1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 */ 22 /* 23 * linux/fs/ext2/super.c 24 * 25 * Copyright (C) 1992, 1993, 1994, 1995 26 * Remy Card (card@masi.ibp.fr) 27 * Laboratoire MASI - Institut Blaise Pascal 28 * Universite Pierre et Marie Curie (Paris VI) 29 * 30 * from 31 * 32 * linux/fs/minix/inode.c 33 * 34 * Copyright (C) 1991, 1992 Linus Torvalds 35 * 36 * Big-endian to little-endian byte-swapping/bitmaps by 37 * David S. Miller (davem@caip.rutgers.edu), 1995 38 */ 39 40 #include <linux/module.h> 41 #include <linux/string.h> 42 #include <linux/slab.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/parser.h> 46 #include <linux/crc32.h> 47 #include <linux/vfs.h> 48 #include <linux/writeback.h> 49 #include <linux/seq_file.h> 50 #include <linux/mount.h> 51 #include "nilfs.h" 52 #include "export.h" 53 #include "mdt.h" 54 #include "alloc.h" 55 #include "btree.h" 56 #include "btnode.h" 57 #include "page.h" 58 #include "cpfile.h" 59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 60 #include "ifile.h" 61 #include "dat.h" 62 #include "segment.h" 63 #include "segbuf.h" 64 65 MODULE_AUTHOR("NTT Corp."); 66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 67 "(NILFS)"); 68 MODULE_LICENSE("GPL"); 69 70 static struct kmem_cache *nilfs_inode_cachep; 71 struct kmem_cache *nilfs_transaction_cachep; 72 struct kmem_cache *nilfs_segbuf_cachep; 73 struct kmem_cache *nilfs_btree_path_cache; 74 75 static int nilfs_setup_super(struct super_block *sb, int is_mount); 76 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 77 78 static void nilfs_set_error(struct super_block *sb) 79 { 80 struct the_nilfs *nilfs = sb->s_fs_info; 81 struct nilfs_super_block **sbp; 82 83 down_write(&nilfs->ns_sem); 84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 85 nilfs->ns_mount_state |= NILFS_ERROR_FS; 86 sbp = nilfs_prepare_super(sb, 0); 87 if (likely(sbp)) { 88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 89 if (sbp[1]) 90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 92 } 93 } 94 up_write(&nilfs->ns_sem); 95 } 96 97 /** 98 * nilfs_error() - report failure condition on a filesystem 99 * 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 101 * reporting an error message. It should be called when NILFS detects 102 * incoherences or defects of meta data on disk. As for sustainable 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 104 * function should be used instead. 105 * 106 * The segment constructor must not call this function because it can 107 * kill itself. 108 */ 109 void nilfs_error(struct super_block *sb, const char *function, 110 const char *fmt, ...) 111 { 112 struct the_nilfs *nilfs = sb->s_fs_info; 113 struct va_format vaf; 114 va_list args; 115 116 va_start(args, fmt); 117 118 vaf.fmt = fmt; 119 vaf.va = &args; 120 121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 122 sb->s_id, function, &vaf); 123 124 va_end(args); 125 126 if (!(sb->s_flags & MS_RDONLY)) { 127 nilfs_set_error(sb); 128 129 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 130 printk(KERN_CRIT "Remounting filesystem read-only\n"); 131 sb->s_flags |= MS_RDONLY; 132 } 133 } 134 135 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 136 panic("NILFS (device %s): panic forced after error\n", 137 sb->s_id); 138 } 139 140 void nilfs_warning(struct super_block *sb, const char *function, 141 const char *fmt, ...) 142 { 143 struct va_format vaf; 144 va_list args; 145 146 va_start(args, fmt); 147 148 vaf.fmt = fmt; 149 vaf.va = &args; 150 151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n", 152 sb->s_id, function, &vaf); 153 154 va_end(args); 155 } 156 157 158 struct inode *nilfs_alloc_inode(struct super_block *sb) 159 { 160 struct nilfs_inode_info *ii; 161 162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 163 if (!ii) 164 return NULL; 165 ii->i_bh = NULL; 166 ii->i_state = 0; 167 ii->i_cno = 0; 168 ii->vfs_inode.i_version = 1; 169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi); 170 return &ii->vfs_inode; 171 } 172 173 static void nilfs_i_callback(struct rcu_head *head) 174 { 175 struct inode *inode = container_of(head, struct inode, i_rcu); 176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 177 178 if (mdi) { 179 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */ 180 kfree(mdi); 181 } 182 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 183 } 184 185 void nilfs_destroy_inode(struct inode *inode) 186 { 187 call_rcu(&inode->i_rcu, nilfs_i_callback); 188 } 189 190 static int nilfs_sync_super(struct super_block *sb, int flag) 191 { 192 struct the_nilfs *nilfs = sb->s_fs_info; 193 int err; 194 195 retry: 196 set_buffer_dirty(nilfs->ns_sbh[0]); 197 if (nilfs_test_opt(nilfs, BARRIER)) { 198 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 199 WRITE_SYNC | WRITE_FLUSH_FUA); 200 } else { 201 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 202 } 203 204 if (unlikely(err)) { 205 printk(KERN_ERR 206 "NILFS: unable to write superblock (err=%d)\n", err); 207 if (err == -EIO && nilfs->ns_sbh[1]) { 208 /* 209 * sbp[0] points to newer log than sbp[1], 210 * so copy sbp[0] to sbp[1] to take over sbp[0]. 