xref: /linux/fs/nilfs2/super.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
62 
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 		   "(NILFS)");
66 MODULE_LICENSE("GPL");
67 
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 /**
72  * nilfs_error() - report failure condition on a filesystem
73  *
74  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
75  * reporting an error message.  It should be called when NILFS detects
76  * incoherences or defects of meta data on disk.  As for sustainable
77  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
78  * function should be used instead.
79  *
80  * The segment constructor must not call this function because it can
81  * kill itself.
82  */
83 void nilfs_error(struct super_block *sb, const char *function,
84 		 const char *fmt, ...)
85 {
86 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
87 	va_list args;
88 
89 	va_start(args, fmt);
90 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
91 	vprintk(fmt, args);
92 	printk("\n");
93 	va_end(args);
94 
95 	if (!(sb->s_flags & MS_RDONLY)) {
96 		struct the_nilfs *nilfs = sbi->s_nilfs;
97 
98 		if (!nilfs_test_opt(sbi, ERRORS_CONT))
99 			nilfs_detach_segment_constructor(sbi);
100 
101 		down_write(&nilfs->ns_sem);
102 		if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
103 			nilfs->ns_mount_state |= NILFS_ERROR_FS;
104 			nilfs->ns_sbp[0]->s_state |=
105 				cpu_to_le16(NILFS_ERROR_FS);
106 			nilfs_commit_super(sbi, 1);
107 		}
108 		up_write(&nilfs->ns_sem);
109 
110 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
111 			printk(KERN_CRIT "Remounting filesystem read-only\n");
112 			sb->s_flags |= MS_RDONLY;
113 		}
114 	}
115 
116 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
117 		panic("NILFS (device %s): panic forced after error\n",
118 		      sb->s_id);
119 }
120 
121 void nilfs_warning(struct super_block *sb, const char *function,
122 		   const char *fmt, ...)
123 {
124 	va_list args;
125 
126 	va_start(args, fmt);
127 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
128 	       sb->s_id, function);
129 	vprintk(fmt, args);
130 	printk("\n");
131 	va_end(args);
132 }
133 
134 static struct kmem_cache *nilfs_inode_cachep;
135 
136 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
137 {
138 	struct nilfs_inode_info *ii;
139 
140 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
141 	if (!ii)
142 		return NULL;
143 	ii->i_bh = NULL;
144 	ii->i_state = 0;
145 	ii->vfs_inode.i_version = 1;
146 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
147 	return &ii->vfs_inode;
148 }
149 
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
153 }
154 
155 void nilfs_destroy_inode(struct inode *inode)
156 {
157 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
158 }
159 
160 static void init_once(void *obj)
161 {
162 	struct nilfs_inode_info *ii = obj;
163 
164 	INIT_LIST_HEAD(&ii->i_dirty);
165 #ifdef CONFIG_NILFS_XATTR
166 	init_rwsem(&ii->xattr_sem);
167 #endif
168 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
169 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
170 	inode_init_once(&ii->vfs_inode);
171 }
172 
173 static int nilfs_init_inode_cache(void)
174 {
175 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
176 					       sizeof(struct nilfs_inode_info),
177 					       0, SLAB_RECLAIM_ACCOUNT,
178 					       init_once);
179 
180 	return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
181 }
182 
183 static inline void nilfs_destroy_inode_cache(void)
184 {
185 	kmem_cache_destroy(nilfs_inode_cachep);
186 }
187 
188 static void nilfs_clear_inode(struct inode *inode)
189 {
190 	struct nilfs_inode_info *ii = NILFS_I(inode);
191 
192 	/*
193 	 * Free resources allocated in nilfs_read_inode(), here.
194 	 */
195 	BUG_ON(!list_empty(&ii->i_dirty));
196 	brelse(ii->i_bh);
197 	ii->i_bh = NULL;
198 
199 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
200 		nilfs_bmap_clear(ii->i_bmap);
201 
202 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
203 }
204 
205 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
206 {
207 	struct the_nilfs *nilfs = sbi->s_nilfs;
208 	int err;
209 	int barrier_done = 0;
210 
211 	if (nilfs_test_opt(sbi, BARRIER)) {
212 		set_buffer_ordered(nilfs->ns_sbh[0]);
213 		barrier_done = 1;
214 	}
215  retry:
216 	set_buffer_dirty(nilfs->ns_sbh[0]);
217 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
218 	if (err == -EOPNOTSUPP && barrier_done) {
219 		nilfs_warning(sbi->s_super, __func__,
220 			      "barrier-based sync failed. "
221 			      "disabling barriers\n");
222 		nilfs_clear_opt(sbi, BARRIER);
223 		barrier_done = 0;
224 		clear_buffer_ordered(nilfs->ns_sbh[0]);
225 		goto retry;
226 	}
227 	if (unlikely(err)) {
228 		printk(KERN_ERR
229 		       "NILFS: unable to write superblock (err=%d)\n", err);
230 		if (err == -EIO && nilfs->ns_sbh[1]) {
231 			nilfs_fall_back_super_block(nilfs);
232 			goto retry;
233 		}
234 	} else {
235 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
236 
237 		/*
238 		 * The latest segment becomes trailable from the position
239 		 * written in superblock.
