xref: /linux/fs/nilfs2/super.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "btree.h"
59 #include "btnode.h"
60 #include "page.h"
61 #include "cpfile.h"
62 #include "ifile.h"
63 #include "dat.h"
64 #include "segment.h"
65 #include "segbuf.h"
66 
67 MODULE_AUTHOR("NTT Corp.");
68 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
69 		   "(NILFS)");
70 MODULE_LICENSE("GPL");
71 
72 struct kmem_cache *nilfs_inode_cachep;
73 struct kmem_cache *nilfs_transaction_cachep;
74 struct kmem_cache *nilfs_segbuf_cachep;
75 struct kmem_cache *nilfs_btree_path_cache;
76 
77 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78 
79 static void nilfs_set_error(struct nilfs_sb_info *sbi)
80 {
81 	struct the_nilfs *nilfs = sbi->s_nilfs;
82 	struct nilfs_super_block **sbp;
83 
84 	down_write(&nilfs->ns_sem);
85 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
86 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
87 		sbp = nilfs_prepare_super(sbi, 0);
88 		if (likely(sbp)) {
89 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90 			if (sbp[1])
91 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 			nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
93 		}
94 	}
95 	up_write(&nilfs->ns_sem);
96 }
97 
98 /**
99  * nilfs_error() - report failure condition on a filesystem
100  *
101  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
102  * reporting an error message.  It should be called when NILFS detects
103  * incoherences or defects of meta data on disk.  As for sustainable
104  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
105  * function should be used instead.
106  *
107  * The segment constructor must not call this function because it can
108  * kill itself.
109  */
110 void nilfs_error(struct super_block *sb, const char *function,
111 		 const char *fmt, ...)
112 {
113 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
114 	va_list args;
115 
116 	va_start(args, fmt);
117 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
118 	vprintk(fmt, args);
119 	printk("\n");
120 	va_end(args);
121 
122 	if (!(sb->s_flags & MS_RDONLY)) {
123 		nilfs_set_error(sbi);
124 
125 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
126 			printk(KERN_CRIT "Remounting filesystem read-only\n");
127 			sb->s_flags |= MS_RDONLY;
128 		}
129 	}
130 
131 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
132 		panic("NILFS (device %s): panic forced after error\n",
133 		      sb->s_id);
134 }
135 
136 void nilfs_warning(struct super_block *sb, const char *function,
137 		   const char *fmt, ...)
138 {
139 	va_list args;
140 
141 	va_start(args, fmt);
142 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
143 	       sb->s_id, function);
144 	vprintk(fmt, args);
145 	printk("\n");
146 	va_end(args);
147 }
148 
149 
150 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
151 {
152 	struct nilfs_inode_info *ii;
153 
154 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155 	if (!ii)
156 		return NULL;
157 	ii->i_bh = NULL;
158 	ii->i_state = 0;
159 	ii->vfs_inode.i_version = 1;
160 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
161 	return &ii->vfs_inode;
162 }
163 
164 struct inode *nilfs_alloc_inode(struct super_block *sb)
165 {
166 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
167 }
168 
169 void nilfs_destroy_inode(struct inode *inode)
170 {
171 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172 }
173 
174 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
175 {
176 	struct the_nilfs *nilfs = sbi->s_nilfs;
177 	int err;
178 
179  retry:
180 	set_buffer_dirty(nilfs->ns_sbh[0]);
181 
182 	if (nilfs_test_opt(sbi, BARRIER)) {
183 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
184 					  WRITE_SYNC | WRITE_BARRIER);
185 		if (err == -EOPNOTSUPP) {
186 			nilfs_warning(sbi->s_super, __func__,
187 				      "barrier-based sync failed. "
188 				      "disabling barriers\n");
189 			nilfs_clear_opt(sbi, BARRIER);
190 			goto retry;
191 		}
192 	} else {
193 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
194 	}
195 
196 	if (unlikely(err)) {
197 		printk(KERN_ERR
198 		       "NILFS: unable to write superblock (err=%d)\n", err);
199 		if (err == -EIO && nilfs->ns_sbh[1]) {
200 			/*
201 			 * sbp[0] points to newer log than sbp[1],
202 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
203 			 */
204 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
205 			       nilfs->ns_sbsize);
206 			nilfs_fall_back_super_block(nilfs);
207 			goto retry;
208 		}
209 	} else {
210 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
211 
212 		nilfs->ns_sbwcount++;
213 
214 		/*
215 		 * The latest segment becomes trailable from the position
216 		 * written in superblock.
