1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS module and super block management. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 */ 9 /* 10 * linux/fs/ext2/super.c 11 * 12 * Copyright (C) 1992, 1993, 1994, 1995 13 * Remy Card (card@masi.ibp.fr) 14 * Laboratoire MASI - Institut Blaise Pascal 15 * Universite Pierre et Marie Curie (Paris VI) 16 * 17 * from 18 * 19 * linux/fs/minix/inode.c 20 * 21 * Copyright (C) 1991, 1992 Linus Torvalds 22 * 23 * Big-endian to little-endian byte-swapping/bitmaps by 24 * David S. Miller (davem@caip.rutgers.edu), 1995 25 */ 26 27 #include <linux/module.h> 28 #include <linux/string.h> 29 #include <linux/slab.h> 30 #include <linux/init.h> 31 #include <linux/blkdev.h> 32 #include <linux/parser.h> 33 #include <linux/crc32.h> 34 #include <linux/vfs.h> 35 #include <linux/writeback.h> 36 #include <linux/seq_file.h> 37 #include <linux/mount.h> 38 #include "nilfs.h" 39 #include "export.h" 40 #include "mdt.h" 41 #include "alloc.h" 42 #include "btree.h" 43 #include "btnode.h" 44 #include "page.h" 45 #include "cpfile.h" 46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 47 #include "ifile.h" 48 #include "dat.h" 49 #include "segment.h" 50 #include "segbuf.h" 51 52 MODULE_AUTHOR("NTT Corp."); 53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 54 "(NILFS)"); 55 MODULE_LICENSE("GPL"); 56 57 static struct kmem_cache *nilfs_inode_cachep; 58 struct kmem_cache *nilfs_transaction_cachep; 59 struct kmem_cache *nilfs_segbuf_cachep; 60 struct kmem_cache *nilfs_btree_path_cache; 61 62 static int nilfs_setup_super(struct super_block *sb, int is_mount); 63 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 64 65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...) 66 { 67 struct va_format vaf; 68 va_list args; 69 int level; 70 71 va_start(args, fmt); 72 73 level = printk_get_level(fmt); 74 vaf.fmt = printk_skip_level(fmt); 75 vaf.va = &args; 76 77 if (sb) 78 printk("%c%cNILFS (%s): %pV\n", 79 KERN_SOH_ASCII, level, sb->s_id, &vaf); 80 else 81 printk("%c%cNILFS: %pV\n", 82 KERN_SOH_ASCII, level, &vaf); 83 84 va_end(args); 85 } 86 87 static void nilfs_set_error(struct super_block *sb) 88 { 89 struct the_nilfs *nilfs = sb->s_fs_info; 90 struct nilfs_super_block **sbp; 91 92 down_write(&nilfs->ns_sem); 93 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 94 nilfs->ns_mount_state |= NILFS_ERROR_FS; 95 sbp = nilfs_prepare_super(sb, 0); 96 if (likely(sbp)) { 97 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 98 if (sbp[1]) 99 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 100 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 101 } 102 } 103 up_write(&nilfs->ns_sem); 104 } 105 106 /** 107 * __nilfs_error() - report failure condition on a filesystem 108 * 109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as 110 * reporting an error message. This function should be called when 111 * NILFS detects incoherences or defects of meta data on disk. 112 * 113 * This implements the body of nilfs_error() macro. Normally, 114 * nilfs_error() should be used. As for sustainable errors such as a 115 * single-shot I/O error, nilfs_err() should be used instead. 116 * 117 * Callers should not add a trailing newline since this will do it. 118 */ 119 void __nilfs_error(struct super_block *sb, const char *function, 120 const char *fmt, ...) 121 { 122 struct the_nilfs *nilfs = sb->s_fs_info; 123 struct va_format vaf; 124 va_list args; 125 126 va_start(args, fmt); 127 128 vaf.fmt = fmt; 129 vaf.va = &args; 130 131 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 132 sb->s_id, function, &vaf); 133 134 va_end(args); 135 136 if (!sb_rdonly(sb)) { 137 nilfs_set_error(sb); 138 139 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 140 printk(KERN_CRIT "Remounting filesystem read-only\n"); 141 sb->s_flags |= SB_RDONLY; 142 } 143 } 144 145 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 146 panic("NILFS (device %s): panic forced after error\n", 147 sb->s_id); 148 } 149 150 struct inode *nilfs_alloc_inode(struct super_block *sb) 151 { 152 struct nilfs_inode_info *ii; 153 154 ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS); 155 if (!ii) 156 return NULL; 157 ii->i_bh = NULL; 158 ii->i_state = 0; 159 ii->i_cno = 0; 160 ii->i_assoc_inode = NULL; 161 ii->i_bmap = &ii->i_bmap_data; 162 return &ii->vfs_inode; 163 } 164 165 static void nilfs_free_inode(struct inode *inode) 166 { 167 if (nilfs_is_metadata_file_inode(inode)) 168 nilfs_mdt_destroy(inode); 169 170 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 171 } 172 173 static int nilfs_sync_super(struct super_block *sb, int flag) 174 { 175 struct the_nilfs *nilfs = sb->s_fs_info; 176 int err; 177 178 retry: 179 set_buffer_dirty(nilfs->ns_sbh[0]); 180 if (nilfs_test_opt(nilfs, BARRIER)) { 181 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 183 } else { 184 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 185 } 186 187 if (unlikely(err)) { 188 nilfs_err(sb, "unable to write superblock: err=%d", err); 189 if (err == -EIO && nilfs->ns_sbh[1]) { 190 /* 191 * sbp[0] points to newer log than sbp[1], 192 * so copy sbp[0] to sbp[1] to take over sbp[0]. 