240 		 */
241 		clear_nilfs_discontinued(nilfs);
242 
243 		/* update GC protection for recent segments */
244 		if (nilfs->ns_sbh[1]) {
245 			sbp = NULL;
246 			if (dupsb) {
247 				set_buffer_dirty(nilfs->ns_sbh[1]);
248 				if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
249 					sbp = nilfs->ns_sbp[1];
250 			}
251 		}
252 		if (sbp) {
253 			spin_lock(&nilfs->ns_last_segment_lock);
254 			nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
255 			spin_unlock(&nilfs->ns_last_segment_lock);
256 		}
257 	}
258 
259 	return err;
260 }
261 
262 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
263 {
264 	struct the_nilfs *nilfs = sbi->s_nilfs;
265 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
266 	sector_t nfreeblocks;
267 	time_t t;
268 	int err;
269 
270 	/* nilfs->sem must be locked by the caller. */
271 	if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
272 		if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
273 			nilfs_swap_super_block(nilfs);
274 		else {
275 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
276 			       sbi->s_super->s_id);
277 			return -EIO;
278 		}
279 	}
280 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
281 	if (unlikely(err)) {
282 		printk(KERN_ERR "NILFS: failed to count free blocks\n");
283 		return err;
284 	}
285 	spin_lock(&nilfs->ns_last_segment_lock);
286 	sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
287 	sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
288 	sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
289 	spin_unlock(&nilfs->ns_last_segment_lock);
290 
291 	t = get_seconds();
292 	nilfs->ns_sbwtime[0] = t;
293 	sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
294 	sbp[0]->s_wtime = cpu_to_le64(t);
295 	sbp[0]->s_sum = 0;
296 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
297 					     (unsigned char *)sbp[0],
298 					     nilfs->ns_sbsize));
299 	if (dupsb && sbp[1]) {
300 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
301 		nilfs->ns_sbwtime[1] = t;
302 	}
303 	sbi->s_super->s_dirt = 0;
304 	return nilfs_sync_super(sbi, dupsb);
305 }
306 
307 static void nilfs_put_super(struct super_block *sb)
308 {
309 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
310 	struct the_nilfs *nilfs = sbi->s_nilfs;
311 
312 	lock_kernel();
313 
314 	if (sb->s_dirt)
315 		nilfs_write_super(sb);
316 
317 	nilfs_detach_segment_constructor(sbi);
318 
319 	if (!(sb->s_flags & MS_RDONLY)) {
320 		down_write(&nilfs->ns_sem);
321 		nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
322 		nilfs_commit_super(sbi, 1);
323 		up_write(&nilfs->ns_sem);
324 	}
325 	down_write(&nilfs->ns_super_sem);
326 	if (nilfs->ns_current == sbi)
327 		nilfs->ns_current = NULL;
328 	up_write(&nilfs->ns_super_sem);
329 
330 	nilfs_detach_checkpoint(sbi);
331 	put_nilfs(sbi->s_nilfs);
332 	sbi->s_super = NULL;
333 	sb->s_fs_info = NULL;
334 	nilfs_put_sbinfo(sbi);
335 
336 	unlock_kernel();
337 }
338 
339 /**
340  * nilfs_write_super - write super block(s) of NILFS
341  * @sb: super_block
342  *
343  * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
344  * clears s_dirt.  This function is called in the section protected by
345  * lock_super().
346  *
347  * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
348  * of the struct the_nilfs.  Lock order must be as follows:
349  *
350  *   1. lock_super()
351  *   2.    down_write(&nilfs->ns_sem)
352  *
353  * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
354  * of the super block (nilfs->ns_sbp[]).
355  *
356  * In most cases, VFS functions call lock_super() before calling these
357  * methods.  So we must be careful not to bring on deadlocks when using
358  * lock_super();  see generic_shutdown_super(), write_super(), and so on.
359  *
360  * Note that order of lock_kernel() and lock_super() depends on contexts
361  * of VFS.  We should also note that lock_kernel() can be used in its
362  * protective section and only the outermost one has an effect.