217 		 */
218 		clear_nilfs_discontinued(nilfs);
219 
220 		/* update GC protection for recent segments */
221 		if (nilfs->ns_sbh[1]) {
222 			if (flag == NILFS_SB_COMMIT_ALL) {
223 				set_buffer_dirty(nilfs->ns_sbh[1]);
224 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
225 					goto out;
226 			}
227 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
228 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
229 				sbp = nilfs->ns_sbp[1];
230 		}
231 
232 		spin_lock(&nilfs->ns_last_segment_lock);
233 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
234 		spin_unlock(&nilfs->ns_last_segment_lock);
235 	}
236  out:
237 	return err;
238 }
239 
240 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241 			  struct the_nilfs *nilfs)
242 {
243 	sector_t nfreeblocks;
244 
245 	/* nilfs->ns_sem must be locked by the caller. */
246 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
247 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
248 
249 	spin_lock(&nilfs->ns_last_segment_lock);
250 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253 	spin_unlock(&nilfs->ns_last_segment_lock);
254 }
255 
256 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
257 					       int flip)
258 {
259 	struct the_nilfs *nilfs = sbi->s_nilfs;
260 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
261 
262 	/* nilfs->ns_sem must be locked by the caller. */
263 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264 		if (sbp[1] &&
265 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
266 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
267 		} else {
268 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
269 			       sbi->s_super->s_id);
270 			return NULL;
271 		}
272 	} else if (sbp[1] &&
273 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
275 	}
276 
277 	if (flip && sbp[1])
278 		nilfs_swap_super_block(nilfs);
279 
280 	return sbp;
281 }
282 
283 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
284 {
285 	struct the_nilfs *nilfs = sbi->s_nilfs;
286 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
287 	time_t t;
288 
289 	/* nilfs->ns_sem must be locked by the caller. */
290 	t = get_seconds();
291 	nilfs->ns_sbwtime = t;
292 	sbp[0]->s_wtime = cpu_to_le64(t);
293 	sbp[0]->s_sum = 0;
294 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295 					     (unsigned char *)sbp[0],
296 					     nilfs->ns_sbsize));
297 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
298 		sbp[1]->s_wtime = sbp[0]->s_wtime;
299 		sbp[1]->s_sum = 0;
300 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
301 					    (unsigned char *)sbp[1],
302 					    nilfs->ns_sbsize));
303 	}
304 	clear_nilfs_sb_dirty(nilfs);
305 	return nilfs_sync_super(sbi, flag);
306 }
307 
308 /**
309  * nilfs_cleanup_super() - write filesystem state for cleanup
310  * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
311  *
312  * This function restores state flags in the on-disk super block.
313  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
314  * filesystem was not clean previously.
315  */
316 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
317 {
318 	struct nilfs_super_block **sbp;
319 	int flag = NILFS_SB_COMMIT;
320 	int ret = -EIO;
321 
322 	sbp = nilfs_prepare_super(sbi, 0);
323 	if (sbp) {
324 		sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
325 		nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
326 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
327 			/*
328 			 * make the "clean" flag also to the opposite
329 			 * super block if both super blocks point to
330 			 * the same checkpoint.
331 			 */
332 			sbp[1]->s_state = sbp[0]->s_state;
333 			flag = NILFS_SB_COMMIT_ALL;
334 		}
335 		ret = nilfs_commit_super(sbi, flag);
336 	}
337 	return ret;
338 }
339 
340 static void nilfs_put_super(struct super_block *sb)
341 {
342 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
343 	struct the_nilfs *nilfs = sbi->s_nilfs;
344 
345 	lock_kernel();
346 
347 	nilfs_detach_segment_constructor(sbi);
348 
349 	if (!(sb->s_flags & MS_RDONLY)) {
350 		down_write(&nilfs->ns_sem);
351 		nilfs_cleanup_super(sbi);
352 		up_write(&nilfs->ns_sem);
353 	}
354 	down_write(&nilfs->ns_super_sem);
355 	if (nilfs->ns_current == sbi)
356 		nilfs->ns_current = NULL;
357 	up_write(&nilfs->ns_super_sem);
358 
359 	nilfs_detach_checkpoint(sbi);
360 	put_nilfs(sbi->s_nilfs);
361 	sbi->s_super = NULL;
362 	sb->s_fs_info = NULL;
363 	nilfs_put_sbinfo(sbi);
364 
365 	unlock_kernel();
366 }
367 
368 static int nilfs_sync_fs(struct super_block *sb, int wait)
369 {
370 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
371 	struct the_nilfs *nilfs = sbi->s_nilfs;
