xref: /linux/fs/nilfs2/super.c (revision 4246b92cf9fb32da8d8b060c92d8302797c6fbea)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35 
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60 
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 		   "(NILFS)");
64 MODULE_LICENSE("GPL");
65 
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70 
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73 
74 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
75 		 ...)
76 {
77 	struct va_format vaf;
78 	va_list args;
79 
80 	va_start(args, fmt);
81 	vaf.fmt = fmt;
82 	vaf.va = &args;
83 	if (sb)
84 		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
85 	else
86 		printk("%sNILFS: %pV\n", level, &vaf);
87 	va_end(args);
88 }
89 
90 static void nilfs_set_error(struct super_block *sb)
91 {
92 	struct the_nilfs *nilfs = sb->s_fs_info;
93 	struct nilfs_super_block **sbp;
94 
95 	down_write(&nilfs->ns_sem);
96 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
97 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
98 		sbp = nilfs_prepare_super(sb, 0);
99 		if (likely(sbp)) {
100 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101 			if (sbp[1])
102 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
103 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
104 		}
105 	}
106 	up_write(&nilfs->ns_sem);
107 }
108 
109 /**
110  * __nilfs_error() - report failure condition on a filesystem
111  *
112  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
113  * reporting an error message.  This function should be called when
114  * NILFS detects incoherences or defects of meta data on disk.
115  *
116  * This implements the body of nilfs_error() macro.  Normally,
117  * nilfs_error() should be used.  As for sustainable errors such as a
118  * single-shot I/O error, nilfs_msg() should be used instead.
119  *
120  * Callers should not add a trailing newline since this will do it.
121  */
122 void __nilfs_error(struct super_block *sb, const char *function,
123 		   const char *fmt, ...)
124 {
125 	struct the_nilfs *nilfs = sb->s_fs_info;
126 	struct va_format vaf;
127 	va_list args;
128 
129 	va_start(args, fmt);
130 
131 	vaf.fmt = fmt;
132 	vaf.va = &args;
133 
134 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
135 	       sb->s_id, function, &vaf);
136 
137 	va_end(args);
138 
139 	if (!sb_rdonly(sb)) {
140 		nilfs_set_error(sb);
141 
142 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
143 			printk(KERN_CRIT "Remounting filesystem read-only\n");
144 			sb->s_flags |= MS_RDONLY;
145 		}
146 	}
147 
148 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
149 		panic("NILFS (device %s): panic forced after error\n",
150 		      sb->s_id);
151 }
152 
153 struct inode *nilfs_alloc_inode(struct super_block *sb)
154 {
155 	struct nilfs_inode_info *ii;
156 
157 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
158 	if (!ii)
159 		return NULL;
160 	ii->i_bh = NULL;
161 	ii->i_state = 0;
162 	ii->i_cno = 0;
163 	ii->vfs_inode.i_version = 1;
164 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
165 	return &ii->vfs_inode;
166 }
167 
168 static void nilfs_i_callback(struct rcu_head *head)
169 {
170 	struct inode *inode = container_of(head, struct inode, i_rcu);
171 
172 	if (nilfs_is_metadata_file_inode(inode))
173 		nilfs_mdt_destroy(inode);
174 
175 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
176 }
177 
178 void nilfs_destroy_inode(struct inode *inode)
179 {
180 	call_rcu(&inode->i_rcu, nilfs_i_callback);
181 }
182 
183 static int nilfs_sync_super(struct super_block *sb, int flag)
184 {
185 	struct the_nilfs *nilfs = sb->s_fs_info;
186 	int err;
187 
188  retry:
189 	set_buffer_dirty(nilfs->ns_sbh[0]);
190 	if (nilfs_test_opt(nilfs, BARRIER)) {
191 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
192 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
193 	} else {
194 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
195 	}
196 
197 	if (unlikely(err)) {
198 		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
199 			  err);
200 		if (err == -EIO && nilfs->ns_sbh[1]) {
201 			/*
202 			 * sbp[0] points to newer log than sbp[1],
203 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
204 			 */
205 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
206 			       nilfs->ns_sbsize);
207 			nilfs_fall_back_super_block(nilfs);
208 			goto retry;
209 		}
210 	} else {
211 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
212 
213 		nilfs->ns_sbwcount++;
214 
215 		/*
216 		 * The latest segment becomes trailable from the position
217 		 * written in superblock.
