xref: /linux/fs/nilfs2/super.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
62 
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 		   "(NILFS)");
66 MODULE_LICENSE("GPL");
67 
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 /**
72  * nilfs_error() - report failure condition on a filesystem
73  *
74  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
75  * reporting an error message.  It should be called when NILFS detects
76  * incoherences or defects of meta data on disk.  As for sustainable
77  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
78  * function should be used instead.
79  *
80  * The segment constructor must not call this function because it can
81  * kill itself.
82  */
83 void nilfs_error(struct super_block *sb, const char *function,
84 		 const char *fmt, ...)
85 {
86 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
87 	va_list args;
88 
89 	va_start(args, fmt);
90 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
91 	vprintk(fmt, args);
92 	printk("\n");
93 	va_end(args);
94 
95 	if (!(sb->s_flags & MS_RDONLY)) {
96 		struct the_nilfs *nilfs = sbi->s_nilfs;
97 
98 		if (!nilfs_test_opt(sbi, ERRORS_CONT))
99 			nilfs_detach_segment_constructor(sbi);
100 
101 		down_write(&nilfs->ns_sem);
102 		if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
103 			nilfs->ns_mount_state |= NILFS_ERROR_FS;
104 			nilfs->ns_sbp[0]->s_state |=
105 				cpu_to_le16(NILFS_ERROR_FS);
106 			nilfs_commit_super(sbi, 1);
107 		}
108 		up_write(&nilfs->ns_sem);
109 
110 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
111 			printk(KERN_CRIT "Remounting filesystem read-only\n");
112 			sb->s_flags |= MS_RDONLY;
113 		}
114 	}
115 
116 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
117 		panic("NILFS (device %s): panic forced after error\n",
118 		      sb->s_id);
119 }
120 
121 void nilfs_warning(struct super_block *sb, const char *function,
122 		   const char *fmt, ...)
123 {
124 	va_list args;
125 
126 	va_start(args, fmt);
127 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
128 	       sb->s_id, function);
129 	vprintk(fmt, args);
130 	printk("\n");
131 	va_end(args);
132 }
133 
134 static struct kmem_cache *nilfs_inode_cachep;
135 
136 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
137 {
138 	struct nilfs_inode_info *ii;
139 
140 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
141 	if (!ii)
142 		return NULL;
143 	ii->i_bh = NULL;
144 	ii->i_state = 0;
145 	ii->vfs_inode.i_version = 1;
146 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
147 	return &ii->vfs_inode;
148 }
149 
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
153 }
154 
155 void nilfs_destroy_inode(struct inode *inode)
156 {
157 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
158 }
159 
160 static void init_once(void *obj)
161 {
162 	struct nilfs_inode_info *ii = obj;
163 
164 	INIT_LIST_HEAD(&ii->i_dirty);
165 #ifdef CONFIG_NILFS_XATTR
166 	init_rwsem(&ii->xattr_sem);
167 #endif
168 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
169 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
170 	inode_init_once(&ii->vfs_inode);
171 }
172 
173 static int nilfs_init_inode_cache(void)
174 {
175 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
176 					       sizeof(struct nilfs_inode_info),
177 					       0, SLAB_RECLAIM_ACCOUNT,
178 					       init_once);
179 
180 	return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
181 }
182 
183 static inline void nilfs_destroy_inode_cache(void)
184 {
185 	kmem_cache_destroy(nilfs_inode_cachep);
186 }
187 
188 static void nilfs_clear_inode(struct inode *inode)
189 {
190 	struct nilfs_inode_info *ii = NILFS_I(inode);
191 
192 #ifdef CONFIG_NILFS_POSIX_ACL
193 	if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
194 		posix_acl_release(ii->i_acl);
195 		ii->i_acl = NILFS_ACL_NOT_CACHED;
196 	}
197 	if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
198 		posix_acl_release(ii->i_default_acl);
199 		ii->i_default_acl = NILFS_ACL_NOT_CACHED;
200 	}
201 #endif
202 	/*
203 	 * Free resources allocated in nilfs_read_inode(), here.