372 	struct nilfs_super_block **sbp;
373 	int err = 0;
374 
375 	/* This function is called when super block should be written back */
376 	if (wait)
377 		err = nilfs_construct_segment(sb);
378 
379 	down_write(&nilfs->ns_sem);
380 	if (nilfs_sb_dirty(nilfs)) {
381 		sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
382 		if (likely(sbp)) {
383 			nilfs_set_log_cursor(sbp[0], nilfs);
384 			nilfs_commit_super(sbi, NILFS_SB_COMMIT);
385 		}
386 	}
387 	up_write(&nilfs->ns_sem);
388 
389 	return err;
390 }
391 
392 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
393 {
394 	struct the_nilfs *nilfs = sbi->s_nilfs;
395 	struct nilfs_checkpoint *raw_cp;
396 	struct buffer_head *bh_cp;
397 	int err;
398 
399 	down_write(&nilfs->ns_super_sem);
400 	list_add(&sbi->s_list, &nilfs->ns_supers);
401 	up_write(&nilfs->ns_super_sem);
402 
403 	err = -ENOMEM;
404 	sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
405 	if (!sbi->s_ifile)
406 		goto delist;
407 
408 	down_read(&nilfs->ns_segctor_sem);
409 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
410 					  &bh_cp);
411 	up_read(&nilfs->ns_segctor_sem);
412 	if (unlikely(err)) {
413 		if (err == -ENOENT || err == -EINVAL) {
414 			printk(KERN_ERR
415 			       "NILFS: Invalid checkpoint "
416 			       "(checkpoint number=%llu)\n",
417 			       (unsigned long long)cno);
418 			err = -EINVAL;
419 		}
420 		goto failed;
421 	}
422 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
423 	if (unlikely(err))
424 		goto failed_bh;
425 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
426 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
427 
428 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
429 	return 0;
430 
431  failed_bh:
432 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
433  failed:
434 	nilfs_mdt_destroy(sbi->s_ifile);
435 	sbi->s_ifile = NULL;
436 
437  delist:
438 	down_write(&nilfs->ns_super_sem);
439 	list_del_init(&sbi->s_list);
440 	up_write(&nilfs->ns_super_sem);
441 
442 	return err;
443 }
444 
445 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
446 {
447 	struct the_nilfs *nilfs = sbi->s_nilfs;
448 
449 	nilfs_mdt_destroy(sbi->s_ifile);
450 	sbi->s_ifile = NULL;
451 	down_write(&nilfs->ns_super_sem);
452 	list_del_init(&sbi->s_list);
453 	up_write(&nilfs->ns_super_sem);
454 }
455 
456 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
457 {
458 	struct super_block *sb = dentry->d_sb;
459 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
460 	struct the_nilfs *nilfs = sbi->s_nilfs;
461 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
462 	unsigned long long blocks;
463 	unsigned long overhead;
464 	unsigned long nrsvblocks;
465 	sector_t nfreeblocks;
466 	int err;
467 
468 	/*
469 	 * Compute all of the segment blocks
470 	 *
471 	 * The blocks before first segment and after last segment
472 	 * are excluded.
473 	 */
474 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
475 		- nilfs->ns_first_data_block;
476 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
477 
478 	/*
479 	 * Compute the overhead
480 	 *
481 	 * When distributing meta data blocks outside segment structure,
482 	 * We must count them as the overhead.
483 	 */
484 	overhead = 0;
485 
486 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
487 	if (unlikely(err))
488 		return err;
489 
490 	buf->f_type = NILFS_SUPER_MAGIC;
491 	buf->f_bsize = sb->s_blocksize;
492 	buf->f_blocks = blocks - overhead;
493 	buf->f_bfree = nfreeblocks;
494 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
495 		(buf->f_bfree - nrsvblocks) : 0;
496 	buf->f_files = atomic_read(&sbi->s_inodes_count);
497 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
498 	buf->f_namelen = NILFS_NAME_LEN;
499 	buf->f_fsid.val[0] = (u32)id;
500 	buf->f_fsid.val[1] = (u32)(id >> 32);
501 
502 	return 0;
503 }
504 
505 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
506 {
507 	struct super_block *sb = vfs->mnt_sb;
508 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
509 
510 	if (!nilfs_test_opt(sbi, BARRIER))
511 		seq_puts(seq, ",nobarrier");
512 	if (nilfs_test_opt(sbi, SNAPSHOT))
513 		seq_printf(seq, ",cp=%llu",
514 			   (unsigned long long int)sbi->s_snapshot_cno);
515 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
516 		seq_puts(seq, ",errors=panic");
517 	if (nilfs_test_opt(sbi, ERRORS_CONT))
518 		seq_puts(seq, ",errors=continue");
519 	if (nilfs_test_opt(sbi, STRICT_ORDER))
520 		seq_puts(seq, ",order=strict");
521 	if (nilfs_test_opt(sbi, NORECOVERY))
522 		seq_puts(seq, ",norecovery");
523 	if (nilfs_test_opt(sbi, DISCARD))
524 		seq_puts(seq, ",discard");
525 
526 	return 0;
527 }
528 
529 static const struct super_operations nilfs_sops = {
