xref: /linux/fs/nilfs2/super.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * super.c - NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26 
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51 
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 		   "(NILFS)");
55 MODULE_LICENSE("GPL");
56 
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61 
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64 
65 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
66 		 ...)
67 {
68 	struct va_format vaf;
69 	va_list args;
70 
71 	va_start(args, fmt);
72 	vaf.fmt = fmt;
73 	vaf.va = &args;
74 	if (sb)
75 		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
76 	else
77 		printk("%sNILFS: %pV\n", level, &vaf);
78 	va_end(args);
79 }
80 
81 static void nilfs_set_error(struct super_block *sb)
82 {
83 	struct the_nilfs *nilfs = sb->s_fs_info;
84 	struct nilfs_super_block **sbp;
85 
86 	down_write(&nilfs->ns_sem);
87 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
88 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
89 		sbp = nilfs_prepare_super(sb, 0);
90 		if (likely(sbp)) {
91 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 			if (sbp[1])
93 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
94 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
95 		}
96 	}
97 	up_write(&nilfs->ns_sem);
98 }
99 
100 /**
101  * __nilfs_error() - report failure condition on a filesystem
102  *
103  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
104  * reporting an error message.  This function should be called when
105  * NILFS detects incoherences or defects of meta data on disk.
106  *
107  * This implements the body of nilfs_error() macro.  Normally,
108  * nilfs_error() should be used.  As for sustainable errors such as a
109  * single-shot I/O error, nilfs_msg() should be used instead.
110  *
111  * Callers should not add a trailing newline since this will do it.
112  */
113 void __nilfs_error(struct super_block *sb, const char *function,
114 		   const char *fmt, ...)
115 {
116 	struct the_nilfs *nilfs = sb->s_fs_info;
117 	struct va_format vaf;
118 	va_list args;
119 
120 	va_start(args, fmt);
121 
122 	vaf.fmt = fmt;
123 	vaf.va = &args;
124 
125 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
126 	       sb->s_id, function, &vaf);
127 
128 	va_end(args);
129 
130 	if (!sb_rdonly(sb)) {
131 		nilfs_set_error(sb);
132 
133 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
134 			printk(KERN_CRIT "Remounting filesystem read-only\n");
135 			sb->s_flags |= SB_RDONLY;
136 		}
137 	}
138 
139 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
140 		panic("NILFS (device %s): panic forced after error\n",
141 		      sb->s_id);
142 }
143 
144 struct inode *nilfs_alloc_inode(struct super_block *sb)
145 {
146 	struct nilfs_inode_info *ii;
147 
148 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
149 	if (!ii)
150 		return NULL;
151 	ii->i_bh = NULL;
152 	ii->i_state = 0;
153 	ii->i_cno = 0;
154 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
155 	return &ii->vfs_inode;
156 }
157 
158 static void nilfs_free_inode(struct inode *inode)
159 {
160 	if (nilfs_is_metadata_file_inode(inode))
161 		nilfs_mdt_destroy(inode);
162 
163 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
164 }
165 
166 static int nilfs_sync_super(struct super_block *sb, int flag)
167 {
168 	struct the_nilfs *nilfs = sb->s_fs_info;
169 	int err;
170 
171  retry:
172 	set_buffer_dirty(nilfs->ns_sbh[0]);
173 	if (nilfs_test_opt(nilfs, BARRIER)) {
174 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
175 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
176 	} else {
177 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
178 	}
179 
180 	if (unlikely(err)) {
181 		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
182 			  err);
183 		if (err == -EIO && nilfs->ns_sbh[1]) {
184 			/*
185 			 * sbp[0] points to newer log than sbp[1],
186 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
187 			 */
188 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
189 			       nilfs->ns_sbsize);
190 			nilfs_fall_back_super_block(nilfs);
191 			goto retry;
192 		}
193 	} else {
194 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
195 
196 		nilfs->ns_sbwcount++;
197 
198 		/*
199 		 * The latest segment becomes trailable from the position
200 		 * written in superblock.
