xref: /linux/fs/nilfs2/super.c (revision 25985edcedea6396277003854657b5f3cb31a628)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "ifile.h"
60 #include "dat.h"
61 #include "segment.h"
62 #include "segbuf.h"
63 
64 MODULE_AUTHOR("NTT Corp.");
65 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
66 		   "(NILFS)");
67 MODULE_LICENSE("GPL");
68 
69 static struct kmem_cache *nilfs_inode_cachep;
70 struct kmem_cache *nilfs_transaction_cachep;
71 struct kmem_cache *nilfs_segbuf_cachep;
72 struct kmem_cache *nilfs_btree_path_cache;
73 
74 static int nilfs_setup_super(struct super_block *sb, int is_mount);
75 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
76 
77 static void nilfs_set_error(struct super_block *sb)
78 {
79 	struct the_nilfs *nilfs = sb->s_fs_info;
80 	struct nilfs_super_block **sbp;
81 
82 	down_write(&nilfs->ns_sem);
83 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
84 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
85 		sbp = nilfs_prepare_super(sb, 0);
86 		if (likely(sbp)) {
87 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
88 			if (sbp[1])
89 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
91 		}
92 	}
93 	up_write(&nilfs->ns_sem);
94 }
95 
96 /**
97  * nilfs_error() - report failure condition on a filesystem
98  *
99  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
100  * reporting an error message.  It should be called when NILFS detects
101  * incoherences or defects of meta data on disk.  As for sustainable
102  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
103  * function should be used instead.
104  *
105  * The segment constructor must not call this function because it can
106  * kill itself.
107  */
108 void nilfs_error(struct super_block *sb, const char *function,
109 		 const char *fmt, ...)
110 {
111 	struct the_nilfs *nilfs = sb->s_fs_info;
112 	struct va_format vaf;
113 	va_list args;
114 
115 	va_start(args, fmt);
116 
117 	vaf.fmt = fmt;
118 	vaf.va = &args;
119 
120 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
121 	       sb->s_id, function, &vaf);
122 
123 	va_end(args);
124 
125 	if (!(sb->s_flags & MS_RDONLY)) {
126 		nilfs_set_error(sb);
127 
128 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
129 			printk(KERN_CRIT "Remounting filesystem read-only\n");
130 			sb->s_flags |= MS_RDONLY;
131 		}
132 	}
133 
134 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
135 		panic("NILFS (device %s): panic forced after error\n",
136 		      sb->s_id);
137 }
138 
139 void nilfs_warning(struct super_block *sb, const char *function,
140 		   const char *fmt, ...)
141 {
142 	struct va_format vaf;
143 	va_list args;
144 
145 	va_start(args, fmt);
146 
147 	vaf.fmt = fmt;
148 	vaf.va = &args;
149 
150 	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
151 	       sb->s_id, function, &vaf);
152 
153 	va_end(args);
154 }
155 
156 
157 struct inode *nilfs_alloc_inode(struct super_block *sb)
158 {
159 	struct nilfs_inode_info *ii;
160 
161 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
162 	if (!ii)
163 		return NULL;
164 	ii->i_bh = NULL;
165 	ii->i_state = 0;
166 	ii->i_cno = 0;
167 	ii->vfs_inode.i_version = 1;
168 	nilfs_btnode_cache_init(&ii->i_btnode_cache, sb->s_bdi);
169 	return &ii->vfs_inode;
170 }
171 
172 static void nilfs_i_callback(struct rcu_head *head)
173 {
174 	struct inode *inode = container_of(head, struct inode, i_rcu);
175 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
176 
177 	INIT_LIST_HEAD(&inode->i_dentry);
178 
179 	if (mdi) {
180 		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
181 		kfree(mdi);
182 	}
183 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
184 }
185 
186 void nilfs_destroy_inode(struct inode *inode)
187 {
188 	call_rcu(&inode->i_rcu, nilfs_i_callback);
189 }
190 
191 static int nilfs_sync_super(struct super_block *sb, int flag)
192 {
193 	struct the_nilfs *nilfs = sb->s_fs_info;
194 	int err;
195 
196  retry:
197 	set_buffer_dirty(nilfs->ns_sbh[0]);
198 	if (nilfs_test_opt(nilfs, BARRIER)) {
199 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
200 					  WRITE_SYNC | WRITE_FLUSH_FUA);
201 	} else {
202 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
203 	}
204 
205 	if (unlikely(err)) {
206 		printk(KERN_ERR
207 		       "NILFS: unable to write superblock (err=%d)\n", err);
208 		if (err == -EIO && nilfs->ns_sbh[1]) {
209 			/*
210 			 * sbp[0] points to newer log than sbp[1],
211 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
212 			 */
213 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
214 			       nilfs->ns_sbsize);
215 			nilfs_fall_back_super_block(nilfs);
216 			goto retry;
217 		}
218 	} else {
219 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
220 
221 		nilfs->ns_sbwcount++;
222 
223 		/*
224 		 * The latest segment becomes trailable from the position
225 		 * written in superblock.
