xref: /linux/fs/nilfs2/sufile.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * sufile.c - NILFS segment usage file.
3  *
4  * Copyright (C) 2006-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Koji Sato.
17  * Revised by Ryusuke Konishi.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/fs.h>
22 #include <linux/string.h>
23 #include <linux/buffer_head.h>
24 #include <linux/errno.h>
25 #include <linux/nilfs2_fs.h>
26 #include "mdt.h"
27 #include "sufile.h"
28 
29 #include <trace/events/nilfs2.h>
30 
31 /**
32  * struct nilfs_sufile_info - on-memory private data of sufile
33  * @mi: on-memory private data of metadata file
34  * @ncleansegs: number of clean segments
35  * @allocmin: lower limit of allocatable segment range
36  * @allocmax: upper limit of allocatable segment range
37  */
38 struct nilfs_sufile_info {
39 	struct nilfs_mdt_info mi;
40 	unsigned long ncleansegs;/* number of clean segments */
41 	__u64 allocmin;		/* lower limit of allocatable segment range */
42 	__u64 allocmax;		/* upper limit of allocatable segment range */
43 };
44 
45 static inline struct nilfs_sufile_info *NILFS_SUI(struct inode *sufile)
46 {
47 	return (struct nilfs_sufile_info *)NILFS_MDT(sufile);
48 }
49 
50 static inline unsigned long
51 nilfs_sufile_segment_usages_per_block(const struct inode *sufile)
52 {
53 	return NILFS_MDT(sufile)->mi_entries_per_block;
54 }
55 
56 static unsigned long
57 nilfs_sufile_get_blkoff(const struct inode *sufile, __u64 segnum)
58 {
59 	__u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset;
60 
61 	do_div(t, nilfs_sufile_segment_usages_per_block(sufile));
62 	return (unsigned long)t;
63 }
64 
65 static unsigned long
66 nilfs_sufile_get_offset(const struct inode *sufile, __u64 segnum)
67 {
68 	__u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset;
69 
70 	return do_div(t, nilfs_sufile_segment_usages_per_block(sufile));
71 }
72 
73 static unsigned long
74 nilfs_sufile_segment_usages_in_block(const struct inode *sufile, __u64 curr,
75 				     __u64 max)
76 {
77 	return min_t(unsigned long,
78 		     nilfs_sufile_segment_usages_per_block(sufile) -
79 		     nilfs_sufile_get_offset(sufile, curr),
80 		     max - curr + 1);
81 }
82 
83 static struct nilfs_segment_usage *
84 nilfs_sufile_block_get_segment_usage(const struct inode *sufile, __u64 segnum,
85 				     struct buffer_head *bh, void *kaddr)
86 {
87 	return kaddr + bh_offset(bh) +
88 		nilfs_sufile_get_offset(sufile, segnum) *
89 		NILFS_MDT(sufile)->mi_entry_size;
90 }
91 
92 static inline int nilfs_sufile_get_header_block(struct inode *sufile,
93 						struct buffer_head **bhp)
94 {
95 	return nilfs_mdt_get_block(sufile, 0, 0, NULL, bhp);
96 }
97 
98 static inline int
99 nilfs_sufile_get_segment_usage_block(struct inode *sufile, __u64 segnum,
100 				     int create, struct buffer_head **bhp)
101 {
102 	return nilfs_mdt_get_block(sufile,
103 				   nilfs_sufile_get_blkoff(sufile, segnum),
104 				   create, NULL, bhp);
105 }
106 
107 static int nilfs_sufile_delete_segment_usage_block(struct inode *sufile,
108 						   __u64 segnum)
109 {
110 	return nilfs_mdt_delete_block(sufile,
111 				      nilfs_sufile_get_blkoff(sufile, segnum));
112 }
113 
114 static void nilfs_sufile_mod_counter(struct buffer_head *header_bh,
115 				     u64 ncleanadd, u64 ndirtyadd)
116 {
117 	struct nilfs_sufile_header *header;
118 	void *kaddr;
119 
120 	kaddr = kmap_atomic(header_bh->b_page);
121 	header = kaddr + bh_offset(header_bh);
122 	le64_add_cpu(&header->sh_ncleansegs, ncleanadd);
123 	le64_add_cpu(&header->sh_ndirtysegs, ndirtyadd);
124 	kunmap_atomic(kaddr);
125 
126 	mark_buffer_dirty(header_bh);
127 }
128 
129 /**
130  * nilfs_sufile_get_ncleansegs - return the number of clean segments
131  * @sufile: inode of segment usage file
132  */
133 unsigned long nilfs_sufile_get_ncleansegs(struct inode *sufile)
134 {
135 	return NILFS_SUI(sufile)->ncleansegs;
136 }
137 
138 /**
139  * nilfs_sufile_updatev - modify multiple segment usages at a time
140  * @sufile: inode of segment usage file
141  * @segnumv: array of segment numbers
142  * @nsegs: size of @segnumv array
143  * @create: creation flag
144  * @ndone: place to store number of modified segments on @segnumv
145  * @dofunc: primitive operation for the update
146  *
147  * Description: nilfs_sufile_updatev() repeatedly calls @dofunc
148  * against the given array of segments.  The @dofunc is called with
149  * buffers of a header block and the sufile block in which the target
150  * segment usage entry is contained.  If @ndone is given, the number
151  * of successfully modified segments from the head is stored in the
152  * place @ndone points to.