201 		 */
202 		clear_nilfs_discontinued(nilfs);
203 
204 		/* update GC protection for recent segments */
205 		if (nilfs->ns_sbh[1]) {
206 			if (flag == NILFS_SB_COMMIT_ALL) {
207 				set_buffer_dirty(nilfs->ns_sbh[1]);
208 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
209 					goto out;
210 			}
211 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
212 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
213 				sbp = nilfs->ns_sbp[1];
214 		}
215 
216 		spin_lock(&nilfs->ns_last_segment_lock);
217 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
218 		spin_unlock(&nilfs->ns_last_segment_lock);
219 	}
220  out:
221 	return err;
222 }
223 
224 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
225 			  struct the_nilfs *nilfs)
226 {
227 	sector_t nfreeblocks;
228 
229 	/* nilfs->ns_sem must be locked by the caller. */
230 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
231 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
232 
233 	spin_lock(&nilfs->ns_last_segment_lock);
234 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
235 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
236 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
237 	spin_unlock(&nilfs->ns_last_segment_lock);
238 }
239 
240 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
241 					       int flip)
242 {
243 	struct the_nilfs *nilfs = sb->s_fs_info;
244 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
245 
246 	/* nilfs->ns_sem must be locked by the caller. */
247 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
248 		if (sbp[1] &&
249 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
250 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
251 		} else {
252 			nilfs_msg(sb, KERN_CRIT, "superblock broke");
253 			return NULL;
254 		}
255 	} else if (sbp[1] &&
256 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
257 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
258 	}
259 
260 	if (flip && sbp[1])
261 		nilfs_swap_super_block(nilfs);
262 
263 	return sbp;
264 }
265 
266 int nilfs_commit_super(struct super_block *sb, int flag)
267 {
268 	struct the_nilfs *nilfs = sb->s_fs_info;
269 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
270 	time64_t t;
271 
272 	/* nilfs->ns_sem must be locked by the caller. */
273 	t = ktime_get_real_seconds();
274 	nilfs->ns_sbwtime = t;
275 	sbp[0]->s_wtime = cpu_to_le64(t);
276 	sbp[0]->s_sum = 0;
277 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
278 					     (unsigned char *)sbp[0],
279 					     nilfs->ns_sbsize));
280 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
281 		sbp[1]->s_wtime = sbp[0]->s_wtime;
282 		sbp[1]->s_sum = 0;
283 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284 					    (unsigned char *)sbp[1],
285 					    nilfs->ns_sbsize));
286 	}
287 	clear_nilfs_sb_dirty(nilfs);
288 	nilfs->ns_flushed_device = 1;
289 	/* make sure store to ns_flushed_device cannot be reordered */
290 	smp_wmb();
291 	return nilfs_sync_super(sb, flag);
292 }
293 
294 /**
295  * nilfs_cleanup_super() - write filesystem state for cleanup
296  * @sb: super block instance to be unmounted or degraded to read-only
297  *
298  * This function restores state flags in the on-disk super block.
299  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
300  * filesystem was not clean previously.
301  */
302 int nilfs_cleanup_super(struct super_block *sb)
303 {
304 	struct the_nilfs *nilfs = sb->s_fs_info;
305 	struct nilfs_super_block **sbp;
306 	int flag = NILFS_SB_COMMIT;
307 	int ret = -EIO;
308 
309 	sbp = nilfs_prepare_super(sb, 0);
310 	if (sbp) {
311 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
312 		nilfs_set_log_cursor(sbp[0], nilfs);
313 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
314 			/*
315 			 * make the "clean" flag also to the opposite
316 			 * super block if both super blocks point to
317 			 * the same checkpoint.
318 			 */
319 			sbp[1]->s_state = sbp[0]->s_state;
320 			flag = NILFS_SB_COMMIT_ALL;
321 		}
322 		ret = nilfs_commit_super(sb, flag);
323 	}
324 	return ret;
325 }
326 
327 /**
328  * nilfs_move_2nd_super - relocate secondary super block
329  * @sb: super block instance
330  * @sb2off: new offset of the secondary super block (in bytes)
331  */
332 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
333 {
334 	struct the_nilfs *nilfs = sb->s_fs_info;
335 	struct buffer_head *nsbh;
336 	struct nilfs_super_block *nsbp;
337 	sector_t blocknr, newblocknr;
338 	unsigned long offset;
339 	int sb2i;  /* array index of the secondary superblock */
340 	int ret = 0;
341 
342 	/* nilfs->ns_sem must be locked by the caller. */
343 	if (nilfs->ns_sbh[1] &&
344 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
345 		sb2i = 1;
346 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
347 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
348 		sb2i = 0;
349 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
350 	} else {
351 		sb2i = -1;
352 		blocknr = 0;
353 	}
354 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
355 		goto out;  /* super block location is unchanged */
356 
357 	/* Get new super block buffer */
358 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
359 	offset = sb2off & (nilfs->ns_blocksize - 1);
360 	nsbh = sb_getblk(sb, newblocknr);
361 	if (!nsbh) {
362 		nilfs_msg(sb, KERN_WARNING,
363 			  "unable to move secondary superblock to block %llu",
364 			  (unsigned long long)newblocknr);
365 		ret = -EIO;
366 		goto out;
367 	}
368 	nsbp = (void *)nsbh->b_data + offset;
369 	memset(nsbp, 0, nilfs->ns_blocksize);
370 
371 	if (sb2i >= 0) {
372 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
373 		brelse(nilfs->ns_sbh[sb2i]);
374 		nilfs->ns_sbh[sb2i] = nsbh;
375 		nilfs->ns_sbp[sb2i] = nsbp;
376 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
377 		/* secondary super block will be restored to index 1 */
378 		nilfs->ns_sbh[1] = nsbh;
379 		nilfs->ns_sbp[1] = nsbp;
380 	} else {
381 		brelse(nsbh);
382 	}
383 out:
384 	return ret;
385 }
386 
387 /**
388  * nilfs_resize_fs - resize the filesystem
389  * @sb: super block instance
390  * @newsize: new size of the filesystem (in bytes)
391  */
392 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
393 {
394 	struct the_nilfs *nilfs = sb->s_fs_info;
395 	struct nilfs_super_block **sbp;
396 	__u64 devsize, newnsegs;
397 	loff_t sb2off;
398 	int ret;
399 
400 	ret = -ERANGE;
401 	devsize = i_size_read(sb->s_bdev->bd_inode);
402 	if (newsize > devsize)
403 		goto out;
404 
405 	/*
406 	 * Write lock is required to protect some functions depending
407 	 * on the number of segments, the number of reserved segments,
408 	 * and so forth.