204 	 */
205 	BUG_ON(!list_empty(&ii->i_dirty));
206 	brelse(ii->i_bh);
207 	ii->i_bh = NULL;
208 
209 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
210 		nilfs_bmap_clear(ii->i_bmap);
211 
212 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
213 }
214 
215 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
216 {
217 	struct the_nilfs *nilfs = sbi->s_nilfs;
218 	int err;
219 	int barrier_done = 0;
220 
221 	if (nilfs_test_opt(sbi, BARRIER)) {
222 		set_buffer_ordered(nilfs->ns_sbh[0]);
223 		barrier_done = 1;
224 	}
225  retry:
226 	set_buffer_dirty(nilfs->ns_sbh[0]);
227 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
228 	if (err == -EOPNOTSUPP && barrier_done) {
229 		nilfs_warning(sbi->s_super, __func__,
230 			      "barrier-based sync failed. "
231 			      "disabling barriers\n");
232 		nilfs_clear_opt(sbi, BARRIER);
233 		barrier_done = 0;
234 		clear_buffer_ordered(nilfs->ns_sbh[0]);
235 		goto retry;
236 	}
237 	if (unlikely(err)) {
238 		printk(KERN_ERR
239 		       "NILFS: unable to write superblock (err=%d)\n", err);
240 		if (err == -EIO && nilfs->ns_sbh[1]) {
241 			nilfs_fall_back_super_block(nilfs);
242 			goto retry;
243 		}
244 	} else {
245 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
246 
247 		/*
248 		 * The latest segment becomes trailable from the position
249 		 * written in superblock.
250 		 */
251 		clear_nilfs_discontinued(nilfs);
252 
253 		/* update GC protection for recent segments */
254 		if (nilfs->ns_sbh[1]) {
255 			sbp = NULL;
256 			if (dupsb) {
257 				set_buffer_dirty(nilfs->ns_sbh[1]);
258 				if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
259 					sbp = nilfs->ns_sbp[1];
260 			}
261 		}
262 		if (sbp) {
263 			spin_lock(&nilfs->ns_last_segment_lock);
264 			nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
265 			spin_unlock(&nilfs->ns_last_segment_lock);
266 		}
267 	}
268 
269 	return err;
270 }
271 
272 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
273 {
274 	struct the_nilfs *nilfs = sbi->s_nilfs;
275 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
276 	sector_t nfreeblocks;
277 	time_t t;
278 	int err;
279 
280 	/* nilfs->sem must be locked by the caller. */
281 	if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
282 		if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
283 			nilfs_swap_super_block(nilfs);
284 		else {
285 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
286 			       sbi->s_super->s_id);
287 			return -EIO;
288 		}
289 	}
290 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
291 	if (unlikely(err)) {
292 		printk(KERN_ERR "NILFS: failed to count free blocks\n");
293 		return err;
294 	}
295 	spin_lock(&nilfs->ns_last_segment_lock);
296 	sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
297 	sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
298 	sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
299 	spin_unlock(&nilfs->ns_last_segment_lock);
300 
301 	t = get_seconds();
302 	nilfs->ns_sbwtime[0] = t;
303 	sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
304 	sbp[0]->s_wtime = cpu_to_le64(t);
305 	sbp[0]->s_sum = 0;
306 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
307 					     (unsigned char *)sbp[0],
308 					     nilfs->ns_sbsize));
309 	if (dupsb && sbp[1]) {
310 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
311 		nilfs->ns_sbwtime[1] = t;
312 	}
313 	sbi->s_super->s_dirt = 0;
314 	return nilfs_sync_super(sbi, dupsb);
315 }
316 
317 static void nilfs_put_super(struct super_block *sb)
318 {
319 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
320 	struct the_nilfs *nilfs = sbi->s_nilfs;
321 
322 	lock_kernel();
323 
324 	if (sb->s_dirt)
325 		nilfs_write_super(sb);
326 
327 	nilfs_detach_segment_constructor(sbi);
328 
329 	if (!(sb->s_flags & MS_RDONLY)) {
330 		down_write(&nilfs->ns_sem);
331 		nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
332 		nilfs_commit_super(sbi, 1);
333 		up_write(&nilfs->ns_sem);
334 	}
335 	down_write(&nilfs->ns_super_sem);
336 	if (nilfs->ns_current == sbi)
337 		nilfs->ns_current = NULL;
338 	up_write(&nilfs->ns_super_sem);
339 
340 	nilfs_detach_checkpoint(sbi);
341 	put_nilfs(sbi->s_nilfs);
342 	sbi->s_super = NULL;
343 	sb->s_fs_info = NULL;
344 	nilfs_put_sbinfo(sbi);
345 
346 	unlock_kernel();
347 }
348 
349 /**
350  * nilfs_write_super - write super block(s) of NILFS
351  * @sb: super_block
352  *
353  * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
354  * clears s_dirt.  This function is called in the section protected by
355  * lock_super().
356  *
357  * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
358  * of the struct the_nilfs.  Lock order must be as follows:
359  *
360  *   1. lock_super()
361  *   2.    down_write(&nilfs->ns_sem)
362  *
363  * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
364  * of the super block (nilfs->ns_sbp[]).
365  *
366  * In most cases, VFS functions call lock_super() before calling these
367  * methods.  So we must be careful not to bring on deadlocks when using
368  * lock_super();  see generic_shutdown_super(), write_super(), and so on.
369  *
370  * Note that order of lock_kernel() and lock_super() depends on contexts
371  * of VFS.  We should also note that lock_kernel() can be used in its
372  * protective section and only the outermost one has an effect.