211 */ 212 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 213 nilfs->ns_sbsize); 214 nilfs_fall_back_super_block(nilfs); 215 goto retry; 216 } 217 } else { 218 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 219 220 nilfs->ns_sbwcount++; 221 222 /* 223 * The latest segment becomes trailable from the position 224 * written in superblock. 225 */ 226 clear_nilfs_discontinued(nilfs); 227 228 /* update GC protection for recent segments */ 229 if (nilfs->ns_sbh[1]) { 230 if (flag == NILFS_SB_COMMIT_ALL) { 231 set_buffer_dirty(nilfs->ns_sbh[1]); 232 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 233 goto out; 234 } 235 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 236 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 237 sbp = nilfs->ns_sbp[1]; 238 } 239 240 spin_lock(&nilfs->ns_last_segment_lock); 241 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 242 spin_unlock(&nilfs->ns_last_segment_lock); 243 } 244 out: 245 return err; 246 } 247 248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 249 struct the_nilfs *nilfs) 250 { 251 sector_t nfreeblocks; 252 253 /* nilfs->ns_sem must be locked by the caller. */ 254 nilfs_count_free_blocks(nilfs, &nfreeblocks); 255 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 256 257 spin_lock(&nilfs->ns_last_segment_lock); 258 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 259 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 260 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 261 spin_unlock(&nilfs->ns_last_segment_lock); 262 } 263 264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 265 int flip) 266 { 267 struct the_nilfs *nilfs = sb->s_fs_info; 268 struct nilfs_super_block **sbp = nilfs->ns_sbp; 269 270 /* nilfs->ns_sem must be locked by the caller. */ 271 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 272 if (sbp[1] && 273 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 274 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 275 } else { 276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 277 sb->s_id); 278 return NULL; 279 } 280 } else if (sbp[1] && 281 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 282 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 283 } 284 285 if (flip && sbp[1]) 286 nilfs_swap_super_block(nilfs); 287 288 return sbp; 289 } 290 291 int nilfs_commit_super(struct super_block *sb, int flag) 292 { 293 struct the_nilfs *nilfs = sb->s_fs_info; 294 struct nilfs_super_block **sbp = nilfs->ns_sbp; 295 time_t t; 296 297 /* nilfs->ns_sem must be locked by the caller. */ 298 t = get_seconds(); 299 nilfs->ns_sbwtime = t; 300 sbp[0]->s_wtime = cpu_to_le64(t); 301 sbp[0]->s_sum = 0; 302 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 303 (unsigned char *)sbp[0], 304 nilfs->ns_sbsize)); 305 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 306 sbp[1]->s_wtime = sbp[0]->s_wtime; 307 sbp[1]->s_sum = 0; 308 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 309 (unsigned char *)sbp[1], 310 nilfs->ns_sbsize)); 311 } 312 clear_nilfs_sb_dirty(nilfs); 313 return nilfs_sync_super(sb, flag); 314 } 315 316 /** 317 * nilfs_cleanup_super() - write filesystem state for cleanup 318 * @sb: super block instance to be unmounted or degraded to read-only 319 * 320 * This function restores state flags in the on-disk super block. 321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 322 * filesystem was not clean previously. 323 */ 324 int nilfs_cleanup_super(struct super_block *sb) 325 { 326 struct the_nilfs *nilfs = sb->s_fs_info; 327 struct nilfs_super_block **sbp; 328 int flag = NILFS_SB_COMMIT; 329 int ret = -EIO; 330 331 sbp = nilfs_prepare_super(sb, 0); 332 if (sbp) { 333 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 334 nilfs_set_log_cursor(sbp[0], nilfs); 335 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 336 /* 337 * make the "clean" flag also to the opposite 338 * super block if both super blocks point to 339 * the same checkpoint. 