xref: /linux/fs/nilfs2/super.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/vfs.h>
49 #include <linux/writeback.h>
50 #include <linux/kobject.h>
51 #include <linux/exportfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/mount.h>
54 #include "nilfs.h"
55 #include "mdt.h"
56 #include "alloc.h"
57 #include "btree.h"
58 #include "btnode.h"
59 #include "page.h"
60 #include "cpfile.h"
61 #include "ifile.h"
62 #include "dat.h"
63 #include "segment.h"
64 #include "segbuf.h"
65 
66 MODULE_AUTHOR("NTT Corp.");
67 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
68 		   "(NILFS)");
69 MODULE_LICENSE("GPL");
70 
71 struct kmem_cache *nilfs_inode_cachep;
72 struct kmem_cache *nilfs_transaction_cachep;
73 struct kmem_cache *nilfs_segbuf_cachep;
74 struct kmem_cache *nilfs_btree_path_cache;
75 
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77 
78 static void nilfs_set_error(struct nilfs_sb_info *sbi)
79 {
80 	struct the_nilfs *nilfs = sbi->s_nilfs;
81 	struct nilfs_super_block **sbp;
82 
83 	down_write(&nilfs->ns_sem);
84 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 		sbp = nilfs_prepare_super(sbi, 0);
87 		if (likely(sbp)) {
88 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 			if (sbp[1])
90 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 			nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
92 		}
93 	}
94 	up_write(&nilfs->ns_sem);
95 }
96 
97 /**
98  * nilfs_error() - report failure condition on a filesystem
99  *
100  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101  * reporting an error message.  It should be called when NILFS detects
102  * incoherences or defects of meta data on disk.  As for sustainable
103  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104  * function should be used instead.
105  *
106  * The segment constructor must not call this function because it can
107  * kill itself.
108  */
109 void nilfs_error(struct super_block *sb, const char *function,
110 		 const char *fmt, ...)
111 {
112 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
113 	va_list args;
114 
115 	va_start(args, fmt);
116 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
117 	vprintk(fmt, args);
118 	printk("\n");
119 	va_end(args);
120 
121 	if (!(sb->s_flags & MS_RDONLY)) {
122 		nilfs_set_error(sbi);
123 
124 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
125 			printk(KERN_CRIT "Remounting filesystem read-only\n");
126 			sb->s_flags |= MS_RDONLY;
127 		}
128 	}
129 
130 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
131 		panic("NILFS (device %s): panic forced after error\n",
132 		      sb->s_id);
133 }
134 
135 void nilfs_warning(struct super_block *sb, const char *function,
136 		   const char *fmt, ...)
137 {
138 	va_list args;
139 
140 	va_start(args, fmt);
141 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
142 	       sb->s_id, function);
143 	vprintk(fmt, args);
144 	printk("\n");
145 	va_end(args);
146 }
147 
148 
149 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
150 {
151 	struct nilfs_inode_info *ii;
152 
153 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
154 	if (!ii)
155 		return NULL;
156 	ii->i_bh = NULL;
157 	ii->i_state = 0;
158 	ii->vfs_inode.i_version = 1;
159 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
160 	return &ii->vfs_inode;
161 }
162 
163 struct inode *nilfs_alloc_inode(struct super_block *sb)
164 {
165 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
166 }
167 
168 void nilfs_destroy_inode(struct inode *inode)
169 {
170 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
171 }
172 
173 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
174 {
175 	struct the_nilfs *nilfs = sbi->s_nilfs;
176 	int err;
177 
178  retry:
179 	set_buffer_dirty(nilfs->ns_sbh[0]);
180 
181 	if (nilfs_test_opt(sbi, BARRIER)) {
182 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183 					  WRITE_SYNC | WRITE_BARRIER);
184 		if (err == -EOPNOTSUPP) {
185 			nilfs_warning(sbi->s_super, __func__,
186 				      "barrier-based sync failed. "
187 				      "disabling barriers\n");
188 			nilfs_clear_opt(sbi, BARRIER);
189 			goto retry;
190 		}
191 	} else {
192 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
193 	}
194 
195 	if (unlikely(err)) {
196 		printk(KERN_ERR
197 		       "NILFS: unable to write superblock (err=%d)\n", err);
198 		if (err == -EIO && nilfs->ns_sbh[1]) {
199 			/*
200 			 * sbp[0] points to newer log than sbp[1],
201 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
202 			 */
203 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
204 			       nilfs->ns_sbsize);
205 			nilfs_fall_back_super_block(nilfs);
206 			goto retry;
207 		}
208 	} else {
209 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
210 
211 		nilfs->ns_sbwcount++;
212 
213 		/*
214 		 * The latest segment becomes trailable from the position
215 		 * written in superblock.