218 		 */
219 		clear_nilfs_discontinued(nilfs);
220 
221 		/* update GC protection for recent segments */
222 		if (nilfs->ns_sbh[1]) {
223 			if (flag == NILFS_SB_COMMIT_ALL) {
224 				set_buffer_dirty(nilfs->ns_sbh[1]);
225 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
226 					goto out;
227 			}
228 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
229 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
230 				sbp = nilfs->ns_sbp[1];
231 		}
232 
233 		spin_lock(&nilfs->ns_last_segment_lock);
234 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
235 		spin_unlock(&nilfs->ns_last_segment_lock);
236 	}
237  out:
238 	return err;
239 }
240 
241 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
242 			  struct the_nilfs *nilfs)
243 {
244 	sector_t nfreeblocks;
245 
246 	/* nilfs->ns_sem must be locked by the caller. */
247 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
248 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
249 
250 	spin_lock(&nilfs->ns_last_segment_lock);
251 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
252 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
253 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
254 	spin_unlock(&nilfs->ns_last_segment_lock);
255 }
256 
257 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
258 					       int flip)
259 {
260 	struct the_nilfs *nilfs = sb->s_fs_info;
261 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
262 
263 	/* nilfs->ns_sem must be locked by the caller. */
264 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
265 		if (sbp[1] &&
266 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
267 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
268 		} else {
269 			nilfs_msg(sb, KERN_CRIT, "superblock broke");
270 			return NULL;
271 		}
272 	} else if (sbp[1] &&
273 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
275 	}
276 
277 	if (flip && sbp[1])
278 		nilfs_swap_super_block(nilfs);
279 
280 	return sbp;
281 }
282 
283 int nilfs_commit_super(struct super_block *sb, int flag)
284 {
285 	struct the_nilfs *nilfs = sb->s_fs_info;
286 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
287 	time_t t;
288 
289 	/* nilfs->ns_sem must be locked by the caller. */
290 	t = get_seconds();
291 	nilfs->ns_sbwtime = t;
292 	sbp[0]->s_wtime = cpu_to_le64(t);
293 	sbp[0]->s_sum = 0;
294 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295 					     (unsigned char *)sbp[0],
296 					     nilfs->ns_sbsize));
297 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
298 		sbp[1]->s_wtime = sbp[0]->s_wtime;
299 		sbp[1]->s_sum = 0;
300 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
301 					    (unsigned char *)sbp[1],
302 					    nilfs->ns_sbsize));
303 	}
304 	clear_nilfs_sb_dirty(nilfs);
305 	nilfs->ns_flushed_device = 1;
306 	/* make sure store to ns_flushed_device cannot be reordered */
307 	smp_wmb();
308 	return nilfs_sync_super(sb, flag);
309 }
310 
311 /**
312  * nilfs_cleanup_super() - write filesystem state for cleanup
313  * @sb: super block instance to be unmounted or degraded to read-only
314  *
315  * This function restores state flags in the on-disk super block.
316  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
317  * filesystem was not clean previously.
318  */
319 int nilfs_cleanup_super(struct super_block *sb)
320 {
321 	struct the_nilfs *nilfs = sb->s_fs_info;
322 	struct nilfs_super_block **sbp;
323 	int flag = NILFS_SB_COMMIT;
324 	int ret = -EIO;
325 
326 	sbp = nilfs_prepare_super(sb, 0);
327 	if (sbp) {
328 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
329 		nilfs_set_log_cursor(sbp[0], nilfs);
330 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
331 			/*
332 			 * make the "clean" flag also to the opposite
333 			 * super block if both super blocks point to
334 			 * the same checkpoint.
335 			 */
336 			sbp[1]->s_state = sbp[0]->s_state;
337 			flag = NILFS_SB_COMMIT_ALL;
338 		}
339 		ret = nilfs_commit_super(sb, flag);
340 	}
341 	return ret;
342 }
343 
344 /**
345  * nilfs_move_2nd_super - relocate secondary super block
346  * @sb: super block instance
347  * @sb2off: new offset of the secondary super block (in bytes)
348  */
349 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
350 {
351 	struct the_nilfs *nilfs = sb->s_fs_info;
352 	struct buffer_head *nsbh;
353 	struct nilfs_super_block *nsbp;
354 	sector_t blocknr, newblocknr;
355 	unsigned long offset;
356 	int sb2i;  /* array index of the secondary superblock */
357 	int ret = 0;
358 
359 	/* nilfs->ns_sem must be locked by the caller. */
360 	if (nilfs->ns_sbh[1] &&
361 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
362 		sb2i = 1;
363 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
364 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
365 		sb2i = 0;
366 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
367 	} else {
368 		sb2i = -1;
369 		blocknr = 0;
370 	}
371 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
372 		goto out;  /* super block location is unchanged */
373 
374 	/* Get new super block buffer */
375 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
376 	offset = sb2off & (nilfs->ns_blocksize - 1);
377 	nsbh = sb_getblk(sb, newblocknr);
378 	if (!nsbh) {
379 		nilfs_msg(sb, KERN_WARNING,
380 			  "unable to move secondary superblock to block %llu",
381 			  (unsigned long long)newblocknr);
382 		ret = -EIO;
383 		goto out;
384 	}
385 	nsbp = (void *)nsbh->b_data + offset;
386 	memset(nsbp, 0, nilfs->ns_blocksize);
387 
388 	if (sb2i >= 0) {
389 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
390 		brelse(nilfs->ns_sbh[sb2i]);
391 		nilfs->ns_sbh[sb2i] = nsbh;
392 		nilfs->ns_sbp[sb2i] = nsbp;
393 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
394 		/* secondary super block will be restored to index 1 */
395 		nilfs->ns_sbh[1] = nsbh;
396 		nilfs->ns_sbp[1] = nsbp;
397 	} else {
398 		brelse(nsbh);
399 	}
400 out:
401 	return ret;
402 }
403 
404 /**
405  * nilfs_resize_fs - resize the filesystem
406  * @sb: super block instance
407  * @newsize: new size of the filesystem (in bytes)
408  */
409 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
410 {
411 	struct the_nilfs *nilfs = sb->s_fs_info;
412 	struct nilfs_super_block **sbp;
413 	__u64 devsize, newnsegs;
414 	loff_t sb2off;
415 	int ret;
416 
417 	ret = -ERANGE;
418 	devsize = i_size_read(sb->s_bdev->bd_inode);
419 	if (newsize > devsize)
420 		goto out;
421 
422 	/*
423 	 * Write lock is required to protect some functions depending
424 	 * on the number of segments, the number of reserved segments,
425 	 * and so forth.