409 	 */
410 	down_write(&nilfs->ns_segctor_sem);
411 
412 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
413 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
414 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
415 
416 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
417 	up_write(&nilfs->ns_segctor_sem);
418 	if (ret < 0)
419 		goto out;
420 
421 	ret = nilfs_construct_segment(sb);
422 	if (ret < 0)
423 		goto out;
424 
425 	down_write(&nilfs->ns_sem);
426 	nilfs_move_2nd_super(sb, sb2off);
427 	ret = -EIO;
428 	sbp = nilfs_prepare_super(sb, 0);
429 	if (likely(sbp)) {
430 		nilfs_set_log_cursor(sbp[0], nilfs);
431 		/*
432 		 * Drop NILFS_RESIZE_FS flag for compatibility with
433 		 * mount-time resize which may be implemented in a
434 		 * future release.
435 		 */
436 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
437 					      ~NILFS_RESIZE_FS);
438 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
439 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
440 		if (sbp[1])
441 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
442 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
443 	}
444 	up_write(&nilfs->ns_sem);
445 
446 	/*
447 	 * Reset the range of allocatable segments last.  This order
448 	 * is important in the case of expansion because the secondary
449 	 * superblock must be protected from log write until migration
450 	 * completes.
451 	 */
452 	if (!ret)
453 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
454 out:
455 	return ret;
456 }
457 
458 static void nilfs_put_super(struct super_block *sb)
459 {
460 	struct the_nilfs *nilfs = sb->s_fs_info;
461 
462 	nilfs_detach_log_writer(sb);
463 
464 	if (!sb_rdonly(sb)) {
465 		down_write(&nilfs->ns_sem);
466 		nilfs_cleanup_super(sb);
467 		up_write(&nilfs->ns_sem);
468 	}
469 
470 	iput(nilfs->ns_sufile);
471 	iput(nilfs->ns_cpfile);
472 	iput(nilfs->ns_dat);
473 
474 	destroy_nilfs(nilfs);
475 	sb->s_fs_info = NULL;
476 }
477 
478 static int nilfs_sync_fs(struct super_block *sb, int wait)
479 {
480 	struct the_nilfs *nilfs = sb->s_fs_info;
481 	struct nilfs_super_block **sbp;
482 	int err = 0;
483 
484 	/* This function is called when super block should be written back */
485 	if (wait)
486 		err = nilfs_construct_segment(sb);
487 
488 	down_write(&nilfs->ns_sem);
489 	if (nilfs_sb_dirty(nilfs)) {
490 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
491 		if (likely(sbp)) {
492 			nilfs_set_log_cursor(sbp[0], nilfs);
493 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
494 		}
495 	}
496 	up_write(&nilfs->ns_sem);
497 
498 	if (!err)
499 		err = nilfs_flush_device(nilfs);
500 
501 	return err;
502 }
503 
504 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
505 			    struct nilfs_root **rootp)
506 {
507 	struct the_nilfs *nilfs = sb->s_fs_info;
508 	struct nilfs_root *root;
509 	struct nilfs_checkpoint *raw_cp;
510 	struct buffer_head *bh_cp;
511 	int err = -ENOMEM;
512 
513 	root = nilfs_find_or_create_root(
514 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
515 	if (!root)
516 		return err;
517 
518 	if (root->ifile)
519 		goto reuse; /* already attached checkpoint */
520 
521 	down_read(&nilfs->ns_segctor_sem);
522 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
523 					  &bh_cp);
524 	up_read(&nilfs->ns_segctor_sem);
525 	if (unlikely(err)) {
526 		if (err == -ENOENT || err == -EINVAL) {
527 			nilfs_msg(sb, KERN_ERR,
528 				  "Invalid checkpoint (checkpoint number=%llu)",
529 				  (unsigned long long)cno);
530 			err = -EINVAL;
531 		}
532 		goto failed;
533 	}
534 
535 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
536 			       &raw_cp->cp_ifile_inode, &root->ifile);
537 	if (err)
538 		goto failed_bh;
539 
540 	atomic64_set(&root->inodes_count,
541 			le64_to_cpu(raw_cp->cp_inodes_count));
542 	atomic64_set(&root->blocks_count,
543 			le64_to_cpu(raw_cp->cp_blocks_count));
544 
545 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
546 
547  reuse:
548 	*rootp = root;
549 	return 0;
550 
551  failed_bh:
552 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
553  failed:
554 	nilfs_put_root(root);
555 
556 	return err;
557 }
558 
559 static int nilfs_freeze(struct super_block *sb)
560 {
561 	struct the_nilfs *nilfs = sb->s_fs_info;
562 	int err;
563 
564 	if (sb_rdonly(sb))
565 		return 0;
566 
567 	/* Mark super block clean */
568 	down_write(&nilfs->ns_sem);
569 	err = nilfs_cleanup_super(sb);
570 	up_write(&nilfs->ns_sem);
571 	return err;
572 }
573 
574 static int nilfs_unfreeze(struct super_block *sb)
575 {
576 	struct the_nilfs *nilfs = sb->s_fs_info;
577 
578 	if (sb_rdonly(sb))
579 		return 0;
580 
581 	down_write(&nilfs->ns_sem);
582 	nilfs_setup_super(sb, false);
583 	up_write(&nilfs->ns_sem);
584 	return 0;
585 }
586 
587 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
588 {
589 	struct super_block *sb = dentry->d_sb;
590 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
591 	struct the_nilfs *nilfs = root->nilfs;
592 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
593 	unsigned long long blocks;
594 	unsigned long overhead;
595 	unsigned long nrsvblocks;
596 	sector_t nfreeblocks;
597 	u64 nmaxinodes, nfreeinodes;
598 	int err;
599 
600 	/*
601 	 * Compute all of the segment blocks
602 	 *
603 	 * The blocks before first segment and after last segment
604 	 * are excluded.