216 		 */
217 		clear_nilfs_discontinued(nilfs);
218 
219 		/* update GC protection for recent segments */
220 		if (nilfs->ns_sbh[1]) {
221 			if (flag == NILFS_SB_COMMIT_ALL) {
222 				set_buffer_dirty(nilfs->ns_sbh[1]);
223 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
224 					goto out;
225 			}
226 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
227 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
228 				sbp = nilfs->ns_sbp[1];
229 		}
230 
231 		spin_lock(&nilfs->ns_last_segment_lock);
232 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
233 		spin_unlock(&nilfs->ns_last_segment_lock);
234 	}
235  out:
236 	return err;
237 }
238 
239 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
240 			  struct the_nilfs *nilfs)
241 {
242 	sector_t nfreeblocks;
243 
244 	/* nilfs->ns_sem must be locked by the caller. */
245 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
246 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
247 
248 	spin_lock(&nilfs->ns_last_segment_lock);
249 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
250 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
251 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
252 	spin_unlock(&nilfs->ns_last_segment_lock);
253 }
254 
255 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
256 					       int flip)
257 {
258 	struct the_nilfs *nilfs = sbi->s_nilfs;
259 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
260 
261 	/* nilfs->ns_sem must be locked by the caller. */
262 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263 		if (sbp[1] &&
264 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
265 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
266 		} else {
267 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
268 			       sbi->s_super->s_id);
269 			return NULL;
270 		}
271 	} else if (sbp[1] &&
272 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
273 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
274 	}
275 
276 	if (flip && sbp[1])
277 		nilfs_swap_super_block(nilfs);
278 
279 	return sbp;
280 }
281 
282 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
283 {
284 	struct the_nilfs *nilfs = sbi->s_nilfs;
285 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
286 	time_t t;
287 
288 	/* nilfs->ns_sem must be locked by the caller. */
289 	t = get_seconds();
290 	nilfs->ns_sbwtime = t;
291 	sbp[0]->s_wtime = cpu_to_le64(t);
292 	sbp[0]->s_sum = 0;
293 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
294 					     (unsigned char *)sbp[0],
295 					     nilfs->ns_sbsize));
296 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
297 		sbp[1]->s_wtime = sbp[0]->s_wtime;
298 		sbp[1]->s_sum = 0;
299 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
300 					    (unsigned char *)sbp[1],
301 					    nilfs->ns_sbsize));
302 	}
303 	clear_nilfs_sb_dirty(nilfs);
304 	return nilfs_sync_super(sbi, flag);
305 }
306 
307 /**
308  * nilfs_cleanup_super() - write filesystem state for cleanup
309  * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
310  *
311  * This function restores state flags in the on-disk super block.
312  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
313  * filesystem was not clean previously.
314  */
315 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
316 {
317 	struct nilfs_super_block **sbp;
318 	int flag = NILFS_SB_COMMIT;
319 	int ret = -EIO;
320 
321 	sbp = nilfs_prepare_super(sbi, 0);
322 	if (sbp) {
323 		sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
324 		nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
325 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
326 			/*
327 			 * make the "clean" flag also to the opposite
328 			 * super block if both super blocks point to
329 			 * the same checkpoint.
330 			 */
331 			sbp[1]->s_state = sbp[0]->s_state;
332 			flag = NILFS_SB_COMMIT_ALL;
333 		}
334 		ret = nilfs_commit_super(sbi, flag);
335 	}
336 	return ret;
337 }
338 
339 static void nilfs_put_super(struct super_block *sb)
340 {
341 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
342 	struct the_nilfs *nilfs = sbi->s_nilfs;
343 
344 	nilfs_detach_segment_constructor(sbi);
345 
346 	if (!(sb->s_flags & MS_RDONLY)) {
347 		down_write(&nilfs->ns_sem);
348 		nilfs_cleanup_super(sbi);
349 		up_write(&nilfs->ns_sem);
350 	}
351 	down_write(&nilfs->ns_super_sem);
352 	if (nilfs->ns_current == sbi)
353 		nilfs->ns_current = NULL;
354 	up_write(&nilfs->ns_super_sem);
355 
356 	nilfs_detach_checkpoint(sbi);
357 	put_nilfs(sbi->s_nilfs);
358 	sbi->s_super = NULL;
359 	sb->s_fs_info = NULL;
360 	nilfs_put_sbinfo(sbi);
361 }
362 
363 static int nilfs_sync_fs(struct super_block *sb, int wait)
364 {