363  */
364 static void nilfs_write_super(struct super_block *sb)
365 {
366 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
367 	struct the_nilfs *nilfs = sbi->s_nilfs;
368 
369 	down_write(&nilfs->ns_sem);
370 	if (!(sb->s_flags & MS_RDONLY)) {
371 		struct nilfs_super_block **sbp = nilfs->ns_sbp;
372 		u64 t = get_seconds();
373 		int dupsb;
374 
375 		if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
376 		    t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
377 			up_write(&nilfs->ns_sem);
378 			return;
379 		}
380 		dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
381 		nilfs_commit_super(sbi, dupsb);
382 	}
383 	sb->s_dirt = 0;
384 	up_write(&nilfs->ns_sem);
385 }
386 
387 static int nilfs_sync_fs(struct super_block *sb, int wait)
388 {
389 	int err = 0;
390 
391 	nilfs_write_super(sb);
392 
393 	/* This function is called when super block should be written back */
394 	if (wait)
395 		err = nilfs_construct_segment(sb);
396 	return err;
397 }
398 
399 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
400 {
401 	struct the_nilfs *nilfs = sbi->s_nilfs;
402 	struct nilfs_checkpoint *raw_cp;
403 	struct buffer_head *bh_cp;
404 	int err;
405 
406 	down_write(&nilfs->ns_super_sem);
407 	list_add(&sbi->s_list, &nilfs->ns_supers);
408 	up_write(&nilfs->ns_super_sem);
409 
410 	sbi->s_ifile = nilfs_mdt_new(
411 		nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
412 	if (!sbi->s_ifile)
413 		return -ENOMEM;
414 
415 	err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
416 	if (unlikely(err))
417 		goto failed;
418 
419 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
420 					  &bh_cp);
421 	if (unlikely(err)) {
422 		if (err == -ENOENT || err == -EINVAL) {
423 			printk(KERN_ERR
424 			       "NILFS: Invalid checkpoint "
425 			       "(checkpoint number=%llu)\n",
426 			       (unsigned long long)cno);
427 			err = -EINVAL;
428 		}
429 		goto failed;
430 	}
431 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
432 	if (unlikely(err))
433 		goto failed_bh;
434 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
435 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
436 
437 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
438 	return 0;
439 
440  failed_bh:
441 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
442  failed:
443 	nilfs_mdt_destroy(sbi->s_ifile);
444 	sbi->s_ifile = NULL;
445 
446 	down_write(&nilfs->ns_super_sem);
447 	list_del_init(&sbi->s_list);
448 	up_write(&nilfs->ns_super_sem);
449 
450 	return err;
451 }
452 
453 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
454 {
455 	struct the_nilfs *nilfs = sbi->s_nilfs;
456 
457 	nilfs_mdt_clear(sbi->s_ifile);
458 	nilfs_mdt_destroy(sbi->s_ifile);
459 	sbi->s_ifile = NULL;
460 	down_write(&nilfs->ns_super_sem);
461 	list_del_init(&sbi->s_list);
462 	up_write(&nilfs->ns_super_sem);
463 }
464 
465 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
466 {
467 	struct the_nilfs *nilfs = sbi->s_nilfs;
468 	int err = 0;
469 
470 	down_write(&nilfs->ns_sem);
471 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
472 		nilfs->ns_mount_state |= NILFS_VALID_FS;
473 		err = nilfs_commit_super(sbi, 1);
474 		if (likely(!err))
475 			printk(KERN_INFO "NILFS: recovery complete.\n");
476 	}
477 	up_write(&nilfs->ns_sem);
478 	return err;
479 }
480 
481 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
482 {
483 	struct super_block *sb = dentry->d_sb;
484 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
485 	struct the_nilfs *nilfs = sbi->s_nilfs;
486 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
487 	unsigned long long blocks;
488 	unsigned long overhead;
489 	unsigned long nrsvblocks;
490 	sector_t nfreeblocks;
491 	int err;
492 
493 	/*
494 	 * Compute all of the segment blocks
495 	 *
496 	 * The blocks before first segment and after last segment
497 	 * are excluded.
498 	 */
499 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
500 		- nilfs->ns_first_data_block;
501 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
502 
503 	/*
504 	 * Compute the overhead
505 	 *
506 	 * When distributing meta data blocks outside semgent structure,
507 	 * We must count them as the overhead.