153  *
154  * Return Value: On success, zero is returned.  On error, one of the
155  * following negative error codes is returned.
156  *
157  * %-EIO - I/O error.
158  *
159  * %-ENOMEM - Insufficient amount of memory available.
160  *
161  * %-ENOENT - Given segment usage is in hole block (may be returned if
162  *            @create is zero)
163  *
164  * %-EINVAL - Invalid segment usage number
165  */
166 int nilfs_sufile_updatev(struct inode *sufile, __u64 *segnumv, size_t nsegs,
167 			 int create, size_t *ndone,
168 			 void (*dofunc)(struct inode *, __u64,
169 					struct buffer_head *,
170 					struct buffer_head *))
171 {
172 	struct buffer_head *header_bh, *bh;
173 	unsigned long blkoff, prev_blkoff;
174 	__u64 *seg;
175 	size_t nerr = 0, n = 0;
176 	int ret = 0;
177 
178 	if (unlikely(nsegs == 0))
179 		goto out;
180 
181 	down_write(&NILFS_MDT(sufile)->mi_sem);
182 	for (seg = segnumv; seg < segnumv + nsegs; seg++) {
183 		if (unlikely(*seg >= nilfs_sufile_get_nsegments(sufile))) {
184 			printk(KERN_WARNING
185 			       "%s: invalid segment number: %llu\n", __func__,
186 			       (unsigned long long)*seg);
187 			nerr++;
188 		}
189 	}
190 	if (nerr > 0) {
191 		ret = -EINVAL;
192 		goto out_sem;
193 	}
194 
195 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
196 	if (ret < 0)
197 		goto out_sem;
198 
199 	seg = segnumv;
200 	blkoff = nilfs_sufile_get_blkoff(sufile, *seg);
201 	ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh);
202 	if (ret < 0)
203 		goto out_header;
204 
205 	for (;;) {
206 		dofunc(sufile, *seg, header_bh, bh);
207 
208 		if (++seg >= segnumv + nsegs)
209 			break;
210 		prev_blkoff = blkoff;
211 		blkoff = nilfs_sufile_get_blkoff(sufile, *seg);
212 		if (blkoff == prev_blkoff)
213 			continue;
214 
215 		/* get different block */
216 		brelse(bh);
217 		ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh);
218 		if (unlikely(ret < 0))
219 			goto out_header;
220 	}
221 	brelse(bh);
222 
223  out_header:
224 	n = seg - segnumv;
225 	brelse(header_bh);
226  out_sem:
227 	up_write(&NILFS_MDT(sufile)->mi_sem);
228  out:
229 	if (ndone)
230 		*ndone = n;
231 	return ret;
232 }
233 
234 int nilfs_sufile_update(struct inode *sufile, __u64 segnum, int create,
235 			void (*dofunc)(struct inode *, __u64,
236 				       struct buffer_head *,
237 				       struct buffer_head *))
238 {
239 	struct buffer_head *header_bh, *bh;
240 	int ret;
241 
242 	if (unlikely(segnum >= nilfs_sufile_get_nsegments(sufile))) {
243 		printk(KERN_WARNING "%s: invalid segment number: %llu\n",
244 		       __func__, (unsigned long long)segnum);
245 		return -EINVAL;
246 	}
247 	down_write(&NILFS_MDT(sufile)->mi_sem);
248 
249 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
250 	if (ret < 0)
251 		goto out_sem;
252 
253 	ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, create, &bh);
254 	if (!ret) {
255 		dofunc(sufile, segnum, header_bh, bh);
256 		brelse(bh);
257 	}
258 	brelse(header_bh);
259 
260  out_sem:
261 	up_write(&NILFS_MDT(sufile)->mi_sem);
262 	return ret;
263 }
264 
265 /**
266  * nilfs_sufile_set_alloc_range - limit range of segment to be allocated
267  * @sufile: inode of segment usage file
268  * @start: minimum segment number of allocatable region (inclusive)
269  * @end: maximum segment number of allocatable region (inclusive)
270  *
271  * Return Value: On success, 0 is returned.  On error, one of the
272  * following negative error codes is returned.
273  *
274  * %-ERANGE - invalid segment region
275  */
276 int nilfs_sufile_set_alloc_range(struct inode *sufile, __u64 start, __u64 end)
277 {
278 	struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
279 	__u64 nsegs;
280 	int ret = -ERANGE;
281 
282 	down_write(&NILFS_MDT(sufile)->mi_sem);
283 	nsegs = nilfs_sufile_get_nsegments(sufile);
284 
285 	if (start <= end && end < nsegs) {
286 		sui->allocmin = start;
287 		sui->allocmax = end;
288 		ret = 0;
289 	}
290 	up_write(&NILFS_MDT(sufile)->mi_sem);
291 	return ret;
292 }
293 
294 /**
295  * nilfs_sufile_alloc - allocate a segment
296  * @sufile: inode of segment usage file
297  * @segnump: pointer to segment number
298  *
299  * Description: nilfs_sufile_alloc() allocates a clean segment.
300  *
301  * Return Value: On success, 0 is returned and the segment number of the
302  * allocated segment is stored in the place pointed by @segnump. On error, one
303  * of the following negative error codes is returned.
304  *
305  * %-EIO - I/O error.
306  *
307  * %-ENOMEM - Insufficient amount of memory available.
