xref: /linux/fs/nilfs2/super.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "page.h"
59 #include "cpfile.h"
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 /**
73  * nilfs_error() - report failure condition on a filesystem
74  *
75  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
76  * reporting an error message.  It should be called when NILFS detects
77  * incoherences or defects of meta data on disk.  As for sustainable
78  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
79  * function should be used instead.
80  *
81  * The segment constructor must not call this function because it can
82  * kill itself.
83  */
84 void nilfs_error(struct super_block *sb, const char *function,
85 		 const char *fmt, ...)
86 {
87 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
88 	va_list args;
89 
90 	va_start(args, fmt);
91 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
92 	vprintk(fmt, args);
93 	printk("\n");
94 	va_end(args);
95 
96 	if (!(sb->s_flags & MS_RDONLY)) {
97 		struct the_nilfs *nilfs = sbi->s_nilfs;
98 
99 		if (!nilfs_test_opt(sbi, ERRORS_CONT))
100 			nilfs_detach_segment_constructor(sbi);
101 
102 		down_write(&nilfs->ns_sem);
103 		if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
104 			nilfs->ns_mount_state |= NILFS_ERROR_FS;
105 			nilfs->ns_sbp[0]->s_state |=
106 				cpu_to_le16(NILFS_ERROR_FS);
107 			nilfs_commit_super(sbi, 1);
108 		}
109 		up_write(&nilfs->ns_sem);
110 
111 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
112 			printk(KERN_CRIT "Remounting filesystem read-only\n");
113 			sb->s_flags |= MS_RDONLY;
114 		}
115 	}
116 
117 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
118 		panic("NILFS (device %s): panic forced after error\n",
119 		      sb->s_id);
120 }
121 
122 void nilfs_warning(struct super_block *sb, const char *function,
123 		   const char *fmt, ...)
124 {
125 	va_list args;
126 
127 	va_start(args, fmt);
128 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
129 	       sb->s_id, function);
130 	vprintk(fmt, args);
131 	printk("\n");
132 	va_end(args);
133 }
134 
135 static struct kmem_cache *nilfs_inode_cachep;
136 
137 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
138 {
139 	struct nilfs_inode_info *ii;
140 
141 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
142 	if (!ii)
143 		return NULL;
144 	ii->i_bh = NULL;
145 	ii->i_state = 0;
146 	ii->vfs_inode.i_version = 1;
147 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
148 	return &ii->vfs_inode;
149 }
150 
151 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 {
153 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
154 }
155 
156 void nilfs_destroy_inode(struct inode *inode)
157 {
158 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
159 }
160 
161 static void init_once(void *obj)
162 {
163 	struct nilfs_inode_info *ii = obj;
164 
165 	INIT_LIST_HEAD(&ii->i_dirty);
166 #ifdef CONFIG_NILFS_XATTR
167 	init_rwsem(&ii->xattr_sem);
168 #endif
169 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
170 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
171 	inode_init_once(&ii->vfs_inode);
172 }
173 
174 static int nilfs_init_inode_cache(void)
175 {
176 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
177 					       sizeof(struct nilfs_inode_info),
178 					       0, SLAB_RECLAIM_ACCOUNT,
179 					       init_once);
180 
181 	return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
182 }
183 
184 static inline void nilfs_destroy_inode_cache(void)
185 {
186 	kmem_cache_destroy(nilfs_inode_cachep);
187 }
188 
189 static void nilfs_clear_inode(struct inode *inode)
190 {
191 	struct nilfs_inode_info *ii = NILFS_I(inode);
192 
193 	/*
194 	 * Free resources allocated in nilfs_read_inode(), here.
195 	 */
196 	BUG_ON(!list_empty(&ii->i_dirty));
197 	brelse(ii->i_bh);
198 	ii->i_bh = NULL;
199 
200 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
201 		nilfs_bmap_clear(ii->i_bmap);
202 
203 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
204 }
205 
206 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
207 {
208 	struct the_nilfs *nilfs = sbi->s_nilfs;
209 	int err;
210 	int barrier_done = 0;
211 
212 	if (nilfs_test_opt(sbi, BARRIER)) {
213 		set_buffer_ordered(nilfs->ns_sbh[0]);
214 		barrier_done = 1;
215 	}
216  retry:
217 	set_buffer_dirty(nilfs->ns_sbh[0]);
218 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
219 	if (err == -EOPNOTSUPP && barrier_done) {
220 		nilfs_warning(sbi->s_super, __func__,
221 			      "barrier-based sync failed. "
222 			      "disabling barriers\n");
223 		nilfs_clear_opt(sbi, BARRIER);
224 		barrier_done = 0;
225 		clear_buffer_ordered(nilfs->ns_sbh[0]);
226 		goto retry;
227 	}
228 	if (unlikely(err)) {
229 		printk(KERN_ERR
230 		       "NILFS: unable to write superblock (err=%d)\n", err);
231 		if (err == -EIO && nilfs->ns_sbh[1]) {
232 			nilfs_fall_back_super_block(nilfs);
233 			goto retry;
234 		}
235 	} else {
236 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
237 
238 		/*
239 		 * The latest segment becomes trailable from the position
240 		 * written in superblock.