508 	 */
509 	overhead = 0;
510 
511 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
512 	if (unlikely(err))
513 		return err;
514 
515 	buf->f_type = NILFS_SUPER_MAGIC;
516 	buf->f_bsize = sb->s_blocksize;
517 	buf->f_blocks = blocks - overhead;
518 	buf->f_bfree = nfreeblocks;
519 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
520 		(buf->f_bfree - nrsvblocks) : 0;
521 	buf->f_files = atomic_read(&sbi->s_inodes_count);
522 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
523 	buf->f_namelen = NILFS_NAME_LEN;
524 	buf->f_fsid.val[0] = (u32)id;
525 	buf->f_fsid.val[1] = (u32)(id >> 32);
526 
527 	return 0;
528 }
529 
530 static struct super_operations nilfs_sops = {
531 	.alloc_inode    = nilfs_alloc_inode,
532 	.destroy_inode  = nilfs_destroy_inode,
533 	.dirty_inode    = nilfs_dirty_inode,
534 	/* .write_inode    = nilfs_write_inode, */
535 	/* .put_inode      = nilfs_put_inode, */
536 	/* .drop_inode	  = nilfs_drop_inode, */
537 	.delete_inode   = nilfs_delete_inode,
538 	.put_super      = nilfs_put_super,
539 	.write_super    = nilfs_write_super,
540 	.sync_fs        = nilfs_sync_fs,
541 	/* .write_super_lockfs */
542 	/* .unlockfs */
543 	.statfs         = nilfs_statfs,
544 	.remount_fs     = nilfs_remount,
545 	.clear_inode    = nilfs_clear_inode,
546 	/* .umount_begin */
547 	/* .show_options */
548 };
549 
550 static struct inode *
551 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
552 {
553 	struct inode *inode;
554 
555 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
556 	    ino != NILFS_SKETCH_INO)
557 		return ERR_PTR(-ESTALE);
558 
559 	inode = nilfs_iget(sb, ino);
560 	if (IS_ERR(inode))
561 		return ERR_CAST(inode);
562 	if (generation && inode->i_generation != generation) {
563 		iput(inode);
564 		return ERR_PTR(-ESTALE);
565 	}
566 
567 	return inode;
568 }
569 
570 static struct dentry *
571 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
572 		   int fh_type)
573 {
574 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
575 				    nilfs_nfs_get_inode);
576 }
577 
578 static struct dentry *
579 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
580 		   int fh_type)
581 {
582 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
583 				    nilfs_nfs_get_inode);
584 }
585 
586 static struct export_operations nilfs_export_ops = {
587 	.fh_to_dentry = nilfs_fh_to_dentry,
588 	.fh_to_parent = nilfs_fh_to_parent,
589 	.get_parent = nilfs_get_parent,
590 };
591 
592 enum {
593 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
594 	Opt_barrier, Opt_snapshot, Opt_order,
595 	Opt_err,
596 };
597 
598 static match_table_t tokens = {
599 	{Opt_err_cont, "errors=continue"},
600 	{Opt_err_panic, "errors=panic"},
601 	{Opt_err_ro, "errors=remount-ro"},
602 	{Opt_barrier, "barrier=%s"},
603 	{Opt_snapshot, "cp=%u"},
604 	{Opt_order, "order=%s"},
605 	{Opt_err, NULL}
606 };
607 
608 static int match_bool(substring_t *s, int *result)
609 {
610 	int len = s->to - s->from;
611 
612 	if (strncmp(s->from, "on", len) == 0)
613 		*result = 1;
614 	else if (strncmp(s->from, "off", len) == 0)
615 		*result = 0;
616 	else
617 		return 1;
618 	return 0;
619 }
620 
621 static int parse_options(char *options, struct super_block *sb)
622 {
623 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
624 	char *p;
625 	substring_t args[MAX_OPT_ARGS];
626 	int option;
627 
628 	if (!options)
629 		return 1;
630 
631 	while ((p = strsep(&options, ",")) != NULL) {
632 		int token;
633 		if (!*p)
634 			continue;
635 
636 		token = match_token(p, tokens, args);
637 		switch (token) {
638 		case Opt_barrier:
639 			if (match_bool(&args[0], &option))
640 				return 0;
641 			if (option)
642 				nilfs_set_opt(sbi, BARRIER);
643 			else
644 				nilfs_clear_opt(sbi, BARRIER);
645 			break;
646 		case Opt_order:
647 			if (strcmp(args[0].from, "relaxed") == 0)
648 				/* Ordered data semantics */
649 				nilfs_clear_opt(sbi, STRICT_ORDER);
650 			else if (strcmp(args[0].from, "strict") == 0)
651 				/* Strict in-order semantics */
652 				nilfs_set_opt(sbi, STRICT_ORDER);
653 			else
654 				return 0;
655 			break;
656 		case Opt_err_panic:
657 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
658 			break;
659 		case Opt_err_ro:
660 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
661 			break;
662 		case Opt_err_cont:
663 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
664 			break;
665 		case Opt_snapshot:
666 			if (match_int(&args[0], &option) || option <= 0)
667 				return 0;
668 			if (!(sb->s_flags & MS_RDONLY))
669 				return 0;
670 			sbi->s_snapshot_cno = option;
671 			nilfs_set_opt(sbi, SNAPSHOT);
672 			break;
673 		default:
674 			printk(KERN_ERR
675 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
676 			return 0;
677 		}
678 	}
679 	return 1;
680 }
681 
682 static inline void
683 nilfs_set_default_options(struct nilfs_sb_info *sbi,
684 			  struct nilfs_super_block *sbp)
685 {
686 	sbi->s_mount_opt =
687 		NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
688 }
689 
690 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
691 {
692 	struct the_nilfs *nilfs = sbi->s_nilfs;
693 	struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
694 	int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
695 	int mnt_count = le16_to_cpu(sbp->s_mnt_count);
696 
697 	/* nilfs->sem must be locked by the caller. */
698 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
699 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
700 	} else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
701 		printk(KERN_WARNING
702 		       "NILFS warning: mounting fs with errors\n");
703 #if 0
704 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
705 		printk(KERN_WARNING
706 		       "NILFS warning: maximal mount count reached\n");
707 #endif
708 	}
709 	if (!max_mnt_count)
710 		sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
711 
712 	sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
713 	sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
714 	sbp->s_mtime = cpu_to_le64(get_seconds());
715 	return nilfs_commit_super(sbi, 1);
716 }
717 
718 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
719 						 u64 pos, int blocksize,
720 						 struct buffer_head **pbh)
721 {
722 	unsigned long long sb_index = pos;
723 	unsigned long offset;
724 
725 	offset = do_div(sb_index, blocksize);
726 	*pbh = sb_bread(sb, sb_index);
727 	if (!*pbh)
728 		return NULL;
729 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
730 }
731 
732 int nilfs_store_magic_and_option(struct super_block *sb,
733 				 struct nilfs_super_block *sbp,
734 				 char *data)
735 {
736 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
737 
738 	sb->s_magic = le16_to_cpu(sbp->s_magic);
739 
740 	/* FS independent flags */
741 #ifdef NILFS_ATIME_DISABLE
742 	sb->s_flags |= MS_NOATIME;
743 #endif
744 
745 	nilfs_set_default_options(sbi, sbp);
746 
747 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
748 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
749 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
750 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
751 
752 	return !parse_options(data, sb) ? -EINVAL : 0 ;
753 }
754 
755 /**
756  * nilfs_fill_super() - initialize a super block instance
757  * @sb: super_block
758  * @data: mount options
759  * @silent: silent mode flag
760  * @nilfs: the_nilfs struct
761  *
762  * This function is called exclusively by nilfs->ns_mount_mutex.
763  * So, the recovery process is protected from other simultaneous mounts.
764  */
765 static int
766 nilfs_fill_super(struct super_block *sb, void *data, int silent,
767 		 struct the_nilfs *nilfs)
768 {
769 	struct nilfs_sb_info *sbi;
770 	struct inode *root;
771 	__u64 cno;
772 	int err;
773 
774 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
775 	if (!sbi)
776 		return -ENOMEM;
777 
778 	sb->s_fs_info = sbi;
779 
780 	get_nilfs(nilfs);
781 	sbi->s_nilfs = nilfs;
782 	sbi->s_super = sb;
783 	atomic_set(&sbi->s_count, 1);
784 
785 	err = init_nilfs(nilfs, sbi, (char *)data);
786 	if (err)
787 		goto failed_sbi;
788 
789 	spin_lock_init(&sbi->s_inode_lock);
790 	INIT_LIST_HEAD(&sbi->s_dirty_files);
791 	INIT_LIST_HEAD(&sbi->s_list);
792 
793 	/*
794 	 * Following initialization is overlapped because
795 	 * nilfs_sb_info structure has been cleared at the beginning.
796 	 * But we reserve them to keep our interest and make ready
797 	 * for the future change.