308  *
309  * %-ENOSPC - No clean segment left.
310  */
311 int nilfs_sufile_alloc(struct inode *sufile, __u64 *segnump)
312 {
313 	struct buffer_head *header_bh, *su_bh;
314 	struct nilfs_sufile_header *header;
315 	struct nilfs_segment_usage *su;
316 	struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
317 	size_t susz = NILFS_MDT(sufile)->mi_entry_size;
318 	__u64 segnum, maxsegnum, last_alloc;
319 	void *kaddr;
320 	unsigned long nsegments, nsus, cnt;
321 	int ret, j;
322 
323 	down_write(&NILFS_MDT(sufile)->mi_sem);
324 
325 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
326 	if (ret < 0)
327 		goto out_sem;
328 	kaddr = kmap_atomic(header_bh->b_page);
329 	header = kaddr + bh_offset(header_bh);
330 	last_alloc = le64_to_cpu(header->sh_last_alloc);
331 	kunmap_atomic(kaddr);
332 
333 	nsegments = nilfs_sufile_get_nsegments(sufile);
334 	maxsegnum = sui->allocmax;
335 	segnum = last_alloc + 1;
336 	if (segnum < sui->allocmin || segnum > sui->allocmax)
337 		segnum = sui->allocmin;
338 
339 	for (cnt = 0; cnt < nsegments; cnt += nsus) {
340 		if (segnum > maxsegnum) {
341 			if (cnt < sui->allocmax - sui->allocmin + 1) {
342 				/*
343 				 * wrap around in the limited region.
344 				 * if allocation started from
345 				 * sui->allocmin, this never happens.
346 				 */
347 				segnum = sui->allocmin;
348 				maxsegnum = last_alloc;
349 			} else if (segnum > sui->allocmin &&
350 				   sui->allocmax + 1 < nsegments) {
351 				segnum = sui->allocmax + 1;
352 				maxsegnum = nsegments - 1;
353 			} else if (sui->allocmin > 0)  {
354 				segnum = 0;
355 				maxsegnum = sui->allocmin - 1;
356 			} else {
357 				break; /* never happens */
358 			}
359 		}
360 		trace_nilfs2_segment_usage_check(sufile, segnum, cnt);
361 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 1,
362 							   &su_bh);
363 		if (ret < 0)
364 			goto out_header;
365 		kaddr = kmap_atomic(su_bh->b_page);
366 		su = nilfs_sufile_block_get_segment_usage(
367 			sufile, segnum, su_bh, kaddr);
368 
369 		nsus = nilfs_sufile_segment_usages_in_block(
370 			sufile, segnum, maxsegnum);
371 		for (j = 0; j < nsus; j++, su = (void *)su + susz, segnum++) {
372 			if (!nilfs_segment_usage_clean(su))
373 				continue;
374 			/* found a clean segment */
375 			nilfs_segment_usage_set_dirty(su);
376 			kunmap_atomic(kaddr);
377 
378 			kaddr = kmap_atomic(header_bh->b_page);
379 			header = kaddr + bh_offset(header_bh);
380 			le64_add_cpu(&header->sh_ncleansegs, -1);
381 			le64_add_cpu(&header->sh_ndirtysegs, 1);
382 			header->sh_last_alloc = cpu_to_le64(segnum);
383 			kunmap_atomic(kaddr);
384 
385 			sui->ncleansegs--;
386 			mark_buffer_dirty(header_bh);
387 			mark_buffer_dirty(su_bh);
388 			nilfs_mdt_mark_dirty(sufile);
389 			brelse(su_bh);
390 			*segnump = segnum;
391 
392 			trace_nilfs2_segment_usage_allocated(sufile, segnum);
393 
394 			goto out_header;
395 		}
396 
397 		kunmap_atomic(kaddr);
398 		brelse(su_bh);
399 	}
400 
401 	/* no segments left */
402 	ret = -ENOSPC;
403 
404  out_header:
405 	brelse(header_bh);
406 
407  out_sem:
408 	up_write(&NILFS_MDT(sufile)->mi_sem);
409 	return ret;
410 }
411 
412 void nilfs_sufile_do_cancel_free(struct inode *sufile, __u64 segnum,
413 				 struct buffer_head *header_bh,
414 				 struct buffer_head *su_bh)
415 {
416 	struct nilfs_segment_usage *su;
417 	void *kaddr;
418 
419 	kaddr = kmap_atomic(su_bh->b_page);
420 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
421 	if (unlikely(!nilfs_segment_usage_clean(su))) {
422 		printk(KERN_WARNING "%s: segment %llu must be clean\n",
423 		       __func__, (unsigned long long)segnum);
424 		kunmap_atomic(kaddr);
425 		return;
426 	}
427 	nilfs_segment_usage_set_dirty(su);
428 	kunmap_atomic(kaddr);
429 
430 	nilfs_sufile_mod_counter(header_bh, -1, 1);
431 	NILFS_SUI(sufile)->ncleansegs--;
432 
433 	mark_buffer_dirty(su_bh);
434 	nilfs_mdt_mark_dirty(sufile);
435 }
436 
437 void nilfs_sufile_do_scrap(struct inode *sufile, __u64 segnum,
438 			   struct buffer_head *header_bh,