241 		 */
242 		clear_nilfs_discontinued(nilfs);
243 
244 		/* update GC protection for recent segments */
245 		if (nilfs->ns_sbh[1]) {
246 			sbp = NULL;
247 			if (dupsb) {
248 				set_buffer_dirty(nilfs->ns_sbh[1]);
249 				if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
250 					sbp = nilfs->ns_sbp[1];
251 			}
252 		}
253 		if (sbp) {
254 			spin_lock(&nilfs->ns_last_segment_lock);
255 			nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
256 			spin_unlock(&nilfs->ns_last_segment_lock);
257 		}
258 	}
259 
260 	return err;
261 }
262 
263 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
264 {
265 	struct the_nilfs *nilfs = sbi->s_nilfs;
266 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
267 	sector_t nfreeblocks;
268 	time_t t;
269 	int err;
270 
271 	/* nilfs->sem must be locked by the caller. */
272 	if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
273 		if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
274 			nilfs_swap_super_block(nilfs);
275 		else {
276 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 			       sbi->s_super->s_id);
278 			return -EIO;
279 		}
280 	}
281 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
282 	if (unlikely(err)) {
283 		printk(KERN_ERR "NILFS: failed to count free blocks\n");
284 		return err;
285 	}
286 	spin_lock(&nilfs->ns_last_segment_lock);
287 	sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
288 	sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
289 	sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
290 	spin_unlock(&nilfs->ns_last_segment_lock);
291 
292 	t = get_seconds();
293 	nilfs->ns_sbwtime[0] = t;
294 	sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
295 	sbp[0]->s_wtime = cpu_to_le64(t);
296 	sbp[0]->s_sum = 0;
297 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
298 					     (unsigned char *)sbp[0],
299 					     nilfs->ns_sbsize));
300 	if (dupsb && sbp[1]) {
301 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
302 		nilfs->ns_sbwtime[1] = t;
303 	}
304 	sbi->s_super->s_dirt = 0;
305 	return nilfs_sync_super(sbi, dupsb);
306 }
307 
308 static void nilfs_put_super(struct super_block *sb)
309 {
310 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
311 	struct the_nilfs *nilfs = sbi->s_nilfs;
312 
313 	lock_kernel();
314 
315 	nilfs_detach_segment_constructor(sbi);
316 
317 	if (!(sb->s_flags & MS_RDONLY)) {
318 		down_write(&nilfs->ns_sem);
319 		nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
320 		nilfs_commit_super(sbi, 1);
321 		up_write(&nilfs->ns_sem);
322 	}
323 	down_write(&nilfs->ns_super_sem);
324 	if (nilfs->ns_current == sbi)
325 		nilfs->ns_current = NULL;
326 	up_write(&nilfs->ns_super_sem);
327 
328 	nilfs_detach_checkpoint(sbi);
329 	put_nilfs(sbi->s_nilfs);
330 	sbi->s_super = NULL;
331 	sb->s_fs_info = NULL;
332 	nilfs_put_sbinfo(sbi);
333 
334 	unlock_kernel();
335 }
336 
337 static int nilfs_sync_fs(struct super_block *sb, int wait)
338 {
339 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
340 	struct the_nilfs *nilfs = sbi->s_nilfs;
341 	int err = 0;
342 
343 	/* This function is called when super block should be written back */
344 	if (wait)
345 		err = nilfs_construct_segment(sb);
346 
347 	down_write(&nilfs->ns_sem);
348 	if (sb->s_dirt)
349 		nilfs_commit_super(sbi, 1);
350 	up_write(&nilfs->ns_sem);
351 
352 	return err;
353 }
354 
355 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
356 {
357 	struct the_nilfs *nilfs = sbi->s_nilfs;
358 	struct nilfs_checkpoint *raw_cp;
359 	struct buffer_head *bh_cp;
360 	int err;
361 
362 	down_write(&nilfs->ns_super_sem);
363 	list_add(&sbi->s_list, &nilfs->ns_supers);
364 	up_write(&nilfs->ns_super_sem);
365 
366 	sbi->s_ifile = nilfs_mdt_new(nilfs, sbi->s_super, NILFS_IFILE_INO);
367 	if (!sbi->s_ifile)
368 		return -ENOMEM;
369 
370 	err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
371 	if (unlikely(err))
372 		goto failed;
373 