365 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
366 	struct the_nilfs *nilfs = sbi->s_nilfs;
367 	struct nilfs_super_block **sbp;
368 	int err = 0;
369 
370 	/* This function is called when super block should be written back */
371 	if (wait)
372 		err = nilfs_construct_segment(sb);
373 
374 	down_write(&nilfs->ns_sem);
375 	if (nilfs_sb_dirty(nilfs)) {
376 		sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
377 		if (likely(sbp)) {
378 			nilfs_set_log_cursor(sbp[0], nilfs);
379 			nilfs_commit_super(sbi, NILFS_SB_COMMIT);
380 		}
381 	}
382 	up_write(&nilfs->ns_sem);
383 
384 	return err;
385 }
386 
387 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
388 {
389 	struct the_nilfs *nilfs = sbi->s_nilfs;
390 	struct nilfs_checkpoint *raw_cp;
391 	struct buffer_head *bh_cp;
392 	int err;
393 
394 	down_write(&nilfs->ns_super_sem);
395 	list_add(&sbi->s_list, &nilfs->ns_supers);
396 	up_write(&nilfs->ns_super_sem);
397 
398 	err = -ENOMEM;
399 	sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
400 	if (!sbi->s_ifile)
401 		goto delist;
402 
403 	down_read(&nilfs->ns_segctor_sem);
404 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
405 					  &bh_cp);
406 	up_read(&nilfs->ns_segctor_sem);
407 	if (unlikely(err)) {
408 		if (err == -ENOENT || err == -EINVAL) {
409 			printk(KERN_ERR
410 			       "NILFS: Invalid checkpoint "
411 			       "(checkpoint number=%llu)\n",
412 			       (unsigned long long)cno);
413 			err = -EINVAL;
414 		}
415 		goto failed;
416 	}
417 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
418 	if (unlikely(err))
419 		goto failed_bh;
420 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
421 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
422 
423 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
424 	return 0;
425 
426  failed_bh:
427 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
428  failed:
429 	nilfs_mdt_destroy(sbi->s_ifile);
430 	sbi->s_ifile = NULL;
431 
432  delist:
433 	down_write(&nilfs->ns_super_sem);
434 	list_del_init(&sbi->s_list);
435 	up_write(&nilfs->ns_super_sem);
436 
437 	return err;
438 }
439 
440 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
441 {
442 	struct the_nilfs *nilfs = sbi->s_nilfs;
443 
444 	nilfs_mdt_destroy(sbi->s_ifile);
445 	sbi->s_ifile = NULL;
446 	down_write(&nilfs->ns_super_sem);
447 	list_del_init(&sbi->s_list);
448 	up_write(&nilfs->ns_super_sem);
449 }
450 
451 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
452 {
453 	struct super_block *sb = dentry->d_sb;
454 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
455 	struct the_nilfs *nilfs = sbi->s_nilfs;
456 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
457 	unsigned long long blocks;
458 	unsigned long overhead;
459 	unsigned long nrsvblocks;
460 	sector_t nfreeblocks;
461 	int err;
462 
463 	/*
464 	 * Compute all of the segment blocks
465 	 *
466 	 * The blocks before first segment and after last segment
467 	 * are excluded.
468 	 */
469 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
470 		- nilfs->ns_first_data_block;
471 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
472 
473 	/*
474 	 * Compute the overhead
475 	 *
476 	 * When distributing meta data blocks outside segment structure,
477 	 * We must count them as the overhead.
478 	 */
479 	overhead = 0;
480 
481 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
482 	if (unlikely(err))
483 		return err;
484 
485 	buf->f_type = NILFS_SUPER_MAGIC;
486 	buf->f_bsize = sb->s_blocksize;
487 	buf->f_blocks = blocks - overhead;
488 	buf->f_bfree = nfreeblocks;
489 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
490 		(buf->f_bfree - nrsvblocks) : 0;
491 	buf->f_files = atomic_read(&sbi->s_inodes_count);
492 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
493 	buf->f_namelen = NILFS_NAME_LEN;
494 	buf->f_fsid.val[0] = (u32)id;
495 	buf->f_fsid.val[1] = (u32)(id >> 32);
496 
497 	return 0;
498 }
499 
500 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
501 {
502 	struct super_block *sb = vfs->mnt_sb;
503 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
504 
505 	if (!nilfs_test_opt(sbi, BARRIER))
506 		seq_puts(seq, ",nobarrier");
507 	if (nilfs_test_opt(sbi, SNAPSHOT))
508 		seq_printf(seq, ",cp=%llu",
509 			   (unsigned long long int)sbi->s_snapshot_cno);
510 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
511 		seq_puts(seq, ",errors=panic");
512 	if (nilfs_test_opt(sbi, ERRORS_CONT))
513 		seq_puts(seq, ",errors=continue");
514 	if (nilfs_test_opt(sbi, STRICT_ORDER))
515 		seq_puts(seq, ",order=strict");
516 	if (nilfs_test_opt(sbi, NORECOVERY))
517 		seq_puts(seq, ",norecovery");
518 	if (nilfs_test_opt(sbi, DISCARD))
519 		seq_puts(seq, ",discard");