193 */ 194 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 195 nilfs->ns_sbsize); 196 nilfs_fall_back_super_block(nilfs); 197 goto retry; 198 } 199 } else { 200 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 201 202 nilfs->ns_sbwcount++; 203 204 /* 205 * The latest segment becomes trailable from the position 206 * written in superblock. 207 */ 208 clear_nilfs_discontinued(nilfs); 209 210 /* update GC protection for recent segments */ 211 if (nilfs->ns_sbh[1]) { 212 if (flag == NILFS_SB_COMMIT_ALL) { 213 set_buffer_dirty(nilfs->ns_sbh[1]); 214 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 215 goto out; 216 } 217 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 218 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 219 sbp = nilfs->ns_sbp[1]; 220 } 221 222 spin_lock(&nilfs->ns_last_segment_lock); 223 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 224 spin_unlock(&nilfs->ns_last_segment_lock); 225 } 226 out: 227 return err; 228 } 229 230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 231 struct the_nilfs *nilfs) 232 { 233 sector_t nfreeblocks; 234 235 /* nilfs->ns_sem must be locked by the caller. */ 236 nilfs_count_free_blocks(nilfs, &nfreeblocks); 237 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 238 239 spin_lock(&nilfs->ns_last_segment_lock); 240 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 241 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 242 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 243 spin_unlock(&nilfs->ns_last_segment_lock); 244 } 245 246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 247 int flip) 248 { 249 struct the_nilfs *nilfs = sb->s_fs_info; 250 struct nilfs_super_block **sbp = nilfs->ns_sbp; 251 252 /* nilfs->ns_sem must be locked by the caller. */ 253 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 254 if (sbp[1] && 255 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 256 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 257 } else { 258 nilfs_crit(sb, "superblock broke"); 259 return NULL; 260 } 261 } else if (sbp[1] && 262 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 263 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 264 } 265 266 if (flip && sbp[1]) 267 nilfs_swap_super_block(nilfs); 268 269 return sbp; 270 } 271 272 int nilfs_commit_super(struct super_block *sb, int flag) 273 { 274 struct the_nilfs *nilfs = sb->s_fs_info; 275 struct nilfs_super_block **sbp = nilfs->ns_sbp; 276 time64_t t; 277 278 /* nilfs->ns_sem must be locked by the caller. */ 279 t = ktime_get_real_seconds(); 280 nilfs->ns_sbwtime = t; 281 sbp[0]->s_wtime = cpu_to_le64(t); 282 sbp[0]->s_sum = 0; 283 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 284 (unsigned char *)sbp[0], 285 nilfs->ns_sbsize)); 286 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 287 sbp[1]->s_wtime = sbp[0]->s_wtime; 288 sbp[1]->s_sum = 0; 289 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 290 (unsigned char *)sbp[1], 291 nilfs->ns_sbsize)); 292 } 293 clear_nilfs_sb_dirty(nilfs); 294 nilfs->ns_flushed_device = 1; 295 /* make sure store to ns_flushed_device cannot be reordered */ 296 smp_wmb(); 297 return nilfs_sync_super(sb, flag); 298 } 299 300 /** 301 * nilfs_cleanup_super() - write filesystem state for cleanup 302 * @sb: super block instance to be unmounted or degraded to read-only 303 * 304 * This function restores state flags in the on-disk super block. 305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 306 * filesystem was not clean previously. 307 */ 308 int nilfs_cleanup_super(struct super_block *sb) 309 { 310 struct the_nilfs *nilfs = sb->s_fs_info; 311 struct nilfs_super_block **sbp; 312 int flag = NILFS_SB_COMMIT; 313 int ret = -EIO; 314 315 sbp = nilfs_prepare_super(sb, 0); 316 if (sbp) { 317 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 318 nilfs_set_log_cursor(sbp[0], nilfs); 319 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 320 /* 321 * make the "clean" flag also to the opposite 322 * super block if both super blocks point to 323 * the same checkpoint. 