374 	down_read(&nilfs->ns_segctor_sem);
375 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
376 					  &bh_cp);
377 	up_read(&nilfs->ns_segctor_sem);
378 	if (unlikely(err)) {
379 		if (err == -ENOENT || err == -EINVAL) {
380 			printk(KERN_ERR
381 			       "NILFS: Invalid checkpoint "
382 			       "(checkpoint number=%llu)\n",
383 			       (unsigned long long)cno);
384 			err = -EINVAL;
385 		}
386 		goto failed;
387 	}
388 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
389 	if (unlikely(err))
390 		goto failed_bh;
391 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
392 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
393 
394 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
395 	return 0;
396 
397  failed_bh:
398 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
399  failed:
400 	nilfs_mdt_destroy(sbi->s_ifile);
401 	sbi->s_ifile = NULL;
402 
403 	down_write(&nilfs->ns_super_sem);
404 	list_del_init(&sbi->s_list);
405 	up_write(&nilfs->ns_super_sem);
406 
407 	return err;
408 }
409 
410 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
411 {
412 	struct the_nilfs *nilfs = sbi->s_nilfs;
413 
414 	nilfs_mdt_clear(sbi->s_ifile);
415 	nilfs_mdt_destroy(sbi->s_ifile);
416 	sbi->s_ifile = NULL;
417 	down_write(&nilfs->ns_super_sem);
418 	list_del_init(&sbi->s_list);
419 	up_write(&nilfs->ns_super_sem);
420 }
421 
422 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
423 {
424 	struct the_nilfs *nilfs = sbi->s_nilfs;
425 	int err = 0;
426 
427 	down_write(&nilfs->ns_sem);
428 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
429 		nilfs->ns_mount_state |= NILFS_VALID_FS;
430 		err = nilfs_commit_super(sbi, 1);
431 		if (likely(!err))
432 			printk(KERN_INFO "NILFS: recovery complete.\n");
433 	}
434 	up_write(&nilfs->ns_sem);
435 	return err;
436 }
437 
438 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
439 {
440 	struct super_block *sb = dentry->d_sb;
441 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
442 	struct the_nilfs *nilfs = sbi->s_nilfs;
443 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
444 	unsigned long long blocks;
445 	unsigned long overhead;
446 	unsigned long nrsvblocks;
447 	sector_t nfreeblocks;
448 	int err;
449 
450 	/*
451 	 * Compute all of the segment blocks
452 	 *
453 	 * The blocks before first segment and after last segment
454 	 * are excluded.
455 	 */
456 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
457 		- nilfs->ns_first_data_block;
458 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
459 
460 	/*
461 	 * Compute the overhead
462 	 *
463 	 * When distributing meta data blocks outside semgent structure,
464 	 * We must count them as the overhead.
465 	 */
466 	overhead = 0;
467 
468 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
469 	if (unlikely(err))
470 		return err;
471 
472 	buf->f_type = NILFS_SUPER_MAGIC;
473 	buf->f_bsize = sb->s_blocksize;
474 	buf->f_blocks = blocks - overhead;
475 	buf->f_bfree = nfreeblocks;
476 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
477 		(buf->f_bfree - nrsvblocks) : 0;
478 	buf->f_files = atomic_read(&sbi->s_inodes_count);
479 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
480 	buf->f_namelen = NILFS_NAME_LEN;
481 	buf->f_fsid.val[0] = (u32)id;
482 	buf->f_fsid.val[1] = (u32)(id >> 32);
483 
484 	return 0;
485 }
486 
487 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
488 {
489 	struct super_block *sb = vfs->mnt_sb;
490 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
491 
492 	if (!nilfs_test_opt(sbi, BARRIER))
493 		seq_printf(seq, ",barrier=off");
494 	if (nilfs_test_opt(sbi, SNAPSHOT))
495 		seq_printf(seq, ",cp=%llu",
496 			   (unsigned long long int)sbi->s_snapshot_cno);
497 	if (nilfs_test_opt(sbi, ERRORS_RO))
498 		seq_printf(seq, ",errors=remount-ro");
499 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
500 		seq_printf(seq, ",errors=panic");
501 	if (nilfs_test_opt(sbi, STRICT_ORDER))