520 
521 	return 0;
522 }
523 
524 static const struct super_operations nilfs_sops = {
525 	.alloc_inode    = nilfs_alloc_inode,
526 	.destroy_inode  = nilfs_destroy_inode,
527 	.dirty_inode    = nilfs_dirty_inode,
528 	/* .write_inode    = nilfs_write_inode, */
529 	/* .put_inode      = nilfs_put_inode, */
530 	/* .drop_inode	  = nilfs_drop_inode, */
531 	.evict_inode    = nilfs_evict_inode,
532 	.put_super      = nilfs_put_super,
533 	/* .write_super    = nilfs_write_super, */
534 	.sync_fs        = nilfs_sync_fs,
535 	/* .write_super_lockfs */
536 	/* .unlockfs */
537 	.statfs         = nilfs_statfs,
538 	.remount_fs     = nilfs_remount,
539 	/* .umount_begin */
540 	.show_options = nilfs_show_options
541 };
542 
543 static struct inode *
544 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
545 {
546 	struct inode *inode;
547 
548 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
549 	    ino != NILFS_SKETCH_INO)
550 		return ERR_PTR(-ESTALE);
551 
552 	inode = nilfs_iget(sb, ino);
553 	if (IS_ERR(inode))
554 		return ERR_CAST(inode);
555 	if (generation && inode->i_generation != generation) {
556 		iput(inode);
557 		return ERR_PTR(-ESTALE);
558 	}
559 
560 	return inode;
561 }
562 
563 static struct dentry *
564 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
565 		   int fh_type)
566 {
567 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
568 				    nilfs_nfs_get_inode);
569 }
570 
571 static struct dentry *
572 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
573 		   int fh_type)
574 {
575 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
576 				    nilfs_nfs_get_inode);
577 }
578 
579 static const struct export_operations nilfs_export_ops = {
580 	.fh_to_dentry = nilfs_fh_to_dentry,
581 	.fh_to_parent = nilfs_fh_to_parent,
582 	.get_parent = nilfs_get_parent,
583 };
584 
585 enum {
586 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
587 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
588 	Opt_discard, Opt_nodiscard, Opt_err,
589 };
590 
591 static match_table_t tokens = {
592 	{Opt_err_cont, "errors=continue"},
593 	{Opt_err_panic, "errors=panic"},
594 	{Opt_err_ro, "errors=remount-ro"},
595 	{Opt_barrier, "barrier"},
596 	{Opt_nobarrier, "nobarrier"},
597 	{Opt_snapshot, "cp=%u"},
598 	{Opt_order, "order=%s"},
599 	{Opt_norecovery, "norecovery"},
600 	{Opt_discard, "discard"},
601 	{Opt_nodiscard, "nodiscard"},
602 	{Opt_err, NULL}
603 };
604 
605 static int parse_options(char *options, struct super_block *sb, int is_remount)
606 {
607 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
608 	char *p;
609 	substring_t args[MAX_OPT_ARGS];
610 	int option;
611 
612 	if (!options)
613 		return 1;
614 
615 	while ((p = strsep(&options, ",")) != NULL) {
616 		int token;
617 		if (!*p)
618 			continue;
619 
620 		token = match_token(p, tokens, args);
621 		switch (token) {
622 		case Opt_barrier:
623 			nilfs_set_opt(sbi, BARRIER);
624 			break;
625 		case Opt_nobarrier:
626 			nilfs_clear_opt(sbi, BARRIER);
627 			break;
628 		case Opt_order:
629 			if (strcmp(args[0].from, "relaxed") == 0)
630 				/* Ordered data semantics */
631 				nilfs_clear_opt(sbi, STRICT_ORDER);
632 			else if (strcmp(args[0].from, "strict") == 0)
633 				/* Strict in-order semantics */
634 				nilfs_set_opt(sbi, STRICT_ORDER);
635 			else
636 				return 0;
637 			break;
638 		case Opt_err_panic:
639 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
640 			break;
641 		case Opt_err_ro:
642 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
643 			break;
644 		case Opt_err_cont:
645 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
646 			break;
647 		case Opt_snapshot:
648 			if (match_int(&args[0], &option) || option <= 0)
649 				return 0;
650 			if (is_remount) {
651 				if (!nilfs_test_opt(sbi, SNAPSHOT)) {
652 					printk(KERN_ERR
653 					       "NILFS: cannot change regular "
654 					       "mount to snapshot.\n");
655 					return 0;
656 				} else if (option != sbi->s_snapshot_cno) {
657 					printk(KERN_ERR
658 					       "NILFS: cannot remount to a "
659 					       "different snapshot.\n");
660 					return 0;
661 				}
662 				break;
663 			}
664 			if (!(sb->s_flags & MS_RDONLY)) {
665 				printk(KERN_ERR "NILFS: cannot mount snapshot "
666 				       "read/write.  A read-only option is "
667 				       "required.\n");
668 				return 0;
669 			}
670 			sbi->s_snapshot_cno = option;
671 			nilfs_set_opt(sbi, SNAPSHOT);
672 			break;
673 		case Opt_norecovery:
674 			nilfs_set_opt(sbi, NORECOVERY);
675 			break;
676 		case Opt_discard:
677 			nilfs_set_opt(sbi, DISCARD);
678 			break;
679 		case Opt_nodiscard:
680 			nilfs_clear_opt(sbi, DISCARD);
681 			break;
682 		default:
683 			printk(KERN_ERR
684 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
685 			return 0;
686 		}
687 	}
688 	return 1;
689 }
690 
691 static inline void
692 nilfs_set_default_options(struct nilfs_sb_info *sbi,
693 			  struct nilfs_super_block *sbp)
694 {
695 	sbi->s_mount_opt =
696 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
697 }
698 
699 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
700 {
701 	struct the_nilfs *nilfs = sbi->s_nilfs;
702 	struct nilfs_super_block **sbp;
703 	int max_mnt_count;
704 	int mnt_count;
705 
706 	/* nilfs->ns_sem must be locked by the caller. */
707 	sbp = nilfs_prepare_super(sbi, 0);
708 	if (!sbp)
709 		return -EIO;
710 
711 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
712 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
713 
714 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
715 		printk(KERN_WARNING
716 		       "NILFS warning: mounting fs with errors\n");
717 #if 0
718 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
719 		printk(KERN_WARNING
720 		       "NILFS warning: maximal mount count reached\n");
721 #endif
722 	}
723 	if (!max_mnt_count)
724 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
725 
726 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
727 	sbp[0]->s_state =
728 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
729 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
730 	/* synchronize sbp[1] with sbp[0] */
731 	memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
732 	return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
733 }
734 
735 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
736 						 u64 pos, int blocksize,
737 						 struct buffer_head **pbh)
738 {
739 	unsigned long long sb_index = pos;
740 	unsigned long offset;
741 
742 	offset = do_div(sb_index, blocksize);
743 	*pbh = sb_bread(sb, sb_index);
744 	if (!*pbh)
745 		return NULL;
746 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
747 }
748 
749 int nilfs_store_magic_and_option(struct super_block *sb,
750 				 struct nilfs_super_block *sbp,
751 				 char *data)
752 {
753 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
754 
755 	sb->s_magic = le16_to_cpu(sbp->s_magic);
756 
757 	/* FS independent flags */
758 #ifdef NILFS_ATIME_DISABLE
759 	sb->s_flags |= MS_NOATIME;
760 #endif
761 
762 	nilfs_set_default_options(sbi, sbp);
763 
764 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
765 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
766 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
767 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
768 
769 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
770 }
771 
772 int nilfs_check_feature_compatibility(struct super_block *sb,
773 				      struct nilfs_super_block *sbp)
774 {
775 	__u64 features;
776 
777 	features = le64_to_cpu(sbp->s_feature_incompat) &
778 		~NILFS_FEATURE_INCOMPAT_SUPP;
779 	if (features) {
780 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
781 		       "optional features (%llx)\n",
782 		       (unsigned long long)features);
783 		return -EINVAL;
784 	}
785 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
786 		~NILFS_FEATURE_COMPAT_RO_SUPP;
787 	if (!(sb->s_flags & MS_RDONLY) && features) {
788 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
789 		       "unsupported optional features (%llx)\n",
790 		       (unsigned long long)features);
791 		return -EINVAL;
792 	}
793 	return 0;
794 }
795 
796 /**
797  * nilfs_fill_super() - initialize a super block instance
798  * @sb: super_block
799  * @data: mount options
800  * @silent: silent mode flag
801  * @nilfs: the_nilfs struct
802  *
803  * This function is called exclusively by nilfs->ns_mount_mutex.
804  * So, the recovery process is protected from other simultaneous mounts.
805  */
806 static int
807 nilfs_fill_super(struct super_block *sb, void *data, int silent,
808 		 struct the_nilfs *nilfs)
809 {
810 	struct nilfs_sb_info *sbi;
811 	struct inode *root;
812 	__u64 cno;
813 	int err;
814 
815 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
816 	if (!sbi)
817 		return -ENOMEM;
818 
819 	sb->s_fs_info = sbi;
820 
821 	get_nilfs(nilfs);
822 	sbi->s_nilfs = nilfs;
823 	sbi->s_super = sb;
824 	atomic_set(&sbi->s_count, 1);
825 
826 	err = init_nilfs(nilfs, sbi, (char *)data);
827 	if (err)
828 		goto failed_sbi;
829 
830 	spin_lock_init(&sbi->s_inode_lock);
831 	INIT_LIST_HEAD(&sbi->s_dirty_files);
832 	INIT_LIST_HEAD(&sbi->s_list);
833 
834 	/*
835 	 * Following initialization is overlapped because
836 	 * nilfs_sb_info structure has been cleared at the beginning.
837 	 * But we reserve them to keep our interest and make ready
838 	 * for the future change.