530 	.alloc_inode    = nilfs_alloc_inode,
531 	.destroy_inode  = nilfs_destroy_inode,
532 	.dirty_inode    = nilfs_dirty_inode,
533 	/* .write_inode    = nilfs_write_inode, */
534 	/* .put_inode      = nilfs_put_inode, */
535 	/* .drop_inode	  = nilfs_drop_inode, */
536 	.evict_inode    = nilfs_evict_inode,
537 	.put_super      = nilfs_put_super,
538 	/* .write_super    = nilfs_write_super, */
539 	.sync_fs        = nilfs_sync_fs,
540 	/* .write_super_lockfs */
541 	/* .unlockfs */
542 	.statfs         = nilfs_statfs,
543 	.remount_fs     = nilfs_remount,
544 	/* .umount_begin */
545 	.show_options = nilfs_show_options
546 };
547 
548 static struct inode *
549 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
550 {
551 	struct inode *inode;
552 
553 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
554 	    ino != NILFS_SKETCH_INO)
555 		return ERR_PTR(-ESTALE);
556 
557 	inode = nilfs_iget(sb, ino);
558 	if (IS_ERR(inode))
559 		return ERR_CAST(inode);
560 	if (generation && inode->i_generation != generation) {
561 		iput(inode);
562 		return ERR_PTR(-ESTALE);
563 	}
564 
565 	return inode;
566 }
567 
568 static struct dentry *
569 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
570 		   int fh_type)
571 {
572 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
573 				    nilfs_nfs_get_inode);
574 }
575 
576 static struct dentry *
577 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
578 		   int fh_type)
579 {
580 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
581 				    nilfs_nfs_get_inode);
582 }
583 
584 static const struct export_operations nilfs_export_ops = {
585 	.fh_to_dentry = nilfs_fh_to_dentry,
586 	.fh_to_parent = nilfs_fh_to_parent,
587 	.get_parent = nilfs_get_parent,
588 };
589 
590 enum {
591 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
592 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
593 	Opt_discard, Opt_nodiscard, Opt_err,
594 };
595 
596 static match_table_t tokens = {
597 	{Opt_err_cont, "errors=continue"},
598 	{Opt_err_panic, "errors=panic"},
599 	{Opt_err_ro, "errors=remount-ro"},
600 	{Opt_barrier, "barrier"},
601 	{Opt_nobarrier, "nobarrier"},
602 	{Opt_snapshot, "cp=%u"},
603 	{Opt_order, "order=%s"},
604 	{Opt_norecovery, "norecovery"},
605 	{Opt_discard, "discard"},
606 	{Opt_nodiscard, "nodiscard"},
607 	{Opt_err, NULL}
608 };
609 
610 static int parse_options(char *options, struct super_block *sb, int is_remount)
611 {
612 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
613 	char *p;
614 	substring_t args[MAX_OPT_ARGS];
615 	int option;
616 
617 	if (!options)
618 		return 1;
619 
620 	while ((p = strsep(&options, ",")) != NULL) {
621 		int token;
622 		if (!*p)
623 			continue;
624 
625 		token = match_token(p, tokens, args);
626 		switch (token) {
627 		case Opt_barrier:
628 			nilfs_set_opt(sbi, BARRIER);
629 			break;
630 		case Opt_nobarrier:
631 			nilfs_clear_opt(sbi, BARRIER);
632 			break;
633 		case Opt_order:
634 			if (strcmp(args[0].from, "relaxed") == 0)
635 				/* Ordered data semantics */
636 				nilfs_clear_opt(sbi, STRICT_ORDER);
637 			else if (strcmp(args[0].from, "strict") == 0)
638 				/* Strict in-order semantics */
639 				nilfs_set_opt(sbi, STRICT_ORDER);
640 			else
641 				return 0;
642 			break;
643 		case Opt_err_panic:
644 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
645 			break;
646 		case Opt_err_ro:
647 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
648 			break;
649 		case Opt_err_cont:
650 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
651 			break;
652 		case Opt_snapshot:
653 			if (match_int(&args[0], &option) || option <= 0)
654 				return 0;
655 			if (is_remount) {
656 				if (!nilfs_test_opt(sbi, SNAPSHOT)) {
657 					printk(KERN_ERR
658 					       "NILFS: cannot change regular "
659 					       "mount to snapshot.\n");
660 					return 0;
661 				} else if (option != sbi->s_snapshot_cno) {
662 					printk(KERN_ERR
663 					       "NILFS: cannot remount to a "
664 					       "different snapshot.\n");
665 					return 0;
666 				}
667 				break;
668 			}
669 			if (!(sb->s_flags & MS_RDONLY)) {
670 				printk(KERN_ERR "NILFS: cannot mount snapshot "
671 				       "read/write.  A read-only option is "
672 				       "required.\n");
673 				return 0;
674 			}
675 			sbi->s_snapshot_cno = option;
676 			nilfs_set_opt(sbi, SNAPSHOT);
677 			break;
678 		case Opt_norecovery:
679 			nilfs_set_opt(sbi, NORECOVERY);
680 			break;
681 		case Opt_discard:
682 			nilfs_set_opt(sbi, DISCARD);
683 			break;
684 		case Opt_nodiscard:
685 			nilfs_clear_opt(sbi, DISCARD);
686 			break;
687 		default:
688 			printk(KERN_ERR