798 	 */
799 	get_random_bytes(&sbi->s_next_generation,
800 			 sizeof(sbi->s_next_generation));
801 	spin_lock_init(&sbi->s_next_gen_lock);
802 
803 	sb->s_op = &nilfs_sops;
804 	sb->s_export_op = &nilfs_export_ops;
805 	sb->s_root = NULL;
806 	sb->s_time_gran = 1;
807 
808 	if (!nilfs_loaded(nilfs)) {
809 		err = load_nilfs(nilfs, sbi);
810 		if (err)
811 			goto failed_sbi;
812 	}
813 	cno = nilfs_last_cno(nilfs);
814 
815 	if (sb->s_flags & MS_RDONLY) {
816 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
817 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
818 						       sbi->s_snapshot_cno);
819 			if (err < 0)
820 				goto failed_sbi;
821 			if (!err) {
822 				printk(KERN_ERR
823 				       "NILFS: The specified checkpoint is "
824 				       "not a snapshot "
825 				       "(checkpoint number=%llu).\n",
826 				       (unsigned long long)sbi->s_snapshot_cno);
827 				err = -EINVAL;
828 				goto failed_sbi;
829 			}
830 			cno = sbi->s_snapshot_cno;
831 		} else
832 			/* Read-only mount */
833 			sbi->s_snapshot_cno = cno;
834 	}
835 
836 	err = nilfs_attach_checkpoint(sbi, cno);
837 	if (err) {
838 		printk(KERN_ERR "NILFS: error loading a checkpoint"
839 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
840 		goto failed_sbi;
841 	}
842 
843 	if (!(sb->s_flags & MS_RDONLY)) {
844 		err = nilfs_attach_segment_constructor(sbi);
845 		if (err)
846 			goto failed_checkpoint;
847 	}
848 
849 	root = nilfs_iget(sb, NILFS_ROOT_INO);
850 	if (IS_ERR(root)) {
851 		printk(KERN_ERR "NILFS: get root inode failed\n");
852 		err = PTR_ERR(root);
853 		goto failed_segctor;
854 	}
855 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
856 		iput(root);
857 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
858 		err = -EINVAL;
859 		goto failed_segctor;
860 	}
861 	sb->s_root = d_alloc_root(root);
862 	if (!sb->s_root) {
863 		iput(root);
864 		printk(KERN_ERR "NILFS: get root dentry failed\n");
865 		err = -ENOMEM;
866 		goto failed_segctor;
867 	}
868 
869 	if (!(sb->s_flags & MS_RDONLY)) {
870 		down_write(&nilfs->ns_sem);
871 		nilfs_setup_super(sbi);
872 		up_write(&nilfs->ns_sem);
873 	}
874 
875 	err = nilfs_mark_recovery_complete(sbi);
876 	if (unlikely(err)) {
877 		printk(KERN_ERR "NILFS: recovery failed.\n");
878 		goto failed_root;
879 	}
880 
881 	down_write(&nilfs->ns_super_sem);
882 	if (!nilfs_test_opt(sbi, SNAPSHOT))
883 		nilfs->ns_current = sbi;
884 	up_write(&nilfs->ns_super_sem);
885 
886 	return 0;
887 
888  failed_root:
889 	dput(sb->s_root);
890 	sb->s_root = NULL;
891 
892  failed_segctor:
893 	nilfs_detach_segment_constructor(sbi);
894 
895  failed_checkpoint:
896 	nilfs_detach_checkpoint(sbi);
897 
898  failed_sbi:
899 	put_nilfs(nilfs);
900 	sb->s_fs_info = NULL;
901 	nilfs_put_sbinfo(sbi);
902 	return err;
903 }
904 
905 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
906 {
907 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
908 	struct nilfs_super_block *sbp;
909 	struct the_nilfs *nilfs = sbi->s_nilfs;
910 	unsigned long old_sb_flags;
911 	struct nilfs_mount_options old_opts;
912 	int err;
913 
914 	lock_kernel();
915 
916 	down_write(&nilfs->ns_super_sem);
917 	old_sb_flags = sb->s_flags;
918 	old_opts.mount_opt = sbi->s_mount_opt;
919 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
920 
921 	if (!parse_options(data, sb)) {
922 		err = -EINVAL;
923 		goto restore_opts;
924 	}
925 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
926 
927 	if ((*flags & MS_RDONLY) &&
928 	    sbi->s_snapshot_cno != old_opts.snapshot_cno) {
929 		printk(KERN_WARNING "NILFS (device %s): couldn't "
930 		       "remount to a different snapshot. \n",
931 		       sb->s_id);
932 		err = -EINVAL;
933 		goto restore_opts;
934 	}
935 
936 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
937 		goto out;
938 	if (*flags & MS_RDONLY) {
939 		/* Shutting down the segment constructor */
940 		nilfs_detach_segment_constructor(sbi);
941 		sb->s_flags |= MS_RDONLY;
942 
943 		sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
944 		/* nilfs_set_opt(sbi, SNAPSHOT); */
945 
946 		/*
947 		 * Remounting a valid RW partition RDONLY, so set
948 		 * the RDONLY flag and then mark the partition as valid again.
949 		 */
950 		down_write(&nilfs->ns_sem);
951 		sbp = nilfs->ns_sbp[0];
952 		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
953 		    (nilfs->ns_mount_state & NILFS_VALID_FS))
954 			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
955 		sbp->s_mtime = cpu_to_le64(get_seconds());
956 		nilfs_commit_super(sbi, 1);
957 		up_write(&nilfs->ns_sem);
958 	} else {
959 		/*
960 		 * Mounting a RDONLY partition read-write, so reread and
961 		 * store the current valid flag.  (It may have been changed
962 		 * by fsck since we originally mounted the partition.)