426 	 */
427 	down_write(&nilfs->ns_segctor_sem);
428 
429 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
430 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
431 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
432 
433 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
434 	up_write(&nilfs->ns_segctor_sem);
435 	if (ret < 0)
436 		goto out;
437 
438 	ret = nilfs_construct_segment(sb);
439 	if (ret < 0)
440 		goto out;
441 
442 	down_write(&nilfs->ns_sem);
443 	nilfs_move_2nd_super(sb, sb2off);
444 	ret = -EIO;
445 	sbp = nilfs_prepare_super(sb, 0);
446 	if (likely(sbp)) {
447 		nilfs_set_log_cursor(sbp[0], nilfs);
448 		/*
449 		 * Drop NILFS_RESIZE_FS flag for compatibility with
450 		 * mount-time resize which may be implemented in a
451 		 * future release.
452 		 */
453 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
454 					      ~NILFS_RESIZE_FS);
455 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
456 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
457 		if (sbp[1])
458 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
459 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
460 	}
461 	up_write(&nilfs->ns_sem);
462 
463 	/*
464 	 * Reset the range of allocatable segments last.  This order
465 	 * is important in the case of expansion because the secondary
466 	 * superblock must be protected from log write until migration
467 	 * completes.
468 	 */
469 	if (!ret)
470 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
471 out:
472 	return ret;
473 }
474 
475 static void nilfs_put_super(struct super_block *sb)
476 {
477 	struct the_nilfs *nilfs = sb->s_fs_info;
478 
479 	nilfs_detach_log_writer(sb);
480 
481 	if (!sb_rdonly(sb)) {
482 		down_write(&nilfs->ns_sem);
483 		nilfs_cleanup_super(sb);
484 		up_write(&nilfs->ns_sem);
485 	}
486 
487 	iput(nilfs->ns_sufile);
488 	iput(nilfs->ns_cpfile);
489 	iput(nilfs->ns_dat);
490 
491 	destroy_nilfs(nilfs);
492 	sb->s_fs_info = NULL;
493 }
494 
495 static int nilfs_sync_fs(struct super_block *sb, int wait)
496 {
497 	struct the_nilfs *nilfs = sb->s_fs_info;
498 	struct nilfs_super_block **sbp;
499 	int err = 0;
500 
501 	/* This function is called when super block should be written back */
502 	if (wait)
503 		err = nilfs_construct_segment(sb);
504 
505 	down_write(&nilfs->ns_sem);
506 	if (nilfs_sb_dirty(nilfs)) {
507 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
508 		if (likely(sbp)) {
509 			nilfs_set_log_cursor(sbp[0], nilfs);
510 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
511 		}
512 	}
513 	up_write(&nilfs->ns_sem);
514 
515 	if (!err)
516 		err = nilfs_flush_device(nilfs);
517 
518 	return err;
519 }
520 
521 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
522 			    struct nilfs_root **rootp)
523 {
524 	struct the_nilfs *nilfs = sb->s_fs_info;
525 	struct nilfs_root *root;
526 	struct nilfs_checkpoint *raw_cp;
527 	struct buffer_head *bh_cp;
528 	int err = -ENOMEM;
529 
530 	root = nilfs_find_or_create_root(
531 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
532 	if (!root)
533 		return err;
534 
535 	if (root->ifile)
536 		goto reuse; /* already attached checkpoint */
537 
538 	down_read(&nilfs->ns_segctor_sem);
539 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
540 					  &bh_cp);
541 	up_read(&nilfs->ns_segctor_sem);
542 	if (unlikely(err)) {
543 		if (err == -ENOENT || err == -EINVAL) {
544 			nilfs_msg(sb, KERN_ERR,
545 				  "Invalid checkpoint (checkpoint number=%llu)",
546 				  (unsigned long long)cno);
547 			err = -EINVAL;
548 		}
549 		goto failed;
550 	}
551 
552 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
553 			       &raw_cp->cp_ifile_inode, &root->ifile);
554 	if (err)
555 		goto failed_bh;
556 
557 	atomic64_set(&root->inodes_count,
558 			le64_to_cpu(raw_cp->cp_inodes_count));
559 	atomic64_set(&root->blocks_count,
560 			le64_to_cpu(raw_cp->cp_blocks_count));
561 
562 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
563 
564  reuse:
565 	*rootp = root;
566 	return 0;
567 
568  failed_bh:
569 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
570  failed:
571 	nilfs_put_root(root);
572 
573 	return err;
574 }
575 
576 static int nilfs_freeze(struct super_block *sb)
577 {
578 	struct the_nilfs *nilfs = sb->s_fs_info;
579 	int err;
580 
581 	if (sb_rdonly(sb))
582 		return 0;
583 
584 	/* Mark super block clean */
585 	down_write(&nilfs->ns_sem);
586 	err = nilfs_cleanup_super(sb);
587 	up_write(&nilfs->ns_sem);
588 	return err;
589 }
590 
591 static int nilfs_unfreeze(struct super_block *sb)
592 {
593 	struct the_nilfs *nilfs = sb->s_fs_info;
594 
595 	if (sb_rdonly(sb))
596 		return 0;
597 
598 	down_write(&nilfs->ns_sem);
599 	nilfs_setup_super(sb, false);
600 	up_write(&nilfs->ns_sem);
601 	return 0;
602 }
603 
604 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605 {
606 	struct super_block *sb = dentry->d_sb;
607 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
608 	struct the_nilfs *nilfs = root->nilfs;
609 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
610 	unsigned long long blocks;
611 	unsigned long overhead;
612 	unsigned long nrsvblocks;
613 	sector_t nfreeblocks;
614 	u64 nmaxinodes, nfreeinodes;
615 	int err;
616 
617 	/*
618 	 * Compute all of the segment blocks
619 	 *
620 	 * The blocks before first segment and after last segment
621 	 * are excluded.