689 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
690 			return 0;
691 		}
692 	}
693 	return 1;
694 }
695 
696 static inline void
697 nilfs_set_default_options(struct nilfs_sb_info *sbi,
698 			  struct nilfs_super_block *sbp)
699 {
700 	sbi->s_mount_opt =
701 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
702 }
703 
704 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
705 {
706 	struct the_nilfs *nilfs = sbi->s_nilfs;
707 	struct nilfs_super_block **sbp;
708 	int max_mnt_count;
709 	int mnt_count;
710 
711 	/* nilfs->ns_sem must be locked by the caller. */
712 	sbp = nilfs_prepare_super(sbi, 0);
713 	if (!sbp)
714 		return -EIO;
715 
716 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
717 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
718 
719 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
720 		printk(KERN_WARNING
721 		       "NILFS warning: mounting fs with errors\n");
722 #if 0
723 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
724 		printk(KERN_WARNING
725 		       "NILFS warning: maximal mount count reached\n");
726 #endif
727 	}
728 	if (!max_mnt_count)
729 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
730 
731 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
732 	sbp[0]->s_state =
733 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
734 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
735 	/* synchronize sbp[1] with sbp[0] */
736 	memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
737 	return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
738 }
739 
740 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
741 						 u64 pos, int blocksize,
742 						 struct buffer_head **pbh)
743 {
744 	unsigned long long sb_index = pos;
745 	unsigned long offset;
746 
747 	offset = do_div(sb_index, blocksize);
748 	*pbh = sb_bread(sb, sb_index);
749 	if (!*pbh)
750 		return NULL;
751 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
752 }
753 
754 int nilfs_store_magic_and_option(struct super_block *sb,
755 				 struct nilfs_super_block *sbp,
756 				 char *data)
757 {
758 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
759 
760 	sb->s_magic = le16_to_cpu(sbp->s_magic);
761 
762 	/* FS independent flags */
763 #ifdef NILFS_ATIME_DISABLE
764 	sb->s_flags |= MS_NOATIME;
765 #endif
766 
767 	nilfs_set_default_options(sbi, sbp);
768 
769 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
770 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
771 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
772 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
773 
774 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
775 }
776 
777 int nilfs_check_feature_compatibility(struct super_block *sb,
778 				      struct nilfs_super_block *sbp)
779 {
780 	__u64 features;
781 
782 	features = le64_to_cpu(sbp->s_feature_incompat) &
783 		~NILFS_FEATURE_INCOMPAT_SUPP;
784 	if (features) {
785 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
786 		       "optional features (%llx)\n",
787 		       (unsigned long long)features);
788 		return -EINVAL;
789 	}
790 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
791 		~NILFS_FEATURE_COMPAT_RO_SUPP;
792 	if (!(sb->s_flags & MS_RDONLY) && features) {
793 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
794 		       "unsupported optional features (%llx)\n",
795 		       (unsigned long long)features);
796 		return -EINVAL;
797 	}
798 	return 0;
799 }
800 
801 /**
802  * nilfs_fill_super() - initialize a super block instance
803  * @sb: super_block
804  * @data: mount options
805  * @silent: silent mode flag
806  * @nilfs: the_nilfs struct
807  *
808  * This function is called exclusively by nilfs->ns_mount_mutex.
809  * So, the recovery process is protected from other simultaneous mounts.
810  */
811 static int
812 nilfs_fill_super(struct super_block *sb, void *data, int silent,
813 		 struct the_nilfs *nilfs)
814 {
815 	struct nilfs_sb_info *sbi;
816 	struct inode *root;
817 	__u64 cno;
818 	int err;
819 
820 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
821 	if (!sbi)
822 		return -ENOMEM;
823 
824 	sb->s_fs_info = sbi;
825 
826 	get_nilfs(nilfs);
827 	sbi->s_nilfs = nilfs;
828 	sbi->s_super = sb;
829 	atomic_set(&sbi->s_count, 1);
830 
831 	err = init_nilfs(nilfs, sbi, (char *)data);
832 	if (err)
833 		goto failed_sbi;
834 
835 	spin_lock_init(&sbi->s_inode_lock);
836 	INIT_LIST_HEAD(&sbi->s_dirty_files);
837 	INIT_LIST_HEAD(&sbi->s_list);
838 
839 	/*
840 	 * Following initialization is overlapped because
841 	 * nilfs_sb_info structure has been cleared at the beginning.
842 	 * But we reserve them to keep our interest and make ready
843 	 * for the future change.