605 	 */
606 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
607 		- nilfs->ns_first_data_block;
608 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
609 
610 	/*
611 	 * Compute the overhead
612 	 *
613 	 * When distributing meta data blocks outside segment structure,
614 	 * We must count them as the overhead.
615 	 */
616 	overhead = 0;
617 
618 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
619 	if (unlikely(err))
620 		return err;
621 
622 	err = nilfs_ifile_count_free_inodes(root->ifile,
623 					    &nmaxinodes, &nfreeinodes);
624 	if (unlikely(err)) {
625 		nilfs_msg(sb, KERN_WARNING,
626 			  "failed to count free inodes: err=%d", err);
627 		if (err == -ERANGE) {
628 			/*
629 			 * If nilfs_palloc_count_max_entries() returns
630 			 * -ERANGE error code then we simply treat
631 			 * curent inodes count as maximum possible and
632 			 * zero as free inodes value.
633 			 */
634 			nmaxinodes = atomic64_read(&root->inodes_count);
635 			nfreeinodes = 0;
636 			err = 0;
637 		} else
638 			return err;
639 	}
640 
641 	buf->f_type = NILFS_SUPER_MAGIC;
642 	buf->f_bsize = sb->s_blocksize;
643 	buf->f_blocks = blocks - overhead;
644 	buf->f_bfree = nfreeblocks;
645 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
646 		(buf->f_bfree - nrsvblocks) : 0;
647 	buf->f_files = nmaxinodes;
648 	buf->f_ffree = nfreeinodes;
649 	buf->f_namelen = NILFS_NAME_LEN;
650 	buf->f_fsid.val[0] = (u32)id;
651 	buf->f_fsid.val[1] = (u32)(id >> 32);
652 
653 	return 0;
654 }
655 
656 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
657 {
658 	struct super_block *sb = dentry->d_sb;
659 	struct the_nilfs *nilfs = sb->s_fs_info;
660 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
661 
662 	if (!nilfs_test_opt(nilfs, BARRIER))
663 		seq_puts(seq, ",nobarrier");
664 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
665 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
666 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
667 		seq_puts(seq, ",errors=panic");
668 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
669 		seq_puts(seq, ",errors=continue");
670 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
671 		seq_puts(seq, ",order=strict");
672 	if (nilfs_test_opt(nilfs, NORECOVERY))
673 		seq_puts(seq, ",norecovery");
674 	if (nilfs_test_opt(nilfs, DISCARD))
675 		seq_puts(seq, ",discard");
676 
677 	return 0;
678 }
679 
680 static const struct super_operations nilfs_sops = {
681 	.alloc_inode    = nilfs_alloc_inode,
682 	.free_inode     = nilfs_free_inode,
683 	.dirty_inode    = nilfs_dirty_inode,
684 	.evict_inode    = nilfs_evict_inode,
685 	.put_super      = nilfs_put_super,
686 	.sync_fs        = nilfs_sync_fs,
687 	.freeze_fs	= nilfs_freeze,
688 	.unfreeze_fs	= nilfs_unfreeze,
689 	.statfs         = nilfs_statfs,
690 	.remount_fs     = nilfs_remount,
691 	.show_options = nilfs_show_options
692 };
693 
694 enum {
695 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
696 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
697 	Opt_discard, Opt_nodiscard, Opt_err,
698 };
699 
700 static match_table_t tokens = {
701 	{Opt_err_cont, "errors=continue"},
702 	{Opt_err_panic, "errors=panic"},
703 	{Opt_err_ro, "errors=remount-ro"},
704 	{Opt_barrier, "barrier"},
705 	{Opt_nobarrier, "nobarrier"},
706 	{Opt_snapshot, "cp=%u"},
707 	{Opt_order, "order=%s"},
708 	{Opt_norecovery, "norecovery"},
709 	{Opt_discard, "discard"},
710 	{Opt_nodiscard, "nodiscard"},
711 	{Opt_err, NULL}
712 };
713 
714 static int parse_options(char *options, struct super_block *sb, int is_remount)
715 {
716 	struct the_nilfs *nilfs = sb->s_fs_info;
717 	char *p;
718 	substring_t args[MAX_OPT_ARGS];
719 
720 	if (!options)
721 		return 1;
722 
723 	while ((p = strsep(&options, ",")) != NULL) {
724 		int token;
725 
726 		if (!*p)
727 			continue;
728 
729 		token = match_token(p, tokens, args);
730 		switch (token) {
731 		case Opt_barrier:
732 			nilfs_set_opt(nilfs, BARRIER);
733 			break;
734 		case Opt_nobarrier:
735 			nilfs_clear_opt(nilfs, BARRIER);
736 			break;
737 		case Opt_order:
738 			if (strcmp(args[0].from, "relaxed") == 0)
739 				/* Ordered data semantics */
740 				nilfs_clear_opt(nilfs, STRICT_ORDER);
741 			else if (strcmp(args[0].from, "strict") == 0)
742 				/* Strict in-order semantics */
743 				nilfs_set_opt(nilfs, STRICT_ORDER);
744 			else
745 				return 0;
746 			break;
747 		case Opt_err_panic:
748 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
749 			break;
750 		case Opt_err_ro:
751 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
752 			break;
753 		case Opt_err_cont:
754 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
755 			break;
756 		case Opt_snapshot:
757 			if (is_remount) {
758 				nilfs_msg(sb, KERN_ERR,
759 					  "\"%s\" option is invalid for remount",
760 					  p);
761 				return 0;
762 			}
763 			break;
764 		case Opt_norecovery:
765 			nilfs_set_opt(nilfs, NORECOVERY);
766 			break;
767 		case Opt_discard:
768 			nilfs_set_opt(nilfs, DISCARD);
769 			break;
770 		case Opt_nodiscard:
771 			nilfs_clear_opt(nilfs, DISCARD);
772 			break;
773 		default:
774 			nilfs_msg(sb, KERN_ERR,
775 				  "unrecognized mount option \"%s\"", p);
776 			return 0;
777 		}
778 	}
779 	return 1;
780 }
781 
782 static inline void
783 nilfs_set_default_options(struct super_block *sb,
784 			  struct nilfs_super_block *sbp)
785 {
786 	struct the_nilfs *nilfs = sb->s_fs_info;
787 
788 	nilfs->ns_mount_opt =
789 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
790 }
791 