324 */ 325 sbp[1]->s_state = sbp[0]->s_state; 326 flag = NILFS_SB_COMMIT_ALL; 327 } 328 ret = nilfs_commit_super(sb, flag); 329 } 330 return ret; 331 } 332 333 /** 334 * nilfs_move_2nd_super - relocate secondary super block 335 * @sb: super block instance 336 * @sb2off: new offset of the secondary super block (in bytes) 337 */ 338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 339 { 340 struct the_nilfs *nilfs = sb->s_fs_info; 341 struct buffer_head *nsbh; 342 struct nilfs_super_block *nsbp; 343 sector_t blocknr, newblocknr; 344 unsigned long offset; 345 int sb2i; /* array index of the secondary superblock */ 346 int ret = 0; 347 348 /* nilfs->ns_sem must be locked by the caller. */ 349 if (nilfs->ns_sbh[1] && 350 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 351 sb2i = 1; 352 blocknr = nilfs->ns_sbh[1]->b_blocknr; 353 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 354 sb2i = 0; 355 blocknr = nilfs->ns_sbh[0]->b_blocknr; 356 } else { 357 sb2i = -1; 358 blocknr = 0; 359 } 360 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 361 goto out; /* super block location is unchanged */ 362 363 /* Get new super block buffer */ 364 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 365 offset = sb2off & (nilfs->ns_blocksize - 1); 366 nsbh = sb_getblk(sb, newblocknr); 367 if (!nsbh) { 368 nilfs_warn(sb, 369 "unable to move secondary superblock to block %llu", 370 (unsigned long long)newblocknr); 371 ret = -EIO; 372 goto out; 373 } 374 nsbp = (void *)nsbh->b_data + offset; 375 memset(nsbp, 0, nilfs->ns_blocksize); 376 377 if (sb2i >= 0) { 378 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 379 brelse(nilfs->ns_sbh[sb2i]); 380 nilfs->ns_sbh[sb2i] = nsbh; 381 nilfs->ns_sbp[sb2i] = nsbp; 382 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 383 /* secondary super block will be restored to index 1 */ 384 nilfs->ns_sbh[1] = nsbh; 385 nilfs->ns_sbp[1] = nsbp; 386 } else { 387 brelse(nsbh); 388 } 389 out: 390 return ret; 391 } 392 393 /** 394 * nilfs_resize_fs - resize the filesystem 395 * @sb: super block instance 396 * @newsize: new size of the filesystem (in bytes) 397 */ 398 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 399 { 400 struct the_nilfs *nilfs = sb->s_fs_info; 401 struct nilfs_super_block **sbp; 402 __u64 devsize, newnsegs; 403 loff_t sb2off; 404 int ret; 405 406 ret = -ERANGE; 407 devsize = bdev_nr_bytes(sb->s_bdev); 408 if (newsize > devsize) 409 goto out; 410 411 /* 412 * Prevent underflow in second superblock position calculation. 413 * The exact minimum size check is done in nilfs_sufile_resize(). 414 */ 415 if (newsize < 4096) { 416 ret = -ENOSPC; 417 goto out; 418 } 419 420 /* 421 * Write lock is required to protect some functions depending 422 * on the number of segments, the number of reserved segments, 423 * and so forth. 424 */ 425 down_write(&nilfs->ns_segctor_sem); 426 427 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 428 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 429 do_div(newnsegs, nilfs->ns_blocks_per_segment); 430 431 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 432 up_write(&nilfs->ns_segctor_sem); 433 if (ret < 0) 434 goto out; 435 436 ret = nilfs_construct_segment(sb); 437 if (ret < 0) 438 goto out; 439 440 down_write(&nilfs->ns_sem); 441 nilfs_move_2nd_super(sb, sb2off); 442 ret = -EIO; 443 sbp = nilfs_prepare_super(sb, 0); 444 if (likely(sbp)) { 445 nilfs_set_log_cursor(sbp[0], nilfs); 446 /* 447 * Drop NILFS_RESIZE_FS flag for compatibility with 448 * mount-time resize which may be implemented in a 449 * future release. 450 */ 451 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 452 ~NILFS_RESIZE_FS); 453 sbp[0]->s_dev_size = cpu_to_le64(newsize); 454 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 455 if (sbp[1]) 456 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 457 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 458 } 459 up_write(&nilfs->ns_sem); 460 461 /* 462 * Reset the range of allocatable segments last. This order 463 * is important in the case of expansion because the secondary 464 * superblock must be protected from log write until migration 465 * completes. 466 */ 467 if (!ret) 468 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 469 out: 470 return ret; 471 } 472 473 static void nilfs_put_super(struct super_block *sb) 474 { 475 struct the_nilfs *nilfs = sb->s_fs_info; 476 477 nilfs_detach_log_writer(sb); 478 479 if (!sb_rdonly(sb)) { 480 down_write(&nilfs->ns_sem); 481 nilfs_cleanup_super(sb); 482 up_write(&nilfs->ns_sem); 483 } 484 485 iput(nilfs->ns_sufile); 486 iput(nilfs->ns_cpfile); 487 iput(nilfs->ns_dat); 488 489 destroy_nilfs(nilfs); 490 sb->s_fs_info = NULL; 491 } 492 493 static int nilfs_sync_fs(struct super_block *sb, int wait) 494 { 495 struct the_nilfs *nilfs = sb->s_fs_info; 496 struct nilfs_super_block **sbp; 497 int err = 0; 498 499 /* This function is called when super block should be written back */ 500 if (wait) 501 err = nilfs_construct_segment(sb); 502 503 down_write(&nilfs->ns_sem); 504 if (nilfs_sb_dirty(nilfs)) { 505 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 506 if (likely(sbp)) { 507 nilfs_set_log_cursor(sbp[0], nilfs); 508 nilfs_commit_super(sb, NILFS_SB_COMMIT); 509 } 510 } 511 up_write(&nilfs->ns_sem); 512 513 if (!err) 514 err = nilfs_flush_device(nilfs); 515 516 return err; 517 } 518 519 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 520 struct nilfs_root **rootp) 521 { 522 struct the_nilfs *nilfs = sb->s_fs_info; 523 struct nilfs_root *root; 524 struct nilfs_checkpoint *raw_cp; 525 struct buffer_head *bh_cp; 526 int err = -ENOMEM; 527 