373  */
374 static void nilfs_write_super(struct super_block *sb)
375 {
376 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
377 	struct the_nilfs *nilfs = sbi->s_nilfs;
378 
379 	down_write(&nilfs->ns_sem);
380 	if (!(sb->s_flags & MS_RDONLY)) {
381 		struct nilfs_super_block **sbp = nilfs->ns_sbp;
382 		u64 t = get_seconds();
383 		int dupsb;
384 
385 		if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
386 		    t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
387 			up_write(&nilfs->ns_sem);
388 			return;
389 		}
390 		dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
391 		nilfs_commit_super(sbi, dupsb);
392 	}
393 	sb->s_dirt = 0;
394 	up_write(&nilfs->ns_sem);
395 }
396 
397 static int nilfs_sync_fs(struct super_block *sb, int wait)
398 {
399 	int err = 0;
400 
401 	nilfs_write_super(sb);
402 
403 	/* This function is called when super block should be written back */
404 	if (wait)
405 		err = nilfs_construct_segment(sb);
406 	return err;
407 }
408 
409 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
410 {
411 	struct the_nilfs *nilfs = sbi->s_nilfs;
412 	struct nilfs_checkpoint *raw_cp;
413 	struct buffer_head *bh_cp;
414 	int err;
415 
416 	down_write(&nilfs->ns_super_sem);
417 	list_add(&sbi->s_list, &nilfs->ns_supers);
418 	up_write(&nilfs->ns_super_sem);
419 
420 	sbi->s_ifile = nilfs_mdt_new(
421 		nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
422 	if (!sbi->s_ifile)
423 		return -ENOMEM;
424 
425 	err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
426 	if (unlikely(err))
427 		goto failed;
428 
429 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
430 					  &bh_cp);
431 	if (unlikely(err)) {
432 		if (err == -ENOENT || err == -EINVAL) {
433 			printk(KERN_ERR
434 			       "NILFS: Invalid checkpoint "
435 			       "(checkpoint number=%llu)\n",
436 			       (unsigned long long)cno);
437 			err = -EINVAL;
438 		}
439 		goto failed;
440 	}
441 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
442 	if (unlikely(err))
443 		goto failed_bh;
444 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
445 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
446 
447 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
448 	return 0;
449 
450  failed_bh:
451 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
452  failed:
453 	nilfs_mdt_destroy(sbi->s_ifile);
454 	sbi->s_ifile = NULL;
455 
456 	down_write(&nilfs->ns_super_sem);
457 	list_del_init(&sbi->s_list);
458 	up_write(&nilfs->ns_super_sem);
459 
460 	return err;
461 }
462 
463 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
464 {
465 	struct the_nilfs *nilfs = sbi->s_nilfs;
466 
467 	nilfs_mdt_clear(sbi->s_ifile);
468 	nilfs_mdt_destroy(sbi->s_ifile);
469 	sbi->s_ifile = NULL;
470 	down_write(&nilfs->ns_super_sem);
471 	list_del_init(&sbi->s_list);
472 	up_write(&nilfs->ns_super_sem);
473 }
474 
475 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
476 {
477 	struct the_nilfs *nilfs = sbi->s_nilfs;
478 	int err = 0;
479 
480 	down_write(&nilfs->ns_sem);
481 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
482 		nilfs->ns_mount_state |= NILFS_VALID_FS;
483 		err = nilfs_commit_super(sbi, 1);
484 		if (likely(!err))
485 			printk(KERN_INFO "NILFS: recovery complete.\n");
486 	}
487 	up_write(&nilfs->ns_sem);
488 	return err;
489 }
490 
491 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
492 {
493 	struct super_block *sb = dentry->d_sb;
494 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
495 	struct the_nilfs *nilfs = sbi->s_nilfs;
496 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
497 	unsigned long long blocks;
498 	unsigned long overhead;
499 	unsigned long nrsvblocks;
500 	sector_t nfreeblocks;
501 	int err;
502 
503 	/*
504 	 * Compute all of the segment blocks
505 	 *
506 	 * The blocks before first segment and after last segment
507 	 * are excluded.
508 	 */
509 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
510 		- nilfs->ns_first_data_block;
511 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
512 
513 	/*
514 	 * Compute the overhead
515 	 *
516 	 * When distributing meta data blocks outside semgent structure,
517 	 * We must count them as the overhead.