622 	 */
623 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
624 		- nilfs->ns_first_data_block;
625 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
626 
627 	/*
628 	 * Compute the overhead
629 	 *
630 	 * When distributing meta data blocks outside segment structure,
631 	 * We must count them as the overhead.
632 	 */
633 	overhead = 0;
634 
635 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
636 	if (unlikely(err))
637 		return err;
638 
639 	err = nilfs_ifile_count_free_inodes(root->ifile,
640 					    &nmaxinodes, &nfreeinodes);
641 	if (unlikely(err)) {
642 		nilfs_msg(sb, KERN_WARNING,
643 			  "failed to count free inodes: err=%d", err);
644 		if (err == -ERANGE) {
645 			/*
646 			 * If nilfs_palloc_count_max_entries() returns
647 			 * -ERANGE error code then we simply treat
648 			 * curent inodes count as maximum possible and
649 			 * zero as free inodes value.
650 			 */
651 			nmaxinodes = atomic64_read(&root->inodes_count);
652 			nfreeinodes = 0;
653 			err = 0;
654 		} else
655 			return err;
656 	}
657 
658 	buf->f_type = NILFS_SUPER_MAGIC;
659 	buf->f_bsize = sb->s_blocksize;
660 	buf->f_blocks = blocks - overhead;
661 	buf->f_bfree = nfreeblocks;
662 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
663 		(buf->f_bfree - nrsvblocks) : 0;
664 	buf->f_files = nmaxinodes;
665 	buf->f_ffree = nfreeinodes;
666 	buf->f_namelen = NILFS_NAME_LEN;
667 	buf->f_fsid.val[0] = (u32)id;
668 	buf->f_fsid.val[1] = (u32)(id >> 32);
669 
670 	return 0;
671 }
672 
673 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
674 {
675 	struct super_block *sb = dentry->d_sb;
676 	struct the_nilfs *nilfs = sb->s_fs_info;
677 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
678 
679 	if (!nilfs_test_opt(nilfs, BARRIER))
680 		seq_puts(seq, ",nobarrier");
681 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
682 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
683 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
684 		seq_puts(seq, ",errors=panic");
685 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
686 		seq_puts(seq, ",errors=continue");
687 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
688 		seq_puts(seq, ",order=strict");
689 	if (nilfs_test_opt(nilfs, NORECOVERY))
690 		seq_puts(seq, ",norecovery");
691 	if (nilfs_test_opt(nilfs, DISCARD))
692 		seq_puts(seq, ",discard");
693 
694 	return 0;
695 }
696 
697 static const struct super_operations nilfs_sops = {
698 	.alloc_inode    = nilfs_alloc_inode,
699 	.destroy_inode  = nilfs_destroy_inode,
700 	.dirty_inode    = nilfs_dirty_inode,
701 	.evict_inode    = nilfs_evict_inode,
702 	.put_super      = nilfs_put_super,
703 	.sync_fs        = nilfs_sync_fs,
704 	.freeze_fs	= nilfs_freeze,
705 	.unfreeze_fs	= nilfs_unfreeze,
706 	.statfs         = nilfs_statfs,
707 	.remount_fs     = nilfs_remount,
708 	.show_options = nilfs_show_options
709 };
710 
711 enum {
712 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
713 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
714 	Opt_discard, Opt_nodiscard, Opt_err,
715 };
716 
717 static match_table_t tokens = {
718 	{Opt_err_cont, "errors=continue"},
719 	{Opt_err_panic, "errors=panic"},
720 	{Opt_err_ro, "errors=remount-ro"},
721 	{Opt_barrier, "barrier"},
722 	{Opt_nobarrier, "nobarrier"},
723 	{Opt_snapshot, "cp=%u"},
724 	{Opt_order, "order=%s"},
725 	{Opt_norecovery, "norecovery"},
726 	{Opt_discard, "discard"},
727 	{Opt_nodiscard, "nodiscard"},
728 	{Opt_err, NULL}
729 };
730 
731 static int parse_options(char *options, struct super_block *sb, int is_remount)
732 {
733 	struct the_nilfs *nilfs = sb->s_fs_info;
734 	char *p;
735 	substring_t args[MAX_OPT_ARGS];
736 
737 	if (!options)
738 		return 1;
739 
740 	while ((p = strsep(&options, ",")) != NULL) {
741 		int token;
742 
743 		if (!*p)
744 			continue;
745 
746 		token = match_token(p, tokens, args);
747 		switch (token) {
748 		case Opt_barrier:
749 			nilfs_set_opt(nilfs, BARRIER);
750 			break;
751 		case Opt_nobarrier:
752 			nilfs_clear_opt(nilfs, BARRIER);
753 			break;
754 		case Opt_order:
755 			if (strcmp(args[0].from, "relaxed") == 0)
756 				/* Ordered data semantics */
757 				nilfs_clear_opt(nilfs, STRICT_ORDER);
758 			else if (strcmp(args[0].from, "strict") == 0)
759 				/* Strict in-order semantics */
760 				nilfs_set_opt(nilfs, STRICT_ORDER);
761 			else
762 				return 0;
763 			break;
764 		case Opt_err_panic:
765 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
766 			break;
767 		case Opt_err_ro:
768 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
769 			break;
770 		case Opt_err_cont:
771 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
772 			break;
773 		case Opt_snapshot:
774 			if (is_remount) {
775 				nilfs_msg(sb, KERN_ERR,
776 					  "\"%s\" option is invalid for remount",
777 					  p);
778 				return 0;
779 			}
780 			break;
781 		case Opt_norecovery:
782 			nilfs_set_opt(nilfs, NORECOVERY);
783 			break;
784 		case Opt_discard:
785 			nilfs_set_opt(nilfs, DISCARD);
786 			break;
787 		case Opt_nodiscard:
788 			nilfs_clear_opt(nilfs, DISCARD);
789 			break;
790 		default:
791 			nilfs_msg(sb, KERN_ERR,
792 				  "unrecognized mount option \"%s\"", p);
793 			return 0;
794 		}
795 	}
796 	return 1;
797 }
798 
799 static inline void
800 nilfs_set_default_options(struct super_block *sb,
801 			  struct nilfs_super_block *sbp)
802 {
803 	struct the_nilfs *nilfs = sb->s_fs_info;
804 
805 	nilfs->ns_mount_opt =
806 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
807 }
808 