528 root = nilfs_find_or_create_root( 529 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 530 if (!root) 531 return err; 532 533 if (root->ifile) 534 goto reuse; /* already attached checkpoint */ 535 536 down_read(&nilfs->ns_segctor_sem); 537 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 538 &bh_cp); 539 up_read(&nilfs->ns_segctor_sem); 540 if (unlikely(err)) { 541 if (err == -ENOENT || err == -EINVAL) { 542 nilfs_err(sb, 543 "Invalid checkpoint (checkpoint number=%llu)", 544 (unsigned long long)cno); 545 err = -EINVAL; 546 } 547 goto failed; 548 } 549 550 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 551 &raw_cp->cp_ifile_inode, &root->ifile); 552 if (err) 553 goto failed_bh; 554 555 atomic64_set(&root->inodes_count, 556 le64_to_cpu(raw_cp->cp_inodes_count)); 557 atomic64_set(&root->blocks_count, 558 le64_to_cpu(raw_cp->cp_blocks_count)); 559 560 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 561 562 reuse: 563 *rootp = root; 564 return 0; 565 566 failed_bh: 567 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 568 failed: 569 nilfs_put_root(root); 570 571 return err; 572 } 573 574 static int nilfs_freeze(struct super_block *sb) 575 { 576 struct the_nilfs *nilfs = sb->s_fs_info; 577 int err; 578 579 if (sb_rdonly(sb)) 580 return 0; 581 582 /* Mark super block clean */ 583 down_write(&nilfs->ns_sem); 584 err = nilfs_cleanup_super(sb); 585 up_write(&nilfs->ns_sem); 586 return err; 587 } 588 589 static int nilfs_unfreeze(struct super_block *sb) 590 { 591 struct the_nilfs *nilfs = sb->s_fs_info; 592 593 if (sb_rdonly(sb)) 594 return 0; 595 596 down_write(&nilfs->ns_sem); 597 nilfs_setup_super(sb, false); 598 up_write(&nilfs->ns_sem); 599 return 0; 600 } 601 602 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 603 { 604 struct super_block *sb = dentry->d_sb; 605 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 606 struct the_nilfs *nilfs = root->nilfs; 607 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 608 unsigned long long blocks; 609 unsigned long overhead; 610 unsigned long nrsvblocks; 611 sector_t nfreeblocks; 612 u64 nmaxinodes, nfreeinodes; 613 int err; 614 615 /* 616 * Compute all of the segment blocks 617 * 618 * The blocks before first segment and after last segment 619 * are excluded. 620 */ 621 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 622 - nilfs->ns_first_data_block; 623 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 624 625 /* 626 * Compute the overhead 627 * 628 * When distributing meta data blocks outside segment structure, 629 * We must count them as the overhead. 630 */ 631 overhead = 0; 632 633 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 634 if (unlikely(err)) 635 return err; 636 637 err = nilfs_ifile_count_free_inodes(root->ifile, 638 &nmaxinodes, &nfreeinodes); 639 if (unlikely(err)) { 640 nilfs_warn(sb, "failed to count free inodes: err=%d", err); 641 if (err == -ERANGE) { 642 /* 643 * If nilfs_palloc_count_max_entries() returns 644 * -ERANGE error code then we simply treat 645 * curent inodes count as maximum possible and 646 * zero as free inodes value. 647 */ 648 nmaxinodes = atomic64_read(&root->inodes_count); 649 nfreeinodes = 0; 650 err = 0; 651 } else 652 return err; 653 } 654 655 buf->f_type = NILFS_SUPER_MAGIC; 656 buf->f_bsize = sb->s_blocksize; 657 buf->f_blocks = blocks - overhead; 658 buf->f_bfree = nfreeblocks; 659 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 660 (buf->f_bfree - nrsvblocks) : 0; 661 buf->f_files = nmaxinodes; 662 buf->f_ffree = nfreeinodes; 663 buf->f_namelen = NILFS_NAME_LEN; 664 buf->f_fsid = u64_to_fsid(id); 665 666 return 0; 667 } 668 669 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 670 { 671 struct super_block *sb = dentry->d_sb; 672 struct the_nilfs *nilfs = sb->s_fs_info; 673 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 674 675 if (!nilfs_test_opt(nilfs, BARRIER)) 676 seq_puts(seq, ",nobarrier"); 677 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 678 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 679 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 680 seq_puts(seq, ",errors=panic"); 681 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 682 seq_puts(seq, ",errors=continue"); 683 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 684 seq_puts(seq, ",order=strict"); 685 if (nilfs_test_opt(nilfs, NORECOVERY)) 686 seq_puts(seq, ",norecovery"); 687 if (nilfs_test_opt(nilfs, DISCARD)) 688 seq_puts(seq, ",discard"); 689 690 return 0; 691 } 692 693 static const struct super_operations nilfs_sops = { 694 .alloc_inode = nilfs_alloc_inode, 695 .free_inode = nilfs_free_inode, 696 .dirty_inode = nilfs_dirty_inode, 697 .evict_inode = nilfs_evict_inode, 698 .put_super = nilfs_put_super, 699 .sync_fs = nilfs_sync_fs, 700 .freeze_fs = nilfs_freeze, 701 .unfreeze_fs = nilfs_unfreeze, 702 .statfs = nilfs_statfs, 703 .remount_fs = nilfs_remount, 704 .show_options = nilfs_show_options 