502 		seq_printf(seq, ",order=strict");
503 
504 	return 0;
505 }
506 
507 static const struct super_operations nilfs_sops = {
508 	.alloc_inode    = nilfs_alloc_inode,
509 	.destroy_inode  = nilfs_destroy_inode,
510 	.dirty_inode    = nilfs_dirty_inode,
511 	/* .write_inode    = nilfs_write_inode, */
512 	/* .put_inode      = nilfs_put_inode, */
513 	/* .drop_inode	  = nilfs_drop_inode, */
514 	.delete_inode   = nilfs_delete_inode,
515 	.put_super      = nilfs_put_super,
516 	/* .write_super    = nilfs_write_super, */
517 	.sync_fs        = nilfs_sync_fs,
518 	/* .write_super_lockfs */
519 	/* .unlockfs */
520 	.statfs         = nilfs_statfs,
521 	.remount_fs     = nilfs_remount,
522 	.clear_inode    = nilfs_clear_inode,
523 	/* .umount_begin */
524 	.show_options = nilfs_show_options
525 };
526 
527 static struct inode *
528 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
529 {
530 	struct inode *inode;
531 
532 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
533 	    ino != NILFS_SKETCH_INO)
534 		return ERR_PTR(-ESTALE);
535 
536 	inode = nilfs_iget(sb, ino);
537 	if (IS_ERR(inode))
538 		return ERR_CAST(inode);
539 	if (generation && inode->i_generation != generation) {
540 		iput(inode);
541 		return ERR_PTR(-ESTALE);
542 	}
543 
544 	return inode;
545 }
546 
547 static struct dentry *
548 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
549 		   int fh_type)
550 {
551 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
552 				    nilfs_nfs_get_inode);
553 }
554 
555 static struct dentry *
556 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
557 		   int fh_type)
558 {
559 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
560 				    nilfs_nfs_get_inode);
561 }
562 
563 static const struct export_operations nilfs_export_ops = {
564 	.fh_to_dentry = nilfs_fh_to_dentry,
565 	.fh_to_parent = nilfs_fh_to_parent,
566 	.get_parent = nilfs_get_parent,
567 };
568 
569 enum {
570 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
571 	Opt_barrier, Opt_snapshot, Opt_order,
572 	Opt_err,
573 };
574 
575 static match_table_t tokens = {
576 	{Opt_err_cont, "errors=continue"},
577 	{Opt_err_panic, "errors=panic"},
578 	{Opt_err_ro, "errors=remount-ro"},
579 	{Opt_barrier, "barrier=%s"},
580 	{Opt_snapshot, "cp=%u"},
581 	{Opt_order, "order=%s"},
582 	{Opt_err, NULL}
583 };
584 
585 static int match_bool(substring_t *s, int *result)
586 {
587 	int len = s->to - s->from;
588 
589 	if (strncmp(s->from, "on", len) == 0)
590 		*result = 1;
591 	else if (strncmp(s->from, "off", len) == 0)
592 		*result = 0;
593 	else
594 		return 1;
595 	return 0;
596 }
597 
598 static int parse_options(char *options, struct super_block *sb)
599 {
600 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
601 	char *p;
602 	substring_t args[MAX_OPT_ARGS];
603 	int option;
604 
605 	if (!options)
606 		return 1;
607 
608 	while ((p = strsep(&options, ",")) != NULL) {
609 		int token;
610 		if (!*p)
611 			continue;
612 
613 		token = match_token(p, tokens, args);
614 		switch (token) {
615 		case Opt_barrier:
616 			if (match_bool(&args[0], &option))
617 				return 0;
618 			if (option)
619 				nilfs_set_opt(sbi, BARRIER);
620 			else
621 				nilfs_clear_opt(sbi, BARRIER);
622 			break;
623 		case Opt_order:
624 			if (strcmp(args[0].from, "relaxed") == 0)
625 				/* Ordered data semantics */
626 				nilfs_clear_opt(sbi, STRICT_ORDER);
627 			else if (strcmp(args[0].from, "strict") == 0)
628 				/* Strict in-order semantics */
629 				nilfs_set_opt(sbi, STRICT_ORDER);
630 			else
631 				return 0;
632 			break;
633 		case Opt_err_panic:
634 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
635 			break;
636 		case Opt_err_ro:
637 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
638 			break;
639 		case Opt_err_cont:
640 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
641 			break;
642 		case Opt_snapshot:
643 			if (match_int(&args[0], &option) || option <= 0)
644 				return 0;