226 		 */
227 		clear_nilfs_discontinued(nilfs);
228 
229 		/* update GC protection for recent segments */
230 		if (nilfs->ns_sbh[1]) {
231 			if (flag == NILFS_SB_COMMIT_ALL) {
232 				set_buffer_dirty(nilfs->ns_sbh[1]);
233 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
234 					goto out;
235 			}
236 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
237 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
238 				sbp = nilfs->ns_sbp[1];
239 		}
240 
241 		spin_lock(&nilfs->ns_last_segment_lock);
242 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
243 		spin_unlock(&nilfs->ns_last_segment_lock);
244 	}
245  out:
246 	return err;
247 }
248 
249 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
250 			  struct the_nilfs *nilfs)
251 {
252 	sector_t nfreeblocks;
253 
254 	/* nilfs->ns_sem must be locked by the caller. */
255 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
256 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
257 
258 	spin_lock(&nilfs->ns_last_segment_lock);
259 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
260 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
261 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
262 	spin_unlock(&nilfs->ns_last_segment_lock);
263 }
264 
265 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
266 					       int flip)
267 {
268 	struct the_nilfs *nilfs = sb->s_fs_info;
269 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
270 
271 	/* nilfs->ns_sem must be locked by the caller. */
272 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
273 		if (sbp[1] &&
274 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
275 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
276 		} else {
277 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
278 			       sb->s_id);
279 			return NULL;
280 		}
281 	} else if (sbp[1] &&
282 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
283 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
284 	}
285 
286 	if (flip && sbp[1])
287 		nilfs_swap_super_block(nilfs);
288 
289 	return sbp;
290 }
291 
292 int nilfs_commit_super(struct super_block *sb, int flag)
293 {
294 	struct the_nilfs *nilfs = sb->s_fs_info;
295 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
296 	time_t t;
297 
298 	/* nilfs->ns_sem must be locked by the caller. */
299 	t = get_seconds();
300 	nilfs->ns_sbwtime = t;
301 	sbp[0]->s_wtime = cpu_to_le64(t);
302 	sbp[0]->s_sum = 0;
303 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
304 					     (unsigned char *)sbp[0],
305 					     nilfs->ns_sbsize));
306 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
307 		sbp[1]->s_wtime = sbp[0]->s_wtime;
308 		sbp[1]->s_sum = 0;
309 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
310 					    (unsigned char *)sbp[1],
311 					    nilfs->ns_sbsize));
312 	}
313 	clear_nilfs_sb_dirty(nilfs);
314 	return nilfs_sync_super(sb, flag);
315 }
316 
317 /**
318  * nilfs_cleanup_super() - write filesystem state for cleanup
319  * @sb: super block instance to be unmounted or degraded to read-only
320  *
321  * This function restores state flags in the on-disk super block.
322  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
323  * filesystem was not clean previously.
324  */
325 int nilfs_cleanup_super(struct super_block *sb)
326 {
327 	struct the_nilfs *nilfs = sb->s_fs_info;
328 	struct nilfs_super_block **sbp;
329 	int flag = NILFS_SB_COMMIT;
330 	int ret = -EIO;
331 
332 	sbp = nilfs_prepare_super(sb, 0);
333 	if (sbp) {
334 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
335 		nilfs_set_log_cursor(sbp[0], nilfs);
336 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
337 			/*
338 			 * make the "clean" flag also to the opposite
339 			 * super block if both super blocks point to
340 			 * the same checkpoint.