963 		 */
964 		if (nilfs->ns_current && nilfs->ns_current != sbi) {
965 			printk(KERN_WARNING "NILFS (device %s): couldn't "
966 			       "remount because an RW-mount exists.\n",
967 			       sb->s_id);
968 			err = -EBUSY;
969 			goto restore_opts;
970 		}
971 		if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
972 			printk(KERN_WARNING "NILFS (device %s): couldn't "
973 			       "remount because the current RO-mount is not "
974 			       "the latest one.\n",
975 			       sb->s_id);
976 			err = -EINVAL;
977 			goto restore_opts;
978 		}
979 		sb->s_flags &= ~MS_RDONLY;
980 		nilfs_clear_opt(sbi, SNAPSHOT);
981 		sbi->s_snapshot_cno = 0;
982 
983 		err = nilfs_attach_segment_constructor(sbi);
984 		if (err)
985 			goto restore_opts;
986 
987 		down_write(&nilfs->ns_sem);
988 		nilfs_setup_super(sbi);
989 		up_write(&nilfs->ns_sem);
990 
991 		nilfs->ns_current = sbi;
992 	}
993  out:
994 	up_write(&nilfs->ns_super_sem);
995 	unlock_kernel();
996 	return 0;
997 
998  restore_opts:
999 	sb->s_flags = old_sb_flags;
1000 	sbi->s_mount_opt = old_opts.mount_opt;
1001 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1002 	up_write(&nilfs->ns_super_sem);
1003 	unlock_kernel();
1004 	return err;
1005 }
1006 
1007 struct nilfs_super_data {
1008 	struct block_device *bdev;
1009 	struct nilfs_sb_info *sbi;
1010 	__u64 cno;
1011 	int flags;
1012 };
1013 
1014 /**
1015  * nilfs_identify - pre-read mount options needed to identify mount instance
1016  * @data: mount options
1017  * @sd: nilfs_super_data
1018  */
1019 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1020 {
1021 	char *p, *options = data;
1022 	substring_t args[MAX_OPT_ARGS];
1023 	int option, token;
1024 	int ret = 0;
1025 
1026 	do {
1027 		p = strsep(&options, ",");
1028 		if (p != NULL && *p) {
1029 			token = match_token(p, tokens, args);
1030 			if (token == Opt_snapshot) {
1031 				if (!(sd->flags & MS_RDONLY))
1032 					ret++;
1033 				else {
1034 					ret = match_int(&args[0], &option);
1035 					if (!ret) {
1036 						if (option > 0)
1037 							sd->cno = option;
1038 						else
1039 							ret++;
1040 					}
1041 				}
1042 			}
1043 			if (ret)
1044 				printk(KERN_ERR
1045 				       "NILFS: invalid mount option: %s\n", p);
1046 		}
1047 		if (!options)
1048 			break;
1049 		BUG_ON(options == data);
1050 		*(options - 1) = ',';
1051 	} while (!ret);
1052 	return ret;
1053 }
1054 
1055 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1056 {
1057 	struct nilfs_super_data *sd = data;
1058 
1059 	s->s_bdev = sd->bdev;
1060 	s->s_dev = s->s_bdev->bd_dev;
1061 	return 0;
1062 }
1063 
1064 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1065 {
1066 	struct nilfs_super_data *sd = data;
1067 
1068 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1069 }
1070 
1071 static int
1072 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1073 	     const char *dev_name, void *data, struct vfsmount *mnt)
1074 {
1075 	struct nilfs_super_data sd;
1076 	struct super_block *s;
1077 	struct the_nilfs *nilfs;
1078 	int err, need_to_close = 1;
1079 
1080 	sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1081 	if (IS_ERR(sd.bdev))
1082 		return PTR_ERR(sd.bdev);
1083 
1084 	/*
1085 	 * To get mount instance using sget() vfs-routine, NILFS needs
1086 	 * much more information than normal filesystems to identify mount
1087 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1088 	 * or rw-mount) but also a checkpoint number is required.
1089 	 */
1090 	sd.cno = 0;
1091 	sd.flags = flags;
1092 	if (nilfs_identify((char *)data, &sd)) {
1093 		err = -EINVAL;
1094 		goto failed;
1095 	}
1096 
1097 	nilfs = find_or_create_nilfs(sd.bdev);
1098 	if (!nilfs) {
1099 		err = -ENOMEM;
1100 		goto failed;
1101 	}
1102 
1103 	mutex_lock(&nilfs->ns_mount_mutex);
1104 
1105 	if (!sd.cno) {
1106 		/*
1107 		 * Check if an exclusive mount exists or not.
1108 		 * Snapshot mounts coexist with a current mount
1109 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1110 		 * ro-mount are mutually exclusive.
