1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS module and super block management. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 */ 9 /* 10 * linux/fs/ext2/super.c 11 * 12 * Copyright (C) 1992, 1993, 1994, 1995 13 * Remy Card (card@masi.ibp.fr) 14 * Laboratoire MASI - Institut Blaise Pascal 15 * Universite Pierre et Marie Curie (Paris VI) 16 * 17 * from 18 * 19 * linux/fs/minix/inode.c 20 * 21 * Copyright (C) 1991, 1992 Linus Torvalds 22 * 23 * Big-endian to little-endian byte-swapping/bitmaps by 24 * David S. Miller (davem@caip.rutgers.edu), 1995 25 */ 26 27 #include <linux/module.h> 28 #include <linux/string.h> 29 #include <linux/slab.h> 30 #include <linux/init.h> 31 #include <linux/blkdev.h> 32 #include <linux/parser.h> 33 #include <linux/crc32.h> 34 #include <linux/vfs.h> 35 #include <linux/writeback.h> 36 #include <linux/seq_file.h> 37 #include <linux/mount.h> 38 #include <linux/fs_context.h> 39 #include "nilfs.h" 40 #include "export.h" 41 #include "mdt.h" 42 #include "alloc.h" 43 #include "btree.h" 44 #include "btnode.h" 45 #include "page.h" 46 #include "cpfile.h" 47 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 48 #include "ifile.h" 49 #include "dat.h" 50 #include "segment.h" 51 #include "segbuf.h" 52 53 MODULE_AUTHOR("NTT Corp."); 54 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 55 "(NILFS)"); 56 MODULE_LICENSE("GPL"); 57 58 static struct kmem_cache *nilfs_inode_cachep; 59 struct kmem_cache *nilfs_transaction_cachep; 60 struct kmem_cache *nilfs_segbuf_cachep; 61 struct kmem_cache *nilfs_btree_path_cache; 62 63 static int nilfs_setup_super(struct super_block *sb, int is_mount); 64 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 65 66 void __nilfs_msg(struct super_block *sb, const char *fmt, ...) 67 { 68 struct va_format vaf; 69 va_list args; 70 int level; 71 72 va_start(args, fmt); 73 74 level = printk_get_level(fmt); 75 vaf.fmt = printk_skip_level(fmt); 76 vaf.va = &args; 77 78 if (sb) 79 printk("%c%cNILFS (%s): %pV\n", 80 KERN_SOH_ASCII, level, sb->s_id, &vaf); 81 else 82 printk("%c%cNILFS: %pV\n", 83 KERN_SOH_ASCII, level, &vaf); 84 85 va_end(args); 86 } 87 88 static void nilfs_set_error(struct super_block *sb) 89 { 90 struct the_nilfs *nilfs = sb->s_fs_info; 91 struct nilfs_super_block **sbp; 92 93 down_write(&nilfs->ns_sem); 94 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 95 nilfs->ns_mount_state |= NILFS_ERROR_FS; 96 sbp = nilfs_prepare_super(sb, 0); 97 if (likely(sbp)) { 98 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 99 if (sbp[1]) 100 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 101 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 102 } 103 } 104 up_write(&nilfs->ns_sem); 105 } 106 107 /** 108 * __nilfs_error() - report failure condition on a filesystem 109 * 110 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as 111 * reporting an error message. This function should be called when 112 * NILFS detects incoherences or defects of meta data on disk. 113 * 114 * This implements the body of nilfs_error() macro. Normally, 115 * nilfs_error() should be used. As for sustainable errors such as a 116 * single-shot I/O error, nilfs_err() should be used instead. 117 * 118 * Callers should not add a trailing newline since this will do it. 119 */ 120 void __nilfs_error(struct super_block *sb, const char *function, 121 const char *fmt, ...) 122 { 123 struct the_nilfs *nilfs = sb->s_fs_info; 124 struct va_format vaf; 125 va_list args; 126 127 va_start(args, fmt); 128 129 vaf.fmt = fmt; 130 vaf.va = &args; 131 132 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 133 sb->s_id, function, &vaf); 134 135 va_end(args); 136 137 if (!sb_rdonly(sb)) { 138 nilfs_set_error(sb); 139 140 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 141 printk(KERN_CRIT "Remounting filesystem read-only\n"); 142 sb->s_flags |= SB_RDONLY; 143 } 144 } 145 146 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 147 panic("NILFS (device %s): panic forced after error\n", 148 sb->s_id); 149 } 150 151 struct inode *nilfs_alloc_inode(struct super_block *sb) 152 { 153 struct nilfs_inode_info *ii; 154 155 ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS); 156 if (!ii) 157 return NULL; 158 ii->i_bh = NULL; 159 ii->i_state = 0; 160 ii->i_cno = 0; 161 ii->i_assoc_inode = NULL; 162 ii->i_bmap = &ii->i_bmap_data; 163 return &ii->vfs_inode; 164 } 165 166 static void nilfs_free_inode(struct inode *inode) 167 { 168 if (nilfs_is_metadata_file_inode(inode)) 169 nilfs_mdt_destroy(inode); 170 171 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 172 } 173 174 static int nilfs_sync_super(struct super_block *sb, int flag) 175 { 176 struct the_nilfs *nilfs = sb->s_fs_info; 177 int err; 178 179 retry: 180 set_buffer_dirty(nilfs->ns_sbh[0]); 181 if (nilfs_test_opt(nilfs, BARRIER)) { 182 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 183 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 184 } else { 185 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 186 } 187 188 if (unlikely(err)) { 189 nilfs_err(sb, "unable to write superblock: err=%d", err); 190 if (err == -EIO && nilfs->ns_sbh[1]) { 191 /* 192 * sbp[0] points to newer log than sbp[1], 193 * so copy sbp[0] to sbp[1] to take over sbp[0]. 