340 */ 341 sbp[1]->s_state = sbp[0]->s_state; 342 flag = NILFS_SB_COMMIT_ALL; 343 } 344 ret = nilfs_commit_super(sb, flag); 345 } 346 return ret; 347 } 348 349 /** 350 * nilfs_move_2nd_super - relocate secondary super block 351 * @sb: super block instance 352 * @sb2off: new offset of the secondary super block (in bytes) 353 */ 354 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 355 { 356 struct the_nilfs *nilfs = sb->s_fs_info; 357 struct buffer_head *nsbh; 358 struct nilfs_super_block *nsbp; 359 sector_t blocknr, newblocknr; 360 unsigned long offset; 361 int sb2i = -1; /* array index of the secondary superblock */ 362 int ret = 0; 363 364 /* nilfs->ns_sem must be locked by the caller. */ 365 if (nilfs->ns_sbh[1] && 366 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 367 sb2i = 1; 368 blocknr = nilfs->ns_sbh[1]->b_blocknr; 369 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 370 sb2i = 0; 371 blocknr = nilfs->ns_sbh[0]->b_blocknr; 372 } 373 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 374 goto out; /* super block location is unchanged */ 375 376 /* Get new super block buffer */ 377 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 378 offset = sb2off & (nilfs->ns_blocksize - 1); 379 nsbh = sb_getblk(sb, newblocknr); 380 if (!nsbh) { 381 printk(KERN_WARNING 382 "NILFS warning: unable to move secondary superblock " 383 "to block %llu\n", (unsigned long long)newblocknr); 384 ret = -EIO; 385 goto out; 386 } 387 nsbp = (void *)nsbh->b_data + offset; 388 memset(nsbp, 0, nilfs->ns_blocksize); 389 390 if (sb2i >= 0) { 391 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 392 brelse(nilfs->ns_sbh[sb2i]); 393 nilfs->ns_sbh[sb2i] = nsbh; 394 nilfs->ns_sbp[sb2i] = nsbp; 395 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 396 /* secondary super block will be restored to index 1 */ 397 nilfs->ns_sbh[1] = nsbh; 398 nilfs->ns_sbp[1] = nsbp; 399 } else { 400 brelse(nsbh); 401 } 402 out: 403 return ret; 404 } 405 406 /** 407 * nilfs_resize_fs - resize the filesystem 408 * @sb: super block instance 409 * @newsize: new size of the filesystem (in bytes) 410 */ 411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 412 { 413 struct the_nilfs *nilfs = sb->s_fs_info; 414 struct nilfs_super_block **sbp; 415 __u64 devsize, newnsegs; 416 loff_t sb2off; 417 int ret; 418 419 ret = -ERANGE; 420 devsize = i_size_read(sb->s_bdev->bd_inode); 421 if (newsize > devsize) 422 goto out; 423 424 /* 425 * Write lock is required to protect some functions depending 426 * on the number of segments, the number of reserved segments, 427 * and so forth. 428 */ 429 down_write(&nilfs->ns_segctor_sem); 430 431 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 432 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 433 do_div(newnsegs, nilfs->ns_blocks_per_segment); 434 435 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 436 up_write(&nilfs->ns_segctor_sem); 437 if (ret < 0) 438 goto out; 439 440 ret = nilfs_construct_segment(sb); 441 if (ret < 0) 442 goto out; 443 444 down_write(&nilfs->ns_sem); 445 nilfs_move_2nd_super(sb, sb2off); 446 ret = -EIO; 447 sbp = nilfs_prepare_super(sb, 0); 448 if (likely(sbp)) { 449 nilfs_set_log_cursor(sbp[0], nilfs); 450 /* 451 * Drop NILFS_RESIZE_FS flag for compatibility with 452 * mount-time resize which may be implemented in a 453 * future release. 454 */ 455 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 456 ~NILFS_RESIZE_FS); 457 sbp[0]->s_dev_size = cpu_to_le64(newsize); 458 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 459 if (sbp[1]) 460 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 461 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 462 } 463 up_write(&nilfs->ns_sem); 464 465 /* 466 * Reset the range of allocatable segments last. This order 467 * is important in the case of expansion because the secondary 468 * superblock must be protected from log write until migration 469 * completes. 470 */ 471 if (!ret) 472 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 473 out: 474 return ret; 475 } 476 477 static void nilfs_put_super(struct super_block *sb) 478 { 479 struct the_nilfs *nilfs = sb->s_fs_info; 480 481 nilfs_detach_log_writer(sb); 482 483 if (!(sb->s_flags & MS_RDONLY)) { 484 down_write(&nilfs->ns_sem); 485 nilfs_cleanup_super(sb); 486 up_write(&nilfs->ns_sem); 487 } 488 489 iput(nilfs->ns_sufile); 490 iput(nilfs->ns_cpfile); 491 iput(nilfs->ns_dat); 492 493 destroy_nilfs(nilfs); 494 sb->s_fs_info = NULL; 495 } 496 497 static int nilfs_sync_fs(struct super_block *sb, int wait) 498 { 499 struct the_nilfs *nilfs = sb->s_fs_info; 500 struct nilfs_super_block **sbp; 501 int err = 0; 502 503 /* This function is called when super block should be written back */ 504 if (wait) 505 err = nilfs_construct_segment(sb); 506 507 down_write(&nilfs->ns_sem); 508 if (nilfs_sb_dirty(nilfs)) { 509 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 510 if (likely(sbp)) { 511 nilfs_set_log_cursor(sbp[0], nilfs); 512 nilfs_commit_super(sb, NILFS_SB_COMMIT); 513 } 514 } 515 up_write(&nilfs->ns_sem); 516 517 return err; 518 } 519 520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 521 struct nilfs_root **rootp) 522 { 523 struct the_nilfs *nilfs = sb->s_fs_info; 524 struct nilfs_root *root; 525 struct nilfs_checkpoint *raw_cp; 526 struct buffer_head *bh_cp; 527 int err = -ENOMEM; 528 529 root = nilfs_find_or_create_root( 530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 531 if (!root) 532 return err; 533 534 if (root->ifile) 535 goto reuse; /* already attached