792 static int nilfs_setup_super(struct super_block *sb, int is_mount)
793 {
794 	struct the_nilfs *nilfs = sb->s_fs_info;
795 	struct nilfs_super_block **sbp;
796 	int max_mnt_count;
797 	int mnt_count;
798 
799 	/* nilfs->ns_sem must be locked by the caller. */
800 	sbp = nilfs_prepare_super(sb, 0);
801 	if (!sbp)
802 		return -EIO;
803 
804 	if (!is_mount)
805 		goto skip_mount_setup;
806 
807 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
808 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
809 
810 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
811 		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
812 #if 0
813 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
814 		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
815 #endif
816 	}
817 	if (!max_mnt_count)
818 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
819 
820 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
821 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
822 
823 skip_mount_setup:
824 	sbp[0]->s_state =
825 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
826 	/* synchronize sbp[1] with sbp[0] */
827 	if (sbp[1])
828 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
829 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
830 }
831 
832 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
833 						 u64 pos, int blocksize,
834 						 struct buffer_head **pbh)
835 {
836 	unsigned long long sb_index = pos;
837 	unsigned long offset;
838 
839 	offset = do_div(sb_index, blocksize);
840 	*pbh = sb_bread(sb, sb_index);
841 	if (!*pbh)
842 		return NULL;
843 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
844 }
845 
846 int nilfs_store_magic_and_option(struct super_block *sb,
847 				 struct nilfs_super_block *sbp,
848 				 char *data)
849 {
850 	struct the_nilfs *nilfs = sb->s_fs_info;
851 
852 	sb->s_magic = le16_to_cpu(sbp->s_magic);
853 
854 	/* FS independent flags */
855 #ifdef NILFS_ATIME_DISABLE
856 	sb->s_flags |= SB_NOATIME;
857 #endif
858 
859 	nilfs_set_default_options(sb, sbp);
860 
861 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
862 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
863 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
864 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
865 
866 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
867 }
868 
869 int nilfs_check_feature_compatibility(struct super_block *sb,
870 				      struct nilfs_super_block *sbp)
871 {
872 	__u64 features;
873 
874 	features = le64_to_cpu(sbp->s_feature_incompat) &
875 		~NILFS_FEATURE_INCOMPAT_SUPP;
876 	if (features) {
877 		nilfs_msg(sb, KERN_ERR,
878 			  "couldn't mount because of unsupported optional features (%llx)",
879 			  (unsigned long long)features);
880 		return -EINVAL;
881 	}
882 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
883 		~NILFS_FEATURE_COMPAT_RO_SUPP;
884 	if (!sb_rdonly(sb) && features) {
885 		nilfs_msg(sb, KERN_ERR,
886 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
887 			  (unsigned long long)features);
888 		return -EINVAL;
889 	}
890 	return 0;
891 }
892 
893 static int nilfs_get_root_dentry(struct super_block *sb,
894 				 struct nilfs_root *root,
895 				 struct dentry **root_dentry)
896 {
897 	struct inode *inode;
898 	struct dentry *dentry;
899 	int ret = 0;
900 
901 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
902 	if (IS_ERR(inode)) {
903 		ret = PTR_ERR(inode);
904 		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
905 		goto out;
906 	}
907 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
908 		iput(inode);
909 		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
910 		ret = -EINVAL;
911 		goto out;
912 	}
913 
914 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
915 		dentry = d_find_alias(inode);
916 		if (!dentry) {
917 			dentry = d_make_root(inode);
918 			if (!dentry) {
919 				ret = -ENOMEM;
920 				goto failed_dentry;
921 			}
922 		} else {
923 			iput(inode);
924 		}
925 	} else {
926 		dentry = d_obtain_root(inode);
927 		if (IS_ERR(dentry)) {
928 			ret = PTR_ERR(dentry);
929 			goto failed_dentry;
930 		}
931 	}
932 	*root_dentry = dentry;
933  out:
934 	return ret;
935 
936  failed_dentry:
937 	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
938 	goto out;
939 }
940 
941 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
942 				 struct dentry **root_dentry)
943 {
944 	struct the_nilfs *nilfs = s->s_fs_info;
945 	struct nilfs_root *root;
946 	int ret;
947 
948 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
949 
950 	down_read(&nilfs->ns_segctor_sem);
951 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
952 	up_read(&nilfs->ns_segctor_sem);
953 	if (ret < 0) {
954 		ret = (ret == -ENOENT) ? -EINVAL : ret;
955 		goto out;
956 	} else if (!ret) {
957 		nilfs_msg(s, KERN_ERR,
958 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
959 			  (unsigned long long)cno);
960 		ret = -EINVAL;
961 		goto out;
962 	}
963 
964 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
965 	if (ret) {
966 		nilfs_msg(s, KERN_ERR,
967 			  "error %d while loading snapshot (checkpoint number=%llu)",
968 			  ret, (unsigned long long)cno);
969 		goto out;
970 	}
971 	ret = nilfs_get_root_dentry(s, root, root_dentry);
972 	nilfs_put_root(root);
973  out:
974 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
975 	return ret;
976 }
977 
978 /**
979  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
980  * @root_dentry: root dentry of the tree to be shrunk
981  *
982  * This function returns true if the tree was in-use.