839 	 */
840 	get_random_bytes(&sbi->s_next_generation,
841 			 sizeof(sbi->s_next_generation));
842 	spin_lock_init(&sbi->s_next_gen_lock);
843 
844 	sb->s_op = &nilfs_sops;
845 	sb->s_export_op = &nilfs_export_ops;
846 	sb->s_root = NULL;
847 	sb->s_time_gran = 1;
848 	sb->s_bdi = nilfs->ns_bdi;
849 
850 	err = load_nilfs(nilfs, sbi);
851 	if (err)
852 		goto failed_sbi;
853 
854 	cno = nilfs_last_cno(nilfs);
855 
856 	if (sb->s_flags & MS_RDONLY) {
857 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
858 			down_read(&nilfs->ns_segctor_sem);
859 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
860 						       sbi->s_snapshot_cno);
861 			up_read(&nilfs->ns_segctor_sem);
862 			if (err < 0) {
863 				if (err == -ENOENT)
864 					err = -EINVAL;
865 				goto failed_sbi;
866 			}
867 			if (!err) {
868 				printk(KERN_ERR
869 				       "NILFS: The specified checkpoint is "
870 				       "not a snapshot "
871 				       "(checkpoint number=%llu).\n",
872 				       (unsigned long long)sbi->s_snapshot_cno);
873 				err = -EINVAL;
874 				goto failed_sbi;
875 			}
876 			cno = sbi->s_snapshot_cno;
877 		}
878 	}
879 
880 	err = nilfs_attach_checkpoint(sbi, cno);
881 	if (err) {
882 		printk(KERN_ERR "NILFS: error loading a checkpoint"
883 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
884 		goto failed_sbi;
885 	}
886 
887 	if (!(sb->s_flags & MS_RDONLY)) {
888 		err = nilfs_attach_segment_constructor(sbi);
889 		if (err)
890 			goto failed_checkpoint;
891 	}
892 
893 	root = nilfs_iget(sb, NILFS_ROOT_INO);
894 	if (IS_ERR(root)) {
895 		printk(KERN_ERR "NILFS: get root inode failed\n");
896 		err = PTR_ERR(root);
897 		goto failed_segctor;
898 	}
899 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
900 		iput(root);
901 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
902 		err = -EINVAL;
903 		goto failed_segctor;
904 	}
905 	sb->s_root = d_alloc_root(root);
906 	if (!sb->s_root) {
907 		iput(root);
908 		printk(KERN_ERR "NILFS: get root dentry failed\n");
909 		err = -ENOMEM;
910 		goto failed_segctor;
911 	}
912 
913 	if (!(sb->s_flags & MS_RDONLY)) {
914 		down_write(&nilfs->ns_sem);
915 		nilfs_setup_super(sbi);
916 		up_write(&nilfs->ns_sem);
917 	}
918 
919 	down_write(&nilfs->ns_super_sem);
920 	if (!nilfs_test_opt(sbi, SNAPSHOT))
921 		nilfs->ns_current = sbi;
922 	up_write(&nilfs->ns_super_sem);
923 
924 	return 0;
925 
926  failed_segctor:
927 	nilfs_detach_segment_constructor(sbi);
928 
929  failed_checkpoint:
930 	nilfs_detach_checkpoint(sbi);
931 
932  failed_sbi:
933 	put_nilfs(nilfs);
934 	sb->s_fs_info = NULL;
935 	nilfs_put_sbinfo(sbi);
936 	return err;
937 }
938 
939 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
940 {
941 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
942 	struct the_nilfs *nilfs = sbi->s_nilfs;
943 	unsigned long old_sb_flags;
944 	struct nilfs_mount_options old_opts;
945 	int was_snapshot, err;
946 
947 	down_write(&nilfs->ns_super_sem);
948 	old_sb_flags = sb->s_flags;
949 	old_opts.mount_opt = sbi->s_mount_opt;
950 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
951 	was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
952 
953 	if (!parse_options(data, sb, 1)) {
954 		err = -EINVAL;
955 		goto restore_opts;
956 	}
957 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
958 
959 	err = -EINVAL;
960 	if (was_snapshot && !(*flags & MS_RDONLY)) {
961 		printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
962 		       "read/write.\n", sb->s_id);
963 		goto restore_opts;
964 	}
965 
966 	if (!nilfs_valid_fs(nilfs)) {
967 		printk(KERN_WARNING "NILFS (device %s): couldn't "
968 		       "remount because the filesystem is in an "
969 		       "incomplete recovery state.\n", sb->s_id);
970 		goto restore_opts;
971 	}
972 
973 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
974 		goto out;
975 	if (*flags & MS_RDONLY) {
976 		/* Shutting down the segment constructor */
977 		nilfs_detach_segment_constructor(sbi);
978 		sb->s_flags |= MS_RDONLY;
979 
980 		/*
981 		 * Remounting a valid RW partition RDONLY, so set
982 		 * the RDONLY flag and then mark the partition as valid again.
983 		 */
984 		down_write(&nilfs->ns_sem);
985 		nilfs_cleanup_super(sbi);
986 		up_write(&nilfs->ns_sem);
987 	} else {
988 		__u64 features;
989 
990 		/*
991 		 * Mounting a RDONLY partition read-write, so reread and
992 		 * store the current valid flag.  (It may have been changed
993 		 * by fsck since we originally mounted the partition.)