194 */ 195 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 196 nilfs->ns_sbsize); 197 nilfs_fall_back_super_block(nilfs); 198 goto retry; 199 } 200 } else { 201 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 202 203 nilfs->ns_sbwcount++; 204 205 /* 206 * The latest segment becomes trailable from the position 207 * written in superblock. 208 */ 209 clear_nilfs_discontinued(nilfs); 210 211 /* update GC protection for recent segments */ 212 if (nilfs->ns_sbh[1]) { 213 if (flag == NILFS_SB_COMMIT_ALL) { 214 set_buffer_dirty(nilfs->ns_sbh[1]); 215 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 216 goto out; 217 } 218 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 219 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 220 sbp = nilfs->ns_sbp[1]; 221 } 222 223 spin_lock(&nilfs->ns_last_segment_lock); 224 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 225 spin_unlock(&nilfs->ns_last_segment_lock); 226 } 227 out: 228 return err; 229 } 230 231 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 232 struct the_nilfs *nilfs) 233 { 234 sector_t nfreeblocks; 235 236 /* nilfs->ns_sem must be locked by the caller. */ 237 nilfs_count_free_blocks(nilfs, &nfreeblocks); 238 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 239 240 spin_lock(&nilfs->ns_last_segment_lock); 241 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 242 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 243 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 244 spin_unlock(&nilfs->ns_last_segment_lock); 245 } 246 247 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 248 int flip) 249 { 250 struct the_nilfs *nilfs = sb->s_fs_info; 251 struct nilfs_super_block **sbp = nilfs->ns_sbp; 252 253 /* nilfs->ns_sem must be locked by the caller. */ 254 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 255 if (sbp[1] && 256 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 257 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 258 } else { 259 nilfs_crit(sb, "superblock broke"); 260 return NULL; 261 } 262 } else if (sbp[1] && 263 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 264 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 265 } 266 267 if (flip && sbp[1]) 268 nilfs_swap_super_block(nilfs); 269 270 return sbp; 271 } 272 273 int nilfs_commit_super(struct super_block *sb, int flag) 274 { 275 struct the_nilfs *nilfs = sb->s_fs_info; 276 struct nilfs_super_block **sbp = nilfs->ns_sbp; 277 time64_t t; 278 279 /* nilfs->ns_sem must be locked by the caller. */ 280 t = ktime_get_real_seconds(); 281 nilfs->ns_sbwtime = t; 282 sbp[0]->s_wtime = cpu_to_le64(t); 283 sbp[0]->s_sum = 0; 284 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 285 (unsigned char *)sbp[0], 286 nilfs->ns_sbsize)); 287 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 288 sbp[1]->s_wtime = sbp[0]->s_wtime; 289 sbp[1]->s_sum = 0; 290 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 291 (unsigned char *)sbp[1], 292 nilfs->ns_sbsize)); 293 } 294 clear_nilfs_sb_dirty(nilfs); 295 nilfs->ns_flushed_device = 1; 296 /* make sure store to ns_flushed_device cannot be reordered */ 297 smp_wmb(); 298 return nilfs_sync_super(sb, flag); 299 } 300 301 /** 302 * nilfs_cleanup_super() - write filesystem state for cleanup 303 * @sb: super block instance to be unmounted or degraded to read-only 304 * 305 * This function restores state flags in the on-disk super block. 306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 307 * filesystem was not clean previously. 308 */ 309 int nilfs_cleanup_super(struct super_block *sb) 310 { 311 struct the_nilfs *nilfs = sb->s_fs_info; 312 struct nilfs_super_block **sbp; 313 int flag = NILFS_SB_COMMIT; 314 int ret = -EIO; 315 316 sbp = nilfs_prepare_super(sb, 0); 317 if (sbp) { 318 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 319 nilfs_set_log_cursor(sbp[0], nilfs); 320 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 321 /* 322 * make the "clean" flag also to the opposite 323 * super block if both super blocks point to 324 * the same checkpoint. 