705 }; 706 707 enum { 708 Opt_err_cont, Opt_err_panic, Opt_err_ro, 709 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 710 Opt_discard, Opt_nodiscard, Opt_err, 711 }; 712 713 static match_table_t tokens = { 714 {Opt_err_cont, "errors=continue"}, 715 {Opt_err_panic, "errors=panic"}, 716 {Opt_err_ro, "errors=remount-ro"}, 717 {Opt_barrier, "barrier"}, 718 {Opt_nobarrier, "nobarrier"}, 719 {Opt_snapshot, "cp=%u"}, 720 {Opt_order, "order=%s"}, 721 {Opt_norecovery, "norecovery"}, 722 {Opt_discard, "discard"}, 723 {Opt_nodiscard, "nodiscard"}, 724 {Opt_err, NULL} 725 }; 726 727 static int parse_options(char *options, struct super_block *sb, int is_remount) 728 { 729 struct the_nilfs *nilfs = sb->s_fs_info; 730 char *p; 731 substring_t args[MAX_OPT_ARGS]; 732 733 if (!options) 734 return 1; 735 736 while ((p = strsep(&options, ",")) != NULL) { 737 int token; 738 739 if (!*p) 740 continue; 741 742 token = match_token(p, tokens, args); 743 switch (token) { 744 case Opt_barrier: 745 nilfs_set_opt(nilfs, BARRIER); 746 break; 747 case Opt_nobarrier: 748 nilfs_clear_opt(nilfs, BARRIER); 749 break; 750 case Opt_order: 751 if (strcmp(args[0].from, "relaxed") == 0) 752 /* Ordered data semantics */ 753 nilfs_clear_opt(nilfs, STRICT_ORDER); 754 else if (strcmp(args[0].from, "strict") == 0) 755 /* Strict in-order semantics */ 756 nilfs_set_opt(nilfs, STRICT_ORDER); 757 else 758 return 0; 759 break; 760 case Opt_err_panic: 761 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 762 break; 763 case Opt_err_ro: 764 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 765 break; 766 case Opt_err_cont: 767 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 768 break; 769 case Opt_snapshot: 770 if (is_remount) { 771 nilfs_err(sb, 772 "\"%s\" option is invalid for remount", 773 p); 774 return 0; 775 } 776 break; 777 case Opt_norecovery: 778 nilfs_set_opt(nilfs, NORECOVERY); 779 break; 780 case Opt_discard: 781 nilfs_set_opt(nilfs, DISCARD); 782 break; 783 case Opt_nodiscard: 784 nilfs_clear_opt(nilfs, DISCARD); 785 break; 786 default: 787 nilfs_err(sb, "unrecognized mount option \"%s\"", p); 788 return 0; 789 } 790 } 791 return 1; 792 } 793 794 static inline void 795 nilfs_set_default_options(struct super_block *sb, 796 struct nilfs_super_block *sbp) 797 { 798 struct the_nilfs *nilfs = sb->s_fs_info; 799 800 nilfs->ns_mount_opt = 801 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 802 } 803 804 static int nilfs_setup_super(struct super_block *sb, int is_mount) 805 { 806 struct the_nilfs *nilfs = sb->s_fs_info; 807 struct nilfs_super_block **sbp; 808 int max_mnt_count; 809 int mnt_count; 810 811 /* nilfs->ns_sem must be locked by the caller. */ 812 sbp = nilfs_prepare_super(sb, 0); 813 if (!sbp) 814 return -EIO; 815 816 if (!is_mount) 817 goto skip_mount_setup; 818 819 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 820 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 821 822 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 823 nilfs_warn(sb, "mounting fs with errors"); 824 #if 0 825 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 826 nilfs_warn(sb, "maximal mount count reached"); 827 #endif 828 } 829 if (!max_mnt_count) 830 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 831 832 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 833 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds()); 834 835 skip_mount_setup: 836 sbp[0]->s_state = 837 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 838 /* synchronize sbp[1] with sbp[0] */ 839 if (sbp[1]) 840 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 841 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 842 } 843 844 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 845 u64 pos, int blocksize, 846 struct buffer_head **pbh) 847 { 848 unsigned long long sb_index = pos; 849 unsigned long offset; 850 851 offset = do_div(sb_index, blocksize); 852 *pbh = sb_bread(sb, sb_index); 853 if (!*pbh) 854 return NULL; 855 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 856 } 857 858 int nilfs_store_magic_and_option(struct super_block *sb, 859 struct nilfs_super_block *sbp, 860 char *data) 861 { 862 struct the_nilfs *nilfs = sb->s_fs_info; 863 864 sb->s_magic = le16_to_cpu(sbp->s_magic); 865 866 /* FS independent flags */ 867 #ifdef NILFS_ATIME_DISABLE 868 sb->s_flags |= SB_NOATIME; 869 #endif 870 871 nilfs_set_default_options(sb, sbp); 872 873 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 874 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 875 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 876 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 877 878 return !parse_options(data, sb, 0) ? -EINVAL : 0; 879 } 880 881 int nilfs_check_feature_compatibility(struct super_block *sb, 882 struct nilfs_super_block *sbp) 883 { 884 __u64 features; 885 886 features = le64_to_cpu(sbp->s_feature_incompat) & 887 ~NILFS_FEATURE_INCOMPAT_SUPP; 888 if (features) { 