341 			 */
342 			sbp[1]->s_state = sbp[0]->s_state;
343 			flag = NILFS_SB_COMMIT_ALL;
344 		}
345 		ret = nilfs_commit_super(sb, flag);
346 	}
347 	return ret;
348 }
349 
350 static void nilfs_put_super(struct super_block *sb)
351 {
352 	struct the_nilfs *nilfs = sb->s_fs_info;
353 
354 	nilfs_detach_log_writer(sb);
355 
356 	if (!(sb->s_flags & MS_RDONLY)) {
357 		down_write(&nilfs->ns_sem);
358 		nilfs_cleanup_super(sb);
359 		up_write(&nilfs->ns_sem);
360 	}
361 
362 	iput(nilfs->ns_sufile);
363 	iput(nilfs->ns_cpfile);
364 	iput(nilfs->ns_dat);
365 
366 	destroy_nilfs(nilfs);
367 	sb->s_fs_info = NULL;
368 }
369 
370 static int nilfs_sync_fs(struct super_block *sb, int wait)
371 {
372 	struct the_nilfs *nilfs = sb->s_fs_info;
373 	struct nilfs_super_block **sbp;
374 	int err = 0;
375 
376 	/* This function is called when super block should be written back */
377 	if (wait)
378 		err = nilfs_construct_segment(sb);
379 
380 	down_write(&nilfs->ns_sem);
381 	if (nilfs_sb_dirty(nilfs)) {
382 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
383 		if (likely(sbp)) {
384 			nilfs_set_log_cursor(sbp[0], nilfs);
385 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
386 		}
387 	}
388 	up_write(&nilfs->ns_sem);
389 
390 	return err;
391 }
392 
393 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
394 			    struct nilfs_root **rootp)
395 {
396 	struct the_nilfs *nilfs = sb->s_fs_info;
397 	struct nilfs_root *root;
398 	struct nilfs_checkpoint *raw_cp;
399 	struct buffer_head *bh_cp;
400 	int err = -ENOMEM;
401 
402 	root = nilfs_find_or_create_root(
403 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
404 	if (!root)
405 		return err;
406 
407 	if (root->ifile)
408 		goto reuse; /* already attached checkpoint */
409 
410 	down_read(&nilfs->ns_segctor_sem);
411 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
412 					  &bh_cp);
413 	up_read(&nilfs->ns_segctor_sem);
414 	if (unlikely(err)) {
415 		if (err == -ENOENT || err == -EINVAL) {
416 			printk(KERN_ERR
417 			       "NILFS: Invalid checkpoint "
418 			       "(checkpoint number=%llu)\n",
419 			       (unsigned long long)cno);
420 			err = -EINVAL;
421 		}
422 		goto failed;
423 	}
424 
425 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
426 			       &raw_cp->cp_ifile_inode, &root->ifile);
427 	if (err)
428 		goto failed_bh;
429 
430 	atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
431 	atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
432 
433 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
434 
435  reuse:
436 	*rootp = root;
437 	return 0;
438 
439  failed_bh:
440 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
441  failed:
442 	nilfs_put_root(root);
443 
444 	return err;
445 }
446 
447 static int nilfs_freeze(struct super_block *sb)
448 {
449 	struct the_nilfs *nilfs = sb->s_fs_info;
450 	int err;
451 
452 	if (sb->s_flags & MS_RDONLY)
453 		return 0;
454 
455 	/* Mark super block clean */
456 	down_write(&nilfs->ns_sem);
457 	err = nilfs_cleanup_super(sb);
458 	up_write(&nilfs->ns_sem);
459 	return err;
460 }
461 
462 static int nilfs_unfreeze(struct super_block *sb)
463 {
464 	struct the_nilfs *nilfs = sb->s_fs_info;
465 
466 	if (sb->s_flags & MS_RDONLY)
467 		return 0;
468 
469 	down_write(&nilfs->ns_sem);
470 	nilfs_setup_super(sb, false);
471 	up_write(&nilfs->ns_sem);
472 	return 0;
473 }
474 
475 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
476 {
477 	struct super_block *sb = dentry->d_sb;
478 	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
479 	struct the_nilfs *nilfs = root->nilfs;
480 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
481 	unsigned long long blocks;
482 	unsigned long overhead;
483 	unsigned long nrsvblocks;
484 	sector_t nfreeblocks;
485 	int err;
486 
487 	/*
488 	 * Compute all of the segment blocks
489 	 *
490 	 * The blocks before first segment and after last segment
491 	 * are excluded.
492 	 */
493 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
494 		- nilfs->ns_first_data_block;
495 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
496 
497 	/*
498 	 * Compute the overhead
499 	 *
500 	 * When distributing meta data blocks outside segment structure,
501 	 * We must count them as the overhead.
502 	 */
503 	overhead = 0;
504 
505 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
506 	if (unlikely(err))
507 		return err;
508 
509 	buf->f_type = NILFS_SUPER_MAGIC;
510 	buf->f_bsize = sb->s_blocksize;
511 	buf->f_blocks = blocks - overhead;
512 	buf->f_bfree = nfreeblocks;
513 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
514 		(buf->f_bfree - nrsvblocks) : 0;
515 	buf->f_files = atomic_read(&root->inodes_count);
516 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
517 	buf->f_namelen = NILFS_NAME_LEN;
518 	buf->f_fsid.val[0] = (u32)id;
519 	buf->f_fsid.val[1] = (u32)(id >> 32);
520 
521 	return 0;
522 }
523 
524 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
525 {