checkpoint */ 536 537 down_read(&nilfs->ns_segctor_sem); 538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 539 &bh_cp); 540 up_read(&nilfs->ns_segctor_sem); 541 if (unlikely(err)) { 542 if (err == -ENOENT || err == -EINVAL) { 543 printk(KERN_ERR 544 "NILFS: Invalid checkpoint " 545 "(checkpoint number=%llu)\n", 546 (unsigned long long)cno); 547 err = -EINVAL; 548 } 549 goto failed; 550 } 551 552 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 553 &raw_cp->cp_ifile_inode, &root->ifile); 554 if (err) 555 goto failed_bh; 556 557 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); 558 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); 559 560 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 561 562 reuse: 563 *rootp = root; 564 return 0; 565 566 failed_bh: 567 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 568 failed: 569 nilfs_put_root(root); 570 571 return err; 572 } 573 574 static int nilfs_freeze(struct super_block *sb) 575 { 576 struct the_nilfs *nilfs = sb->s_fs_info; 577 int err; 578 579 if (sb->s_flags & MS_RDONLY) 580 return 0; 581 582 /* Mark super block clean */ 583 down_write(&nilfs->ns_sem); 584 err = nilfs_cleanup_super(sb); 585 up_write(&nilfs->ns_sem); 586 return err; 587 } 588 589 static int nilfs_unfreeze(struct super_block *sb) 590 { 591 struct the_nilfs *nilfs = sb->s_fs_info; 592 593 if (sb->s_flags & MS_RDONLY) 594 return 0; 595 596 down_write(&nilfs->ns_sem); 597 nilfs_setup_super(sb, false); 598 up_write(&nilfs->ns_sem); 599 return 0; 600 } 601 602 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 603 { 604 struct super_block *sb = dentry->d_sb; 605 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 606 struct the_nilfs *nilfs = root->nilfs; 607 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 608 unsigned long long blocks; 609 unsigned long overhead; 610 unsigned long nrsvblocks; 611 sector_t nfreeblocks; 612 int err; 613 614 /* 615 * Compute all of the segment blocks 616 * 617 * The blocks before first segment and after last segment 618 * are excluded. 619 */ 620 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 621 - nilfs->ns_first_data_block; 622 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 623 624 /* 625 * Compute the overhead 626 * 627 * When distributing meta data blocks outside segment structure, 628 * We must count them as the overhead. 629 */ 630 overhead = 0; 631 632 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 633 if (unlikely(err)) 634 return err; 635 636 buf->f_type = NILFS_SUPER_MAGIC; 637 buf->f_bsize = sb->s_blocksize; 638 buf->f_blocks = blocks - overhead; 639 buf->f_bfree = nfreeblocks; 640 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 641 (buf->f_bfree - nrsvblocks) : 0; 642 buf->f_files = atomic_read(&root->inodes_count); 643 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ 644 buf->f_namelen = NILFS_NAME_LEN; 645 buf->f_fsid.val[0] = (u32)id; 646 buf->f_fsid.val[1] = (u32)(id >> 32); 647 648 return 0; 649 } 650 651 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 652 { 653 struct super_block *sb = dentry->d_sb; 654 struct the_nilfs *nilfs = sb->s_fs_info; 655 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 656 657 if (!nilfs_test_opt(nilfs, BARRIER)) 658 seq_puts(seq, ",nobarrier"); 659 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 660 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 661 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 662 seq_puts(seq, ",errors=panic"); 663 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 664 seq_puts(seq, ",errors=continue"); 665 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 666 seq_puts(seq, ",order=strict"); 667 if (nilfs_test_opt(nilfs, NORECOVERY)) 668 seq_puts(seq, ",norecovery"); 669 if (nilfs_test_opt(nilfs, DISCARD)) 670 seq_puts(seq, ",discard"); 671 672 return 0; 673 } 674 675 static const struct super_operations nilfs_sops = { 676 .alloc_inode = nilfs_alloc_inode, 677 .destroy_inode = nilfs_destroy_inode, 678 .dirty_inode = nilfs_dirty_inode, 679 .evict_inode = nilfs_evict_inode, 680 .put_super = nilfs_put_super, 681 .sync_fs = nilfs_sync_fs, 682 .freeze_fs = nilfs_freeze, 683 .unfreeze_fs = nilfs_unfreeze, 684 .statfs = nilfs_statfs, 685 .remount_fs = nilfs_remount, 686 .show_options = nilfs_show_options 687 }; 688 689 enum { 690 Opt_err_cont, Opt_err_panic, Opt_err_ro, 691 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 692 Opt_discard, Opt_nodiscard, Opt_err, 693 }; 694 695 static match_table_t tokens = { 696 {Opt_err_cont, "errors=continue"}, 697 {Opt_err_panic, "errors=panic"}, 698 {Opt_err_ro, "errors=remount-ro"}, 699 {Opt_barrier, "barrier"}, 700 {Opt_nobarrier, "nobarrier"}, 701 {Opt_snapshot, "cp=%u"}, 702 {Opt_order, "order=%s"}, 703 {Opt_norecovery, "norecovery"}, 704 {Opt_discard, "discard"}, 705 {Opt_nodiscard, "nodiscard"}, 706 {Opt_err, NULL} 707 }; 708 709 static int parse_options(char *options, struct super_block *sb, int is_remount) 710 { 711 struct the_nilfs *nilfs = sb->s_fs_info; 712 char *p; 713 substring_t args[MAX_OPT_ARGS]; 714 715 if (!options) 716 return 1; 717 718 while ((p = strsep(&options, ",")) != NULL) { 719 int token; 720 if (!