809 static int nilfs_setup_super(struct super_block *sb, int is_mount)
810 {
811 	struct the_nilfs *nilfs = sb->s_fs_info;
812 	struct nilfs_super_block **sbp;
813 	int max_mnt_count;
814 	int mnt_count;
815 
816 	/* nilfs->ns_sem must be locked by the caller. */
817 	sbp = nilfs_prepare_super(sb, 0);
818 	if (!sbp)
819 		return -EIO;
820 
821 	if (!is_mount)
822 		goto skip_mount_setup;
823 
824 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
825 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
826 
827 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
828 		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
829 #if 0
830 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
831 		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
832 #endif
833 	}
834 	if (!max_mnt_count)
835 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
836 
837 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
838 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
839 
840 skip_mount_setup:
841 	sbp[0]->s_state =
842 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
843 	/* synchronize sbp[1] with sbp[0] */
844 	if (sbp[1])
845 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
846 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
847 }
848 
849 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
850 						 u64 pos, int blocksize,
851 						 struct buffer_head **pbh)
852 {
853 	unsigned long long sb_index = pos;
854 	unsigned long offset;
855 
856 	offset = do_div(sb_index, blocksize);
857 	*pbh = sb_bread(sb, sb_index);
858 	if (!*pbh)
859 		return NULL;
860 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
861 }
862 
863 int nilfs_store_magic_and_option(struct super_block *sb,
864 				 struct nilfs_super_block *sbp,
865 				 char *data)
866 {
867 	struct the_nilfs *nilfs = sb->s_fs_info;
868 
869 	sb->s_magic = le16_to_cpu(sbp->s_magic);
870 
871 	/* FS independent flags */
872 #ifdef NILFS_ATIME_DISABLE
873 	sb->s_flags |= MS_NOATIME;
874 #endif
875 
876 	nilfs_set_default_options(sb, sbp);
877 
878 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
879 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
880 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
881 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
882 
883 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
884 }
885 
886 int nilfs_check_feature_compatibility(struct super_block *sb,
887 				      struct nilfs_super_block *sbp)
888 {
889 	__u64 features;
890 
891 	features = le64_to_cpu(sbp->s_feature_incompat) &
892 		~NILFS_FEATURE_INCOMPAT_SUPP;
893 	if (features) {
894 		nilfs_msg(sb, KERN_ERR,
895 			  "couldn't mount because of unsupported optional features (%llx)",
896 			  (unsigned long long)features);
897 		return -EINVAL;
898 	}
899 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
900 		~NILFS_FEATURE_COMPAT_RO_SUPP;
901 	if (!sb_rdonly(sb) && features) {
902 		nilfs_msg(sb, KERN_ERR,
903 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
904 			  (unsigned long long)features);
905 		return -EINVAL;
906 	}
907 	return 0;
908 }
909 
910 static int nilfs_get_root_dentry(struct super_block *sb,
911 				 struct nilfs_root *root,
912 				 struct dentry **root_dentry)
913 {
914 	struct inode *inode;
915 	struct dentry *dentry;
916 	int ret = 0;
917 
918 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
919 	if (IS_ERR(inode)) {
920 		ret = PTR_ERR(inode);
921 		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
922 		goto out;
923 	}
924 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
925 		iput(inode);
926 		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
927 		ret = -EINVAL;
928 		goto out;
929 	}
930 
931 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
932 		dentry = d_find_alias(inode);
933 		if (!dentry) {
934 			dentry = d_make_root(inode);
935 			if (!dentry) {
936 				ret = -ENOMEM;
937 				goto failed_dentry;
938 			}
939 		} else {
940 			iput(inode);
941 		}
942 	} else {
943 		dentry = d_obtain_root(inode);
944 		if (IS_ERR(dentry)) {
945 			ret = PTR_ERR(dentry);
946 			goto failed_dentry;
947 		}
948 	}
949 	*root_dentry = dentry;
950  out:
951 	return ret;
952 
953  failed_dentry:
954 	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
955 	goto out;
956 }
957 
958 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
959 				 struct dentry **root_dentry)
960 {
961 	struct the_nilfs *nilfs = s->s_fs_info;
962 	struct nilfs_root *root;
963 	int ret;
964 
965 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
966 
967 	down_read(&nilfs->ns_segctor_sem);
968 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
969 	up_read(&nilfs->ns_segctor_sem);
970 	if (ret < 0) {
971 		ret = (ret == -ENOENT) ? -EINVAL : ret;
972 		goto out;
973 	} else if (!ret) {
974 		nilfs_msg(s, KERN_ERR,
975 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
976 			  (unsigned long long)cno);
977 		ret = -EINVAL;
978 		goto out;
979 	}
980 
981 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
982 	if (ret) {
983 		nilfs_msg(s, KERN_ERR,
984 			  "error %d while loading snapshot (checkpoint number=%llu)",
985 			  ret, (unsigned long long)cno);
986 		goto out;
987 	}
988 	ret = nilfs_get_root_dentry(s, root, root_dentry);
989 	nilfs_put_root(root);
990  out:
991 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
992 	return ret;
993 }
994 
995 /**
996  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
997  * @root_dentry: root dentry of the tree to be shrunk
998  *
999  * This function returns true if the tree was in-use.