526 	struct super_block *sb = vfs->mnt_sb;
527 	struct the_nilfs *nilfs = sb->s_fs_info;
528 	struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root;
529 
530 	if (!nilfs_test_opt(nilfs, BARRIER))
531 		seq_puts(seq, ",nobarrier");
532 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
533 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
534 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
535 		seq_puts(seq, ",errors=panic");
536 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
537 		seq_puts(seq, ",errors=continue");
538 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
539 		seq_puts(seq, ",order=strict");
540 	if (nilfs_test_opt(nilfs, NORECOVERY))
541 		seq_puts(seq, ",norecovery");
542 	if (nilfs_test_opt(nilfs, DISCARD))
543 		seq_puts(seq, ",discard");
544 
545 	return 0;
546 }
547 
548 static const struct super_operations nilfs_sops = {
549 	.alloc_inode    = nilfs_alloc_inode,
550 	.destroy_inode  = nilfs_destroy_inode,
551 	.dirty_inode    = nilfs_dirty_inode,
552 	/* .write_inode    = nilfs_write_inode, */
553 	/* .put_inode      = nilfs_put_inode, */
554 	/* .drop_inode	  = nilfs_drop_inode, */
555 	.evict_inode    = nilfs_evict_inode,
556 	.put_super      = nilfs_put_super,
557 	/* .write_super    = nilfs_write_super, */
558 	.sync_fs        = nilfs_sync_fs,
559 	.freeze_fs	= nilfs_freeze,
560 	.unfreeze_fs	= nilfs_unfreeze,
561 	/* .write_super_lockfs */
562 	/* .unlockfs */
563 	.statfs         = nilfs_statfs,
564 	.remount_fs     = nilfs_remount,
565 	/* .umount_begin */
566 	.show_options = nilfs_show_options
567 };
568 
569 enum {
570 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
571 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
572 	Opt_discard, Opt_nodiscard, Opt_err,
573 };
574 
575 static match_table_t tokens = {
576 	{Opt_err_cont, "errors=continue"},
577 	{Opt_err_panic, "errors=panic"},
578 	{Opt_err_ro, "errors=remount-ro"},
579 	{Opt_barrier, "barrier"},
580 	{Opt_nobarrier, "nobarrier"},
581 	{Opt_snapshot, "cp=%u"},
582 	{Opt_order, "order=%s"},
583 	{Opt_norecovery, "norecovery"},
584 	{Opt_discard, "discard"},
585 	{Opt_nodiscard, "nodiscard"},
586 	{Opt_err, NULL}
587 };
588 
589 static int parse_options(char *options, struct super_block *sb, int is_remount)
590 {
591 	struct the_nilfs *nilfs = sb->s_fs_info;
592 	char *p;
593 	substring_t args[MAX_OPT_ARGS];
594 
595 	if (!options)
596 		return 1;
597 
598 	while ((p = strsep(&options, ",")) != NULL) {
599 		int token;
600 		if (!*p)
601 			continue;
602 
603 		token = match_token(p, tokens, args);
604 		switch (token) {
605 		case Opt_barrier:
606 			nilfs_set_opt(nilfs, BARRIER);
607 			break;
608 		case Opt_nobarrier:
609 			nilfs_clear_opt(nilfs, BARRIER);
610 			break;
611 		case Opt_order:
612 			if (strcmp(args[0].from, "relaxed") == 0)
613 				/* Ordered data semantics */
614 				nilfs_clear_opt(nilfs, STRICT_ORDER);
615 			else if (strcmp(args[0].from, "strict") == 0)
616 				/* Strict in-order semantics */
617 				nilfs_set_opt(nilfs, STRICT_ORDER);
618 			else
619 				return 0;
620 			break;
621 		case Opt_err_panic:
622 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
623 			break;
624 		case Opt_err_ro:
625 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
626 			break;
627 		case Opt_err_cont:
628 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
629 			break;
630 		case Opt_snapshot:
631 			if (is_remount) {
632 				printk(KERN_ERR
633 				       "NILFS: \"%s\" option is invalid "
634 				       "for remount.\n", p);
635 				return 0;
636 			}
637 			break;
638 		case Opt_norecovery:
639 			nilfs_set_opt(nilfs, NORECOVERY);
640 			break;
641 		case Opt_discard:
642 			nilfs_set_opt(nilfs, DISCARD);
643 			break;
644 		case Opt_nodiscard:
645 			nilfs_clear_opt(nilfs, DISCARD);
646 			break;
647 		default:
648 			printk(KERN_ERR
649 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
650 			return 0;
651 		}
652 	}
653 	return 1;
654 }
655 
656 static inline void
657 nilfs_set_default_options(struct super_block *sb,
658 			  struct nilfs_super_block *sbp)
659 {
660 	struct the_nilfs *nilfs = sb->s_fs_info;
661 
662 	nilfs->ns_mount_opt =
663 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
664 }
665 
666 static int nilfs_setup_super(struct super_block *sb, int is_mount)
667 {
668 	struct the_nilfs *nilfs = sb->s_fs_info;
669 	struct nilfs_super_block **sbp;
670 	int max_mnt_count;
671 	int mnt_count;
672 
673 	/* nilfs->ns_sem must be locked by the caller. */
674 	sbp = nilfs_prepare_super(sb, 0);
675 	if (!sbp)
676 		return -EIO;
677 
678 	if (!is_mount)
679 		goto skip_mount_setup;
680 
681 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
682 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
683 
684 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
685 		printk(KERN_WARNING
686 		       "NILFS warning: mounting fs with errors\n");
687 #if 0
688 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
689 		printk(KERN_WARNING