*p) 721 continue; 722 723 token = match_token(p, tokens, args); 724 switch (token) { 725 case Opt_barrier: 726 nilfs_set_opt(nilfs, BARRIER); 727 break; 728 case Opt_nobarrier: 729 nilfs_clear_opt(nilfs, BARRIER); 730 break; 731 case Opt_order: 732 if (strcmp(args[0].from, "relaxed") == 0) 733 /* Ordered data semantics */ 734 nilfs_clear_opt(nilfs, STRICT_ORDER); 735 else if (strcmp(args[0].from, "strict") == 0) 736 /* Strict in-order semantics */ 737 nilfs_set_opt(nilfs, STRICT_ORDER); 738 else 739 return 0; 740 break; 741 case Opt_err_panic: 742 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 743 break; 744 case Opt_err_ro: 745 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 746 break; 747 case Opt_err_cont: 748 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 749 break; 750 case Opt_snapshot: 751 if (is_remount) { 752 printk(KERN_ERR 753 "NILFS: \"%s\" option is invalid " 754 "for remount.\n", p); 755 return 0; 756 } 757 break; 758 case Opt_norecovery: 759 nilfs_set_opt(nilfs, NORECOVERY); 760 break; 761 case Opt_discard: 762 nilfs_set_opt(nilfs, DISCARD); 763 break; 764 case Opt_nodiscard: 765 nilfs_clear_opt(nilfs, DISCARD); 766 break; 767 default: 768 printk(KERN_ERR 769 "NILFS: Unrecognized mount option \"%s\"\n", p); 770 return 0; 771 } 772 } 773 return 1; 774 } 775 776 static inline void 777 nilfs_set_default_options(struct super_block *sb, 778 struct nilfs_super_block *sbp) 779 { 780 struct the_nilfs *nilfs = sb->s_fs_info; 781 782 nilfs->ns_mount_opt = 783 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 784 } 785 786 static int nilfs_setup_super(struct super_block *sb, int is_mount) 787 { 788 struct the_nilfs *nilfs = sb->s_fs_info; 789 struct nilfs_super_block **sbp; 790 int max_mnt_count; 791 int mnt_count; 792 793 /* nilfs->ns_sem must be locked by the caller. */ 794 sbp = nilfs_prepare_super(sb, 0); 795 if (!sbp) 796 return -EIO; 797 798 if (!is_mount) 799 goto skip_mount_setup; 800 801 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 802 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 803 804 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 805 printk(KERN_WARNING 806 "NILFS warning: mounting fs with errors\n"); 807 #if 0 808 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 809 printk(KERN_WARNING 810 "NILFS warning: maximal mount count reached\n"); 811 #endif 812 } 813 if (!max_mnt_count) 814 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 815 816 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 817 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 818 819 skip_mount_setup: 820 sbp[0]->s_state = 821 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 822 /* synchronize sbp[1] with sbp[0] */ 823 if (sbp[1]) 824 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 825 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 826 } 827 828 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 829 u64 pos, int blocksize, 830 struct buffer_head **pbh) 831 { 832 unsigned long long sb_index = pos; 833 unsigned long offset; 834 835 offset = do_div(sb_index, blocksize); 836 *pbh = sb_bread(sb, sb_index); 837 if (!*pbh) 838 return NULL; 839 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 840 } 841 842 int nilfs_store_magic_and_option(struct super_block *sb, 843 struct nilfs_super_block *sbp, 844 char *data) 845 { 846 struct the_nilfs *nilfs = sb->s_fs_info; 847 848 sb->s_magic = le16_to_cpu(sbp->s_magic); 849 850 /* FS independent flags */ 851 #ifdef NILFS_ATIME_DISABLE 852 sb->s_flags |= MS_NOATIME; 853 #endif 854 855 nilfs_set_default_options(sb, sbp); 856 857 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 858 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 859 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 860 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 861 862 return !parse_options(data, sb, 0) ? -EINVAL : 0 ; 863 } 864 865 int nilfs_check_feature_compatibility(struct super_block *sb, 866 struct nilfs_super_block *sbp) 867 { 868 __u64 features; 869 870 features = le64_to_cpu(sbp->s_feature_incompat) & 871 ~NILFS_FEATURE_INCOMPAT_SUPP; 872 if (features) { 873 printk(KERN_ERR "NILFS: couldn't mount because of unsupported " 874 "optional features (%llx)\n", 875 (unsigned long long)features); 876 return -EINVAL; 877 } 878 features = le64_to_cpu(sbp->s_feature_compat_ro) & 879 ~NILFS_FEATURE_COMPAT_RO_SUPP; 880 if (!