645 			if (!(sb->s_flags & MS_RDONLY))
646 				return 0;
647 			sbi->s_snapshot_cno = option;
648 			nilfs_set_opt(sbi, SNAPSHOT);
649 			break;
650 		default:
651 			printk(KERN_ERR
652 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
653 			return 0;
654 		}
655 	}
656 	return 1;
657 }
658 
659 static inline void
660 nilfs_set_default_options(struct nilfs_sb_info *sbi,
661 			  struct nilfs_super_block *sbp)
662 {
663 	sbi->s_mount_opt =
664 		NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
665 }
666 
667 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
668 {
669 	struct the_nilfs *nilfs = sbi->s_nilfs;
670 	struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
671 	int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
672 	int mnt_count = le16_to_cpu(sbp->s_mnt_count);
673 
674 	/* nilfs->sem must be locked by the caller. */
675 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
676 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
677 	} else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
678 		printk(KERN_WARNING
679 		       "NILFS warning: mounting fs with errors\n");
680 #if 0
681 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
682 		printk(KERN_WARNING
683 		       "NILFS warning: maximal mount count reached\n");
684 #endif
685 	}
686 	if (!max_mnt_count)
687 		sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
688 
689 	sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
690 	sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
691 	sbp->s_mtime = cpu_to_le64(get_seconds());
692 	return nilfs_commit_super(sbi, 1);
693 }
694 
695 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
696 						 u64 pos, int blocksize,
697 						 struct buffer_head **pbh)
698 {
699 	unsigned long long sb_index = pos;
700 	unsigned long offset;
701 
702 	offset = do_div(sb_index, blocksize);
703 	*pbh = sb_bread(sb, sb_index);
704 	if (!*pbh)
705 		return NULL;
706 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
707 }
708 
709 int nilfs_store_magic_and_option(struct super_block *sb,
710 				 struct nilfs_super_block *sbp,
711 				 char *data)
712 {
713 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
714 
715 	sb->s_magic = le16_to_cpu(sbp->s_magic);
716 
717 	/* FS independent flags */
718 #ifdef NILFS_ATIME_DISABLE
719 	sb->s_flags |= MS_NOATIME;
720 #endif
721 
722 	nilfs_set_default_options(sbi, sbp);
723 
724 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
725 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
726 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
727 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
728 
729 	return !parse_options(data, sb) ? -EINVAL : 0 ;
730 }
731 
732 /**
733  * nilfs_fill_super() - initialize a super block instance
734  * @sb: super_block
735  * @data: mount options
736  * @silent: silent mode flag
737  * @nilfs: the_nilfs struct
738  *
739  * This function is called exclusively by nilfs->ns_mount_mutex.
740  * So, the recovery process is protected from other simultaneous mounts.
741  */
742 static int
743 nilfs_fill_super(struct super_block *sb, void *data, int silent,
744 		 struct the_nilfs *nilfs)
745 {
746 	struct nilfs_sb_info *sbi;
747 	struct inode *root;
748 	__u64 cno;
749 	int err;
750 
751 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
752 	if (!sbi)
753 		return -ENOMEM;
754 
755 	sb->s_fs_info = sbi;
756 
757 	get_nilfs(nilfs);
758 	sbi->s_nilfs = nilfs;
759 	sbi->s_super = sb;
760 	atomic_set(&sbi->s_count, 1);
761 
762 	err = init_nilfs(nilfs, sbi, (char *)data);
763 	if (err)
764 		goto failed_sbi;
765 
766 	spin_lock_init(&sbi->s_inode_lock);
767 	INIT_LIST_HEAD(&sbi->s_dirty_files);
768 	INIT_LIST_HEAD(&sbi->s_list);
769 
770 	/*
771 	 * Following initialization is overlapped because
772 	 * nilfs_sb_info structure has been cleared at the beginning.
773 	 * But we reserve them to keep our interest and make ready
774 	 * for the future change.