889 nilfs_err(sb, 890 "couldn't mount because of unsupported optional features (%llx)", 891 (unsigned long long)features); 892 return -EINVAL; 893 } 894 features = le64_to_cpu(sbp->s_feature_compat_ro) & 895 ~NILFS_FEATURE_COMPAT_RO_SUPP; 896 if (!sb_rdonly(sb) && features) { 897 nilfs_err(sb, 898 "couldn't mount RDWR because of unsupported optional features (%llx)", 899 (unsigned long long)features); 900 return -EINVAL; 901 } 902 return 0; 903 } 904 905 static int nilfs_get_root_dentry(struct super_block *sb, 906 struct nilfs_root *root, 907 struct dentry **root_dentry) 908 { 909 struct inode *inode; 910 struct dentry *dentry; 911 int ret = 0; 912 913 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 914 if (IS_ERR(inode)) { 915 ret = PTR_ERR(inode); 916 nilfs_err(sb, "error %d getting root inode", ret); 917 goto out; 918 } 919 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 920 iput(inode); 921 nilfs_err(sb, "corrupt root inode"); 922 ret = -EINVAL; 923 goto out; 924 } 925 926 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 927 dentry = d_find_alias(inode); 928 if (!dentry) { 929 dentry = d_make_root(inode); 930 if (!dentry) { 931 ret = -ENOMEM; 932 goto failed_dentry; 933 } 934 } else { 935 iput(inode); 936 } 937 } else { 938 dentry = d_obtain_root(inode); 939 if (IS_ERR(dentry)) { 940 ret = PTR_ERR(dentry); 941 goto failed_dentry; 942 } 943 } 944 *root_dentry = dentry; 945 out: 946 return ret; 947 948 failed_dentry: 949 nilfs_err(sb, "error %d getting root dentry", ret); 950 goto out; 951 } 952 953 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 954 struct dentry **root_dentry) 955 { 956 struct the_nilfs *nilfs = s->s_fs_info; 957 struct nilfs_root *root; 958 int ret; 959 960 mutex_lock(&nilfs->ns_snapshot_mount_mutex); 961 962 down_read(&nilfs->ns_segctor_sem); 963 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 964 up_read(&nilfs->ns_segctor_sem); 965 if (ret < 0) { 966 ret = (ret == -ENOENT) ? -EINVAL : ret; 967 goto out; 968 } else if (!ret) { 969 nilfs_err(s, 970 "The specified checkpoint is not a snapshot (checkpoint number=%llu)", 971 (unsigned long long)cno); 972 ret = -EINVAL; 973 goto out; 974 } 975 976 ret = nilfs_attach_checkpoint(s, cno, false, &root); 977 if (ret) { 978 nilfs_err(s, 979 "error %d while loading snapshot (checkpoint number=%llu)", 980 ret, (unsigned long long)cno); 981 goto out; 982 } 983 ret = nilfs_get_root_dentry(s, root, root_dentry); 984 nilfs_put_root(root); 985 out: 986 mutex_unlock(&nilfs->ns_snapshot_mount_mutex); 987 return ret; 988 } 989 990 /** 991 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint 992 * @root_dentry: root dentry of the tree to be shrunk 993 * 994 * This function returns true if the tree was in-use. 995 */ 996 static bool nilfs_tree_is_busy(struct dentry *root_dentry) 997 { 998 shrink_dcache_parent(root_dentry); 999 return d_count(root_dentry) > 1; 1000 } 1001 1002 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 1003 { 1004 struct the_nilfs *nilfs = sb->s_fs_info; 1005 struct nilfs_root *root; 1006 struct inode *inode; 1007 struct dentry *dentry; 1008 int ret; 1009 1010 if (cno > nilfs->ns_cno) 1011 return false; 1012 1013 if (cno >= nilfs_last_cno(nilfs)) 1014 return true; /* protect recent checkpoints */ 1015 1016 ret = false; 1017 root = nilfs_lookup_root(nilfs, cno); 1018 if (root) { 1019 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1020 if (inode) { 1021 dentry = d_find_alias(inode); 1022 if (dentry) { 1023 ret = nilfs_tree_is_busy(dentry); 1024 dput(dentry); 1025 } 1026 iput(inode); 1027 } 1028 nilfs_put_root(root); 1029 } 1030 return ret; 1031 } 1032 1033 /** 1034 * nilfs_fill_super() - initialize a super block instance 1035 * @sb: super_block 1036 * @data: mount options 1037 * @silent: silent mode flag 1038 * 1039 * This function is called exclusively by nilfs->ns_mount_mutex. 1040 * So, the recovery process is protected from other simultaneous mounts. 1041 */ 1042 static int 1043 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1044 { 1045 struct the_nilfs *nilfs; 1046 struct nilfs_root *fsroot; 1047 __u64 cno; 1048 int err; 1049 1050 nilfs = alloc_nilfs(sb); 1051 if (!nilfs) 1052 return -ENOMEM; 1053 1054 sb->s_fs_info = nilfs; 1055 1056 err = init_nilfs(nilfs, sb, (char *)data); 1057 if (err) 1058 goto failed_nilfs; 1059 1060 sb->s_op = &nilfs_sops; 1061 sb->s_export_op = &nilfs_export_ops; 1062 sb->s_root = NULL; 1063 sb->s_time_gran = 1; 1064 sb->s_max_links = NILFS_LINK_MAX; 1065 1066 sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi); 1067 1068 err = load_nilfs(nilfs, sb); 1069 if (err) 1070 goto failed_nilfs; 1071 1072 cno = nilfs_last_cno(nilfs); 1073 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1074 if (err) { 1075 nilfs_err(sb, 1076 "error %d while loading last checkpoint (checkpoint number=%llu)", 1077 err, (unsigned long long)cno); 1078 goto failed_unload; 1079 } 1080 1081 if (!sb_rdonly(sb)) { 1082 