(sb->s_flags & MS_RDONLY) && features) { 881 printk(KERN_ERR "NILFS: couldn't mount RDWR because of " 882 "unsupported optional features (%llx)\n", 883 (unsigned long long)features); 884 return -EINVAL; 885 } 886 return 0; 887 } 888 889 static int nilfs_get_root_dentry(struct super_block *sb, 890 struct nilfs_root *root, 891 struct dentry **root_dentry) 892 { 893 struct inode *inode; 894 struct dentry *dentry; 895 int ret = 0; 896 897 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 898 if (IS_ERR(inode)) { 899 printk(KERN_ERR "NILFS: get root inode failed\n"); 900 ret = PTR_ERR(inode); 901 goto out; 902 } 903 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 904 iput(inode); 905 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 906 ret = -EINVAL; 907 goto out; 908 } 909 910 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 911 dentry = d_find_alias(inode); 912 if (!dentry) { 913 dentry = d_make_root(inode); 914 if (!dentry) { 915 ret = -ENOMEM; 916 goto failed_dentry; 917 } 918 } else { 919 iput(inode); 920 } 921 } else { 922 dentry = d_obtain_alias(inode); 923 if (IS_ERR(dentry)) { 924 ret = PTR_ERR(dentry); 925 goto failed_dentry; 926 } 927 } 928 *root_dentry = dentry; 929 out: 930 return ret; 931 932 failed_dentry: 933 printk(KERN_ERR "NILFS: get root dentry failed\n"); 934 goto out; 935 } 936 937 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 938 struct dentry **root_dentry) 939 { 940 struct the_nilfs *nilfs = s->s_fs_info; 941 struct nilfs_root *root; 942 int ret; 943 944 mutex_lock(&nilfs->ns_snapshot_mount_mutex); 945 946 down_read(&nilfs->ns_segctor_sem); 947 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 948 up_read(&nilfs->ns_segctor_sem); 949 if (ret < 0) { 950 ret = (ret == -ENOENT) ? -EINVAL : ret; 951 goto out; 952 } else if (!ret) { 953 printk(KERN_ERR "NILFS: The specified checkpoint is " 954 "not a snapshot (checkpoint number=%llu).\n", 955 (unsigned long long)cno); 956 ret = -EINVAL; 957 goto out; 958 } 959 960 ret = nilfs_attach_checkpoint(s, cno, false, &root); 961 if (ret) { 962 printk(KERN_ERR "NILFS: error loading snapshot " 963 "(checkpoint number=%llu).\n", 964 (unsigned long long)cno); 965 goto out; 966 } 967 ret = nilfs_get_root_dentry(s, root, root_dentry); 968 nilfs_put_root(root); 969 out: 970 mutex_unlock(&nilfs->ns_snapshot_mount_mutex); 971 return ret; 972 } 973 974 static int nilfs_tree_was_touched(struct dentry *root_dentry) 975 { 976 return root_dentry->d_count > 1; 977 } 978 979 /** 980 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint 981 * @root_dentry: root dentry of the tree to be shrunk 982 * 983 * This function returns true if the tree was in-use. 984 */ 985 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry) 986 { 987 if (have_submounts(root_dentry)) 988 return true; 989 shrink_dcache_parent(root_dentry); 990 return nilfs_tree_was_touched(root_dentry); 991 } 992 993 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 994 { 995 struct the_nilfs *nilfs = sb->s_fs_info; 996 struct nilfs_root *root; 997 struct inode *inode; 998 struct dentry *dentry; 999 int ret; 1000 1001 if (cno < 0 || cno > nilfs->ns_cno) 1002 return false; 1003 1004 if (cno >= nilfs_last_cno(nilfs)) 1005 return true; /* protect recent checkpoints */ 1006 1007 ret = false; 1008 root = nilfs_lookup_root(nilfs, cno); 1009 if (root) { 1010 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1011 if (inode) { 1012 dentry = d_find_alias(inode); 1013 if (dentry) { 1014 if (nilfs_tree_was_touched(dentry)) 1015 ret = nilfs_try_to_shrink_tree(dentry); 1016 dput(dentry); 1017 } 1018 iput(inode); 1019 } 1020 nilfs_put_root(root); 1021 } 1022 return ret; 1023 } 1024 1025 /** 1026 * nilfs_fill_super() - initialize a super block instance 1027 * @sb: super_block 1028 * @data: mount options 1029 * @silent: silent mode flag 1030 * 1031 * This function is called exclusively by nilfs->ns_mount_mutex. 1032 * So, the recovery process is protected from other simultaneous mounts. 1033 */ 1034 static int 1035 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1036 { 1037 struct the_nilfs *nilfs; 1038 struct nilfs_root *fsroot; 1039 struct backing_dev_info *bdi; 1040 __u64 cno; 1041 int err; 1042 1043 nilfs = alloc_nilfs(sb->s_bdev); 1044 if (!nilfs) 1045 return -ENOMEM; 1046 1047 sb->s_fs_info = nilfs; 1048 1049 err = init_nilfs(nilfs, sb, (char *)data); 1050 if (err) 1051 goto failed_nilfs; 1052 1053 sb->s_op = &nilfs_sops; 1054 sb->s_export_op = &nilfs_export_ops; 1055 sb->s_root = NULL; 1056 sb->s_time_gran = 1; 1057 sb->s_max_links = NILFS_LINK_MAX; 1058 1059 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 1060 sb->s_bdi = bdi ? : &default_backing_dev_info; 1061 1062 err = load_nilfs(nilfs, sb); 1063 if (err) 1064 goto failed_nilfs; 1065 1066 cno = nilfs_last_cno(nilfs); 1067 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1068 if (err) { 1069 printk(KERN_ERR "NILFS: error loading last checkpoint " 1070 "(checkpoint number=%llu).\n", (unsigned long long)cno); 1071 goto failed_unload; 1072 } 1073 1074 if (!