439 			   struct buffer_head *su_bh)
440 {
441 	struct nilfs_segment_usage *su;
442 	void *kaddr;
443 	int clean, dirty;
444 
445 	kaddr = kmap_atomic(su_bh->b_page);
446 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
447 	if (su->su_flags == cpu_to_le32(1UL << NILFS_SEGMENT_USAGE_DIRTY) &&
448 	    su->su_nblocks == cpu_to_le32(0)) {
449 		kunmap_atomic(kaddr);
450 		return;
451 	}
452 	clean = nilfs_segment_usage_clean(su);
453 	dirty = nilfs_segment_usage_dirty(su);
454 
455 	/* make the segment garbage */
456 	su->su_lastmod = cpu_to_le64(0);
457 	su->su_nblocks = cpu_to_le32(0);
458 	su->su_flags = cpu_to_le32(1UL << NILFS_SEGMENT_USAGE_DIRTY);
459 	kunmap_atomic(kaddr);
460 
461 	nilfs_sufile_mod_counter(header_bh, clean ? (u64)-1 : 0, dirty ? 0 : 1);
462 	NILFS_SUI(sufile)->ncleansegs -= clean;
463 
464 	mark_buffer_dirty(su_bh);
465 	nilfs_mdt_mark_dirty(sufile);
466 }
467 
468 void nilfs_sufile_do_free(struct inode *sufile, __u64 segnum,
469 			  struct buffer_head *header_bh,
470 			  struct buffer_head *su_bh)
471 {
472 	struct nilfs_segment_usage *su;
473 	void *kaddr;
474 	int sudirty;
475 
476 	kaddr = kmap_atomic(su_bh->b_page);
477 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
478 	if (nilfs_segment_usage_clean(su)) {
479 		printk(KERN_WARNING "%s: segment %llu is already clean\n",
480 		       __func__, (unsigned long long)segnum);
481 		kunmap_atomic(kaddr);
482 		return;
483 	}
484 	WARN_ON(nilfs_segment_usage_error(su));
485 	WARN_ON(!nilfs_segment_usage_dirty(su));
486 
487 	sudirty = nilfs_segment_usage_dirty(su);
488 	nilfs_segment_usage_set_clean(su);
489 	kunmap_atomic(kaddr);
490 	mark_buffer_dirty(su_bh);
491 
492 	nilfs_sufile_mod_counter(header_bh, 1, sudirty ? (u64)-1 : 0);
493 	NILFS_SUI(sufile)->ncleansegs++;
494 
495 	nilfs_mdt_mark_dirty(sufile);
496 
497 	trace_nilfs2_segment_usage_freed(sufile, segnum);
498 }
499 
500 /**
501  * nilfs_sufile_mark_dirty - mark the buffer having a segment usage dirty
502  * @sufile: inode of segment usage file
503  * @segnum: segment number
504  */
505 int nilfs_sufile_mark_dirty(struct inode *sufile, __u64 segnum)
506 {
507 	struct buffer_head *bh;
508 	int ret;
509 
510 	ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh);
511 	if (!ret) {
512 		mark_buffer_dirty(bh);
513 		nilfs_mdt_mark_dirty(sufile);
514 		brelse(bh);
515 	}
516 	return ret;
517 }
518 
519 /**
520  * nilfs_sufile_set_segment_usage - set usage of a segment
521  * @sufile: inode of segment usage file
522  * @segnum: segment number
523  * @nblocks: number of live blocks in the segment
524  * @modtime: modification time (option)
525  */
526 int nilfs_sufile_set_segment_usage(struct inode *sufile, __u64 segnum,
527 				   unsigned long nblocks, time_t modtime)
528 {
529 	struct buffer_head *bh;
530 	struct nilfs_segment_usage *su;
531 	void *kaddr;
532 	int ret;
533 
534 	down_write(&NILFS_MDT(sufile)->mi_sem);
535 	ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh);
536 	if (ret < 0)
537 		goto out_sem;
538 
539 	kaddr = kmap_atomic(bh->b_page);
540 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, bh, kaddr);
541 	WARN_ON(nilfs_segment_usage_error(su));
542 	if (modtime)
543 		su->su_lastmod = cpu_to_le64(modtime);
544 	su->su_nblocks = cpu_to_le32(nblocks);
545 	kunmap_atomic(kaddr);
546 
547 	mark_buffer_dirty(bh);
548 	nilfs_mdt_mark_dirty(sufile);
549 	brelse(bh);
550 
551  out_sem:
552 	up_write(&NILFS_MDT(sufile)->mi_sem);
553 	return ret;
554 }
555 
556 /**
557  * nilfs_sufile_get_stat - get segment usage statistics
558  * @sufile: inode of segment usage file
559  * @stat: pointer to a structure of segment usage statistics
560  *
561  * Description: nilfs_sufile_get_stat() returns information about segment
562  * usage.
563  *
564  * Return Value: On success, 0 is returned, and segment usage information is
565  * stored in the place pointed by @stat. On error, one of the following
566  * negative error codes is returned.
567  *
568  * %-EIO - I/O error.
569  *
570  * %-ENOMEM - Insufficient amount of memory available.