983  */
984 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
985 {
986 	shrink_dcache_parent(root_dentry);
987 	return d_count(root_dentry) > 1;
988 }
989 
990 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
991 {
992 	struct the_nilfs *nilfs = sb->s_fs_info;
993 	struct nilfs_root *root;
994 	struct inode *inode;
995 	struct dentry *dentry;
996 	int ret;
997 
998 	if (cno > nilfs->ns_cno)
999 		return false;
1000 
1001 	if (cno >= nilfs_last_cno(nilfs))
1002 		return true;	/* protect recent checkpoints */
1003 
1004 	ret = false;
1005 	root = nilfs_lookup_root(nilfs, cno);
1006 	if (root) {
1007 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1008 		if (inode) {
1009 			dentry = d_find_alias(inode);
1010 			if (dentry) {
1011 				ret = nilfs_tree_is_busy(dentry);
1012 				dput(dentry);
1013 			}
1014 			iput(inode);
1015 		}
1016 		nilfs_put_root(root);
1017 	}
1018 	return ret;
1019 }
1020 
1021 /**
1022  * nilfs_fill_super() - initialize a super block instance
1023  * @sb: super_block
1024  * @data: mount options
1025  * @silent: silent mode flag
1026  *
1027  * This function is called exclusively by nilfs->ns_mount_mutex.
1028  * So, the recovery process is protected from other simultaneous mounts.
1029  */
1030 static int
1031 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1032 {
1033 	struct the_nilfs *nilfs;
1034 	struct nilfs_root *fsroot;
1035 	__u64 cno;
1036 	int err;
1037 
1038 	nilfs = alloc_nilfs(sb);
1039 	if (!nilfs)
1040 		return -ENOMEM;
1041 
1042 	sb->s_fs_info = nilfs;
1043 
1044 	err = init_nilfs(nilfs, sb, (char *)data);
1045 	if (err)
1046 		goto failed_nilfs;
1047 
1048 	sb->s_op = &nilfs_sops;
1049 	sb->s_export_op = &nilfs_export_ops;
1050 	sb->s_root = NULL;
1051 	sb->s_time_gran = 1;
1052 	sb->s_max_links = NILFS_LINK_MAX;
1053 
1054 	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1055 
1056 	err = load_nilfs(nilfs, sb);
1057 	if (err)
1058 		goto failed_nilfs;
1059 
1060 	cno = nilfs_last_cno(nilfs);
1061 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1062 	if (err) {
1063 		nilfs_msg(sb, KERN_ERR,
1064 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1065 			  err, (unsigned long long)cno);
1066 		goto failed_unload;
1067 	}
1068 
1069 	if (!sb_rdonly(sb)) {
1070 		err = nilfs_attach_log_writer(sb, fsroot);
1071 		if (err)
1072 			goto failed_checkpoint;
1073 	}
1074 
1075 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1076 	if (err)
1077 		goto failed_segctor;
1078 
1079 	nilfs_put_root(fsroot);
1080 
1081 	if (!sb_rdonly(sb)) {
1082 		down_write(&nilfs->ns_sem);
1083 		nilfs_setup_super(sb, true);
1084 		up_write(&nilfs->ns_sem);
1085 	}
1086 
1087 	return 0;
1088 
1089  failed_segctor:
1090 	nilfs_detach_log_writer(sb);
1091 
1092  failed_checkpoint:
1093 	nilfs_put_root(fsroot);
1094 
1095  failed_unload:
1096 	iput(nilfs->ns_sufile);
1097 	iput(nilfs->ns_cpfile);
1098 	iput(nilfs->ns_dat);
1099 
1100  failed_nilfs:
1101 	destroy_nilfs(nilfs);
1102 	return err;
1103 }
1104 
1105 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1106 {
1107 	struct the_nilfs *nilfs = sb->s_fs_info;
1108 	unsigned long old_sb_flags;
1109 	unsigned long old_mount_opt;
1110 	int err;
1111 
1112 	sync_filesystem(sb);
1113 	old_sb_flags = sb->s_flags;
1114 	old_mount_opt = nilfs->ns_mount_opt;
1115 
1116 	if (!parse_options(data, sb, 1)) {
1117 		err = -EINVAL;
1118 		goto restore_opts;
1119 	}
1120 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1121 
1122 	err = -EINVAL;
1123 
1124 	if (!nilfs_valid_fs(nilfs)) {
1125 		nilfs_msg(sb, KERN_WARNING,
1126 			  "couldn't remount because the filesystem is in an incomplete recovery state");
1127 		goto restore_opts;
1128 	}
1129 
1130 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1131 		goto out;
1132 	if (*flags & SB_RDONLY) {
1133 		/* Shutting down log writer */
1134 		nilfs_detach_log_writer(sb);
1135 		sb->s_flags |= SB_RDONLY;
1136 
1137 		/*
1138 		 * Remounting a valid RW partition RDONLY, so set
1139 		 * the RDONLY flag and then mark the partition as valid again.