518 	 */
519 	overhead = 0;
520 
521 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
522 	if (unlikely(err))
523 		return err;
524 
525 	buf->f_type = NILFS_SUPER_MAGIC;
526 	buf->f_bsize = sb->s_blocksize;
527 	buf->f_blocks = blocks - overhead;
528 	buf->f_bfree = nfreeblocks;
529 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
530 		(buf->f_bfree - nrsvblocks) : 0;
531 	buf->f_files = atomic_read(&sbi->s_inodes_count);
532 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
533 	buf->f_namelen = NILFS_NAME_LEN;
534 	buf->f_fsid.val[0] = (u32)id;
535 	buf->f_fsid.val[1] = (u32)(id >> 32);
536 
537 	return 0;
538 }
539 
540 static struct super_operations nilfs_sops = {
541 	.alloc_inode    = nilfs_alloc_inode,
542 	.destroy_inode  = nilfs_destroy_inode,
543 	.dirty_inode    = nilfs_dirty_inode,
544 	/* .write_inode    = nilfs_write_inode, */
545 	/* .put_inode      = nilfs_put_inode, */
546 	/* .drop_inode	  = nilfs_drop_inode, */
547 	.delete_inode   = nilfs_delete_inode,
548 	.put_super      = nilfs_put_super,
549 	.write_super    = nilfs_write_super,
550 	.sync_fs        = nilfs_sync_fs,
551 	/* .write_super_lockfs */
552 	/* .unlockfs */
553 	.statfs         = nilfs_statfs,
554 	.remount_fs     = nilfs_remount,
555 	.clear_inode    = nilfs_clear_inode,
556 	/* .umount_begin */
557 	/* .show_options */
558 };
559 
560 static struct inode *
561 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
562 {
563 	struct inode *inode;
564 
565 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
566 	    ino != NILFS_SKETCH_INO)
567 		return ERR_PTR(-ESTALE);
568 
569 	inode = nilfs_iget(sb, ino);
570 	if (IS_ERR(inode))
571 		return ERR_CAST(inode);
572 	if (generation && inode->i_generation != generation) {
573 		iput(inode);
574 		return ERR_PTR(-ESTALE);
575 	}
576 
577 	return inode;
578 }
579 
580 static struct dentry *
581 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
582 		   int fh_type)
583 {
584 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
585 				    nilfs_nfs_get_inode);
586 }
587 
588 static struct dentry *
589 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
590 		   int fh_type)
591 {
592 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
593 				    nilfs_nfs_get_inode);
594 }
595 
596 static struct export_operations nilfs_export_ops = {
597 	.fh_to_dentry = nilfs_fh_to_dentry,
598 	.fh_to_parent = nilfs_fh_to_parent,
599 	.get_parent = nilfs_get_parent,
600 };
601 
602 enum {
603 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
604 	Opt_barrier, Opt_snapshot, Opt_order,
605 	Opt_err,
606 };
607 
608 static match_table_t tokens = {
609 	{Opt_err_cont, "errors=continue"},
610 	{Opt_err_panic, "errors=panic"},
611 	{Opt_err_ro, "errors=remount-ro"},
612 	{Opt_barrier, "barrier=%s"},
613 	{Opt_snapshot, "cp=%u"},
614 	{Opt_order, "order=%s"},
615 	{Opt_err, NULL}
616 };
617 
618 static int match_bool(substring_t *s, int *result)
619 {
620 	int len = s->to - s->from;
621 
622 	if (strncmp(s->from, "on", len) == 0)
623 		*result = 1;
624 	else if (strncmp(s->from, "off", len) == 0)
625 		*result = 0;
626 	else
627 		return 1;
628 	return 0;
629 }
630 
631 static int parse_options(char *options, struct super_block *sb)
632 {
633 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
634 	char *p;
635 	substring_t args[MAX_OPT_ARGS];
636 	int option;
637 
638 	if (!options)
639 		return 1;
640 
641 	while ((p = strsep(&options, ",")) != NULL) {
642 		int token;
643 		if (!*p)
644 			continue;
645 
646 		token = match_token(p, tokens, args);
647 		switch (token) {
648 		case Opt_barrier:
649 			if (match_bool(&args[0], &option))
650 				return 0;
651 			if (option)
652 				nilfs_set_opt(sbi, BARRIER);
653 			else
654 				nilfs_clear_opt(sbi, BARRIER);
655 			break;
656 		case Opt_order:
657 			if (strcmp(args[0].from, "relaxed") == 0)
658 				/* Ordered data semantics */
659 				nilfs_clear_opt(sbi, STRICT_ORDER);
660 			else if (strcmp(args[0].from, "strict") == 0)
661 				/* Strict in-order semantics */
662 				nilfs_set_opt(sbi, STRICT_ORDER);
663 			else
664 				return 0;
665 			break;
666 		case Opt_err_panic:
667 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
668 			break;
669 		case Opt_err_ro:
670 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
671 			break;
672 		case Opt_err_cont:
673 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
674 			break;
675 		case Opt_snapshot:
676 			if (match_int(&args[0], &option) || option <= 0)
677 				return 0;
678 			if (!(sb->s_flags & MS_RDONLY))
679 				return 0;
680 			sbi->s_snapshot_cno = option;
681 			nilfs_set_opt(sbi, SNAPSHOT);
682 			break;
683 		default:
684 			printk(KERN_ERR
685 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
686 			return 0;
687 		}
688 	}
689 	return 1;
690 }
691 
692 static inline void
693 nilfs_set_default_options(struct nilfs_sb_info *sbi,
694 			  struct nilfs_super_block *sbp)
695 {
696 	sbi->s_mount_opt =
697 		NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
698 }
699 
700 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
701 {
702 	struct the_nilfs *nilfs = sbi->s_nilfs;
703 	struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
704 	int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
705 	int mnt_count = le16_to_cpu(sbp->s_mnt_count);
706 
707 	/* nilfs->sem must be locked by the caller. */
708 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
709 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
710 	} else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
711 		printk(KERN_WARNING
712 		       "NILFS warning: mounting fs with errors\n");
713 #if 0
714 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
715 		printk(KERN_WARNING
716 		       "NILFS warning: maximal mount count reached\n");
717 #endif
718 	}
719 	if (!max_mnt_count)
720 		sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
721 
722 	sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
723 	sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
724 	sbp->s_mtime = cpu_to_le64(get_seconds());
725 	return nilfs_commit_super(sbi, 1);
726 }
727 
728 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
729 						 u64 pos, int blocksize,
730 						 struct buffer_head **pbh)
731 {
732 	unsigned long long sb_index = pos;
733 	unsigned long offset;
734 
735 	offset = do_div(sb_index, blocksize);
736 	*pbh = sb_bread(sb, sb_index);
737 	if (!*pbh)
738 		return NULL;
739 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
740 }
741 
742 int nilfs_store_magic_and_option(struct super_block *sb,
743 				 struct nilfs_super_block *sbp,
744 				 char *data)
745 {
746 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
747 
748 	sb->s_magic = le16_to_cpu(sbp->s_magic);
749 
750 	/* FS independent flags */
751 #ifdef NILFS_ATIME_DISABLE
752 	sb->s_flags |= MS_NOATIME;
753 #endif
754 
755 	nilfs_set_default_options(sbi, sbp);
756 
757 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
758 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
759 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
760 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
761 
762 	return !parse_options(data, sb) ? -EINVAL : 0 ;
763 }
764 
765 /**
766  * nilfs_fill_super() - initialize a super block instance
767  * @sb: super_block
768  * @data: mount options
769  * @silent: silent mode flag
770  * @nilfs: the_nilfs struct
771  *
772  * This function is called exclusively by nilfs->ns_mount_mutex.
773  * So, the recovery process is protected from other simultaneous mounts.
774  */
775 static int
776 nilfs_fill_super(struct super_block *sb, void *data, int silent,
777 		 struct the_nilfs *nilfs)
778 {
779 	struct nilfs_sb_info *sbi;
780 	struct inode *root;
781 	__u64 cno;
782 	int err;
783 
784 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
785 	if (!sbi)
786 		return -ENOMEM;
787 
788 	sb->s_fs_info = sbi;
789 
790 	get_nilfs(nilfs);
791 	sbi->s_nilfs = nilfs;
792 	sbi->s_super = sb;
793 	atomic_set(&sbi->s_count, 1);
794 
795 	err = init_nilfs(nilfs, sbi, (char *)data);
796 	if (err)
797 		goto failed_sbi;
798 
799 	spin_lock_init(&sbi->s_inode_lock);
800 	INIT_LIST_HEAD(&sbi->s_dirty_files);
801 	INIT_LIST_HEAD(&sbi->s_list);
802 
803 	/*
804 	 * Following initialization is overlapped because
805 	 * nilfs_sb_info structure has been cleared at the beginning.
806 	 * But we reserve them to keep our interest and make ready
807 	 * for the future change.