571  */
572 int nilfs_sufile_get_stat(struct inode *sufile, struct nilfs_sustat *sustat)
573 {
574 	struct buffer_head *header_bh;
575 	struct nilfs_sufile_header *header;
576 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
577 	void *kaddr;
578 	int ret;
579 
580 	down_read(&NILFS_MDT(sufile)->mi_sem);
581 
582 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
583 	if (ret < 0)
584 		goto out_sem;
585 
586 	kaddr = kmap_atomic(header_bh->b_page);
587 	header = kaddr + bh_offset(header_bh);
588 	sustat->ss_nsegs = nilfs_sufile_get_nsegments(sufile);
589 	sustat->ss_ncleansegs = le64_to_cpu(header->sh_ncleansegs);
590 	sustat->ss_ndirtysegs = le64_to_cpu(header->sh_ndirtysegs);
591 	sustat->ss_ctime = nilfs->ns_ctime;
592 	sustat->ss_nongc_ctime = nilfs->ns_nongc_ctime;
593 	spin_lock(&nilfs->ns_last_segment_lock);
594 	sustat->ss_prot_seq = nilfs->ns_prot_seq;
595 	spin_unlock(&nilfs->ns_last_segment_lock);
596 	kunmap_atomic(kaddr);
597 	brelse(header_bh);
598 
599  out_sem:
600 	up_read(&NILFS_MDT(sufile)->mi_sem);
601 	return ret;
602 }
603 
604 void nilfs_sufile_do_set_error(struct inode *sufile, __u64 segnum,
605 			       struct buffer_head *header_bh,
606 			       struct buffer_head *su_bh)
607 {
608 	struct nilfs_segment_usage *su;
609 	void *kaddr;
610 	int suclean;
611 
612 	kaddr = kmap_atomic(su_bh->b_page);
613 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
614 	if (nilfs_segment_usage_error(su)) {
615 		kunmap_atomic(kaddr);
616 		return;
617 	}
618 	suclean = nilfs_segment_usage_clean(su);
619 	nilfs_segment_usage_set_error(su);
620 	kunmap_atomic(kaddr);
621 
622 	if (suclean) {
623 		nilfs_sufile_mod_counter(header_bh, -1, 0);
624 		NILFS_SUI(sufile)->ncleansegs--;
625 	}
626 	mark_buffer_dirty(su_bh);
627 	nilfs_mdt_mark_dirty(sufile);
628 }
629 
630 /**
631   * nilfs_sufile_truncate_range - truncate range of segment array
632   * @sufile: inode of segment usage file
633   * @start: start segment number (inclusive)
634   * @end: end segment number (inclusive)
635   *
636   * Return Value: On success, 0 is returned.  On error, one of the
637   * following negative error codes is returned.
638   *
639   * %-EIO - I/O error.
640   *
641   * %-ENOMEM - Insufficient amount of memory available.
642   *
643   * %-EINVAL - Invalid number of segments specified
644   *
645   * %-EBUSY - Dirty or active segments are present in the range
646   */
647 static int nilfs_sufile_truncate_range(struct inode *sufile,
648 				       __u64 start, __u64 end)
649 {
650 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
651 	struct buffer_head *header_bh;
652 	struct buffer_head *su_bh;
653 	struct nilfs_segment_usage *su, *su2;
654 	size_t susz = NILFS_MDT(sufile)->mi_entry_size;
655 	unsigned long segusages_per_block;
656 	unsigned long nsegs, ncleaned;
657 	__u64 segnum;
658 	void *kaddr;
659 	ssize_t n, nc;
660 	int ret;
661 	int j;
662 
663 	nsegs = nilfs_sufile_get_nsegments(sufile);
664 
665 	ret = -EINVAL;
666 	if (start > end || start >= nsegs)
667 		goto out;
668 
669 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
670 	if (ret < 0)
671 		goto out;
672 
673 	segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile);
674 	ncleaned = 0;
675 
676 	for (segnum = start; segnum <= end; segnum += n) {
677 		n = min_t(unsigned long,
678 			  segusages_per_block -
679 				  nilfs_sufile_get_offset(sufile, segnum),
680 			  end - segnum + 1);
681 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
682 							   &su_bh);
683 		if (ret < 0) {
684 			if (ret != -ENOENT)
685 				goto out_header;
686 			/* hole */
687 			continue;
688 		}
689 		kaddr = kmap_atomic(su_bh->b_page);
690 		su = nilfs_sufile_block_get_segment_usage(
691 			sufile, segnum, su_bh, kaddr);
692 		su2 = su;
693 		for (j = 0; j < n; j++, su = (void *)su + susz) {
694 			if ((le32_to_cpu(su->su_flags) &
695 			     ~(1UL << NILFS_SEGMENT_USAGE_ERROR)) ||
696 			    nilfs_segment_is_active(nilfs, segnum + j)) {
697 				ret = -EBUSY;
698 				kunmap_atomic(kaddr);
699 				brelse(su_bh);
700 				goto out_header;
701 			}
702 		}
703 		nc = 0;
704 		for (su = su2, j = 0; j < n; j++, su = (void *)su + susz) {
705 			if (nilfs_segment_usage_error(su)) {
706 				nilfs_segment_usage_set_clean(su);
707 				nc++;
708 			}
709 		}
710 		kunmap_atomic(kaddr);
711 		if (nc > 0) {
712 			mark_buffer_dirty(su_bh);
713 			ncleaned += nc;
714 		}
715 		brelse(su_bh);
716 
717 		if (n == segusages_per_block) {
718 			/* make hole */
719 			nilfs_sufile_delete_segment_usage_block(sufile, segnum);
720 		}
721 	}
722 	ret = 0;
723 
724 out_header:
725 	if (ncleaned > 0) {
726 		NILFS_SUI(sufile)->ncleansegs += ncleaned;
727 		nilfs_sufile_mod_counter(header_bh, ncleaned, 0);
728 		nilfs_mdt_mark_dirty(sufile);
729 	}
730 	brelse(header_bh);
731 out:
732 	return ret;
733 }
734 
735 /**
736  * nilfs_sufile_resize - resize segment array
737  * @sufile: inode of segment usage file
738  * @newnsegs: new number of segments
739  *
740  * Return Value: On success, 0 is returned.  On error, one of the
741  * following negative error codes is returned.