err = nilfs_attach_log_writer(sb, fsroot); 1083 if (err) 1084 goto failed_checkpoint; 1085 } 1086 1087 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1088 if (err) 1089 goto failed_segctor; 1090 1091 nilfs_put_root(fsroot); 1092 1093 if (!sb_rdonly(sb)) { 1094 down_write(&nilfs->ns_sem); 1095 nilfs_setup_super(sb, true); 1096 up_write(&nilfs->ns_sem); 1097 } 1098 1099 return 0; 1100 1101 failed_segctor: 1102 nilfs_detach_log_writer(sb); 1103 1104 failed_checkpoint: 1105 nilfs_put_root(fsroot); 1106 1107 failed_unload: 1108 iput(nilfs->ns_sufile); 1109 iput(nilfs->ns_cpfile); 1110 iput(nilfs->ns_dat); 1111 1112 failed_nilfs: 1113 destroy_nilfs(nilfs); 1114 return err; 1115 } 1116 1117 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1118 { 1119 struct the_nilfs *nilfs = sb->s_fs_info; 1120 unsigned long old_sb_flags; 1121 unsigned long old_mount_opt; 1122 int err; 1123 1124 sync_filesystem(sb); 1125 old_sb_flags = sb->s_flags; 1126 old_mount_opt = nilfs->ns_mount_opt; 1127 1128 if (!parse_options(data, sb, 1)) { 1129 err = -EINVAL; 1130 goto restore_opts; 1131 } 1132 sb->s_flags = (sb->s_flags & ~SB_POSIXACL); 1133 1134 err = -EINVAL; 1135 1136 if (!nilfs_valid_fs(nilfs)) { 1137 nilfs_warn(sb, 1138 "couldn't remount because the filesystem is in an incomplete recovery state"); 1139 goto restore_opts; 1140 } 1141 1142 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1143 goto out; 1144 if (*flags & SB_RDONLY) { 1145 sb->s_flags |= SB_RDONLY; 1146 1147 /* 1148 * Remounting a valid RW partition RDONLY, so set 1149 * the RDONLY flag and then mark the partition as valid again. 1150 */ 1151 down_write(&nilfs->ns_sem); 1152 nilfs_cleanup_super(sb); 1153 up_write(&nilfs->ns_sem); 1154 } else { 1155 __u64 features; 1156 struct nilfs_root *root; 1157 1158 /* 1159 * Mounting a RDONLY partition read-write, so reread and 1160 * store the current valid flag. (It may have been changed 1161 * by fsck since we originally mounted the partition.) 1162 */ 1163 down_read(&nilfs->ns_sem); 1164 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1165 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1166 up_read(&nilfs->ns_sem); 1167 if (features) { 1168 nilfs_warn(sb, 1169 "couldn't remount RDWR because of unsupported optional features (%llx)", 1170 (unsigned long long)features); 1171 err = -EROFS; 1172 goto restore_opts; 1173 } 1174 1175 sb->s_flags &= ~SB_RDONLY; 1176 1177 root = NILFS_I(d_inode(sb->s_root))->i_root; 1178 err = nilfs_attach_log_writer(sb, root); 1179 if (err) 1180 goto restore_opts; 1181 1182 down_write(&nilfs->ns_sem); 1183 nilfs_setup_super(sb, true); 1184 up_write(&nilfs->ns_sem); 1185 } 1186 out: 1187 return 0; 1188 1189 restore_opts: 1190 sb->s_flags = old_sb_flags; 1191 nilfs->ns_mount_opt = old_mount_opt; 1192 return err; 1193 } 1194 1195 struct nilfs_super_data { 1196 struct block_device *bdev; 1197 __u64 cno; 1198 int flags; 1199 }; 1200 1201 static int nilfs_parse_snapshot_option(const char *option, 1202 const substring_t *arg, 1203 struct nilfs_super_data *sd) 1204 { 1205 unsigned long long val; 1206 const char *msg = NULL; 1207 int err; 1208 1209 if (!(sd->flags & SB_RDONLY)) { 1210 msg = "read-only option is not specified"; 1211 goto parse_error; 1212 } 1213 1214 err = kstrtoull(arg->from, 0, &val); 1215 if (err) { 1216 if (err == -ERANGE) 1217 msg = "too large checkpoint number"; 1218 else 1219 msg = "malformed argument"; 1220 goto parse_error; 1221 } else if (val == 0) { 1222 msg = "invalid checkpoint number 0"; 1223 goto parse_error; 1224 } 1225 sd->cno = val; 1226 return 0; 1227 1228 parse_error: 1229 nilfs_err(NULL, "invalid option \"%s\": %s", option, msg); 1230 return 1; 1231 } 1232 1233 /** 1234 * nilfs_identify - pre-read mount options needed to identify mount instance 1235 * @data: mount options 1236 * @sd: nilfs_super_data 1237 */ 1238 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1239 { 1240 char *p, *options = data; 1241 substring_t args[MAX_OPT_ARGS]; 1242 int token; 1243 int ret = 0; 1244 1245 do { 1246 p = strsep(&options, ","); 1247 if (p != NULL && *p) { 1248 token = match_token(p, tokens, args); 1249 if (token == Opt_snapshot) 1250 ret = nilfs_parse_snapshot_option(p, &args[0], 1251 sd); 1252 } 1253 if (!options) 1254 break; 1255 BUG_ON(options == data); 1256 *(options - 1) = ','; 1257 } while (!ret); 1258 return ret; 1259 } 1260 1261 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1262 { 1263 s->s_bdev = data; 1264 s->s_dev = s->s_bdev->bd_dev; 1265 return 0; 1266 } 1267 1268 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1269 { 1270 return (void *)s->s_bdev == data; 1271 } 1272 1273 static struct dentry * 1274 nilfs_mount(struct file_system_type *fs_type, int flags, 1275 const char *dev_name, void *data) 1276 { 1277 struct nilfs_super_data sd; 1278 struct super_block *s; 1279 fmode_t mode = FMODE_READ | FMODE_EXCL; 1280 struct dentry *root_dentry; 1281 int err, s_new = false; 1282 1283 if (!