775 	 */
776 	get_random_bytes(&sbi->s_next_generation,
777 			 sizeof(sbi->s_next_generation));
778 	spin_lock_init(&sbi->s_next_gen_lock);
779 
780 	sb->s_op = &nilfs_sops;
781 	sb->s_export_op = &nilfs_export_ops;
782 	sb->s_root = NULL;
783 	sb->s_time_gran = 1;
784 
785 	if (!nilfs_loaded(nilfs)) {
786 		err = load_nilfs(nilfs, sbi);
787 		if (err)
788 			goto failed_sbi;
789 	}
790 	cno = nilfs_last_cno(nilfs);
791 
792 	if (sb->s_flags & MS_RDONLY) {
793 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
794 			down_read(&nilfs->ns_segctor_sem);
795 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
796 						       sbi->s_snapshot_cno);
797 			up_read(&nilfs->ns_segctor_sem);
798 			if (err < 0) {
799 				if (err == -ENOENT)
800 					err = -EINVAL;
801 				goto failed_sbi;
802 			}
803 			if (!err) {
804 				printk(KERN_ERR
805 				       "NILFS: The specified checkpoint is "
806 				       "not a snapshot "
807 				       "(checkpoint number=%llu).\n",
808 				       (unsigned long long)sbi->s_snapshot_cno);
809 				err = -EINVAL;
810 				goto failed_sbi;
811 			}
812 			cno = sbi->s_snapshot_cno;
813 		} else
814 			/* Read-only mount */
815 			sbi->s_snapshot_cno = cno;
816 	}
817 
818 	err = nilfs_attach_checkpoint(sbi, cno);
819 	if (err) {
820 		printk(KERN_ERR "NILFS: error loading a checkpoint"
821 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
822 		goto failed_sbi;
823 	}
824 
825 	if (!(sb->s_flags & MS_RDONLY)) {
826 		err = nilfs_attach_segment_constructor(sbi);
827 		if (err)
828 			goto failed_checkpoint;
829 	}
830 
831 	root = nilfs_iget(sb, NILFS_ROOT_INO);
832 	if (IS_ERR(root)) {
833 		printk(KERN_ERR "NILFS: get root inode failed\n");
834 		err = PTR_ERR(root);
835 		goto failed_segctor;
836 	}
837 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
838 		iput(root);
839 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
840 		err = -EINVAL;
841 		goto failed_segctor;
842 	}
843 	sb->s_root = d_alloc_root(root);
844 	if (!sb->s_root) {
845 		iput(root);
846 		printk(KERN_ERR "NILFS: get root dentry failed\n");
847 		err = -ENOMEM;
848 		goto failed_segctor;
849 	}
850 
851 	if (!(sb->s_flags & MS_RDONLY)) {
852 		down_write(&nilfs->ns_sem);
853 		nilfs_setup_super(sbi);
854 		up_write(&nilfs->ns_sem);
855 	}
856 
857 	err = nilfs_mark_recovery_complete(sbi);
858 	if (unlikely(err)) {
859 		printk(KERN_ERR "NILFS: recovery failed.\n");
860 		goto failed_root;
861 	}
862 
863 	down_write(&nilfs->ns_super_sem);
864 	if (!nilfs_test_opt(sbi, SNAPSHOT))
865 		nilfs->ns_current = sbi;
866 	up_write(&nilfs->ns_super_sem);
867 
868 	return 0;
869 
870  failed_root:
871 	dput(sb->s_root);
872 	sb->s_root = NULL;
873 
874  failed_segctor:
875 	nilfs_detach_segment_constructor(sbi);
876 
877  failed_checkpoint:
878 	nilfs_detach_checkpoint(sbi);
879 
880  failed_sbi:
881 	put_nilfs(nilfs);
882 	sb->s_fs_info = NULL;
883 	nilfs_put_sbinfo(sbi);
884 	return err;
885 }
886 
887 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
888 {
889 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
890 	struct nilfs_super_block *sbp;
891 	struct the_nilfs *nilfs = sbi->s_nilfs;
892 	unsigned long old_sb_flags;
893 	struct nilfs_mount_options old_opts;
894 	int err;
895 
896 	lock_kernel();
897 
898 	down_write(&nilfs->ns_super_sem);
899 	old_sb_flags = sb->s_flags;
900 	old_opts.mount_opt = sbi->s_mount_opt;
901 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
902 
903 	if (!parse_options(data, sb)) {
904 		err = -EINVAL;
905 		goto restore_opts;
906 	}
907 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
908 
909 	if ((*flags & MS_RDONLY) &&
910 	    sbi->s_snapshot_cno != old_opts.snapshot_cno) {
911 		printk(KERN_WARNING "NILFS (device %s): couldn't "
912 		       "remount to a different snapshot. \n",
913 		       sb->s_id);
914 		err = -EINVAL;
915 		goto restore_opts;
916 	}
917 
918 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
919 		goto out;
920 	if (*flags & MS_RDONLY) {
921 		/* Shutting down the segment constructor */
922 		nilfs_detach_segment_constructor(sbi);
923 		sb->s_flags |= MS_RDONLY;
924 
925 		sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
926 		/* nilfs_set_opt(sbi, SNAPSHOT); */
927 
928 		/*
929 		 * Remounting a valid RW partition RDONLY, so set
930 		 * the RDONLY flag and then mark the partition as valid again.
931 		 */
932 		down_write(&nilfs->ns_sem);
933 		sbp = nilfs->ns_sbp[0];
934 		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
935 		    (nilfs->ns_mount_state & NILFS_VALID_FS))
936 			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
937 		sbp->s_mtime = cpu_to_le64(get_seconds());
938 		nilfs_commit_super(sbi, 1);
939 		up_write(&nilfs->ns_sem);
940 	} else {
941 		/*
942 		 * Mounting a RDONLY partition read-write, so reread and
943 		 * store the current valid flag.  (It may have been changed
944 		 * by fsck since we originally mounted the partition.)