742  *
743  * %-EIO - I/O error.
744  *
745  * %-ENOMEM - Insufficient amount of memory available.
746  *
747  * %-ENOSPC - Enough free space is not left for shrinking
748  *
749  * %-EBUSY - Dirty or active segments exist in the region to be truncated
750  */
751 int nilfs_sufile_resize(struct inode *sufile, __u64 newnsegs)
752 {
753 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
754 	struct buffer_head *header_bh;
755 	struct nilfs_sufile_header *header;
756 	struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
757 	void *kaddr;
758 	unsigned long nsegs, nrsvsegs;
759 	int ret = 0;
760 
761 	down_write(&NILFS_MDT(sufile)->mi_sem);
762 
763 	nsegs = nilfs_sufile_get_nsegments(sufile);
764 	if (nsegs == newnsegs)
765 		goto out;
766 
767 	ret = -ENOSPC;
768 	nrsvsegs = nilfs_nrsvsegs(nilfs, newnsegs);
769 	if (newnsegs < nsegs && nsegs - newnsegs + nrsvsegs > sui->ncleansegs)
770 		goto out;
771 
772 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
773 	if (ret < 0)
774 		goto out;
775 
776 	if (newnsegs > nsegs) {
777 		sui->ncleansegs += newnsegs - nsegs;
778 	} else /* newnsegs < nsegs */ {
779 		ret = nilfs_sufile_truncate_range(sufile, newnsegs, nsegs - 1);
780 		if (ret < 0)
781 			goto out_header;
782 
783 		sui->ncleansegs -= nsegs - newnsegs;
784 	}
785 
786 	kaddr = kmap_atomic(header_bh->b_page);
787 	header = kaddr + bh_offset(header_bh);
788 	header->sh_ncleansegs = cpu_to_le64(sui->ncleansegs);
789 	kunmap_atomic(kaddr);
790 
791 	mark_buffer_dirty(header_bh);
792 	nilfs_mdt_mark_dirty(sufile);
793 	nilfs_set_nsegments(nilfs, newnsegs);
794 
795 out_header:
796 	brelse(header_bh);
797 out:
798 	up_write(&NILFS_MDT(sufile)->mi_sem);
799 	return ret;
800 }
801 
802 /**
803  * nilfs_sufile_get_suinfo -
804  * @sufile: inode of segment usage file
805  * @segnum: segment number to start looking
806  * @buf: array of suinfo
807  * @sisz: byte size of suinfo
808  * @nsi: size of suinfo array
809  *
810  * Description:
811  *
812  * Return Value: On success, 0 is returned and .... On error, one of the
813  * following negative error codes is returned.
814  *
815  * %-EIO - I/O error.
816  *
817  * %-ENOMEM - Insufficient amount of memory available.
818  */
819 ssize_t nilfs_sufile_get_suinfo(struct inode *sufile, __u64 segnum, void *buf,
820 				unsigned int sisz, size_t nsi)
821 {
822 	struct buffer_head *su_bh;
823 	struct nilfs_segment_usage *su;
824 	struct nilfs_suinfo *si = buf;
825 	size_t susz = NILFS_MDT(sufile)->mi_entry_size;
826 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
827 	void *kaddr;
828 	unsigned long nsegs, segusages_per_block;
829 	ssize_t n;
830 	int ret, i, j;
831 
832 	down_read(&NILFS_MDT(sufile)->mi_sem);
833 
834 	segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile);
835 	nsegs = min_t(unsigned long,
836 		      nilfs_sufile_get_nsegments(sufile) - segnum,
837 		      nsi);
838 	for (i = 0; i < nsegs; i += n, segnum += n) {
839 		n = min_t(unsigned long,
840 			  segusages_per_block -
841 				  nilfs_sufile_get_offset(sufile, segnum),
842 			  nsegs - i);
843 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
844 							   &su_bh);
845 		if (ret < 0) {
846 			if (ret != -ENOENT)
847 				goto out;
848 			/* hole */
849 			memset(si, 0, sisz * n);
850 			si = (void *)si + sisz * n;
851 			continue;
852 		}
853 
854 		kaddr = kmap_atomic(su_bh->b_page);
855 		su = nilfs_sufile_block_get_segment_usage(
856 			sufile, segnum, su_bh, kaddr);
857 		for (j = 0; j < n;
858 		     j++, su = (void *)su + susz, si = (void *)si + sisz) {
859 			si->sui_lastmod = le64_to_cpu(su->su_lastmod);
860 			si->sui_nblocks = le32_to_cpu(su->su_nblocks);
861 			si->sui_flags = le32_to_cpu(su->su_flags) &
862 				~(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
863 			if (nilfs_segment_is_active(nilfs, segnum + j))
864 				si->sui_flags |=
865 					(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
866 		}
867 		kunmap_atomic(kaddr);
868 		brelse(su_bh);
869 	}
870 	ret = nsegs;
871 
872  out:
873 	up_read(&NILFS_MDT(sufile)->mi_sem);
874 	return ret;
875 }
876 
877 /**
878  * nilfs_sufile_set_suinfo - sets segment usage info
879  * @sufile: inode of segment usage file
880  * @buf: array of suinfo_update
881  * @supsz: byte size of suinfo_update
882  * @nsup: size of suinfo_update array
883  *
884  * Description: Takes an array of nilfs_suinfo_update structs and updates
885  * segment usage accordingly. Only the fields indicated by the sup_flags
886  * are updated.