994 		 */
995 		down_read(&nilfs->ns_sem);
996 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
997 			~NILFS_FEATURE_COMPAT_RO_SUPP;
998 		up_read(&nilfs->ns_sem);
999 		if (features) {
1000 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1001 			       "remount RDWR because of unsupported optional "
1002 			       "features (%llx)\n",
1003 			       sb->s_id, (unsigned long long)features);
1004 			err = -EROFS;
1005 			goto restore_opts;
1006 		}
1007 
1008 		sb->s_flags &= ~MS_RDONLY;
1009 
1010 		err = nilfs_attach_segment_constructor(sbi);
1011 		if (err)
1012 			goto restore_opts;
1013 
1014 		down_write(&nilfs->ns_sem);
1015 		nilfs_setup_super(sbi);
1016 		up_write(&nilfs->ns_sem);
1017 	}
1018  out:
1019 	up_write(&nilfs->ns_super_sem);
1020 	return 0;
1021 
1022  restore_opts:
1023 	sb->s_flags = old_sb_flags;
1024 	sbi->s_mount_opt = old_opts.mount_opt;
1025 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1026 	up_write(&nilfs->ns_super_sem);
1027 	return err;
1028 }
1029 
1030 struct nilfs_super_data {
1031 	struct block_device *bdev;
1032 	struct nilfs_sb_info *sbi;
1033 	__u64 cno;
1034 	int flags;
1035 };
1036 
1037 /**
1038  * nilfs_identify - pre-read mount options needed to identify mount instance
1039  * @data: mount options
1040  * @sd: nilfs_super_data
1041  */
1042 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1043 {
1044 	char *p, *options = data;
1045 	substring_t args[MAX_OPT_ARGS];
1046 	int option, token;
1047 	int ret = 0;
1048 
1049 	do {
1050 		p = strsep(&options, ",");
1051 		if (p != NULL && *p) {
1052 			token = match_token(p, tokens, args);
1053 			if (token == Opt_snapshot) {
1054 				if (!(sd->flags & MS_RDONLY))
1055 					ret++;
1056 				else {
1057 					ret = match_int(&args[0], &option);
1058 					if (!ret) {
1059 						if (option > 0)
1060 							sd->cno = option;
1061 						else
1062 							ret++;
1063 					}
1064 				}
1065 			}
1066 			if (ret)
1067 				printk(KERN_ERR
1068 				       "NILFS: invalid mount option: %s\n", p);
1069 		}
1070 		if (!options)
1071 			break;
1072 		BUG_ON(options == data);
1073 		*(options - 1) = ',';
1074 	} while (!ret);
1075 	return ret;
1076 }
1077 
1078 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1079 {
1080 	struct nilfs_super_data *sd = data;
1081 
1082 	s->s_bdev = sd->bdev;
1083 	s->s_dev = s->s_bdev->bd_dev;
1084 	return 0;
1085 }
1086 
1087 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1088 {
1089 	struct nilfs_super_data *sd = data;
1090 
1091 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1092 }
1093 
1094 static int
1095 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1096 	     const char *dev_name, void *data, struct vfsmount *mnt)
1097 {
1098 	struct nilfs_super_data sd;
1099 	struct super_block *s;
1100 	fmode_t mode = FMODE_READ;
1101 	struct the_nilfs *nilfs;
1102 	int err, need_to_close = 1;
1103 
1104 	if (!(flags & MS_RDONLY))
1105 		mode |= FMODE_WRITE;
1106 
1107 	sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1108 	if (IS_ERR(sd.bdev))
1109 		return PTR_ERR(sd.bdev);
1110 
1111 	/*
1112 	 * To get mount instance using sget() vfs-routine, NILFS needs
1113 	 * much more information than normal filesystems to identify mount
1114 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1115 	 * or rw-mount) but also a checkpoint number is required.
1116 	 */
1117 	sd.cno = 0;
1118 	sd.flags = flags;
1119 	if (nilfs_identify((char *)data, &sd)) {
1120 		err = -EINVAL;
1121 		goto failed;
1122 	}
1123 
1124 	nilfs = find_or_create_nilfs(sd.bdev);
1125 	if (!nilfs) {
1126 		err = -ENOMEM;
1127 		goto failed;
1128 	}
1129 
1130 	mutex_lock(&nilfs->ns_mount_mutex);
1131 
1132 	if (!sd.cno) {
1133 		/*
1134 		 * Check if an exclusive mount exists or not.
1135 		 * Snapshot mounts coexist with a current mount
1136 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1137 		 * ro-mount are mutually exclusive.
1138 		 */
1139 		down_read(&nilfs->ns_super_sem);
1140 		if (nilfs->ns_current &&
1141 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1142 		     & MS_RDONLY)) {
1143 			up_read(&nilfs->ns_super_sem);
1144 			err = -EBUSY;
1145 			goto failed_unlock;
1146 		}
1147 		up_read(&nilfs->ns_super_sem);
1148 	}
1149 
1150 	/*
1151 	 * Find existing nilfs_sb_info struct
1152 	 */
1153 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1154 
1155 	/*
1156 	 * Get super block instance holding the nilfs_sb_info struct.
1157 	 * A new instance is allocated if no existing mount is present or
1158 	 * existing instance has been unmounted.