1140 		 */
1141 		down_write(&nilfs->ns_sem);
1142 		nilfs_cleanup_super(sb);
1143 		up_write(&nilfs->ns_sem);
1144 	} else {
1145 		__u64 features;
1146 		struct nilfs_root *root;
1147 
1148 		/*
1149 		 * Mounting a RDONLY partition read-write, so reread and
1150 		 * store the current valid flag.  (It may have been changed
1151 		 * by fsck since we originally mounted the partition.)
1152 		 */
1153 		down_read(&nilfs->ns_sem);
1154 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1155 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1156 		up_read(&nilfs->ns_sem);
1157 		if (features) {
1158 			nilfs_msg(sb, KERN_WARNING,
1159 				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1160 				  (unsigned long long)features);
1161 			err = -EROFS;
1162 			goto restore_opts;
1163 		}
1164 
1165 		sb->s_flags &= ~SB_RDONLY;
1166 
1167 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1168 		err = nilfs_attach_log_writer(sb, root);
1169 		if (err)
1170 			goto restore_opts;
1171 
1172 		down_write(&nilfs->ns_sem);
1173 		nilfs_setup_super(sb, true);
1174 		up_write(&nilfs->ns_sem);
1175 	}
1176  out:
1177 	return 0;
1178 
1179  restore_opts:
1180 	sb->s_flags = old_sb_flags;
1181 	nilfs->ns_mount_opt = old_mount_opt;
1182 	return err;
1183 }
1184 
1185 struct nilfs_super_data {
1186 	struct block_device *bdev;
1187 	__u64 cno;
1188 	int flags;
1189 };
1190 
1191 static int nilfs_parse_snapshot_option(const char *option,
1192 				       const substring_t *arg,
1193 				       struct nilfs_super_data *sd)
1194 {
1195 	unsigned long long val;
1196 	const char *msg = NULL;
1197 	int err;
1198 
1199 	if (!(sd->flags & SB_RDONLY)) {
1200 		msg = "read-only option is not specified";
1201 		goto parse_error;
1202 	}
1203 
1204 	err = kstrtoull(arg->from, 0, &val);
1205 	if (err) {
1206 		if (err == -ERANGE)
1207 			msg = "too large checkpoint number";
1208 		else
1209 			msg = "malformed argument";
1210 		goto parse_error;
1211 	} else if (val == 0) {
1212 		msg = "invalid checkpoint number 0";
1213 		goto parse_error;
1214 	}
1215 	sd->cno = val;
1216 	return 0;
1217 
1218 parse_error:
1219 	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1220 	return 1;
1221 }
1222 
1223 /**
1224  * nilfs_identify - pre-read mount options needed to identify mount instance
1225  * @data: mount options
1226  * @sd: nilfs_super_data
1227  */
1228 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1229 {
1230 	char *p, *options = data;
1231 	substring_t args[MAX_OPT_ARGS];
1232 	int token;
1233 	int ret = 0;
1234 
1235 	do {
1236 		p = strsep(&options, ",");
1237 		if (p != NULL && *p) {
1238 			token = match_token(p, tokens, args);
1239 			if (token == Opt_snapshot)
1240 				ret = nilfs_parse_snapshot_option(p, &args[0],
1241 								  sd);
1242 		}
1243 		if (!options)
1244 			break;
1245 		BUG_ON(options == data);
1246 		*(options - 1) = ',';
1247 	} while (!ret);
1248 	return ret;
1249 }
1250 
1251 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1252 {
1253 	s->s_bdev = data;
1254 	s->s_dev = s->s_bdev->bd_dev;
1255 	return 0;
1256 }
1257 
1258 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1259 {
1260 	return (void *)s->s_bdev == data;
1261 }
1262 
1263 static struct dentry *
1264 nilfs_mount(struct file_system_type *fs_type, int flags,
1265 	     const char *dev_name, void *data)
1266 {
1267 	struct nilfs_super_data sd;
1268 	struct super_block *s;
1269 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1270 	struct dentry *root_dentry;
1271 	int err, s_new = false;
1272 
1273 	if (!(flags & SB_RDONLY))
1274 		mode |= FMODE_WRITE;
1275 
1276 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1277 	if (IS_ERR(sd.bdev))
1278 		return ERR_CAST(sd.bdev);
1279 
1280 	sd.cno = 0;
1281 	sd.flags = flags;
1282 	if (nilfs_identify((char *)data, &sd)) {
1283 		err = -EINVAL;
1284 		goto failed;
1285 	}
1286 
1287 	/*
1288 	 * once the super is inserted into the list by sget, s_umount
1289 	 * will protect the lockfs code from trying to start a snapshot
1290 	 * while we are mounting
1291 	 */
1292 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1293 	if (sd.bdev->bd_fsfreeze_count > 0) {
1294 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1295 		err = -EBUSY;
1296 		goto failed;
1297 	}
1298 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1299 		 sd.bdev);
1300 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1301 	if (IS_ERR(s)) {
1302 		err = PTR_ERR(s);
1303 		goto failed;
1304 	}
1305 
1306 	if (!s->s_root) {
1307 		s_new = true;
1308 
1309 		/* New superblock instance created */
1310 		s->s_mode = mode;
1311 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1312 		sb_set_blocksize(s, block_size(sd.bdev));
1313 
1314 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1315 		if (err)
1316 			goto failed_super;
1317 
1318 		s->s_flags |= SB_ACTIVE;
1319 	} else if (!sd.cno) {
1320 		if (nilfs_tree_is_busy(s->s_root)) {
1321 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1322 				nilfs_msg(s, KERN_ERR,
1323 					  "the device already has a %s mount.",
1324 					  sb_rdonly(s) ? "read-only" : "read/write");
1325 				err = -EBUSY;
1326 				goto failed_super;
1327 			}
1328 		} else {
1329 			/*
1330 			 * Try remount to setup mount states if the current
1331 			 * tree is not mounted and only snapshots use this sb.