(sb->s_flags & MS_RDONLY)) { 1075 err = nilfs_attach_log_writer(sb, fsroot); 1076 if (err) 1077 goto failed_checkpoint; 1078 } 1079 1080 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1081 if (err) 1082 goto failed_segctor; 1083 1084 nilfs_put_root(fsroot); 1085 1086 if (!(sb->s_flags & MS_RDONLY)) { 1087 down_write(&nilfs->ns_sem); 1088 nilfs_setup_super(sb, true); 1089 up_write(&nilfs->ns_sem); 1090 } 1091 1092 return 0; 1093 1094 failed_segctor: 1095 nilfs_detach_log_writer(sb); 1096 1097 failed_checkpoint: 1098 nilfs_put_root(fsroot); 1099 1100 failed_unload: 1101 iput(nilfs->ns_sufile); 1102 iput(nilfs->ns_cpfile); 1103 iput(nilfs->ns_dat); 1104 1105 failed_nilfs: 1106 destroy_nilfs(nilfs); 1107 return err; 1108 } 1109 1110 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1111 { 1112 struct the_nilfs *nilfs = sb->s_fs_info; 1113 unsigned long old_sb_flags; 1114 unsigned long old_mount_opt; 1115 int err; 1116 1117 old_sb_flags = sb->s_flags; 1118 old_mount_opt = nilfs->ns_mount_opt; 1119 1120 if (!parse_options(data, sb, 1)) { 1121 err = -EINVAL; 1122 goto restore_opts; 1123 } 1124 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 1125 1126 err = -EINVAL; 1127 1128 if (!nilfs_valid_fs(nilfs)) { 1129 printk(KERN_WARNING "NILFS (device %s): couldn't " 1130 "remount because the filesystem is in an " 1131 "incomplete recovery state.\n", sb->s_id); 1132 goto restore_opts; 1133 } 1134 1135 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1136 goto out; 1137 if (*flags & MS_RDONLY) { 1138 /* Shutting down log writer */ 1139 nilfs_detach_log_writer(sb); 1140 sb->s_flags |= MS_RDONLY; 1141 1142 /* 1143 * Remounting a valid RW partition RDONLY, so set 1144 * the RDONLY flag and then mark the partition as valid again. 1145 */ 1146 down_write(&nilfs->ns_sem); 1147 nilfs_cleanup_super(sb); 1148 up_write(&nilfs->ns_sem); 1149 } else { 1150 __u64 features; 1151 struct nilfs_root *root; 1152 1153 /* 1154 * Mounting a RDONLY partition read-write, so reread and 1155 * store the current valid flag. (It may have been changed 1156 * by fsck since we originally mounted the partition.) 1157 */ 1158 down_read(&nilfs->ns_sem); 1159 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1160 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1161 up_read(&nilfs->ns_sem); 1162 if (features) { 1163 printk(KERN_WARNING "NILFS (device %s): couldn't " 1164 "remount RDWR because of unsupported optional " 1165 "features (%llx)\n", 1166 sb->s_id, (unsigned long long)features); 1167 err = -EROFS; 1168 goto restore_opts; 1169 } 1170 1171 sb->s_flags &= ~MS_RDONLY; 1172 1173 root = NILFS_I(sb->s_root->d_inode)->i_root; 1174 err = nilfs_attach_log_writer(sb, root); 1175 if (err) 1176 goto restore_opts; 1177 1178 down_write(&nilfs->ns_sem); 1179 nilfs_setup_super(sb, true); 1180 up_write(&nilfs->ns_sem); 1181 } 1182 out: 1183 return 0; 1184 1185 restore_opts: 1186 sb->s_flags = old_sb_flags; 1187 nilfs->ns_mount_opt = old_mount_opt; 1188 return err; 1189 } 1190 1191 struct nilfs_super_data { 1192 struct block_device *bdev; 1193 __u64 cno; 1194 int flags; 1195 }; 1196 1197 /** 1198 * nilfs_identify - pre-read mount options needed to identify mount instance 1199 * @data: mount options 1200 * @sd: nilfs_super_data 1201 */ 1202 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1203 { 1204 char *p, *options = data; 1205 substring_t args[MAX_OPT_ARGS]; 1206 int token; 1207 int ret = 0; 1208 1209 do { 1210 p = strsep(&options, ","); 1211 if (p != NULL && *p) { 1212 token = match_token(p, tokens, args); 1213 if (token == Opt_snapshot) { 1214 if (!(sd->flags & MS_RDONLY)) { 1215 ret++; 1216 } else { 1217 sd->cno = simple_strtoull(args[0].from, 1218 NULL, 0); 1219 /* 1220 * No need to see the end pointer; 1221 * match_token() has done syntax 1222 * checking. 1223 */ 1224 if (sd->cno == 0) 1225 ret++; 1226 } 1227 } 1228 if (ret) 1229 printk(KERN_ERR 1230 "NILFS: invalid mount option: %s\n", p); 1231 } 1232 if (!options) 1233 break; 1234 BUG_ON(options == data); 1235 *(options - 1) = ','; 1236 } while (!ret); 1237 return ret; 1238 } 1239 1240 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1241 { 1242 s->s_bdev = data; 1243 s->s_dev = s->s_bdev->bd_dev; 1244 return 0; 1245 } 1246 1247 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1248 { 1249 return (void *)s->s_bdev == data; 1250 } 1251 1252 static struct dentry * 1253 nilfs_mount(struct file_system_type *fs_type, int flags, 1254 const char *dev_name, void *data) 1255 { 1256 struct nilfs_super_data sd; 1257 struct super_block *s; 1258 fmode_t mode = FMODE_READ | FMODE_EXCL; 1259 struct dentry *root_dentry; 1260 int err, s_new = false; 1261 1262 if (!