1000  */
1001 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1002 {
1003 	shrink_dcache_parent(root_dentry);
1004 	return d_count(root_dentry) > 1;
1005 }
1006 
1007 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1008 {
1009 	struct the_nilfs *nilfs = sb->s_fs_info;
1010 	struct nilfs_root *root;
1011 	struct inode *inode;
1012 	struct dentry *dentry;
1013 	int ret;
1014 
1015 	if (cno > nilfs->ns_cno)
1016 		return false;
1017 
1018 	if (cno >= nilfs_last_cno(nilfs))
1019 		return true;	/* protect recent checkpoints */
1020 
1021 	ret = false;
1022 	root = nilfs_lookup_root(nilfs, cno);
1023 	if (root) {
1024 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1025 		if (inode) {
1026 			dentry = d_find_alias(inode);
1027 			if (dentry) {
1028 				ret = nilfs_tree_is_busy(dentry);
1029 				dput(dentry);
1030 			}
1031 			iput(inode);
1032 		}
1033 		nilfs_put_root(root);
1034 	}
1035 	return ret;
1036 }
1037 
1038 /**
1039  * nilfs_fill_super() - initialize a super block instance
1040  * @sb: super_block
1041  * @data: mount options
1042  * @silent: silent mode flag
1043  *
1044  * This function is called exclusively by nilfs->ns_mount_mutex.
1045  * So, the recovery process is protected from other simultaneous mounts.
1046  */
1047 static int
1048 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1049 {
1050 	struct the_nilfs *nilfs;
1051 	struct nilfs_root *fsroot;
1052 	__u64 cno;
1053 	int err;
1054 
1055 	nilfs = alloc_nilfs(sb);
1056 	if (!nilfs)
1057 		return -ENOMEM;
1058 
1059 	sb->s_fs_info = nilfs;
1060 
1061 	err = init_nilfs(nilfs, sb, (char *)data);
1062 	if (err)
1063 		goto failed_nilfs;
1064 
1065 	sb->s_op = &nilfs_sops;
1066 	sb->s_export_op = &nilfs_export_ops;
1067 	sb->s_root = NULL;
1068 	sb->s_time_gran = 1;
1069 	sb->s_max_links = NILFS_LINK_MAX;
1070 
1071 	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1072 
1073 	err = load_nilfs(nilfs, sb);
1074 	if (err)
1075 		goto failed_nilfs;
1076 
1077 	cno = nilfs_last_cno(nilfs);
1078 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1079 	if (err) {
1080 		nilfs_msg(sb, KERN_ERR,
1081 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1082 			  err, (unsigned long long)cno);
1083 		goto failed_unload;
1084 	}
1085 
1086 	if (!sb_rdonly(sb)) {
1087 		err = nilfs_attach_log_writer(sb, fsroot);
1088 		if (err)
1089 			goto failed_checkpoint;
1090 	}
1091 
1092 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1093 	if (err)
1094 		goto failed_segctor;
1095 
1096 	nilfs_put_root(fsroot);
1097 
1098 	if (!sb_rdonly(sb)) {
1099 		down_write(&nilfs->ns_sem);
1100 		nilfs_setup_super(sb, true);
1101 		up_write(&nilfs->ns_sem);
1102 	}
1103 
1104 	return 0;
1105 
1106  failed_segctor:
1107 	nilfs_detach_log_writer(sb);
1108 
1109  failed_checkpoint:
1110 	nilfs_put_root(fsroot);
1111 
1112  failed_unload:
1113 	iput(nilfs->ns_sufile);
1114 	iput(nilfs->ns_cpfile);
1115 	iput(nilfs->ns_dat);
1116 
1117  failed_nilfs:
1118 	destroy_nilfs(nilfs);
1119 	return err;
1120 }
1121 
1122 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1123 {
1124 	struct the_nilfs *nilfs = sb->s_fs_info;
1125 	unsigned long old_sb_flags;
1126 	unsigned long old_mount_opt;
1127 	int err;
1128 
1129 	sync_filesystem(sb);
1130 	old_sb_flags = sb->s_flags;
1131 	old_mount_opt = nilfs->ns_mount_opt;
1132 
1133 	if (!parse_options(data, sb, 1)) {
1134 		err = -EINVAL;
1135 		goto restore_opts;
1136 	}
1137 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1138 
1139 	err = -EINVAL;
1140 
1141 	if (!nilfs_valid_fs(nilfs)) {
1142 		nilfs_msg(sb, KERN_WARNING,
1143 			  "couldn't remount because the filesystem is in an incomplete recovery state");
1144 		goto restore_opts;
1145 	}
1146 
1147 	if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
1148 		goto out;
1149 	if (*flags & MS_RDONLY) {
1150 		/* Shutting down log writer */
1151 		nilfs_detach_log_writer(sb);
1152 		sb->s_flags |= MS_RDONLY;
1153 
1154 		/*
1155 		 * Remounting a valid RW partition RDONLY, so set
1156 		 * the RDONLY flag and then mark the partition as valid again.