690 		       "NILFS warning: maximal mount count reached\n");
691 #endif
692 	}
693 	if (!max_mnt_count)
694 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
695 
696 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
697 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
698 
699 skip_mount_setup:
700 	sbp[0]->s_state =
701 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
702 	/* synchronize sbp[1] with sbp[0] */
703 	if (sbp[1])
704 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
705 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
706 }
707 
708 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
709 						 u64 pos, int blocksize,
710 						 struct buffer_head **pbh)
711 {
712 	unsigned long long sb_index = pos;
713 	unsigned long offset;
714 
715 	offset = do_div(sb_index, blocksize);
716 	*pbh = sb_bread(sb, sb_index);
717 	if (!*pbh)
718 		return NULL;
719 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
720 }
721 
722 int nilfs_store_magic_and_option(struct super_block *sb,
723 				 struct nilfs_super_block *sbp,
724 				 char *data)
725 {
726 	struct the_nilfs *nilfs = sb->s_fs_info;
727 
728 	sb->s_magic = le16_to_cpu(sbp->s_magic);
729 
730 	/* FS independent flags */
731 #ifdef NILFS_ATIME_DISABLE
732 	sb->s_flags |= MS_NOATIME;
733 #endif
734 
735 	nilfs_set_default_options(sb, sbp);
736 
737 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
738 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
739 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
740 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
741 
742 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
743 }
744 
745 int nilfs_check_feature_compatibility(struct super_block *sb,
746 				      struct nilfs_super_block *sbp)
747 {
748 	__u64 features;
749 
750 	features = le64_to_cpu(sbp->s_feature_incompat) &
751 		~NILFS_FEATURE_INCOMPAT_SUPP;
752 	if (features) {
753 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
754 		       "optional features (%llx)\n",
755 		       (unsigned long long)features);
756 		return -EINVAL;
757 	}
758 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
759 		~NILFS_FEATURE_COMPAT_RO_SUPP;
760 	if (!(sb->s_flags & MS_RDONLY) && features) {
761 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
762 		       "unsupported optional features (%llx)\n",
763 		       (unsigned long long)features);
764 		return -EINVAL;
765 	}
766 	return 0;
767 }
768 
769 static int nilfs_get_root_dentry(struct super_block *sb,
770 				 struct nilfs_root *root,
771 				 struct dentry **root_dentry)
772 {
773 	struct inode *inode;
774 	struct dentry *dentry;
775 	int ret = 0;
776 
777 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
778 	if (IS_ERR(inode)) {
779 		printk(KERN_ERR "NILFS: get root inode failed\n");
780 		ret = PTR_ERR(inode);
781 		goto out;
782 	}
783 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
784 		iput(inode);
785 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
786 		ret = -EINVAL;
787 		goto out;
788 	}
789 
790 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
791 		dentry = d_find_alias(inode);
792 		if (!dentry) {
793 			dentry = d_alloc_root(inode);
794 			if (!dentry) {
795 				iput(inode);
796 				ret = -ENOMEM;
797 				goto failed_dentry;
798 			}
799 		} else {
800 			iput(inode);
801 		}
802 	} else {
803 		dentry = d_obtain_alias(inode);
804 		if (IS_ERR(dentry)) {
805 			ret = PTR_ERR(dentry);
806 			goto failed_dentry;
807 		}
808 	}
809 	*root_dentry = dentry;
810  out:
811 	return ret;
812 
813  failed_dentry:
814 	printk(KERN_ERR "NILFS: get root dentry failed\n");
815 	goto out;
816 }
817 
818 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
819 				 struct dentry **root_dentry)
820 {
821 	struct the_nilfs *nilfs = s->s_fs_info;
822 	struct nilfs_root *root;
823 	int ret;
824 
825 	down_read(&nilfs->ns_segctor_sem);
826 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
827 	up_read(&nilfs->ns_segctor_sem);
828 	if (ret < 0) {
829 		ret = (ret == -ENOENT) ? -EINVAL : ret;
830 		goto out;
831 	} else if (!ret) {
832 		printk(KERN_ERR "NILFS: The specified checkpoint is "
833 		       "not a snapshot (checkpoint number=%llu).\n",
834 		       (unsigned long long)cno);
835 		ret = -EINVAL;
836 		goto out;
837 	}
838 
839 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
840 	if (ret) {
841 		printk(KERN_ERR "NILFS: error loading snapshot "
842 		       "(checkpoint number=%llu).\n",
843 	       (unsigned long long)cno);
844 		goto out;
845 	}
846 	ret = nilfs_get_root_dentry(s, root, root_dentry);
847 	nilfs_put_root(root);
848  out:
849 	return ret;
850 }
851 
852 static int nilfs_tree_was_touched(struct dentry *root_dentry)
853 {
854 	return root_dentry->d_count > 1;
855 }
856 
857 /**
858  * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
859  * @root_dentry: root dentry of the tree to be shrunk
860  *
861  * This function returns true if the tree was in-use.