844 	 */
845 	get_random_bytes(&sbi->s_next_generation,
846 			 sizeof(sbi->s_next_generation));
847 	spin_lock_init(&sbi->s_next_gen_lock);
848 
849 	sb->s_op = &nilfs_sops;
850 	sb->s_export_op = &nilfs_export_ops;
851 	sb->s_root = NULL;
852 	sb->s_time_gran = 1;
853 	sb->s_bdi = nilfs->ns_bdi;
854 
855 	err = load_nilfs(nilfs, sbi);
856 	if (err)
857 		goto failed_sbi;
858 
859 	cno = nilfs_last_cno(nilfs);
860 
861 	if (sb->s_flags & MS_RDONLY) {
862 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
863 			down_read(&nilfs->ns_segctor_sem);
864 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
865 						       sbi->s_snapshot_cno);
866 			up_read(&nilfs->ns_segctor_sem);
867 			if (err < 0) {
868 				if (err == -ENOENT)
869 					err = -EINVAL;
870 				goto failed_sbi;
871 			}
872 			if (!err) {
873 				printk(KERN_ERR
874 				       "NILFS: The specified checkpoint is "
875 				       "not a snapshot "
876 				       "(checkpoint number=%llu).\n",
877 				       (unsigned long long)sbi->s_snapshot_cno);
878 				err = -EINVAL;
879 				goto failed_sbi;
880 			}
881 			cno = sbi->s_snapshot_cno;
882 		}
883 	}
884 
885 	err = nilfs_attach_checkpoint(sbi, cno);
886 	if (err) {
887 		printk(KERN_ERR "NILFS: error loading a checkpoint"
888 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
889 		goto failed_sbi;
890 	}
891 
892 	if (!(sb->s_flags & MS_RDONLY)) {
893 		err = nilfs_attach_segment_constructor(sbi);
894 		if (err)
895 			goto failed_checkpoint;
896 	}
897 
898 	root = nilfs_iget(sb, NILFS_ROOT_INO);
899 	if (IS_ERR(root)) {
900 		printk(KERN_ERR "NILFS: get root inode failed\n");
901 		err = PTR_ERR(root);
902 		goto failed_segctor;
903 	}
904 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
905 		iput(root);
906 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
907 		err = -EINVAL;
908 		goto failed_segctor;
909 	}
910 	sb->s_root = d_alloc_root(root);
911 	if (!sb->s_root) {
912 		iput(root);
913 		printk(KERN_ERR "NILFS: get root dentry failed\n");
914 		err = -ENOMEM;
915 		goto failed_segctor;
916 	}
917 
918 	if (!(sb->s_flags & MS_RDONLY)) {
919 		down_write(&nilfs->ns_sem);
920 		nilfs_setup_super(sbi);
921 		up_write(&nilfs->ns_sem);
922 	}
923 
924 	down_write(&nilfs->ns_super_sem);
925 	if (!nilfs_test_opt(sbi, SNAPSHOT))
926 		nilfs->ns_current = sbi;
927 	up_write(&nilfs->ns_super_sem);
928 
929 	return 0;
930 
931  failed_segctor:
932 	nilfs_detach_segment_constructor(sbi);
933 
934  failed_checkpoint:
935 	nilfs_detach_checkpoint(sbi);
936 
937  failed_sbi:
938 	put_nilfs(nilfs);
939 	sb->s_fs_info = NULL;
940 	nilfs_put_sbinfo(sbi);
941 	return err;
942 }
943 
944 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
945 {
946 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
947 	struct the_nilfs *nilfs = sbi->s_nilfs;
948 	unsigned long old_sb_flags;
949 	struct nilfs_mount_options old_opts;
950 	int was_snapshot, err;
951 
952 	lock_kernel();
953 
954 	down_write(&nilfs->ns_super_sem);
955 	old_sb_flags = sb->s_flags;
956 	old_opts.mount_opt = sbi->s_mount_opt;
957 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
958 	was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
959 
960 	if (!parse_options(data, sb, 1)) {
961 		err = -EINVAL;
962 		goto restore_opts;
963 	}
964 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
965 
966 	err = -EINVAL;
967 	if (was_snapshot && !(*flags & MS_RDONLY)) {
968 		printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
969 		       "read/write.\n", sb->s_id);
970 		goto restore_opts;
971 	}
972 
973 	if (!nilfs_valid_fs(nilfs)) {
974 		printk(KERN_WARNING "NILFS (device %s): couldn't "
975 		       "remount because the filesystem is in an "
976 		       "incomplete recovery state.\n", sb->s_id);
977 		goto restore_opts;
978 	}
979 
980 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
981 		goto out;
982 	if (*flags & MS_RDONLY) {
983 		/* Shutting down the segment constructor */
984 		nilfs_detach_segment_constructor(sbi);
985 		sb->s_flags |= MS_RDONLY;
986 
987 		/*
988 		 * Remounting a valid RW partition RDONLY, so set
989 		 * the RDONLY flag and then mark the partition as valid again.
990 		 */
991 		down_write(&nilfs->ns_sem);
992 		nilfs_cleanup_super(sbi);
993 		up_write(&nilfs->ns_sem);
994 	} else {
995 		__u64 features;
996 
997 		/*
998 		 * Mounting a RDONLY partition read-write, so reread and
999 		 * store the current valid flag.  (It may have been changed
1000 		 * by fsck since we originally mounted the partition.)