1332 			 */
1333 			err = nilfs_remount(s, &flags, data);
1334 			if (err)
1335 				goto failed_super;
1336 		}
1337 	}
1338 
1339 	if (sd.cno) {
1340 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1341 		if (err)
1342 			goto failed_super;
1343 	} else {
1344 		root_dentry = dget(s->s_root);
1345 	}
1346 
1347 	if (!s_new)
1348 		blkdev_put(sd.bdev, mode);
1349 
1350 	return root_dentry;
1351 
1352  failed_super:
1353 	deactivate_locked_super(s);
1354 
1355  failed:
1356 	if (!s_new)
1357 		blkdev_put(sd.bdev, mode);
1358 	return ERR_PTR(err);
1359 }
1360 
1361 struct file_system_type nilfs_fs_type = {
1362 	.owner    = THIS_MODULE,
1363 	.name     = "nilfs2",
1364 	.mount    = nilfs_mount,
1365 	.kill_sb  = kill_block_super,
1366 	.fs_flags = FS_REQUIRES_DEV,
1367 };
1368 MODULE_ALIAS_FS("nilfs2");
1369 
1370 static void nilfs_inode_init_once(void *obj)
1371 {
1372 	struct nilfs_inode_info *ii = obj;
1373 
1374 	INIT_LIST_HEAD(&ii->i_dirty);
1375 #ifdef CONFIG_NILFS_XATTR
1376 	init_rwsem(&ii->xattr_sem);
1377 #endif
1378 	address_space_init_once(&ii->i_btnode_cache);
1379 	ii->i_bmap = &ii->i_bmap_data;
1380 	inode_init_once(&ii->vfs_inode);
1381 }
1382 
1383 static void nilfs_segbuf_init_once(void *obj)
1384 {
1385 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1386 }
1387 
1388 static void nilfs_destroy_cachep(void)
1389 {
1390 	/*
1391 	 * Make sure all delayed rcu free inodes are flushed before we
1392 	 * destroy cache.
1393 	 */
1394 	rcu_barrier();
1395 
1396 	kmem_cache_destroy(nilfs_inode_cachep);
1397 	kmem_cache_destroy(nilfs_transaction_cachep);
1398 	kmem_cache_destroy(nilfs_segbuf_cachep);
1399 	kmem_cache_destroy(nilfs_btree_path_cache);
1400 }
1401 
1402 static int __init nilfs_init_cachep(void)
1403 {
1404 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405 			sizeof(struct nilfs_inode_info), 0,
1406 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1407 			nilfs_inode_init_once);
1408 	if (!nilfs_inode_cachep)
1409 		goto fail;
1410 
1411 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1412 			sizeof(struct nilfs_transaction_info), 0,
1413 			SLAB_RECLAIM_ACCOUNT, NULL);
1414 	if (!nilfs_transaction_cachep)
1415 		goto fail;
1416 
1417 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1418 			sizeof(struct nilfs_segment_buffer), 0,
1419 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1420 	if (!nilfs_segbuf_cachep)
1421 		goto fail;
1422 
1423 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1424 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1425 			0, 0, NULL);
1426 	if (!nilfs_btree_path_cache)
1427 		goto fail;
1428 
1429 	return 0;
1430 
1431 fail:
1432 	nilfs_destroy_cachep();
1433 	return -ENOMEM;
1434 }
1435 
1436 static int __init init_nilfs_fs(void)
1437 {
1438 	int err;
1439 
1440 	err = nilfs_init_cachep();
1441 	if (err)
1442 		goto fail;
1443 
1444 	err = nilfs_sysfs_init();
1445 	if (err)
1446 		goto free_cachep;
1447 
1448 	err = register_filesystem(&nilfs_fs_type);
1449 	if (err)
1450 		goto deinit_sysfs_entry;
1451 
1452 	printk(KERN_INFO "NILFS version 2 loaded\n");
1453 	return 0;
1454 
1455 deinit_sysfs_entry:
1456 	nilfs_sysfs_exit();
1457 free_cachep:
1458 	nilfs_destroy_cachep();
1459 fail:
1460 	return err;
1461 }
1462 
1463 static void __exit exit_nilfs_fs(void)
1464 {
1465 	nilfs_destroy_cachep();
1466 	nilfs_sysfs_exit();
1467 	unregister_filesystem(&nilfs_fs_type);
1468 }
1469 
1470 module_init(init_nilfs_fs)
1471 module_exit(exit_nilfs_fs)
1472