862  */
863 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
864 {
865 	if (have_submounts(root_dentry))
866 		return true;
867 	shrink_dcache_parent(root_dentry);
868 	return nilfs_tree_was_touched(root_dentry);
869 }
870 
871 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
872 {
873 	struct the_nilfs *nilfs = sb->s_fs_info;
874 	struct nilfs_root *root;
875 	struct inode *inode;
876 	struct dentry *dentry;
877 	int ret;
878 
879 	if (cno < 0 || cno > nilfs->ns_cno)
880 		return false;
881 
882 	if (cno >= nilfs_last_cno(nilfs))
883 		return true;	/* protect recent checkpoints */
884 
885 	ret = false;
886 	root = nilfs_lookup_root(nilfs, cno);
887 	if (root) {
888 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
889 		if (inode) {
890 			dentry = d_find_alias(inode);
891 			if (dentry) {
892 				if (nilfs_tree_was_touched(dentry))
893 					ret = nilfs_try_to_shrink_tree(dentry);
894 				dput(dentry);
895 			}
896 			iput(inode);
897 		}
898 		nilfs_put_root(root);
899 	}
900 	return ret;
901 }
902 
903 /**
904  * nilfs_fill_super() - initialize a super block instance
905  * @sb: super_block
906  * @data: mount options
907  * @silent: silent mode flag
908  *
909  * This function is called exclusively by nilfs->ns_mount_mutex.
910  * So, the recovery process is protected from other simultaneous mounts.
911  */
912 static int
913 nilfs_fill_super(struct super_block *sb, void *data, int silent)
914 {
915 	struct the_nilfs *nilfs;
916 	struct nilfs_root *fsroot;
917 	struct backing_dev_info *bdi;
918 	__u64 cno;
919 	int err;
920 
921 	nilfs = alloc_nilfs(sb->s_bdev);
922 	if (!nilfs)
923 		return -ENOMEM;
924 
925 	sb->s_fs_info = nilfs;
926 
927 	err = init_nilfs(nilfs, sb, (char *)data);
928 	if (err)
929 		goto failed_nilfs;
930 
931 	sb->s_op = &nilfs_sops;
932 	sb->s_export_op = &nilfs_export_ops;
933 	sb->s_root = NULL;
934 	sb->s_time_gran = 1;
935 
936 	bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
937 	sb->s_bdi = bdi ? : &default_backing_dev_info;
938 
939 	err = load_nilfs(nilfs, sb);
940 	if (err)
941 		goto failed_nilfs;
942 
943 	cno = nilfs_last_cno(nilfs);
944 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
945 	if (err) {
946 		printk(KERN_ERR "NILFS: error loading last checkpoint "
947 		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
948 		goto failed_unload;
949 	}
950 
951 	if (!(sb->s_flags & MS_RDONLY)) {
952 		err = nilfs_attach_log_writer(sb, fsroot);
953 		if (err)
954 			goto failed_checkpoint;
955 	}
956 
957 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
958 	if (err)
959 		goto failed_segctor;
960 
961 	nilfs_put_root(fsroot);
962 
963 	if (!(sb->s_flags & MS_RDONLY)) {
964 		down_write(&nilfs->ns_sem);
965 		nilfs_setup_super(sb, true);
966 		up_write(&nilfs->ns_sem);
967 	}
968 
969 	return 0;
970 
971  failed_segctor:
972 	nilfs_detach_log_writer(sb);
973 
974  failed_checkpoint:
975 	nilfs_put_root(fsroot);
976 
977  failed_unload:
978 	iput(nilfs->ns_sufile);
979 	iput(nilfs->ns_cpfile);
980 	iput(nilfs->ns_dat);
981 
982  failed_nilfs:
983 	destroy_nilfs(nilfs);
984 	return err;
985 }
986 
987 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
988 {
989 	struct the_nilfs *nilfs = sb->s_fs_info;
990 	unsigned long old_sb_flags;
991 	unsigned long old_mount_opt;
992 	int err;
993 
994 	old_sb_flags = sb->s_flags;
995 	old_mount_opt = nilfs->ns_mount_opt;
996 
997 	if (!parse_options(data, sb, 1)) {
998 		err = -EINVAL;
999 		goto restore_opts;
1000 	}
1001 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1002 
1003 	err = -EINVAL;
1004 
1005 	if (!nilfs_valid_fs(nilfs)) {
1006 		printk(KERN_WARNING "NILFS (device %s): couldn't "
1007 		       "remount because the filesystem is in an "
1008 		       "incomplete recovery state.\n", sb->s_id);
1009 		goto restore_opts;
1010 	}
1011 
1012 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1013 		goto out;
1014 	if (*flags & MS_RDONLY) {
1015 		/* Shutting down log writer */
1016 		nilfs_detach_log_writer(sb);
1017 		sb->s_flags |= MS_RDONLY;
1018 
1019 		/*
1020 		 * Remounting a valid RW partition RDONLY, so set
1021 		 * the RDONLY flag and then mark the partition as valid again.