887  *
888  * Return Value: On success, 0 is returned. On error, one of the
889  * following negative error codes is returned.
890  *
891  * %-EIO - I/O error.
892  *
893  * %-ENOMEM - Insufficient amount of memory available.
894  *
895  * %-EINVAL - Invalid values in input (segment number, flags or nblocks)
896  */
897 ssize_t nilfs_sufile_set_suinfo(struct inode *sufile, void *buf,
898 				unsigned int supsz, size_t nsup)
899 {
900 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
901 	struct buffer_head *header_bh, *bh;
902 	struct nilfs_suinfo_update *sup, *supend = buf + supsz * nsup;
903 	struct nilfs_segment_usage *su;
904 	void *kaddr;
905 	unsigned long blkoff, prev_blkoff;
906 	int cleansi, cleansu, dirtysi, dirtysu;
907 	long ncleaned = 0, ndirtied = 0;
908 	int ret = 0;
909 
910 	if (unlikely(nsup == 0))
911 		return ret;
912 
913 	for (sup = buf; sup < supend; sup = (void *)sup + supsz) {
914 		if (sup->sup_segnum >= nilfs->ns_nsegments
915 			|| (sup->sup_flags &
916 				(~0UL << __NR_NILFS_SUINFO_UPDATE_FIELDS))
917 			|| (nilfs_suinfo_update_nblocks(sup) &&
918 				sup->sup_sui.sui_nblocks >
919 				nilfs->ns_blocks_per_segment))
920 			return -EINVAL;
921 	}
922 
923 	down_write(&NILFS_MDT(sufile)->mi_sem);
924 
925 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
926 	if (ret < 0)
927 		goto out_sem;
928 
929 	sup = buf;
930 	blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum);
931 	ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh);
932 	if (ret < 0)
933 		goto out_header;
934 
935 	for (;;) {
936 		kaddr = kmap_atomic(bh->b_page);
937 		su = nilfs_sufile_block_get_segment_usage(
938 			sufile, sup->sup_segnum, bh, kaddr);
939 
940 		if (nilfs_suinfo_update_lastmod(sup))
941 			su->su_lastmod = cpu_to_le64(sup->sup_sui.sui_lastmod);
942 
943 		if (nilfs_suinfo_update_nblocks(sup))
944 			su->su_nblocks = cpu_to_le32(sup->sup_sui.sui_nblocks);
945 
946 		if (nilfs_suinfo_update_flags(sup)) {
947 			/*
948 			 * Active flag is a virtual flag projected by running
949 			 * nilfs kernel code - drop it not to write it to
950 			 * disk.
951 			 */
952 			sup->sup_sui.sui_flags &=
953 					~(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
954 
955 			cleansi = nilfs_suinfo_clean(&sup->sup_sui);
956 			cleansu = nilfs_segment_usage_clean(su);
957 			dirtysi = nilfs_suinfo_dirty(&sup->sup_sui);
958 			dirtysu = nilfs_segment_usage_dirty(su);
959 
960 			if (cleansi && !cleansu)
961 				++ncleaned;
962 			else if (!cleansi && cleansu)
963 				--ncleaned;
964 
965 			if (dirtysi && !dirtysu)
966 				++ndirtied;
967 			else if (!dirtysi && dirtysu)
968 				--ndirtied;
969 
970 			su->su_flags = cpu_to_le32(sup->sup_sui.sui_flags);
971 		}
972 
973 		kunmap_atomic(kaddr);
974 
975 		sup = (void *)sup + supsz;
976 		if (sup >= supend)
977 			break;
978 
979 		prev_blkoff = blkoff;
980 		blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum);
981 		if (blkoff == prev_blkoff)
982 			continue;
983 
984 		/* get different block */
985 		mark_buffer_dirty(bh);
986 		put_bh(bh);
987 		ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh);
988 		if (unlikely(ret < 0))
989 			goto out_mark;
990 	}
991 	mark_buffer_dirty(bh);
992 	put_bh(bh);
993 
994  out_mark:
995 	if (ncleaned || ndirtied) {
996 		nilfs_sufile_mod_counter(header_bh, (u64)ncleaned,
997 				(u64)ndirtied);
998 		NILFS_SUI(sufile)->ncleansegs += ncleaned;
999 	}
1000 	nilfs_mdt_mark_dirty(sufile);
1001  out_header:
1002 	put_bh(header_bh);
1003  out_sem:
1004 	up_write(&NILFS_MDT(sufile)->mi_sem);
1005 	return ret;
1006 }
1007 
1008 /**
1009  * nilfs_sufile_trim_fs() - trim ioctl handle function
1010  * @sufile: inode of segment usage file
1011  * @range: fstrim_range structure
1012  *
1013  * start:	First Byte to trim
1014  * len:		number of Bytes to trim from start
1015  * minlen:	minimum extent length in Bytes
1016  *
1017  * Decription: nilfs_sufile_trim_fs goes through all segments containing bytes
1018  * from start to start+len. start is rounded up to the next block boundary
1019  * and start+len is rounded down. For each clean segment blkdev_issue_discard
1020  * function is invoked.
