_nrsvsegs + nincsegs)
663 			ret++;
664 	}
665 	return ret;
666 }
667 
668 /**
669  * nilfs_find_sbinfo - find existing nilfs_sb_info structure
670  * @nilfs: nilfs object
671  * @rw_mount: mount type (non-zero value for read/write mount)
672  * @cno: checkpoint number (zero for read-only mount)
673  *
674  * nilfs_find_sbinfo() returns the nilfs_sb_info structure which
675  * @rw_mount and @cno (in case of snapshots) matched.  If no instance
676  * was found, NULL is returned.  Although the super block instance can
677  * be unmounted after this function returns, the nilfs_sb_info struct
678  * is kept on memory until nilfs_put_sbinfo() is called.
679  */
680 struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
681 					int rw_mount, __u64 cno)
682 {
683 	struct nilfs_sb_info *sbi;
684 
685 	down_read(&nilfs->ns_super_sem);
686 	/*
687 	 * The SNAPSHOT flag and sb->s_flags are supposed to be
688 	 * protected with nilfs->ns_super_sem.
689 	 */
690 	sbi = nilfs->ns_current;
691 	if (rw_mount) {
692 		if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
693 			goto found; /* read/write mount */
694 		else
695 			goto out;
696 	} else if (cno == 0) {
697 		if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
698 			goto found; /* read-only mount */
699 		else
700 			goto out;
701 	}
702 
703 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
704 		if (nilfs_test_opt(sbi, SNAPSHOT) &&
705 		    sbi->s_snapshot_cno == cno)
706 			goto found; /* snapshot mount */
707 	}
708  out:
709 	up_read(&nilfs->ns_super_sem);
710 	return NULL;
711 
712  found:
713 	atomic_inc(&sbi->s_count);
714 	up_read(&nilfs->ns_super_sem);
715 	return sbi;
716 }
717 
718 int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
719 				int snapshot_mount)
720 {
721 	struct nilfs_sb_info *sbi;
722 	int ret = 0;
723 
724 	down_read(&nilfs->ns_super_sem);
725 	if (cno == 0 || cno > nilfs->ns_cno)
726 		goto out_unlock;
727 
728 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
729 		if (sbi->s_snapshot_cno == cno &&
730 		    (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
731 					/* exclude read-only mounts */
732 			ret++;
733 			break;
734 		}
735 	}
736 	/* for protecting recent checkpoints */
737 	if (cno >= nilfs_last_cno(nilfs))
738 		ret++;
739 
740  out_unlock:
741 	up_read(&nilfs->ns_super_sem);
742 	return ret;
743 }
744