1001 		 */
1002 		down_read(&nilfs->ns_sem);
1003 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1004 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1005 		up_read(&nilfs->ns_sem);
1006 		if (features) {
1007 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1008 			       "remount RDWR because of unsupported optional "
1009 			       "features (%llx)\n",
1010 			       sb->s_id, (unsigned long long)features);
1011 			err = -EROFS;
1012 			goto restore_opts;
1013 		}
1014 
1015 		sb->s_flags &= ~MS_RDONLY;
1016 
1017 		err = nilfs_attach_segment_constructor(sbi);
1018 		if (err)
1019 			goto restore_opts;
1020 
1021 		down_write(&nilfs->ns_sem);
1022 		nilfs_setup_super(sbi);
1023 		up_write(&nilfs->ns_sem);
1024 	}
1025  out:
1026 	up_write(&nilfs->ns_super_sem);
1027 	unlock_kernel();
1028 	return 0;
1029 
1030  restore_opts:
1031 	sb->s_flags = old_sb_flags;
1032 	sbi->s_mount_opt = old_opts.mount_opt;
1033 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1034 	up_write(&nilfs->ns_super_sem);
1035 	unlock_kernel();
1036 	return err;
1037 }
1038 
1039 struct nilfs_super_data {
1040 	struct block_device *bdev;
1041 	struct nilfs_sb_info *sbi;
1042 	__u64 cno;
1043 	int flags;
1044 };
1045 
1046 /**
1047  * nilfs_identify - pre-read mount options needed to identify mount instance
1048  * @data: mount options
1049  * @sd: nilfs_super_data
1050  */
1051 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1052 {
1053 	char *p, *options = data;
1054 	substring_t args[MAX_OPT_ARGS];
1055 	int option, token;
1056 	int ret = 0;
1057 
1058 	do {
1059 		p = strsep(&options, ",");
1060 		if (p != NULL && *p) {
1061 			token = match_token(p, tokens, args);
1062 			if (token == Opt_snapshot) {
1063 				if (!(sd->flags & MS_RDONLY))
1064 					ret++;
1065 				else {
1066 					ret = match_int(&args[0], &option);
1067 					if (!ret) {
1068 						if (option > 0)
1069 							sd->cno = option;
1070 						else
1071 							ret++;
1072 					}
1073 				}
1074 			}
1075 			if (ret)
1076 				printk(KERN_ERR
1077 				       "NILFS: invalid mount option: %s\n", p);
1078 		}
1079 		if (!options)
1080 			break;
1081 		BUG_ON(options == data);
1082 		*(options - 1) = ',';
1083 	} while (!ret);
1084 	return ret;
1085 }
1086 
1087 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1088 {
1089 	struct nilfs_super_data *sd = data;
1090 
1091 	s->s_bdev = sd->bdev;
1092 	s->s_dev = s->s_bdev->bd_dev;
1093 	return 0;
1094 }
1095 
1096 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1097 {
1098 	struct nilfs_super_data *sd = data;
1099 
1100 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1101 }
1102 
1103 static int
1104 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1105 	     const char *dev_name, void *data, struct vfsmount *mnt)
1106 {
1107 	struct nilfs_super_data sd;
1108 	struct super_block *s;
1109 	fmode_t mode = FMODE_READ;
1110 	struct the_nilfs *nilfs;
1111 	int err, need_to_close = 1;
1112 
1113 	if (!(flags & MS_RDONLY))
1114 		mode |= FMODE_WRITE;
1115 
1116 	sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1117 	if (IS_ERR(sd.bdev))
1118 		return PTR_ERR(sd.bdev);
1119 
1120 	/*
1121 	 * To get mount instance using sget() vfs-routine, NILFS needs
1122 	 * much more information than normal filesystems to identify mount
1123 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1124 	 * or rw-mount) but also a checkpoint number is required.
1125 	 */
1126 	sd.cno = 0;
1127 	sd.flags = flags;
1128 	if (nilfs_identify((char *)data, &sd)) {
1129 		err = -EINVAL;
1130 		goto failed;
1131 	}
1132 
1133 	nilfs = find_or_create_nilfs(sd.bdev);
1134 	if (!nilfs) {
1135 		err = -ENOMEM;
1136 		goto failed;
1137 	}
1138 
1139 	mutex_lock(&nilfs->ns_mount_mutex);
1140 
1141 	if (!sd.cno) {
1142 		/*
1143 		 * Check if an exclusive mount exists or not.
1144 		 * Snapshot mounts coexist with a current mount
1145 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1146 		 * ro-mount are mutually exclusive.
1147 		 */
1148 		down_read(&nilfs->ns_super_sem);
1149 		if (nilfs->ns_current &&
1150 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1151 		     & MS_RDONLY)) {
1152 			up_read(&nilfs->ns_super_sem);
1153 			err = -EBUSY;
1154 			goto failed_unlock;
1155 		}
1156 		up_read(&nilfs->ns_super_sem);
1157 	}
1158 
1159 	/*
1160 	 * Find existing nilfs_sb_info struct
1161 	 */
1162 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1163 
1164 	/*
1165 	 * Get super block instance holding the nilfs_sb_info struct.
1166 	 * A new instance is allocated if no existing mount is present or
1167 	 * existing instance has been unmounted.