325 */ 326 sbp[1]->s_state = sbp[0]->s_state; 327 flag = NILFS_SB_COMMIT_ALL; 328 } 329 ret = nilfs_commit_super(sb, flag); 330 } 331 return ret; 332 } 333 334 /** 335 * nilfs_move_2nd_super - relocate secondary super block 336 * @sb: super block instance 337 * @sb2off: new offset of the secondary super block (in bytes) 338 */ 339 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 340 { 341 struct the_nilfs *nilfs = sb->s_fs_info; 342 struct buffer_head *nsbh; 343 struct nilfs_super_block *nsbp; 344 sector_t blocknr, newblocknr; 345 unsigned long offset; 346 int sb2i; /* array index of the secondary superblock */ 347 int ret = 0; 348 349 /* nilfs->ns_sem must be locked by the caller. */ 350 if (nilfs->ns_sbh[1] && 351 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 352 sb2i = 1; 353 blocknr = nilfs->ns_sbh[1]->b_blocknr; 354 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 355 sb2i = 0; 356 blocknr = nilfs->ns_sbh[0]->b_blocknr; 357 } else { 358 sb2i = -1; 359 blocknr = 0; 360 } 361 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 362 goto out; /* super block location is unchanged */ 363 364 /* Get new super block buffer */ 365 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 366 offset = sb2off & (nilfs->ns_blocksize - 1); 367 nsbh = sb_getblk(sb, newblocknr); 368 if (!nsbh) { 369 nilfs_warn(sb, 370 "unable to move secondary superblock to block %llu", 371 (unsigned long long)newblocknr); 372 ret = -EIO; 373 goto out; 374 } 375 nsbp = (void *)nsbh->b_data + offset; 376 377 lock_buffer(nsbh); 378 if (sb2i >= 0) { 379 /* 380 * The position of the second superblock only changes by 4KiB, 381 * which is larger than the maximum superblock data size 382 * (= 1KiB), so there is no need to use memmove() to allow 383 * overlap between source and destination. 384 */ 385 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 386 387 /* 388 * Zero fill after copy to avoid overwriting in case of move 389 * within the same block. 390 */ 391 memset(nsbh->b_data, 0, offset); 392 memset((void *)nsbp + nilfs->ns_sbsize, 0, 393 nsbh->b_size - offset - nilfs->ns_sbsize); 394 } else { 395 memset(nsbh->b_data, 0, nsbh->b_size); 396 } 397 set_buffer_uptodate(nsbh); 398 unlock_buffer(nsbh); 399 400 if (sb2i >= 0) { 401 brelse(nilfs->ns_sbh[sb2i]); 402 nilfs->ns_sbh[sb2i] = nsbh; 403 nilfs->ns_sbp[sb2i] = nsbp; 404 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 405 /* secondary super block will be restored to index 1 */ 406 nilfs->ns_sbh[1] = nsbh; 407 nilfs->ns_sbp[1] = nsbp; 408 } else { 409 brelse(nsbh); 410 } 411 out: 412 return ret; 413 } 414 415 /** 416 * nilfs_resize_fs - resize the filesystem 417 * @sb: super block instance 418 * @newsize: new size of the filesystem (in bytes) 419 */ 420 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 421 { 422 struct the_nilfs *nilfs = sb->s_fs_info; 423 struct nilfs_super_block **sbp; 424 __u64 devsize, newnsegs; 425 loff_t sb2off; 426 int ret; 427 428 ret = -ERANGE; 429 devsize = bdev_nr_bytes(sb->s_bdev); 430 if (newsize > devsize) 431 goto out; 432 433 /* 434 * Prevent underflow in second superblock position calculation. 435 * The exact minimum size check is done in nilfs_sufile_resize(). 436 */ 437 if (newsize < 4096) { 438 ret = -ENOSPC; 439 goto out; 440 } 441 442 /* 443 * Write lock is required to protect some functions depending 444 * on the number of segments, the number of reserved segments, 445 * and so forth. 446 */ 447 down_write(&nilfs->ns_segctor_sem); 448 449 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 450 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 451 newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment); 452 453 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 454 up_write(&nilfs->ns_segctor_sem); 455 if (ret < 0) 456 goto out; 457 458 ret = nilfs_construct_segment(sb); 459 if (ret < 0) 460 goto out; 461 462 down_write(&nilfs->ns_sem); 463 nilfs_move_2nd_super(sb, sb2off); 464 ret = -EIO; 465 sbp = nilfs_prepare_super(sb, 0); 466 if (likely(sbp)) { 467 nilfs_set_log_cursor(sbp[0], nilfs); 468 /* 469 * Drop NILFS_RESIZE_FS flag for compatibility with 470 * mount-time resize which may be implemented in a 471 * future release. 472 */ 473 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 474 ~NILFS_RESIZE_FS); 475 sbp[0]->s_dev_size = cpu_to_le64(newsize); 476 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 477 if (sbp[1]) 478 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 479 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 480 } 481 up_write(&nilfs->ns_sem); 482 483 /* 484 * Reset the range of allocatable segments last. This order 485 * is important in the case of expansion because the secondary 486 * superblock must be protected from log write until migration 487 * completes. 