(flags & SB_RDONLY)) 1284 mode |= FMODE_WRITE; 1285 1286 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1287 if (IS_ERR(sd.bdev)) 1288 return ERR_CAST(sd.bdev); 1289 1290 sd.cno = 0; 1291 sd.flags = flags; 1292 if (nilfs_identify((char *)data, &sd)) { 1293 err = -EINVAL; 1294 goto failed; 1295 } 1296 1297 /* 1298 * once the super is inserted into the list by sget, s_umount 1299 * will protect the lockfs code from trying to start a snapshot 1300 * while we are mounting 1301 */ 1302 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1303 if (sd.bdev->bd_fsfreeze_count > 0) { 1304 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1305 err = -EBUSY; 1306 goto failed; 1307 } 1308 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, 1309 sd.bdev); 1310 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1311 if (IS_ERR(s)) { 1312 err = PTR_ERR(s); 1313 goto failed; 1314 } 1315 1316 if (!s->s_root) { 1317 s_new = true; 1318 1319 /* New superblock instance created */ 1320 s->s_mode = mode; 1321 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev); 1322 sb_set_blocksize(s, block_size(sd.bdev)); 1323 1324 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1325 if (err) 1326 goto failed_super; 1327 1328 s->s_flags |= SB_ACTIVE; 1329 } else if (!sd.cno) { 1330 if (nilfs_tree_is_busy(s->s_root)) { 1331 if ((flags ^ s->s_flags) & SB_RDONLY) { 1332 nilfs_err(s, 1333 "the device already has a %s mount.", 1334 sb_rdonly(s) ? "read-only" : "read/write"); 1335 err = -EBUSY; 1336 goto failed_super; 1337 } 1338 } else { 1339 /* 1340 * Try remount to setup mount states if the current 1341 * tree is not mounted and only snapshots use this sb. 1342 */ 1343 err = nilfs_remount(s, &flags, data); 1344 if (err) 1345 goto failed_super; 1346 } 1347 } 1348 1349 if (sd.cno) { 1350 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1351 if (err) 1352 goto failed_super; 1353 } else { 1354 root_dentry = dget(s->s_root); 1355 } 1356 1357 if (!s_new) 1358 blkdev_put(sd.bdev, mode); 1359 1360 return root_dentry; 1361 1362 failed_super: 1363 deactivate_locked_super(s); 1364 1365 failed: 1366 if (!s_new) 1367 blkdev_put(sd.bdev, mode); 1368 return ERR_PTR(err); 1369 } 1370 1371 struct file_system_type nilfs_fs_type = { 1372 .owner = THIS_MODULE, 1373 .name = "nilfs2", 1374 .mount = nilfs_mount, 1375 .kill_sb = kill_block_super, 1376 .fs_flags = FS_REQUIRES_DEV, 1377 }; 1378 MODULE_ALIAS_FS("nilfs2"); 1379 1380 static void nilfs_inode_init_once(void *obj) 1381 { 1382 struct nilfs_inode_info *ii = obj; 1383 1384 INIT_LIST_HEAD(&ii->i_dirty); 1385 #ifdef CONFIG_NILFS_XATTR 1386 init_rwsem(&ii->xattr_sem); 1387 #endif 1388 inode_init_once(&ii->vfs_inode); 1389 } 1390 1391 static void nilfs_segbuf_init_once(void *obj) 1392 { 1393 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1394 } 1395 1396 static void nilfs_destroy_cachep(void) 1397 { 1398 /* 1399 * Make sure all delayed rcu free inodes are flushed before we 1400 * destroy cache. 1401 */ 1402 rcu_barrier(); 1403 1404 kmem_cache_destroy(nilfs_inode_cachep); 1405 kmem_cache_destroy(nilfs_transaction_cachep); 1406 kmem_cache_destroy(nilfs_segbuf_cachep); 1407 kmem_cache_destroy(nilfs_btree_path_cache); 1408 } 1409 1410 static int __init nilfs_init_cachep(void) 1411 { 1412 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1413 sizeof(struct nilfs_inode_info), 0, 1414 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, 1415 nilfs_inode_init_once); 1416 if (!nilfs_inode_cachep) 1417 goto fail; 1418 1419 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1420 sizeof(struct nilfs_transaction_info), 0, 1421 SLAB_RECLAIM_ACCOUNT, NULL); 1422 if (!nilfs_transaction_cachep) 1423 goto fail; 1424 1425 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1426 sizeof(struct nilfs_segment_buffer), 0, 1427 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1428 if (!nilfs_segbuf_cachep) 1429 goto fail; 1430 1431 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1432 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1433 0, 0, NULL); 1434 if (!nilfs_btree_path_cache) 1435 goto fail; 1436 1437 return 0; 1438 1439 fail: 1440 nilfs_destroy_cachep(); 1441 return -ENOMEM; 1442 } 1443 1444 static int __init init_nilfs_fs(void) 1445 { 1446 int err; 1447 1448 err = nilfs_init_cachep(); 1449 if (err) 1450 goto fail; 1451 1452 err = nilfs_sysfs_init(); 1453 if (err) 1454 goto free_cachep; 1455 1456 err = register_filesystem(&nilfs_fs_type); 1457 if (err) 1458 goto deinit_sysfs_entry; 1459 1460 printk(KERN_INFO "NILFS version 2 loaded\n"); 1461 return 0; 1462 1463 deinit_sysfs_entry: 1464 nilfs_sysfs_exit(); 1465 free_cachep: 1466 nilfs_destroy_cachep(); 1467 fail: 1468 return err; 1469 } 1470 1471 static void __exit exit_nilfs_fs(void) 1472 { 1473 nilfs_destroy_cachep(); 1474 nilfs_sysfs_exit(); 1475 unregister_filesystem(&nilfs_fs_type); 1476 } 1477 1478 module_init(init_nilfs_fs) 1479 module_exit(exit_nilfs_fs) 1480