808 	 */
809 	get_random_bytes(&sbi->s_next_generation,
810 			 sizeof(sbi->s_next_generation));
811 	spin_lock_init(&sbi->s_next_gen_lock);
812 
813 	sb->s_op = &nilfs_sops;
814 	sb->s_export_op = &nilfs_export_ops;
815 	sb->s_root = NULL;
816 	sb->s_time_gran = 1;
817 
818 	if (!nilfs_loaded(nilfs)) {
819 		err = load_nilfs(nilfs, sbi);
820 		if (err)
821 			goto failed_sbi;
822 	}
823 	cno = nilfs_last_cno(nilfs);
824 
825 	if (sb->s_flags & MS_RDONLY) {
826 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
827 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
828 						       sbi->s_snapshot_cno);
829 			if (err < 0)
830 				goto failed_sbi;
831 			if (!err) {
832 				printk(KERN_ERR
833 				       "NILFS: The specified checkpoint is "
834 				       "not a snapshot "
835 				       "(checkpoint number=%llu).\n",
836 				       (unsigned long long)sbi->s_snapshot_cno);
837 				err = -EINVAL;
838 				goto failed_sbi;
839 			}
840 			cno = sbi->s_snapshot_cno;
841 		} else
842 			/* Read-only mount */
843 			sbi->s_snapshot_cno = cno;
844 	}
845 
846 	err = nilfs_attach_checkpoint(sbi, cno);
847 	if (err) {
848 		printk(KERN_ERR "NILFS: error loading a checkpoint"
849 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
850 		goto failed_sbi;
851 	}
852 
853 	if (!(sb->s_flags & MS_RDONLY)) {
854 		err = nilfs_attach_segment_constructor(sbi);
855 		if (err)
856 			goto failed_checkpoint;
857 	}
858 
859 	root = nilfs_iget(sb, NILFS_ROOT_INO);
860 	if (IS_ERR(root)) {
861 		printk(KERN_ERR "NILFS: get root inode failed\n");
862 		err = PTR_ERR(root);
863 		goto failed_segctor;
864 	}
865 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
866 		iput(root);
867 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
868 		err = -EINVAL;
869 		goto failed_segctor;
870 	}
871 	sb->s_root = d_alloc_root(root);
872 	if (!sb->s_root) {
873 		iput(root);
874 		printk(KERN_ERR "NILFS: get root dentry failed\n");
875 		err = -ENOMEM;
876 		goto failed_segctor;
877 	}
878 
879 	if (!(sb->s_flags & MS_RDONLY)) {
880 		down_write(&nilfs->ns_sem);
881 		nilfs_setup_super(sbi);
882 		up_write(&nilfs->ns_sem);
883 	}
884 
885 	err = nilfs_mark_recovery_complete(sbi);
886 	if (unlikely(err)) {
887 		printk(KERN_ERR "NILFS: recovery failed.\n");
888 		goto failed_root;
889 	}
890 
891 	down_write(&nilfs->ns_super_sem);
892 	if (!nilfs_test_opt(sbi, SNAPSHOT))
893 		nilfs->ns_current = sbi;
894 	up_write(&nilfs->ns_super_sem);
895 
896 	return 0;
897 
898  failed_root:
899 	dput(sb->s_root);
900 	sb->s_root = NULL;
901 
902  failed_segctor:
903 	nilfs_detach_segment_constructor(sbi);
904 
905  failed_checkpoint:
906 	nilfs_detach_checkpoint(sbi);
907 
908  failed_sbi:
909 	put_nilfs(nilfs);
910 	sb->s_fs_info = NULL;
911 	nilfs_put_sbinfo(sbi);
912 	return err;
913 }
914 
915 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
916 {
917 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
918 	struct nilfs_super_block *sbp;
919 	struct the_nilfs *nilfs = sbi->s_nilfs;
920 	unsigned long old_sb_flags;
921 	struct nilfs_mount_options old_opts;
922 	int err;
923 
924 	lock_kernel();
925 
926 	down_write(&nilfs->ns_super_sem);
927 	old_sb_flags = sb->s_flags;
928 	old_opts.mount_opt = sbi->s_mount_opt;
929 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
930 
931 	if (!parse_options(data, sb)) {
932 		err = -EINVAL;
933 		goto restore_opts;
934 	}
935 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
936 
937 	if ((*flags & MS_RDONLY) &&
938 	    sbi->s_snapshot_cno != old_opts.snapshot_cno) {
939 		printk(KERN_WARNING "NILFS (device %s): couldn't "
940 		       "remount to a different snapshot. \n",
941 		       sb->s_id);
942 		err = -EINVAL;
943 		goto restore_opts;
944 	}
945 
946 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
947 		goto out;
948 	if (*flags & MS_RDONLY) {
949 		/* Shutting down the segment constructor */
950 		nilfs_detach_segment_constructor(sbi);
951 		sb->s_flags |= MS_RDONLY;
952 
953 		sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
954 		/* nilfs_set_opt(sbi, SNAPSHOT); */
955 
956 		/*
957 		 * Remounting a valid RW partition RDONLY, so set
958 		 * the RDONLY flag and then mark the partition as valid again.
959 		 */
960 		down_write(&nilfs->ns_sem);
961 		sbp = nilfs->ns_sbp[0];
962 		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
963 		    (nilfs->ns_mount_state & NILFS_VALID_FS))
964 			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
965 		sbp->s_mtime = cpu_to_le64(get_seconds());
966 		nilfs_commit_super(sbi, 1);
967 		up_write(&nilfs->ns_sem);
968 	} else {
969 		/*
970 		 * Mounting a RDONLY partition read-write, so reread and
971 		 * store the current valid flag.  (It may have been changed
972 		 * by fsck since we originally mounted the partition.)