488 */ 489 if (!ret) 490 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 491 out: 492 return ret; 493 } 494 495 static void nilfs_put_super(struct super_block *sb) 496 { 497 struct the_nilfs *nilfs = sb->s_fs_info; 498 499 nilfs_detach_log_writer(sb); 500 501 if (!sb_rdonly(sb)) { 502 down_write(&nilfs->ns_sem); 503 nilfs_cleanup_super(sb); 504 up_write(&nilfs->ns_sem); 505 } 506 507 nilfs_sysfs_delete_device_group(nilfs); 508 iput(nilfs->ns_sufile); 509 iput(nilfs->ns_cpfile); 510 iput(nilfs->ns_dat); 511 512 destroy_nilfs(nilfs); 513 sb->s_fs_info = NULL; 514 } 515 516 static int nilfs_sync_fs(struct super_block *sb, int wait) 517 { 518 struct the_nilfs *nilfs = sb->s_fs_info; 519 struct nilfs_super_block **sbp; 520 int err = 0; 521 522 /* This function is called when super block should be written back */ 523 if (wait) 524 err = nilfs_construct_segment(sb); 525 526 down_write(&nilfs->ns_sem); 527 if (nilfs_sb_dirty(nilfs)) { 528 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 529 if (likely(sbp)) { 530 nilfs_set_log_cursor(sbp[0], nilfs); 531 nilfs_commit_super(sb, NILFS_SB_COMMIT); 532 } 533 } 534 up_write(&nilfs->ns_sem); 535 536 if (!err) 537 err = nilfs_flush_device(nilfs); 538 539 return err; 540 } 541 542 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 543 struct nilfs_root **rootp) 544 { 545 struct the_nilfs *nilfs = sb->s_fs_info; 546 struct nilfs_root *root; 547 int err = -ENOMEM; 548 549 root = nilfs_find_or_create_root( 550 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 551 if (!root) 552 return err; 553 554 if (root->ifile) 555 goto reuse; /* already attached checkpoint */ 556 557 down_read(&nilfs->ns_segctor_sem); 558 err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size); 559 up_read(&nilfs->ns_segctor_sem); 560 if (unlikely(err)) 561 goto failed; 562 563 reuse: 564 *rootp = root; 565 return 0; 566 567 failed: 568 if (err == -EINVAL) 569 nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)", 570 (unsigned long long)cno); 571 nilfs_put_root(root); 572 573 return err; 574 } 575 576 static int nilfs_freeze(struct super_block *sb) 577 { 578 struct the_nilfs *nilfs = sb->s_fs_info; 579 int err; 580 581 if (sb_rdonly(sb)) 582 return 0; 583 584 /* Mark super block clean */ 585 down_write(&nilfs->ns_sem); 586 err = nilfs_cleanup_super(sb); 587 up_write(&nilfs->ns_sem); 588 return err; 589 } 590 591 static int nilfs_unfreeze(struct super_block *sb) 592 { 593 struct the_nilfs *nilfs = sb->s_fs_info; 594 595 if (sb_rdonly(sb)) 596 return 0; 597 598 down_write(&nilfs->ns_sem); 599 nilfs_setup_super(sb, false); 600 up_write(&nilfs->ns_sem); 601 return 0; 602 } 603 604 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 605 { 606 struct super_block *sb = dentry->d_sb; 607 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 608 struct the_nilfs *nilfs = root->nilfs; 609 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 610 unsigned long long blocks; 611 unsigned long overhead; 612 unsigned long nrsvblocks; 613 sector_t nfreeblocks; 614 u64 nmaxinodes, nfreeinodes; 615 int err; 616 617 /* 618 * Compute all of the segment blocks 619 * 620 * The blocks before first segment and after last segment 621 * are excluded. 622 */ 623 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 624 - nilfs->ns_first_data_block; 625 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 626 627 /* 628 * Compute the overhead 629 * 630 * When distributing meta data blocks outside segment structure, 631 * We must count them as the overhead. 632 */ 633 overhead = 0; 634 635 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 636 if (unlikely(err)) 637 return err; 638 639 err = nilfs_ifile_count_free_inodes(root->ifile, 640 &nmaxinodes, &nfreeinodes); 641 if (unlikely(err)) { 642 nilfs_warn(sb, "failed to count free inodes: err=%d", err); 643 if (err == -ERANGE) { 644 /* 645 * If nilfs_palloc_count_max_entries() returns 646 * -ERANGE error code then we simply treat 647 * curent inodes count as maximum possible and 648 * zero as free inodes value. 649 */ 650 nmaxinodes = atomic64_read(&root->inodes_count); 651 nfreeinodes = 0; 652 err = 0; 653 } else 654 return err; 655 } 656 657 buf->f_type = NILFS_SUPER_MAGIC; 658 buf->f_bsize = sb->s_blocksize; 659 buf->f_blocks = blocks - overhead; 660 buf->f_bfree = nfreeblocks; 661 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 662 (buf->f_bfree - nrsvblocks) : 0; 663 buf->f_files = nmaxinodes; 664 buf->f_ffree = nfreeinodes; 665 buf->f_namelen = NILFS_NAME_LEN; 666 buf->f_fsid = u64_to_fsid(id); 667 668 return 0; 669 } 670 671 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 672 { 673 struct super_block *sb = dentry->d_sb; 674 struct the_nilfs *nilfs = sb->s_fs_info; 675 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 676 677 if (!nilfs_test_opt(nilfs, BARRIER)) 678 seq_puts(seq, ",nobarrier"); 679 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 680 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 681 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 682 seq_puts(seq, ",errors=panic"); 683 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 684 seq_puts(seq, ",errors=continue"); 685 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 686 seq_puts(seq, ",order=strict"); 687 if (nilfs_test_opt(nilfs, NORECOVERY)) 688 