1111 		 */
1112 		down_read(&nilfs->ns_super_sem);
1113 		if (nilfs->ns_current &&
1114 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1115 		     & MS_RDONLY)) {
1116 			up_read(&nilfs->ns_super_sem);
1117 			err = -EBUSY;
1118 			goto failed_unlock;
1119 		}
1120 		up_read(&nilfs->ns_super_sem);
1121 	}
1122 
1123 	/*
1124 	 * Find existing nilfs_sb_info struct
1125 	 */
1126 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1127 
1128 	if (!sd.cno)
1129 		/* trying to get the latest checkpoint.  */
1130 		sd.cno = nilfs_last_cno(nilfs);
1131 
1132 	/*
1133 	 * Get super block instance holding the nilfs_sb_info struct.
1134 	 * A new instance is allocated if no existing mount is present or
1135 	 * existing instance has been unmounted.
1136 	 */
1137 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1138 	if (sd.sbi)
1139 		nilfs_put_sbinfo(sd.sbi);
1140 
1141 	if (IS_ERR(s)) {
1142 		err = PTR_ERR(s);
1143 		goto failed_unlock;
1144 	}
1145 
1146 	if (!s->s_root) {
1147 		char b[BDEVNAME_SIZE];
1148 
1149 		/* New superblock instance created */
1150 		s->s_flags = flags;
1151 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1152 		sb_set_blocksize(s, block_size(sd.bdev));
1153 
1154 		err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1155 		if (err)
1156 			goto cancel_new;
1157 
1158 		s->s_flags |= MS_ACTIVE;
1159 		need_to_close = 0;
1160 	}
1161 
1162 	mutex_unlock(&nilfs->ns_mount_mutex);
1163 	put_nilfs(nilfs);
1164 	if (need_to_close)
1165 		close_bdev_exclusive(sd.bdev, flags);
1166 	simple_set_mnt(mnt, s);
1167 	return 0;
1168 
1169  failed_unlock:
1170 	mutex_unlock(&nilfs->ns_mount_mutex);
1171 	put_nilfs(nilfs);
1172  failed:
1173 	close_bdev_exclusive(sd.bdev, flags);
1174 
1175 	return err;
1176 
1177  cancel_new:
1178 	/* Abandoning the newly allocated superblock */
1179 	mutex_unlock(&nilfs->ns_mount_mutex);
1180 	put_nilfs(nilfs);
1181 	up_write(&s->s_umount);
1182 	deactivate_super(s);
1183 	/*
1184 	 * deactivate_super() invokes close_bdev_exclusive().
1185 	 * We must finish all post-cleaning before this call;
1186 	 * put_nilfs() needs the block device.
1187 	 */
1188 	return err;
1189 }
1190 
1191 struct file_system_type nilfs_fs_type = {
1192 	.owner    = THIS_MODULE,
1193 	.name     = "nilfs2",
1194 	.get_sb   = nilfs_get_sb,
1195 	.kill_sb  = kill_block_super,
1196 	.fs_flags = FS_REQUIRES_DEV,
1197 };
1198 
1199 static int __init init_nilfs_fs(void)
1200 {
1201 	int err;
1202 
1203 	err = nilfs_init_inode_cache();
1204 	if (err)
1205 		goto failed;
1206 
1207 	err = nilfs_init_transaction_cache();
1208 	if (err)
1209 		goto failed_inode_cache;
1210 
1211 	err = nilfs_init_segbuf_cache();
1212 	if (err)
1213 		goto failed_transaction_cache;
1214 
1215 	err = nilfs_btree_path_cache_init();
1216 	if (err)
1217 		goto failed_segbuf_cache;
1218 
1219 	err = register_filesystem(&nilfs_fs_type);
1220 	if (err)
1221 		goto failed_btree_path_cache;
1222 
1223 	return 0;
1224 
1225  failed_btree_path_cache:
1226 	nilfs_btree_path_cache_destroy();
1227 
1228  failed_segbuf_cache:
1229 	nilfs_destroy_segbuf_cache();
1230 
1231  failed_transaction_cache:
1232 	nilfs_destroy_transaction_cache();
1233 
1234  failed_inode_cache:
1235 	nilfs_destroy_inode_cache();
1236 
1237  failed:
1238 	return err;
1239 }
1240 
1241 static void __exit exit_nilfs_fs(void)
1242 {
1243 	nilfs_destroy_segbuf_cache();
1244 	nilfs_destroy_transaction_cache();
1245 	nilfs_destroy_inode_cache();
1246 	nilfs_btree_path_cache_destroy();
1247 	unregister_filesystem(&nilfs_fs_type);
1248 }
1249 
1250 module_init(init_nilfs_fs)
1251 module_exit(exit_nilfs_fs)
1252