1157 		 */
1158 		down_write(&nilfs->ns_sem);
1159 		nilfs_cleanup_super(sb);
1160 		up_write(&nilfs->ns_sem);
1161 	} else {
1162 		__u64 features;
1163 		struct nilfs_root *root;
1164 
1165 		/*
1166 		 * Mounting a RDONLY partition read-write, so reread and
1167 		 * store the current valid flag.  (It may have been changed
1168 		 * by fsck since we originally mounted the partition.)
1169 		 */
1170 		down_read(&nilfs->ns_sem);
1171 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1172 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1173 		up_read(&nilfs->ns_sem);
1174 		if (features) {
1175 			nilfs_msg(sb, KERN_WARNING,
1176 				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1177 				  (unsigned long long)features);
1178 			err = -EROFS;
1179 			goto restore_opts;
1180 		}
1181 
1182 		sb->s_flags &= ~MS_RDONLY;
1183 
1184 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1185 		err = nilfs_attach_log_writer(sb, root);
1186 		if (err)
1187 			goto restore_opts;
1188 
1189 		down_write(&nilfs->ns_sem);
1190 		nilfs_setup_super(sb, true);
1191 		up_write(&nilfs->ns_sem);
1192 	}
1193  out:
1194 	return 0;
1195 
1196  restore_opts:
1197 	sb->s_flags = old_sb_flags;
1198 	nilfs->ns_mount_opt = old_mount_opt;
1199 	return err;
1200 }
1201 
1202 struct nilfs_super_data {
1203 	struct block_device *bdev;
1204 	__u64 cno;
1205 	int flags;
1206 };
1207 
1208 static int nilfs_parse_snapshot_option(const char *option,
1209 				       const substring_t *arg,
1210 				       struct nilfs_super_data *sd)
1211 {
1212 	unsigned long long val;
1213 	const char *msg = NULL;
1214 	int err;
1215 
1216 	if (!(sd->flags & MS_RDONLY)) {
1217 		msg = "read-only option is not specified";
1218 		goto parse_error;
1219 	}
1220 
1221 	err = kstrtoull(arg->from, 0, &val);
1222 	if (err) {
1223 		if (err == -ERANGE)
1224 			msg = "too large checkpoint number";
1225 		else
1226 			msg = "malformed argument";
1227 		goto parse_error;
1228 	} else if (val == 0) {
1229 		msg = "invalid checkpoint number 0";
1230 		goto parse_error;
1231 	}
1232 	sd->cno = val;
1233 	return 0;
1234 
1235 parse_error:
1236 	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1237 	return 1;
1238 }
1239 
1240 /**
1241  * nilfs_identify - pre-read mount options needed to identify mount instance
1242  * @data: mount options
1243  * @sd: nilfs_super_data
1244  */
1245 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1246 {
1247 	char *p, *options = data;
1248 	substring_t args[MAX_OPT_ARGS];
1249 	int token;
1250 	int ret = 0;
1251 
1252 	do {
1253 		p = strsep(&options, ",");
1254 		if (p != NULL && *p) {
1255 			token = match_token(p, tokens, args);
1256 			if (token == Opt_snapshot)
1257 				ret = nilfs_parse_snapshot_option(p, &args[0],
1258 								  sd);
1259 		}
1260 		if (!options)
1261 			break;
1262 		BUG_ON(options == data);
1263 		*(options - 1) = ',';
1264 	} while (!ret);
1265 	return ret;
1266 }
1267 
1268 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1269 {
1270 	s->s_bdev = data;
1271 	s->s_dev = s->s_bdev->bd_dev;
1272 	return 0;
1273 }
1274 
1275 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1276 {
1277 	return (void *)s->s_bdev == data;
1278 }
1279 
1280 static struct dentry *
1281 nilfs_mount(struct file_system_type *fs_type, int flags,
1282 	     const char *dev_name, void *data)
1283 {
1284 	struct nilfs_super_data sd;
1285 	struct super_block *s;
1286 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1287 	struct dentry *root_dentry;
1288 	int err, s_new = false;
1289 
1290 	if (!(flags & MS_RDONLY))
1291 		mode |= FMODE_WRITE;
1292 
1293 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1294 	if (IS_ERR(sd.bdev))
1295 		return ERR_CAST(sd.bdev);
1296 
1297 	sd.cno = 0;
1298 	sd.flags = flags;
1299 	if (nilfs_identify((char *)data, &sd)) {
1300 		err = -EINVAL;
1301 		goto failed;
1302 	}
1303 
1304 	/*
1305 	 * once the super is inserted into the list by sget, s_umount
1306 	 * will protect the lockfs code from trying to start a snapshot
1307 	 * while we are mounting
1308 	 */
1309 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1310 	if (sd.bdev->bd_fsfreeze_count > 0) {
1311 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1312 		err = -EBUSY;
1313 		goto failed;
1314 	}
1315 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1316 		 sd.bdev);
1317 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1318 	if (IS_ERR(s)) {
1319 		err = PTR_ERR(s);
1320 		goto failed;
1321 	}
1322 
1323 	if (!s->s_root) {
1324 		s_new = true;
1325 
1326 		/* New superblock instance created */
1327 		s->s_mode = mode;
1328 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1329 		sb_set_blocksize(s, block_size(sd.bdev));
1330 
1331 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1332 		if (err)
1333 			goto failed_super;
1334 
1335 		s->s_flags |= MS_ACTIVE;
1336 	} else if (!sd.cno) {
1337 		if (nilfs_tree_is_busy(s->s_root)) {
1338 			if ((flags ^ s->s_flags) & MS_RDONLY) {
1339 				nilfs_msg(s, KERN_ERR,
1340 					  "the device already has a %s mount.",
1341 					  sb_rdonly(s) ? "read-only" : "read/write");
1342 				err = -EBUSY;
1343 				goto failed_super;
1344 			}
1345 		} else {
1346 			/*
1347 			 * Try remount to setup mount states if the current
1348 			 * tree is not mounted and only snapshots use this sb.