seq_puts(seq, ",norecovery"); 689 if (nilfs_test_opt(nilfs, DISCARD)) 690 seq_puts(seq, ",discard"); 691 692 return 0; 693 } 694 695 static const struct super_operations nilfs_sops = { 696 .alloc_inode = nilfs_alloc_inode, 697 .free_inode = nilfs_free_inode, 698 .dirty_inode = nilfs_dirty_inode, 699 .evict_inode = nilfs_evict_inode, 700 .put_super = nilfs_put_super, 701 .sync_fs = nilfs_sync_fs, 702 .freeze_fs = nilfs_freeze, 703 .unfreeze_fs = nilfs_unfreeze, 704 .statfs = nilfs_statfs, 705 .remount_fs = nilfs_remount, 706 .show_options = nilfs_show_options 707 }; 708 709 enum { 710 Opt_err_cont, Opt_err_panic, Opt_err_ro, 711 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 712 Opt_discard, Opt_nodiscard, Opt_err, 713 }; 714 715 static match_table_t tokens = { 716 {Opt_err_cont, "errors=continue"}, 717 {Opt_err_panic, "errors=panic"}, 718 {Opt_err_ro, "errors=remount-ro"}, 719 {Opt_barrier, "barrier"}, 720 {Opt_nobarrier, "nobarrier"}, 721 {Opt_snapshot, "cp=%u"}, 722 {Opt_order, "order=%s"}, 723 {Opt_norecovery, "norecovery"}, 724 {Opt_discard, "discard"}, 725 {Opt_nodiscard, "nodiscard"}, 726 {Opt_err, NULL} 727 }; 728 729 static int parse_options(char *options, struct super_block *sb, int is_remount) 730 { 731 struct the_nilfs *nilfs = sb->s_fs_info; 732 char *p; 733 substring_t args[MAX_OPT_ARGS]; 734 735 if (!options) 736 return 1; 737 738 while ((p = strsep(&options, ",")) != NULL) { 739 int token; 740 741 if (!*p) 742 continue; 743 744 token = match_token(p, tokens, args); 745 switch (token) { 746 case Opt_barrier: 747 nilfs_set_opt(nilfs, BARRIER); 748 break; 749 case Opt_nobarrier: 750 nilfs_clear_opt(nilfs, BARRIER); 751 break; 752 case Opt_order: 753 if (strcmp(args[0].from, "relaxed") == 0) 754 /* Ordered data semantics */ 755 nilfs_clear_opt(nilfs, STRICT_ORDER); 756 else if (strcmp(args[0].from, "strict") == 0) 757 /* Strict in-order semantics */ 758 nilfs_set_opt(nilfs, STRICT_ORDER); 759 else 760 return 0; 761 break; 762 case Opt_err_panic: 763 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 764 break; 765 case Opt_err_ro: 766 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 767 break; 768 case Opt_err_cont: 769 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 770 break; 771 case Opt_snapshot: 772 if (is_remount) { 773 nilfs_err(sb, 774 "\"%s\" option is invalid for remount", 775 p); 776 return 0; 777 } 778 break; 779 case Opt_norecovery: 780 nilfs_set_opt(nilfs, NORECOVERY); 781 break; 782 case Opt_discard: 783 nilfs_set_opt(nilfs, DISCARD); 784 break; 785 case Opt_nodiscard: 786 nilfs_clear_opt(nilfs, DISCARD); 787 break; 788 default: 789 nilfs_err(sb, "unrecognized mount option \"%s\"", p); 790 return 0; 791 } 792 } 793 return 1; 794 } 795 796 static inline void 797 nilfs_set_default_options(struct super_block *sb, 798 struct nilfs_super_block *sbp) 799 { 800 struct the_nilfs *nilfs = sb->s_fs_info; 801 802 nilfs->ns_mount_opt = 803 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 804 } 805 806 static int nilfs_setup_super(struct super_block *sb, int is_mount) 807 { 808 struct the_nilfs *nilfs = sb->s_fs_info; 809 struct nilfs_super_block **sbp; 810 int max_mnt_count; 811 int mnt_count; 812 813 /* nilfs->ns_sem must be locked by the caller. */ 814 sbp = nilfs_prepare_super(sb, 0); 815 if (!sbp) 816 return -EIO; 817 818 if (!is_mount) 819 goto skip_mount_setup; 820 821 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 822 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 823 824 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 825 nilfs_warn(sb, "mounting fs with errors"); 826 #if 0 827 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 828 nilfs_warn(sb, "maximal mount count reached"); 829 #endif 830 } 831 if (!max_mnt_count) 832 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 833 834 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 835 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds()); 836 837 skip_mount_setup: 838 sbp[0]->s_state = 839 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 840 /* synchronize sbp[1] with sbp[0] */ 841 if (sbp[1]) 842 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 843 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 844 } 845 846 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 847 u64 pos, int blocksize, 848 struct buffer_head **pbh) 849 { 850 unsigned long long sb_index = pos; 851 unsigned long offset; 852 853 offset = do_div(sb_index, blocksize); 854 *pbh = sb_bread(sb, sb_index); 855 if (!