973 		 */
974 		if (nilfs->ns_current && nilfs->ns_current != sbi) {
975 			printk(KERN_WARNING "NILFS (device %s): couldn't "
976 			       "remount because an RW-mount exists.\n",
977 			       sb->s_id);
978 			err = -EBUSY;
979 			goto restore_opts;
980 		}
981 		if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
982 			printk(KERN_WARNING "NILFS (device %s): couldn't "
983 			       "remount because the current RO-mount is not "
984 			       "the latest one.\n",
985 			       sb->s_id);
986 			err = -EINVAL;
987 			goto restore_opts;
988 		}
989 		sb->s_flags &= ~MS_RDONLY;
990 		nilfs_clear_opt(sbi, SNAPSHOT);
991 		sbi->s_snapshot_cno = 0;
992 
993 		err = nilfs_attach_segment_constructor(sbi);
994 		if (err)
995 			goto restore_opts;
996 
997 		down_write(&nilfs->ns_sem);
998 		nilfs_setup_super(sbi);
999 		up_write(&nilfs->ns_sem);
1000 
1001 		nilfs->ns_current = sbi;
1002 	}
1003  out:
1004 	up_write(&nilfs->ns_super_sem);
1005 	unlock_kernel();
1006 	return 0;
1007 
1008  restore_opts:
1009 	sb->s_flags = old_sb_flags;
1010 	sbi->s_mount_opt = old_opts.mount_opt;
1011 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1012 	up_write(&nilfs->ns_super_sem);
1013 	unlock_kernel();
1014 	return err;
1015 }
1016 
1017 struct nilfs_super_data {
1018 	struct block_device *bdev;
1019 	struct nilfs_sb_info *sbi;
1020 	__u64 cno;
1021 	int flags;
1022 };
1023 
1024 /**
1025  * nilfs_identify - pre-read mount options needed to identify mount instance
1026  * @data: mount options
1027  * @sd: nilfs_super_data
1028  */
1029 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1030 {
1031 	char *p, *options = data;
1032 	substring_t args[MAX_OPT_ARGS];
1033 	int option, token;
1034 	int ret = 0;
1035 
1036 	do {
1037 		p = strsep(&options, ",");
1038 		if (p != NULL && *p) {
1039 			token = match_token(p, tokens, args);
1040 			if (token == Opt_snapshot) {
1041 				if (!(sd->flags & MS_RDONLY))
1042 					ret++;
1043 				else {
1044 					ret = match_int(&args[0], &option);
1045 					if (!ret) {
1046 						if (option > 0)
1047 							sd->cno = option;
1048 						else
1049 							ret++;
1050 					}
1051 				}
1052 			}
1053 			if (ret)
1054 				printk(KERN_ERR
1055 				       "NILFS: invalid mount option: %s\n", p);
1056 		}
1057 		if (!options)
1058 			break;
1059 		BUG_ON(options == data);
1060 		*(options - 1) = ',';
1061 	} while (!ret);
1062 	return ret;
1063 }
1064 
1065 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1066 {
1067 	struct nilfs_super_data *sd = data;
1068 
1069 	s->s_bdev = sd->bdev;
1070 	s->s_dev = s->s_bdev->bd_dev;
1071 	return 0;
1072 }
1073 
1074 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1075 {
1076 	struct nilfs_super_data *sd = data;
1077 
1078 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1079 }
1080 
1081 static int
1082 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1083 	     const char *dev_name, void *data, struct vfsmount *mnt)
1084 {
1085 	struct nilfs_super_data sd;
1086 	struct super_block *s;
1087 	struct the_nilfs *nilfs;
1088 	int err, need_to_close = 1;
1089 
1090 	sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1091 	if (IS_ERR(sd.bdev))
1092 		return PTR_ERR(sd.bdev);
1093 
1094 	/*
1095 	 * To get mount instance using sget() vfs-routine, NILFS needs
1096 	 * much more information than normal filesystems to identify mount
1097 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1098 	 * or rw-mount) but also a checkpoint number is required.
1099 	 */
1100 	sd.cno = 0;
1101 	sd.flags = flags;
1102 	if (nilfs_identify((char *)data, &sd)) {
1103 		err = -EINVAL;
1104 		goto failed;
1105 	}
1106 
1107 	nilfs = find_or_create_nilfs(sd.bdev);
1108 	if (!nilfs) {
1109 		err = -ENOMEM;
1110 		goto failed;
1111 	}
1112 
1113 	mutex_lock(&nilfs->ns_mount_mutex);
1114 
1115 	if (!sd.cno) {
1116 		/*
1117 		 * Check if an exclusive mount exists or not.
1118 		 * Snapshot mounts coexist with a current mount
1119 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1120 		 * ro-mount are mutually exclusive.