(flags & MS_RDONLY)) 1263 mode |= FMODE_WRITE; 1264 1265 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1266 if (IS_ERR(sd.bdev)) 1267 return ERR_CAST(sd.bdev); 1268 1269 sd.cno = 0; 1270 sd.flags = flags; 1271 if (nilfs_identify((char *)data, &sd)) { 1272 err = -EINVAL; 1273 goto failed; 1274 } 1275 1276 /* 1277 * once the super is inserted into the list by sget, s_umount 1278 * will protect the lockfs code from trying to start a snapshot 1279 * while we are mounting 1280 */ 1281 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1282 if (sd.bdev->bd_fsfreeze_count > 0) { 1283 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1284 err = -EBUSY; 1285 goto failed; 1286 } 1287 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, 1288 sd.bdev); 1289 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1290 if (IS_ERR(s)) { 1291 err = PTR_ERR(s); 1292 goto failed; 1293 } 1294 1295 if (!s->s_root) { 1296 char b[BDEVNAME_SIZE]; 1297 1298 s_new = true; 1299 1300 /* New superblock instance created */ 1301 s->s_mode = mode; 1302 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); 1303 sb_set_blocksize(s, block_size(sd.bdev)); 1304 1305 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1306 if (err) 1307 goto failed_super; 1308 1309 s->s_flags |= MS_ACTIVE; 1310 } else if (!sd.cno) { 1311 int busy = false; 1312 1313 if (nilfs_tree_was_touched(s->s_root)) { 1314 busy = nilfs_try_to_shrink_tree(s->s_root); 1315 if (busy && (flags ^ s->s_flags) & MS_RDONLY) { 1316 printk(KERN_ERR "NILFS: the device already " 1317 "has a %s mount.\n", 1318 (s->s_flags & MS_RDONLY) ? 1319 "read-only" : "read/write"); 1320 err = -EBUSY; 1321 goto failed_super; 1322 } 1323 } 1324 if (!busy) { 1325 /* 1326 * Try remount to setup mount states if the current 1327 * tree is not mounted and only snapshots use this sb. 1328 */ 1329 err = nilfs_remount(s, &flags, data); 1330 if (err) 1331 goto failed_super; 1332 } 1333 } 1334 1335 if (sd.cno) { 1336 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1337 if (err) 1338 goto failed_super; 1339 } else { 1340 root_dentry = dget(s->s_root); 1341 } 1342 1343 if (!s_new) 1344 blkdev_put(sd.bdev, mode); 1345 1346 return root_dentry; 1347 1348 failed_super: 1349 deactivate_locked_super(s); 1350 1351 failed: 1352 if (!s_new) 1353 blkdev_put(sd.bdev, mode); 1354 return ERR_PTR(err); 1355 } 1356 1357 struct file_system_type nilfs_fs_type = { 1358 .owner = THIS_MODULE, 1359 .name = "nilfs2", 1360 .mount = nilfs_mount, 1361 .kill_sb = kill_block_super, 1362 .fs_flags = FS_REQUIRES_DEV, 1363 }; 1364 1365 static void nilfs_inode_init_once(void *obj) 1366 { 1367 struct nilfs_inode_info *ii = obj; 1368 1369 INIT_LIST_HEAD(&ii->i_dirty); 1370 #ifdef CONFIG_NILFS_XATTR 1371 init_rwsem(&ii->xattr_sem); 1372 #endif 1373 address_space_init_once(&ii->i_btnode_cache); 1374 ii->i_bmap = &ii->i_bmap_data; 1375 inode_init_once(&ii->vfs_inode); 1376 } 1377 1378 static void nilfs_segbuf_init_once(void *obj) 1379 { 1380 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1381 } 1382 1383 static void nilfs_destroy_cachep(void) 1384 { 1385 /* 1386 * Make sure all delayed rcu free inodes are flushed before we 1387 * destroy cache. 1388 */ 1389 rcu_barrier(); 1390 1391 if (nilfs_inode_cachep) 1392 kmem_cache_destroy(nilfs_inode_cachep); 1393 if (nilfs_transaction_cachep) 1394 kmem_cache_destroy(nilfs_transaction_cachep); 1395 if (nilfs_segbuf_cachep) 1396 kmem_cache_destroy(nilfs_segbuf_cachep); 1397 if (nilfs_btree_path_cache) 1398 kmem_cache_destroy(nilfs_btree_path_cache); 1399 } 1400 1401 static int __init nilfs_init_cachep(void) 1402 { 1403 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1404 sizeof(struct nilfs_inode_info), 0, 1405 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once); 1406 if (!nilfs_inode_cachep) 1407 goto fail; 1408 1409 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1410 sizeof(struct nilfs_transaction_info), 0, 1411 SLAB_RECLAIM_ACCOUNT, NULL); 1412 if (!nilfs_transaction_cachep) 1413 goto fail; 1414 1415 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1416 sizeof(struct nilfs_segment_buffer), 0, 1417 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1418 if (!nilfs_segbuf_cachep) 1419 goto fail; 1420 1421 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1422 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1423 0, 0, NULL); 1424 if (!nilfs_btree_path_cache) 1425 goto fail; 1426 1427 return 0; 1428 1429 fail: 1430 nilfs_destroy_cachep(); 1431 return -ENOMEM; 1432 } 1433 1434 static int __init init_nilfs_fs(void) 1435 { 1436 int err; 1437 1438 err = nilfs_init_cachep(); 1439 if (err) 1440 goto fail; 1441 1442 err = register_filesystem(&nilfs_fs_type); 1443 if (err) 1444 goto free_cachep; 1445 1446 printk(KERN_INFO "NILFS version 2 loaded\n"); 1447 return 0; 1448 1449 free_cachep: 1450 nilfs_destroy_cachep(); 1451 fail: 1452 return err; 1453 } 1454 1455 static void __exit exit_nilfs_fs(void) 1456 { 1457 nilfs_destroy_cachep(); 1458 unregister_filesystem(&nilfs_fs_type); 1459 } 1460 1461 module_init(init_nilfs_fs) 1462 module_exit(exit_nilfs_fs) 1463