*pbh) 856 return NULL; 857 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 858 } 859 860 int nilfs_store_magic_and_option(struct super_block *sb, 861 struct nilfs_super_block *sbp, 862 char *data) 863 { 864 struct the_nilfs *nilfs = sb->s_fs_info; 865 866 sb->s_magic = le16_to_cpu(sbp->s_magic); 867 868 /* FS independent flags */ 869 #ifdef NILFS_ATIME_DISABLE 870 sb->s_flags |= SB_NOATIME; 871 #endif 872 873 nilfs_set_default_options(sb, sbp); 874 875 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 876 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 877 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 878 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 879 880 return !parse_options(data, sb, 0) ? -EINVAL : 0; 881 } 882 883 int nilfs_check_feature_compatibility(struct super_block *sb, 884 struct nilfs_super_block *sbp) 885 { 886 __u64 features; 887 888 features = le64_to_cpu(sbp->s_feature_incompat) & 889 ~NILFS_FEATURE_INCOMPAT_SUPP; 890 if (features) { 891 nilfs_err(sb, 892 "couldn't mount because of unsupported optional features (%llx)", 893 (unsigned long long)features); 894 return -EINVAL; 895 } 896 features = le64_to_cpu(sbp->s_feature_compat_ro) & 897 ~NILFS_FEATURE_COMPAT_RO_SUPP; 898 if (!sb_rdonly(sb) && features) { 899 nilfs_err(sb, 900 "couldn't mount RDWR because of unsupported optional features (%llx)", 901 (unsigned long long)features); 902 return -EINVAL; 903 } 904 return 0; 905 } 906 907 static int nilfs_get_root_dentry(struct super_block *sb, 908 struct nilfs_root *root, 909 struct dentry **root_dentry) 910 { 911 struct inode *inode; 912 struct dentry *dentry; 913 int ret = 0; 914 915 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 916 if (IS_ERR(inode)) { 917 ret = PTR_ERR(inode); 918 nilfs_err(sb, "error %d getting root inode", ret); 919 goto out; 920 } 921 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 922 iput(inode); 923 nilfs_err(sb, "corrupt root inode"); 924 ret = -EINVAL; 925 goto out; 926 } 927 928 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 929 dentry = d_find_alias(inode); 930 if (!dentry) { 931 dentry = d_make_root(inode); 932 if (!dentry) { 933 ret = -ENOMEM; 934 goto failed_dentry; 935 } 936 } else { 937 iput(inode); 938 } 939 } else { 940 dentry = d_obtain_root(inode); 941 if (IS_ERR(dentry)) { 942 ret = PTR_ERR(dentry); 943 goto failed_dentry; 944 } 945 } 946 *root_dentry = dentry; 947 out: 948 return ret; 949 950 failed_dentry: 951 nilfs_err(sb, "error %d getting root dentry", ret); 952 goto out; 953 } 954 955 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 956 struct dentry **root_dentry) 957 { 958 struct the_nilfs *nilfs = s->s_fs_info; 959 struct nilfs_root *root; 960 int ret; 961 962 mutex_lock(&nilfs->ns_snapshot_mount_mutex); 963 964 down_read(&nilfs->ns_segctor_sem); 965 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 966 up_read(&nilfs->ns_segctor_sem); 967 if (ret < 0) { 968 ret = (ret == -ENOENT) ? -EINVAL : ret; 969 goto out; 970 } else if (!ret) { 971 nilfs_err(s, 972 "The specified checkpoint is not a snapshot (checkpoint number=%llu)", 973 (unsigned long long)cno); 974 ret = -EINVAL; 975 goto out; 976 } 977 978 ret = nilfs_attach_checkpoint(s, cno, false, &root); 979 if (ret) { 980 nilfs_err(s, 981 "error %d while loading snapshot (checkpoint number=%llu)", 982 ret, (unsigned long long)cno); 983 goto out; 984 } 985 ret = nilfs_get_root_dentry(s, root, root_dentry); 986 nilfs_put_root(root); 987 out: 988 mutex_unlock(&nilfs->ns_snapshot_mount_mutex); 989 return ret; 990 } 991 992 /** 993 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint 994 * @root_dentry: root dentry of the tree to be shrunk 995 * 996 * This function returns true if the tree was in-use. 997 */ 998 static bool nilfs_tree_is_busy(struct dentry *root_dentry) 999 { 1000 shrink_dcache_parent(root_dentry); 1001 return d_count(root_dentry) > 1; 1002 } 1003 1004 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 1005 { 1006 struct the_nilfs *nilfs = sb->s_fs_info; 1007 struct nilfs_root *root; 1008 struct inode *inode; 1009 struct dentry *dentry; 1010 int ret; 1011 1012 if (cno > nilfs->ns_cno) 1013 return false; 1014 1015 if (cno >= nilfs_last_cno(nilfs)) 1016 return true; /* protect recent checkpoints */ 1017 1018 ret = false; 1019 root = nilfs_lookup_root(nilfs, cno); 1020 if (root) { 1021 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1022 if (inode) { 1023 dentry = d_find_alias(inode); 1024 if (dentry) { 1025 ret = nilfs_tree_is_busy(dentry); 1026 dput(dentry); 1027 } 1028 iput(inode); 1029 } 1030 nilfs_put_root(root); 1031 } 1032 return ret; 1033 } 1034 1035 /** 1036 * nilfs_fill_super() - initialize a super block instance 1037 * @sb: super_block 1038 * @data: mount options 1039 * @silent: silent mode flag 1040 * 1041 * This function is called exclusively by nilfs->ns_mount_mutex. 1042 * So, the recovery process is protected from other simultaneous mounts. 