945 		 */
946 		if (nilfs->ns_current && nilfs->ns_current != sbi) {
947 			printk(KERN_WARNING "NILFS (device %s): couldn't "
948 			       "remount because an RW-mount exists.\n",
949 			       sb->s_id);
950 			err = -EBUSY;
951 			goto restore_opts;
952 		}
953 		if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
954 			printk(KERN_WARNING "NILFS (device %s): couldn't "
955 			       "remount because the current RO-mount is not "
956 			       "the latest one.\n",
957 			       sb->s_id);
958 			err = -EINVAL;
959 			goto restore_opts;
960 		}
961 		sb->s_flags &= ~MS_RDONLY;
962 		nilfs_clear_opt(sbi, SNAPSHOT);
963 		sbi->s_snapshot_cno = 0;
964 
965 		err = nilfs_attach_segment_constructor(sbi);
966 		if (err)
967 			goto restore_opts;
968 
969 		down_write(&nilfs->ns_sem);
970 		nilfs_setup_super(sbi);
971 		up_write(&nilfs->ns_sem);
972 
973 		nilfs->ns_current = sbi;
974 	}
975  out:
976 	up_write(&nilfs->ns_super_sem);
977 	unlock_kernel();
978 	return 0;
979 
980  restore_opts:
981 	sb->s_flags = old_sb_flags;
982 	sbi->s_mount_opt = old_opts.mount_opt;
983 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
984 	up_write(&nilfs->ns_super_sem);
985 	unlock_kernel();
986 	return err;
987 }
988 
989 struct nilfs_super_data {
990 	struct block_device *bdev;
991 	struct nilfs_sb_info *sbi;
992 	__u64 cno;
993 	int flags;
994 };
995 
996 /**
997  * nilfs_identify - pre-read mount options needed to identify mount instance
998  * @data: mount options
999  * @sd: nilfs_super_data
1000  */
1001 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1002 {
1003 	char *p, *options = data;
1004 	substring_t args[MAX_OPT_ARGS];
1005 	int option, token;
1006 	int ret = 0;
1007 
1008 	do {
1009 		p = strsep(&options, ",");
1010 		if (p != NULL && *p) {
1011 			token = match_token(p, tokens, args);
1012 			if (token == Opt_snapshot) {
1013 				if (!(sd->flags & MS_RDONLY))
1014 					ret++;
1015 				else {
1016 					ret = match_int(&args[0], &option);
1017 					if (!ret) {
1018 						if (option > 0)
1019 							sd->cno = option;
1020 						else
1021 							ret++;
1022 					}
1023 				}
1024 			}
1025 			if (ret)
1026 				printk(KERN_ERR
1027 				       "NILFS: invalid mount option: %s\n", p);
1028 		}
1029 		if (!options)
1030 			break;
1031 		BUG_ON(options == data);
1032 		*(options - 1) = ',';
1033 	} while (!ret);
1034 	return ret;
1035 }
1036 
1037 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1038 {
1039 	struct nilfs_super_data *sd = data;
1040 
1041 	s->s_bdev = sd->bdev;
1042 	s->s_dev = s->s_bdev->bd_dev;
1043 	return 0;
1044 }
1045 
1046 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1047 {
1048 	struct nilfs_super_data *sd = data;
1049 
1050 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1051 }
1052 
1053 static int
1054 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1055 	     const char *dev_name, void *data, struct vfsmount *mnt)
1056 {
1057 	struct nilfs_super_data sd;
1058 	struct super_block *s;
1059 	struct the_nilfs *nilfs;
1060 	int err, need_to_close = 1;
1061 
1062 	sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1063 	if (IS_ERR(sd.bdev))
1064 		return PTR_ERR(sd.bdev);
1065 
1066 	/*
1067 	 * To get mount instance using sget() vfs-routine, NILFS needs
1068 	 * much more information than normal filesystems to identify mount
1069 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1070 	 * or rw-mount) but also a checkpoint number is required.
1071 	 */
1072 	sd.cno = 0;
1073 	sd.flags = flags;
1074 	if (nilfs_identify((char *)data, &sd)) {
1075 		err = -EINVAL;
1076 		goto failed;
1077 	}
1078 
1079 	nilfs = find_or_create_nilfs(sd.bdev);
1080 	if (!nilfs) {
1081 		err = -ENOMEM;
1082 		goto failed;
1083 	}
1084 
1085 	mutex_lock(&nilfs->ns_mount_mutex);
1086 
1087 	if (!sd.cno) {
1088 		/*
1089 		 * Check if an exclusive mount exists or not.