1168 	 */
1169 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1170 	if (sd.sbi)
1171 		nilfs_put_sbinfo(sd.sbi);
1172 
1173 	if (IS_ERR(s)) {
1174 		err = PTR_ERR(s);
1175 		goto failed_unlock;
1176 	}
1177 
1178 	if (!s->s_root) {
1179 		char b[BDEVNAME_SIZE];
1180 
1181 		/* New superblock instance created */
1182 		s->s_flags = flags;
1183 		s->s_mode = mode;
1184 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1185 		sb_set_blocksize(s, block_size(sd.bdev));
1186 
1187 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1188 				       nilfs);
1189 		if (err)
1190 			goto cancel_new;
1191 
1192 		s->s_flags |= MS_ACTIVE;
1193 		need_to_close = 0;
1194 	}
1195 
1196 	mutex_unlock(&nilfs->ns_mount_mutex);
1197 	put_nilfs(nilfs);
1198 	if (need_to_close)
1199 		close_bdev_exclusive(sd.bdev, mode);
1200 	simple_set_mnt(mnt, s);
1201 	return 0;
1202 
1203  failed_unlock:
1204 	mutex_unlock(&nilfs->ns_mount_mutex);
1205 	put_nilfs(nilfs);
1206  failed:
1207 	close_bdev_exclusive(sd.bdev, mode);
1208 
1209 	return err;
1210 
1211  cancel_new:
1212 	/* Abandoning the newly allocated superblock */
1213 	mutex_unlock(&nilfs->ns_mount_mutex);
1214 	put_nilfs(nilfs);
1215 	deactivate_locked_super(s);
1216 	/*
1217 	 * deactivate_locked_super() invokes close_bdev_exclusive().
1218 	 * We must finish all post-cleaning before this call;
1219 	 * put_nilfs() needs the block device.
1220 	 */
1221 	return err;
1222 }
1223 
1224 struct file_system_type nilfs_fs_type = {
1225 	.owner    = THIS_MODULE,
1226 	.name     = "nilfs2",
1227 	.get_sb   = nilfs_get_sb,
1228 	.kill_sb  = kill_block_super,
1229 	.fs_flags = FS_REQUIRES_DEV,
1230 };
1231 
1232 static void nilfs_inode_init_once(void *obj)
1233 {
1234 	struct nilfs_inode_info *ii = obj;
1235 
1236 	INIT_LIST_HEAD(&ii->i_dirty);
1237 #ifdef CONFIG_NILFS_XATTR
1238 	init_rwsem(&ii->xattr_sem);
1239 #endif
1240 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1241 	ii->i_bmap = &ii->i_bmap_data;
1242 	inode_init_once(&ii->vfs_inode);
1243 }
1244 
1245 static void nilfs_segbuf_init_once(void *obj)
1246 {
1247 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1248 }
1249 
1250 static void nilfs_destroy_cachep(void)
1251 {
1252 	if (nilfs_inode_cachep)
1253 		kmem_cache_destroy(nilfs_inode_cachep);
1254 	if (nilfs_transaction_cachep)
1255 		kmem_cache_destroy(nilfs_transaction_cachep);
1256 	if (nilfs_segbuf_cachep)
1257 		kmem_cache_destroy(nilfs_segbuf_cachep);
1258 	if (nilfs_btree_path_cache)
1259 		kmem_cache_destroy(nilfs_btree_path_cache);
1260 }
1261 
1262 static int __init nilfs_init_cachep(void)
1263 {
1264 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1265 			sizeof(struct nilfs_inode_info), 0,
1266 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1267 	if (!nilfs_inode_cachep)
1268 		goto fail;
1269 
1270 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1271 			sizeof(struct nilfs_transaction_info), 0,
1272 			SLAB_RECLAIM_ACCOUNT, NULL);
1273 	if (!nilfs_transaction_cachep)
1274 		goto fail;
1275 
1276 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1277 			sizeof(struct nilfs_segment_buffer), 0,
1278 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1279 	if (!nilfs_segbuf_cachep)
1280 		goto fail;
1281 
1282 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1283 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1284 			0, 0, NULL);
1285 	if (!nilfs_btree_path_cache)
1286 		goto fail;
1287 
1288 	return 0;
1289 
1290 fail:
1291 	nilfs_destroy_cachep();
1292 	return -ENOMEM;
1293 }
1294 
1295 static int __init init_nilfs_fs(void)
1296 {
1297 	int err;
1298 
1299 	err = nilfs_init_cachep();
1300 	if (err)
1301 		goto fail;
1302 
1303 	err = register_filesystem(&nilfs_fs_type);
1304 	if (err)
1305 		goto free_cachep;
1306 
1307 	printk(KERN_INFO "NILFS version 2 loaded\n");
1308 	return 0;
1309 
1310 free_cachep:
1311 	nilfs_destroy_cachep();
1312 fail:
1313 	return err;
1314 }
1315 
1316 static void __exit exit_nilfs_fs(void)
1317 {
1318 	nilfs_destroy_cachep();
1319 	unregister_filesystem(&nilfs_fs_type);
1320 }
1321 
1322 module_init(init_nilfs_fs)
1323 module_exit(exit_nilfs_fs)
1324