1022 		 */
1023 		down_write(&nilfs->ns_sem);
1024 		nilfs_cleanup_super(sb);
1025 		up_write(&nilfs->ns_sem);
1026 	} else {
1027 		__u64 features;
1028 		struct nilfs_root *root;
1029 
1030 		/*
1031 		 * Mounting a RDONLY partition read-write, so reread and
1032 		 * store the current valid flag.  (It may have been changed
1033 		 * by fsck since we originally mounted the partition.)
1034 		 */
1035 		down_read(&nilfs->ns_sem);
1036 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1037 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1038 		up_read(&nilfs->ns_sem);
1039 		if (features) {
1040 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1041 			       "remount RDWR because of unsupported optional "
1042 			       "features (%llx)\n",
1043 			       sb->s_id, (unsigned long long)features);
1044 			err = -EROFS;
1045 			goto restore_opts;
1046 		}
1047 
1048 		sb->s_flags &= ~MS_RDONLY;
1049 
1050 		root = NILFS_I(sb->s_root->d_inode)->i_root;
1051 		err = nilfs_attach_log_writer(sb, root);
1052 		if (err)
1053 			goto restore_opts;
1054 
1055 		down_write(&nilfs->ns_sem);
1056 		nilfs_setup_super(sb, true);
1057 		up_write(&nilfs->ns_sem);
1058 	}
1059  out:
1060 	return 0;
1061 
1062  restore_opts:
1063 	sb->s_flags = old_sb_flags;
1064 	nilfs->ns_mount_opt = old_mount_opt;
1065 	return err;
1066 }
1067 
1068 struct nilfs_super_data {
1069 	struct block_device *bdev;
1070 	__u64 cno;
1071 	int flags;
1072 };
1073 
1074 /**
1075  * nilfs_identify - pre-read mount options needed to identify mount instance
1076  * @data: mount options
1077  * @sd: nilfs_super_data
1078  */
1079 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1080 {
1081 	char *p, *options = data;
1082 	substring_t args[MAX_OPT_ARGS];
1083 	int token;
1084 	int ret = 0;
1085 
1086 	do {
1087 		p = strsep(&options, ",");
1088 		if (p != NULL && *p) {
1089 			token = match_token(p, tokens, args);
1090 			if (token == Opt_snapshot) {
1091 				if (!(sd->flags & MS_RDONLY)) {
1092 					ret++;
1093 				} else {
1094 					sd->cno = simple_strtoull(args[0].from,
1095 								  NULL, 0);
1096 					/*
1097 					 * No need to see the end pointer;
1098 					 * match_token() has done syntax
1099 					 * checking.
1100 					 */
1101 					if (sd->cno == 0)
1102 						ret++;
1103 				}
1104 			}
1105 			if (ret)
1106 				printk(KERN_ERR
1107 				       "NILFS: invalid mount option: %s\n", p);
1108 		}
1109 		if (!options)
1110 			break;
1111 		BUG_ON(options == data);
1112 		*(options - 1) = ',';
1113 	} while (!ret);
1114 	return ret;
1115 }
1116 
1117 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1118 {
1119 	s->s_bdev = data;
1120 	s->s_dev = s->s_bdev->bd_dev;
1121 	return 0;
1122 }
1123 
1124 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1125 {
1126 	return (void *)s->s_bdev == data;
1127 }
1128 
1129 static struct dentry *
1130 nilfs_mount(struct file_system_type *fs_type, int flags,
1131 	     const char *dev_name, void *data)
1132 {
1133 	struct nilfs_super_data sd;
1134 	struct super_block *s;
1135 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1136 	struct dentry *root_dentry;
1137 	int err, s_new = false;
1138 
1139 	if (!(flags & MS_RDONLY))
1140 		mode |= FMODE_WRITE;
1141 
1142 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1143 	if (IS_ERR(sd.bdev))
1144 		return ERR_CAST(sd.bdev);
1145 
1146 	sd.cno = 0;
1147 	sd.flags = flags;
1148 	if (nilfs_identify((char *)data, &sd)) {
1149 		err = -EINVAL;
1150 		goto failed;
1151 	}
1152 
1153 	/*
1154 	 * once the super is inserted into the list by sget, s_umount
1155 	 * will protect the lockfs code from trying to start a snapshot
1156 	 * while we are mounting
1157 	 */
1158 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1159 	if (sd.bdev->bd_fsfreeze_count > 0) {
1160 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1161 		err = -EBUSY;
1162 		goto failed;
1163 	}
1164 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
1165 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1166 	if (IS_ERR(s)) {
1167 		err = PTR_ERR(s);
1168 		goto failed;
1169 	}
1170 
1171 	if (!s->s_root) {
1172 		char b[BDEVNAME_SIZE];
1173 
1174 		s_new = true;
1175 
1176 		/* New superblock instance created */
1177 		s->s_flags = flags;
1178 		s->s_mode = mode;
1179 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1180 		sb_set_blocksize(s, block_size(sd.bdev));
1181 
1182 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1183 		if (err)
1184 			goto failed_super;
1185 
1186 		s->s_flags |= MS_ACTIVE;
1187 	} else if (!sd.cno) {
1188 		int busy = false;
1189 
1190 		if (nilfs_tree_was_touched(s->s_root)) {
1191 			busy = nilfs_try_to_shrink_tree(s->s_root);
1192 			if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1193 				printk(KERN_ERR "NILFS: the device already "
1194 				       "has a %s mount.\n",
1195 				       (s->s_flags & MS_RDONLY) ?