1043 */ 1044 static int 1045 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1046 { 1047 struct the_nilfs *nilfs; 1048 struct nilfs_root *fsroot; 1049 __u64 cno; 1050 int err; 1051 1052 nilfs = alloc_nilfs(sb); 1053 if (!nilfs) 1054 return -ENOMEM; 1055 1056 sb->s_fs_info = nilfs; 1057 1058 err = init_nilfs(nilfs, sb, (char *)data); 1059 if (err) 1060 goto failed_nilfs; 1061 1062 sb->s_op = &nilfs_sops; 1063 sb->s_export_op = &nilfs_export_ops; 1064 sb->s_root = NULL; 1065 sb->s_time_gran = 1; 1066 sb->s_max_links = NILFS_LINK_MAX; 1067 1068 sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi); 1069 1070 err = load_nilfs(nilfs, sb); 1071 if (err) 1072 goto failed_nilfs; 1073 1074 cno = nilfs_last_cno(nilfs); 1075 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1076 if (err) { 1077 nilfs_err(sb, 1078 "error %d while loading last checkpoint (checkpoint number=%llu)", 1079 err, (unsigned long long)cno); 1080 goto failed_unload; 1081 } 1082 1083 if (!sb_rdonly(sb)) { 1084 err = nilfs_attach_log_writer(sb, fsroot); 1085 if (err) 1086 goto failed_checkpoint; 1087 } 1088 1089 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1090 if (err) 1091 goto failed_segctor; 1092 1093 nilfs_put_root(fsroot); 1094 1095 if (!sb_rdonly(sb)) { 1096 down_write(&nilfs->ns_sem); 1097 nilfs_setup_super(sb, true); 1098 up_write(&nilfs->ns_sem); 1099 } 1100 1101 return 0; 1102 1103 failed_segctor: 1104 nilfs_detach_log_writer(sb); 1105 1106 failed_checkpoint: 1107 nilfs_put_root(fsroot); 1108 1109 failed_unload: 1110 nilfs_sysfs_delete_device_group(nilfs); 1111 iput(nilfs->ns_sufile); 1112 iput(nilfs->ns_cpfile); 1113 iput(nilfs->ns_dat); 1114 1115 failed_nilfs: 1116 destroy_nilfs(nilfs); 1117 return err; 1118 } 1119 1120 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1121 { 1122 struct the_nilfs *nilfs = sb->s_fs_info; 1123 unsigned long old_sb_flags; 1124 unsigned long old_mount_opt; 1125 int err; 1126 1127 sync_filesystem(sb); 1128 old_sb_flags = sb->s_flags; 1129 old_mount_opt = nilfs->ns_mount_opt; 1130 1131 if (!parse_options(data, sb, 1)) { 1132 err = -EINVAL; 1133 goto restore_opts; 1134 } 1135 sb->s_flags = (sb->s_flags & ~SB_POSIXACL); 1136 1137 err = -EINVAL; 1138 1139 if (!nilfs_valid_fs(nilfs)) { 1140 nilfs_warn(sb, 1141 "couldn't remount because the filesystem is in an incomplete recovery state"); 1142 goto restore_opts; 1143 } 1144 1145 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1146 goto out; 1147 if (*flags & SB_RDONLY) { 1148 sb->s_flags |= SB_RDONLY; 1149 1150 /* 1151 * Remounting a valid RW partition RDONLY, so set 1152 * the RDONLY flag and then mark the partition as valid again. 1153 */ 1154 down_write(&nilfs->ns_sem); 1155 nilfs_cleanup_super(sb); 1156 up_write(&nilfs->ns_sem); 1157 } else { 1158 __u64 features; 1159 struct nilfs_root *root; 1160 1161 /* 1162 * Mounting a RDONLY partition read-write, so reread and 1163 * store the current valid flag. (It may have been changed 1164 * by fsck since we originally mounted the partition.) 1165 */ 1166 down_read(&nilfs->ns_sem); 1167 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1168 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1169 up_read(&nilfs->ns_sem); 1170 if (features) { 1171 nilfs_warn(sb, 1172 "couldn't remount RDWR because of unsupported optional features (%llx)", 1173 (unsigned long long)features); 1174 err = -EROFS; 1175 goto restore_opts; 1176 } 1177 1178 sb->s_flags &= ~SB_RDONLY; 1179 1180 root = NILFS_I(d_inode(sb->s_root))->i_root; 1181 err = nilfs_attach_log_writer(sb, root); 1182 if (err) 1183 goto restore_opts; 1184 1185 down_write(&nilfs->ns_sem); 1186 nilfs_setup_super(sb, true); 1187 up_write(&nilfs->ns_sem); 1188 } 1189 out: 1190 return 0; 1191 1192 restore_opts: 1193 sb->s_flags = old_sb_flags; 1194 nilfs->ns_mount_opt = old_mount_opt; 1195 return err; 1196 } 1197 1198 struct nilfs_super_data { 1199 __u64 cno; 1200 int flags; 1201 }; 1202 1203 static int nilfs_parse_snapshot_option(const char *option, 1204 const substring_t *arg, 1205 struct nilfs_super_data *sd) 1206 { 1207 unsigned long long val; 1208 const char *msg = NULL; 1209 int err; 1210 1211 if (!(sd->flags & SB_RDONLY)) { 1212 msg = "read-only option is not specified"; 1213 goto parse_error; 1214 } 1215 1216 err = kstrtoull(arg->from, 0, &val); 1217 if (err) { 1218 if (err == -ERANGE) 1219 msg = "too large checkpoint number"; 1220 else 1221 msg = "malformed argument"; 1222 goto parse_error; 1223 } else if (val == 0) { 1224 msg = "invalid checkpoint number 0"; 1225 goto parse_error; 1226 } 1227 sd->cno = val; 1228 return 0; 1229 1230 parse_error: 1231 nilfs_err(NULL, "invalid option \"%s\": %s", option, msg); 1232 return 1; 1233 } 1234 1235 /** 1236 * nilfs_identify - pre-read mount options needed to identify mount instance 1237 * @data: mount options 1238 * @sd: nilfs_super_data 1239 */ 1240 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1241 { 1242 char *p, *options = data; 1243 substring_t args[MAX_OPT_ARGS]; 1244 int token; 1245 int ret = 0; 1246 1247 do { 1248 p = strsep(&options, ","); 1249 if (p != NULL && *p) { 1250 token = match_token(p, tokens, args); 1251 if (token == Opt_snapshot) 1252 ret = nilfs_parse_snapshot_option(p, &args[0], 1253 sd); 1254 } 1255 if (!options) 1256 break; 1257 BUG_ON(options == data); 1258 *(options - 1) = ','; 1259 } while (!ret); 1260 return ret; 1261 } 1262 1263 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1264 { 1265 s->s_dev = *(dev_t *)data; 1266 return 0; 1267 } 1268 1269 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1270 { 1271 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1272 } 1273 1274 static struct dentry * 1275 nilfs_mount(struct file_system_type *fs_type, int flags, 1276 const char *dev_name, void *data) 1277 { 1278 struct nilfs_super_data sd = { .flags = flags }; 1279 struct super_block *s; 1280 dev_t dev; 1281 int err; 1282 1283 if (nilfs_identify(data, &sd)) 1284 return ERR_PTR(-EINVAL); 1285 1286 err = lookup_bdev(dev_name, &dev); 1287 if (err) 1288 return ERR_PTR(err); 1289 1290 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, 1291 &dev); 1292 if (IS_ERR(s)) 1293 return ERR_CAST(s); 1294 1295 if (!s->s_root) { 1296 err = setup_bdev_super(s, flags, NULL); 1297 if (!err) 1298 err = nilfs_fill_super(s, data, 1299 flags & SB_SILENT ? 1 : 0); 1300 if (err) 1301 goto failed_super; 1302 1303 s->s_flags |= SB_ACTIVE; 1304 } else if (!sd.cno) { 1305 if (nilfs_tree_is_busy(s->s_root)) { 1306 if ((flags ^ s->s_flags) & SB_RDONLY) { 1307 nilfs_err(s, 1308 "the device already has a %s mount.", 1309 sb_rdonly(s) ? "read-only" : "read/write"); 1310 err = -EBUSY; 1311 goto failed_super; 1312 } 1313 } else { 1314 /* 1315 * Try remount to setup mount states if the current 1316 * tree is not mounted and only snapshots use this sb. 1317 */ 1318 err = nilfs_remount(s, &flags, data); 1319 if (err) 1320 goto failed_super; 1321 } 1322 } 1323 1324 if (sd.cno) { 1325 struct dentry *root_dentry; 1326 1327 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1328 if (err) 1329 goto failed_super; 1330 return root_dentry; 1331 } 1332 1333 return dget(s->s_root); 1334 1335 failed_super: 1336 deactivate_locked_super(s); 1337 return ERR_PTR(err); 1338 } 1339 1340 struct file_system_type nilfs_fs_type = { 1341 .owner = THIS_MODULE, 1342 .name = "nilfs2", 1343 .mount = nilfs_mount, 1344 .kill_sb = kill_block_super, 1345 .fs_flags = FS_REQUIRES_DEV, 1346 }; 1347 MODULE_ALIAS_FS("nilfs2"); 1348 1349 static void nilfs_inode_init_once(void *obj) 1350 { 1351 struct nilfs_inode_info *ii = obj; 1352 1353 INIT_LIST_HEAD(&ii->i_dirty); 1354 #ifdef CONFIG_NILFS_XATTR 1355 init_rwsem(&ii->xattr_sem); 1356 #endif 1357 inode_init_once(&ii->vfs_inode); 1358 } 1359 1360 static void nilfs_segbuf_init_once(void *obj) 1361 { 1362 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1363 } 1364 1365 static void nilfs_destroy_cachep(void) 1366 { 1367 /* 1368 * Make sure all delayed rcu free inodes are flushed before we 1369 * destroy cache. 1370 */ 1371 rcu_barrier(); 1372 1373 kmem_cache_destroy(nilfs_inode_cachep); 1374 kmem_cache_destroy(nilfs_transaction_cachep); 1375 kmem_cache_destroy(nilfs_segbuf_cachep); 1376 kmem_cache_destroy(nilfs_btree_path_cache); 1377 } 1378 1379 static int __init nilfs_init_cachep(void) 1380 { 1381 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1382 sizeof(struct nilfs_inode_info), 0, 1383 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, 1384 nilfs_inode_init_once); 1385 if (!nilfs_inode_cachep) 1386 goto fail; 1387 1388 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1389 sizeof(struct nilfs_transaction_info), 0, 1390 SLAB_RECLAIM_ACCOUNT, NULL); 1391 if (!nilfs_transaction_cachep) 1392 goto fail; 1393 1394 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1395 sizeof(struct nilfs_segment_buffer), 0, 1396 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1397 if (!nilfs_segbuf_cachep) 1398 goto fail; 1399 1400 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1401 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1402 0, 0, NULL); 1403 if (!nilfs_btree_path_cache) 1404 goto fail; 1405 1406 return 0; 1407 1408 fail: 1409 nilfs_destroy_cachep(); 1410 return -ENOMEM; 1411 } 1412 1413 static int __init init_nilfs_fs(void) 1414 { 1415 int err; 1416 1417 err = nilfs_init_cachep(); 1418 if (err) 1419 goto fail; 1420 1421 err = nilfs_sysfs_init(); 1422 if (err) 1423 goto free_cachep; 1424 1425 err = register_filesystem(&nilfs_fs_type); 1426 if (err) 1427 goto deinit_sysfs_entry; 1428 1429 printk(KERN_INFO "NILFS version 2 loaded\n"); 1430 return 0; 1431 1432 deinit_sysfs_entry: 1433 nilfs_sysfs_exit(); 1434 free_cachep: 1435 nilfs_destroy_cachep(); 1436 fail: 1437 return err; 1438 } 1439 1440 static void __exit exit_nilfs_fs(void) 1441 { 1442 nilfs_destroy_cachep(); 1443 nilfs_sysfs_exit(); 1444 unregister_filesystem(&nilfs_fs_type); 1445 } 1446 1447 module_init(init_nilfs_fs) 1448 module_exit(exit_nilfs_fs) 1449