1121 		 */
1122 		down_read(&nilfs->ns_super_sem);
1123 		if (nilfs->ns_current &&
1124 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1125 		     & MS_RDONLY)) {
1126 			up_read(&nilfs->ns_super_sem);
1127 			err = -EBUSY;
1128 			goto failed_unlock;
1129 		}
1130 		up_read(&nilfs->ns_super_sem);
1131 	}
1132 
1133 	/*
1134 	 * Find existing nilfs_sb_info struct
1135 	 */
1136 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1137 
1138 	if (!sd.cno)
1139 		/* trying to get the latest checkpoint.  */
1140 		sd.cno = nilfs_last_cno(nilfs);
1141 
1142 	/*
1143 	 * Get super block instance holding the nilfs_sb_info struct.
1144 	 * A new instance is allocated if no existing mount is present or
1145 	 * existing instance has been unmounted.
1146 	 */
1147 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1148 	if (sd.sbi)
1149 		nilfs_put_sbinfo(sd.sbi);
1150 
1151 	if (IS_ERR(s)) {
1152 		err = PTR_ERR(s);
1153 		goto failed_unlock;
1154 	}
1155 
1156 	if (!s->s_root) {
1157 		char b[BDEVNAME_SIZE];
1158 
1159 		/* New superblock instance created */
1160 		s->s_flags = flags;
1161 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1162 		sb_set_blocksize(s, block_size(sd.bdev));
1163 
1164 		err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1165 		if (err)
1166 			goto cancel_new;
1167 
1168 		s->s_flags |= MS_ACTIVE;
1169 		need_to_close = 0;
1170 	}
1171 
1172 	mutex_unlock(&nilfs->ns_mount_mutex);
1173 	put_nilfs(nilfs);
1174 	if (need_to_close)
1175 		close_bdev_exclusive(sd.bdev, flags);
1176 	simple_set_mnt(mnt, s);
1177 	return 0;
1178 
1179  failed_unlock:
1180 	mutex_unlock(&nilfs->ns_mount_mutex);
1181 	put_nilfs(nilfs);
1182  failed:
1183 	close_bdev_exclusive(sd.bdev, flags);
1184 
1185 	return err;
1186 
1187  cancel_new:
1188 	/* Abandoning the newly allocated superblock */
1189 	mutex_unlock(&nilfs->ns_mount_mutex);
1190 	put_nilfs(nilfs);
1191 	up_write(&s->s_umount);
1192 	deactivate_super(s);
1193 	/*
1194 	 * deactivate_super() invokes close_bdev_exclusive().
1195 	 * We must finish all post-cleaning before this call;
1196 	 * put_nilfs() needs the block device.
1197 	 */
1198 	return err;
1199 }
1200 
1201 struct file_system_type nilfs_fs_type = {
1202 	.owner    = THIS_MODULE,
1203 	.name     = "nilfs2",
1204 	.get_sb   = nilfs_get_sb,
1205 	.kill_sb  = kill_block_super,
1206 	.fs_flags = FS_REQUIRES_DEV,
1207 };
1208 
1209 static int __init init_nilfs_fs(void)
1210 {
1211 	int err;
1212 
1213 	err = nilfs_init_inode_cache();
1214 	if (err)
1215 		goto failed;
1216 
1217 	err = nilfs_init_transaction_cache();
1218 	if (err)
1219 		goto failed_inode_cache;
1220 
1221 	err = nilfs_init_segbuf_cache();
1222 	if (err)
1223 		goto failed_transaction_cache;
1224 
1225 	err = nilfs_btree_path_cache_init();
1226 	if (err)
1227 		goto failed_segbuf_cache;
1228 
1229 	err = register_filesystem(&nilfs_fs_type);
1230 	if (err)
1231 		goto failed_btree_path_cache;
1232 
1233 	return 0;
1234 
1235  failed_btree_path_cache:
1236 	nilfs_btree_path_cache_destroy();
1237 
1238  failed_segbuf_cache:
1239 	nilfs_destroy_segbuf_cache();
1240 
1241  failed_transaction_cache:
1242 	nilfs_destroy_transaction_cache();
1243 
1244  failed_inode_cache:
1245 	nilfs_destroy_inode_cache();
1246 
1247  failed:
1248 	return err;
1249 }
1250 
1251 static void __exit exit_nilfs_fs(void)
1252 {
1253 	nilfs_destroy_segbuf_cache();
1254 	nilfs_destroy_transaction_cache();
1255 	nilfs_destroy_inode_cache();
1256 	nilfs_btree_path_cache_destroy();
1257 	unregister_filesystem(&nilfs_fs_type);
1258 }
1259 
1260 module_init(init_nilfs_fs)
1261 module_exit(exit_nilfs_fs)
1262