1349 			 */
1350 			err = nilfs_remount(s, &flags, data);
1351 			if (err)
1352 				goto failed_super;
1353 		}
1354 	}
1355 
1356 	if (sd.cno) {
1357 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1358 		if (err)
1359 			goto failed_super;
1360 	} else {
1361 		root_dentry = dget(s->s_root);
1362 	}
1363 
1364 	if (!s_new)
1365 		blkdev_put(sd.bdev, mode);
1366 
1367 	return root_dentry;
1368 
1369  failed_super:
1370 	deactivate_locked_super(s);
1371 
1372  failed:
1373 	if (!s_new)
1374 		blkdev_put(sd.bdev, mode);
1375 	return ERR_PTR(err);
1376 }
1377 
1378 struct file_system_type nilfs_fs_type = {
1379 	.owner    = THIS_MODULE,
1380 	.name     = "nilfs2",
1381 	.mount    = nilfs_mount,
1382 	.kill_sb  = kill_block_super,
1383 	.fs_flags = FS_REQUIRES_DEV,
1384 };
1385 MODULE_ALIAS_FS("nilfs2");
1386 
1387 static void nilfs_inode_init_once(void *obj)
1388 {
1389 	struct nilfs_inode_info *ii = obj;
1390 
1391 	INIT_LIST_HEAD(&ii->i_dirty);
1392 #ifdef CONFIG_NILFS_XATTR
1393 	init_rwsem(&ii->xattr_sem);
1394 #endif
1395 	address_space_init_once(&ii->i_btnode_cache);
1396 	ii->i_bmap = &ii->i_bmap_data;
1397 	inode_init_once(&ii->vfs_inode);
1398 }
1399 
1400 static void nilfs_segbuf_init_once(void *obj)
1401 {
1402 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1403 }
1404 
1405 static void nilfs_destroy_cachep(void)
1406 {
1407 	/*
1408 	 * Make sure all delayed rcu free inodes are flushed before we
1409 	 * destroy cache.
1410 	 */
1411 	rcu_barrier();
1412 
1413 	kmem_cache_destroy(nilfs_inode_cachep);
1414 	kmem_cache_destroy(nilfs_transaction_cachep);
1415 	kmem_cache_destroy(nilfs_segbuf_cachep);
1416 	kmem_cache_destroy(nilfs_btree_path_cache);
1417 }
1418 
1419 static int __init nilfs_init_cachep(void)
1420 {
1421 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1422 			sizeof(struct nilfs_inode_info), 0,
1423 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1424 			nilfs_inode_init_once);
1425 	if (!nilfs_inode_cachep)
1426 		goto fail;
1427 
1428 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1429 			sizeof(struct nilfs_transaction_info), 0,
1430 			SLAB_RECLAIM_ACCOUNT, NULL);
1431 	if (!nilfs_transaction_cachep)
1432 		goto fail;
1433 
1434 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1435 			sizeof(struct nilfs_segment_buffer), 0,
1436 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1437 	if (!nilfs_segbuf_cachep)
1438 		goto fail;
1439 
1440 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1441 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1442 			0, 0, NULL);
1443 	if (!nilfs_btree_path_cache)
1444 		goto fail;
1445 
1446 	return 0;
1447 
1448 fail:
1449 	nilfs_destroy_cachep();
1450 	return -ENOMEM;
1451 }
1452 
1453 static int __init init_nilfs_fs(void)
1454 {
1455 	int err;
1456 
1457 	err = nilfs_init_cachep();
1458 	if (err)
1459 		goto fail;
1460 
1461 	err = nilfs_sysfs_init();
1462 	if (err)
1463 		goto free_cachep;
1464 
1465 	err = register_filesystem(&nilfs_fs_type);
1466 	if (err)
1467 		goto deinit_sysfs_entry;
1468 
1469 	printk(KERN_INFO "NILFS version 2 loaded\n");
1470 	return 0;
1471 
1472 deinit_sysfs_entry:
1473 	nilfs_sysfs_exit();
1474 free_cachep:
1475 	nilfs_destroy_cachep();
1476 fail:
1477 	return err;
1478 }
1479 
1480 static void __exit exit_nilfs_fs(void)
1481 {
1482 	nilfs_destroy_cachep();
1483 	nilfs_sysfs_exit();
1484 	unregister_filesystem(&nilfs_fs_type);
1485 }
1486 
1487 module_init(init_nilfs_fs)
1488 module_exit(exit_nilfs_fs)
1489