1196 				       "read-only" : "read/write");
1197 				err = -EBUSY;
1198 				goto failed_super;
1199 			}
1200 		}
1201 		if (!busy) {
1202 			/*
1203 			 * Try remount to setup mount states if the current
1204 			 * tree is not mounted and only snapshots use this sb.
1205 			 */
1206 			err = nilfs_remount(s, &flags, data);
1207 			if (err)
1208 				goto failed_super;
1209 		}
1210 	}
1211 
1212 	if (sd.cno) {
1213 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1214 		if (err)
1215 			goto failed_super;
1216 	} else {
1217 		root_dentry = dget(s->s_root);
1218 	}
1219 
1220 	if (!s_new)
1221 		blkdev_put(sd.bdev, mode);
1222 
1223 	return root_dentry;
1224 
1225  failed_super:
1226 	deactivate_locked_super(s);
1227 
1228  failed:
1229 	if (!s_new)
1230 		blkdev_put(sd.bdev, mode);
1231 	return ERR_PTR(err);
1232 }
1233 
1234 struct file_system_type nilfs_fs_type = {
1235 	.owner    = THIS_MODULE,
1236 	.name     = "nilfs2",
1237 	.mount    = nilfs_mount,
1238 	.kill_sb  = kill_block_super,
1239 	.fs_flags = FS_REQUIRES_DEV,
1240 };
1241 
1242 static void nilfs_inode_init_once(void *obj)
1243 {
1244 	struct nilfs_inode_info *ii = obj;
1245 
1246 	INIT_LIST_HEAD(&ii->i_dirty);
1247 #ifdef CONFIG_NILFS_XATTR
1248 	init_rwsem(&ii->xattr_sem);
1249 #endif
1250 	address_space_init_once(&ii->i_btnode_cache);
1251 	ii->i_bmap = &ii->i_bmap_data;
1252 	inode_init_once(&ii->vfs_inode);
1253 }
1254 
1255 static void nilfs_segbuf_init_once(void *obj)
1256 {
1257 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1258 }
1259 
1260 static void nilfs_destroy_cachep(void)
1261 {
1262 	if (nilfs_inode_cachep)
1263 		kmem_cache_destroy(nilfs_inode_cachep);
1264 	if (nilfs_transaction_cachep)
1265 		kmem_cache_destroy(nilfs_transaction_cachep);
1266 	if (nilfs_segbuf_cachep)
1267 		kmem_cache_destroy(nilfs_segbuf_cachep);
1268 	if (nilfs_btree_path_cache)
1269 		kmem_cache_destroy(nilfs_btree_path_cache);
1270 }
1271 
1272 static int __init nilfs_init_cachep(void)
1273 {
1274 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1275 			sizeof(struct nilfs_inode_info), 0,
1276 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1277 	if (!nilfs_inode_cachep)
1278 		goto fail;
1279 
1280 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1281 			sizeof(struct nilfs_transaction_info), 0,
1282 			SLAB_RECLAIM_ACCOUNT, NULL);
1283 	if (!nilfs_transaction_cachep)
1284 		goto fail;
1285 
1286 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1287 			sizeof(struct nilfs_segment_buffer), 0,
1288 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1289 	if (!nilfs_segbuf_cachep)
1290 		goto fail;
1291 
1292 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1293 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1294 			0, 0, NULL);
1295 	if (!nilfs_btree_path_cache)
1296 		goto fail;
1297 
1298 	return 0;
1299 
1300 fail:
1301 	nilfs_destroy_cachep();
1302 	return -ENOMEM;
1303 }
1304 
1305 static int __init init_nilfs_fs(void)
1306 {
1307 	int err;
1308 
1309 	err = nilfs_init_cachep();
1310 	if (err)
1311 		goto fail;
1312 
1313 	err = register_filesystem(&nilfs_fs_type);
1314 	if (err)
1315 		goto free_cachep;
1316 
1317 	printk(KERN_INFO "NILFS version 2 loaded\n");
1318 	return 0;
1319 
1320 free_cachep:
1321 	nilfs_destroy_cachep();
1322 fail:
1323 	return err;
1324 }
1325 
1326 static void __exit exit_nilfs_fs(void)
1327 {
1328 	nilfs_destroy_cachep();
1329 	unregister_filesystem(&nilfs_fs_type);
1330 }
1331 
1332 module_init(init_nilfs_fs)
1333 module_exit(exit_nilfs_fs)
1334