1090 		 * Snapshot mounts coexist with a current mount
1091 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1092 		 * ro-mount are mutually exclusive.
1093 		 */
1094 		down_read(&nilfs->ns_super_sem);
1095 		if (nilfs->ns_current &&
1096 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1097 		     & MS_RDONLY)) {
1098 			up_read(&nilfs->ns_super_sem);
1099 			err = -EBUSY;
1100 			goto failed_unlock;
1101 		}
1102 		up_read(&nilfs->ns_super_sem);
1103 	}
1104 
1105 	/*
1106 	 * Find existing nilfs_sb_info struct
1107 	 */
1108 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1109 
1110 	/*
1111 	 * Get super block instance holding the nilfs_sb_info struct.
1112 	 * A new instance is allocated if no existing mount is present or
1113 	 * existing instance has been unmounted.
1114 	 */
1115 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1116 	if (sd.sbi)
1117 		nilfs_put_sbinfo(sd.sbi);
1118 
1119 	if (IS_ERR(s)) {
1120 		err = PTR_ERR(s);
1121 		goto failed_unlock;
1122 	}
1123 
1124 	if (!s->s_root) {
1125 		char b[BDEVNAME_SIZE];
1126 
1127 		/* New superblock instance created */
1128 		s->s_flags = flags;
1129 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1130 		sb_set_blocksize(s, block_size(sd.bdev));
1131 
1132 		err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1133 		if (err)
1134 			goto cancel_new;
1135 
1136 		s->s_flags |= MS_ACTIVE;
1137 		need_to_close = 0;
1138 	}
1139 
1140 	mutex_unlock(&nilfs->ns_mount_mutex);
1141 	put_nilfs(nilfs);
1142 	if (need_to_close)
1143 		close_bdev_exclusive(sd.bdev, flags);
1144 	simple_set_mnt(mnt, s);
1145 	return 0;
1146 
1147  failed_unlock:
1148 	mutex_unlock(&nilfs->ns_mount_mutex);
1149 	put_nilfs(nilfs);
1150  failed:
1151 	close_bdev_exclusive(sd.bdev, flags);
1152 
1153 	return err;
1154 
1155  cancel_new:
1156 	/* Abandoning the newly allocated superblock */
1157 	mutex_unlock(&nilfs->ns_mount_mutex);
1158 	put_nilfs(nilfs);
1159 	up_write(&s->s_umount);
1160 	deactivate_super(s);
1161 	/*
1162 	 * deactivate_super() invokes close_bdev_exclusive().
1163 	 * We must finish all post-cleaning before this call;
1164 	 * put_nilfs() needs the block device.
1165 	 */
1166 	return err;
1167 }
1168 
1169 struct file_system_type nilfs_fs_type = {
1170 	.owner    = THIS_MODULE,
1171 	.name     = "nilfs2",
1172 	.get_sb   = nilfs_get_sb,
1173 	.kill_sb  = kill_block_super,
1174 	.fs_flags = FS_REQUIRES_DEV,
1175 };
1176 
1177 static int __init init_nilfs_fs(void)
1178 {
1179 	int err;
1180 
1181 	err = nilfs_init_inode_cache();
1182 	if (err)
1183 		goto failed;
1184 
1185 	err = nilfs_init_transaction_cache();
1186 	if (err)
1187 		goto failed_inode_cache;
1188 
1189 	err = nilfs_init_segbuf_cache();
1190 	if (err)
1191 		goto failed_transaction_cache;
1192 
1193 	err = nilfs_btree_path_cache_init();
1194 	if (err)
1195 		goto failed_segbuf_cache;
1196 
1197 	err = register_filesystem(&nilfs_fs_type);
1198 	if (err)
1199 		goto failed_btree_path_cache;
1200 
1201 	return 0;
1202 
1203  failed_btree_path_cache:
1204 	nilfs_btree_path_cache_destroy();
1205 
1206  failed_segbuf_cache:
1207 	nilfs_destroy_segbuf_cache();
1208 
1209  failed_transaction_cache:
1210 	nilfs_destroy_transaction_cache();
1211 
1212  failed_inode_cache:
1213 	nilfs_destroy_inode_cache();
1214 
1215  failed:
1216 	return err;
1217 }
1218 
1219 static void __exit exit_nilfs_fs(void)
1220 {
1221 	nilfs_destroy_segbuf_cache();
1222 	nilfs_destroy_transaction_cache();
1223 	nilfs_destroy_inode_cache();
1224 	nilfs_btree_path_cache_destroy();
1225 	unregister_filesystem(&nilfs_fs_type);
1226 }
1227 
1228 module_init(init_nilfs_fs)
1229 module_exit(exit_nilfs_fs)
1230