1159 	 */
1160 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1161 	if (sd.sbi)
1162 		nilfs_put_sbinfo(sd.sbi);
1163 
1164 	if (IS_ERR(s)) {
1165 		err = PTR_ERR(s);
1166 		goto failed_unlock;
1167 	}
1168 
1169 	if (!s->s_root) {
1170 		char b[BDEVNAME_SIZE];
1171 
1172 		/* New superblock instance created */
1173 		s->s_flags = flags;
1174 		s->s_mode = mode;
1175 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1176 		sb_set_blocksize(s, block_size(sd.bdev));
1177 
1178 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1179 				       nilfs);
1180 		if (err)
1181 			goto cancel_new;
1182 
1183 		s->s_flags |= MS_ACTIVE;
1184 		need_to_close = 0;
1185 	}
1186 
1187 	mutex_unlock(&nilfs->ns_mount_mutex);
1188 	put_nilfs(nilfs);
1189 	if (need_to_close)
1190 		close_bdev_exclusive(sd.bdev, mode);
1191 	simple_set_mnt(mnt, s);
1192 	return 0;
1193 
1194  failed_unlock:
1195 	mutex_unlock(&nilfs->ns_mount_mutex);
1196 	put_nilfs(nilfs);
1197  failed:
1198 	close_bdev_exclusive(sd.bdev, mode);
1199 	return err;
1200 
1201  cancel_new:
1202 	/* Abandoning the newly allocated superblock */
1203 	mutex_unlock(&nilfs->ns_mount_mutex);
1204 	put_nilfs(nilfs);
1205 	deactivate_locked_super(s);
1206 	/*
1207 	 * deactivate_locked_super() invokes close_bdev_exclusive().
1208 	 * We must finish all post-cleaning before this call;
1209 	 * put_nilfs() needs the block device.
1210 	 */
1211 	return err;
1212 }
1213 
1214 struct file_system_type nilfs_fs_type = {
1215 	.owner    = THIS_MODULE,
1216 	.name     = "nilfs2",
1217 	.get_sb   = nilfs_get_sb,
1218 	.kill_sb  = kill_block_super,
1219 	.fs_flags = FS_REQUIRES_DEV,
1220 };
1221 
1222 static void nilfs_inode_init_once(void *obj)
1223 {
1224 	struct nilfs_inode_info *ii = obj;
1225 
1226 	INIT_LIST_HEAD(&ii->i_dirty);
1227 #ifdef CONFIG_NILFS_XATTR
1228 	init_rwsem(&ii->xattr_sem);
1229 #endif
1230 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1231 	ii->i_bmap = &ii->i_bmap_data;
1232 	inode_init_once(&ii->vfs_inode);
1233 }
1234 
1235 static void nilfs_segbuf_init_once(void *obj)
1236 {
1237 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1238 }
1239 
1240 static void nilfs_destroy_cachep(void)
1241 {
1242 	if (nilfs_inode_cachep)
1243 		kmem_cache_destroy(nilfs_inode_cachep);
1244 	if (nilfs_transaction_cachep)
1245 		kmem_cache_destroy(nilfs_transaction_cachep);
1246 	if (nilfs_segbuf_cachep)
1247 		kmem_cache_destroy(nilfs_segbuf_cachep);
1248 	if (nilfs_btree_path_cache)
1249 		kmem_cache_destroy(nilfs_btree_path_cache);
1250 }
1251 
1252 static int __init nilfs_init_cachep(void)
1253 {
1254 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1255 			sizeof(struct nilfs_inode_info), 0,
1256 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1257 	if (!nilfs_inode_cachep)
1258 		goto fail;
1259 
1260 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1261 			sizeof(struct nilfs_transaction_info), 0,
1262 			SLAB_RECLAIM_ACCOUNT, NULL);
1263 	if (!nilfs_transaction_cachep)
1264 		goto fail;
1265 
1266 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1267 			sizeof(struct nilfs_segment_buffer), 0,
1268 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1269 	if (!nilfs_segbuf_cachep)
1270 		goto fail;
1271 
1272 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1273 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1274 			0, 0, NULL);
1275 	if (!nilfs_btree_path_cache)
1276 		goto fail;
1277 
1278 	return 0;
1279 
1280 fail:
1281 	nilfs_destroy_cachep();
1282 	return -ENOMEM;
1283 }
1284 
1285 static int __init init_nilfs_fs(void)
1286 {
1287 	int err;
1288 
1289 	err = nilfs_init_cachep();
1290 	if (err)
1291 		goto fail;
1292 
1293 	err = register_filesystem(&nilfs_fs_type);
1294 	if (err)
1295 		goto free_cachep;
1296 
1297 	printk(KERN_INFO "NILFS version 2 loaded\n");
1298 	return 0;
1299 
1300 free_cachep:
1301 	nilfs_destroy_cachep();
1302 fail:
1303 	return err;
1304 }
1305 
1306 static void __exit exit_nilfs_fs(void)
1307 {
1308 	nilfs_destroy_cachep();
1309 	unregister_filesystem(&nilfs_fs_type);
1310 }
1311 
1312 module_init(init_nilfs_fs)
1313 module_exit(exit_nilfs_fs)
1314