1021  *
1022  * Return Value: On success, 0 is returned or negative error code, otherwise.
1023  */
1024 int nilfs_sufile_trim_fs(struct inode *sufile, struct fstrim_range *range)
1025 {
1026 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
1027 	struct buffer_head *su_bh;
1028 	struct nilfs_segment_usage *su;
1029 	void *kaddr;
1030 	size_t n, i, susz = NILFS_MDT(sufile)->mi_entry_size;
1031 	sector_t seg_start, seg_end, start_block, end_block;
1032 	sector_t start = 0, nblocks = 0;
1033 	u64 segnum, segnum_end, minlen, len, max_blocks, ndiscarded = 0;
1034 	int ret = 0;
1035 	unsigned int sects_per_block;
1036 
1037 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
1038 			bdev_logical_block_size(nilfs->ns_bdev);
1039 	len = range->len >> nilfs->ns_blocksize_bits;
1040 	minlen = range->minlen >> nilfs->ns_blocksize_bits;
1041 	max_blocks = ((u64)nilfs->ns_nsegments * nilfs->ns_blocks_per_segment);
1042 
1043 	if (!len || range->start >= max_blocks << nilfs->ns_blocksize_bits)
1044 		return -EINVAL;
1045 
1046 	start_block = (range->start + nilfs->ns_blocksize - 1) >>
1047 			nilfs->ns_blocksize_bits;
1048 
1049 	/*
1050 	 * range->len can be very large (actually, it is set to
1051 	 * ULLONG_MAX by default) - truncate upper end of the range
1052 	 * carefully so as not to overflow.
1053 	 */
1054 	if (max_blocks - start_block < len)
1055 		end_block = max_blocks - 1;
1056 	else
1057 		end_block = start_block + len - 1;
1058 
1059 	segnum = nilfs_get_segnum_of_block(nilfs, start_block);
1060 	segnum_end = nilfs_get_segnum_of_block(nilfs, end_block);
1061 
1062 	down_read(&NILFS_MDT(sufile)->mi_sem);
1063 
1064 	while (segnum <= segnum_end) {
1065 		n = nilfs_sufile_segment_usages_in_block(sufile, segnum,
1066 				segnum_end);
1067 
1068 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
1069 							   &su_bh);
1070 		if (ret < 0) {
1071 			if (ret != -ENOENT)
1072 				goto out_sem;
1073 			/* hole */
1074 			segnum += n;
1075 			continue;
1076 		}
1077 
1078 		kaddr = kmap_atomic(su_bh->b_page);
1079 		su = nilfs_sufile_block_get_segment_usage(sufile, segnum,
1080 				su_bh, kaddr);
1081 		for (i = 0; i < n; ++i, ++segnum, su = (void *)su + susz) {
1082 			if (!nilfs_segment_usage_clean(su))
1083 				continue;
1084 
1085 			nilfs_get_segment_range(nilfs, segnum, &seg_start,
1086 						&seg_end);
1087 
1088 			if (!nblocks) {
1089 				/* start new extent */
1090 				start = seg_start;
1091 				nblocks = seg_end - seg_start + 1;
1092 				continue;
1093 			}
1094 
1095 			if (start + nblocks == seg_start) {
1096 				/* add to previous extent */
1097 				nblocks += seg_end - seg_start + 1;
1098 				continue;
1099 			}
1100 
1101 			/* discard previous extent */
1102 			if (start < start_block) {
1103 				nblocks -= start_block - start;
1104 				start = start_block;
1105 			}
1106 
1107 			if (nblocks >= minlen) {
1108 				kunmap_atomic(kaddr);
1109 
1110 				ret = blkdev_issue_discard(nilfs->ns_bdev,
1111 						start * sects_per_block,
1112 						nblocks * sects_per_block,
1113 						GFP_NOFS, 0);
1114 				if (ret < 0) {
1115 					put_bh(su_bh);
1116 					goto out_sem;
1117 				}
1118 
1119 				ndiscarded += nblocks;
1120 				kaddr = kmap_atomic(su_bh->b_page);
1121 				su = nilfs_sufile_block_get_segment_usage(
1122 					sufile, segnum, su_bh, kaddr);
1123 			}
1124 
1125 			/* start new extent */
1126 			start = seg_start;
1127 			nblocks = seg_end - seg_start + 1;
1128 		}
1129 		kunmap_atomic(kaddr);
1130 		put_bh(su_bh);
1131 	}
1132 
1133 
1134 	if (nblocks) {
1135 		/* discard last extent */
1136 		if (start < start_block) {
1137 			nblocks -= start_block - start;
1138 			start = start_block;
1139 		}
1140 		if (start + nblocks > end_block + 1)
1141 			nblocks = end_block - start + 1;
1142 
1143 		if (nblocks >= minlen) {
1144 			ret = blkdev_issue_discard(nilfs->ns_bdev,
1145 					start * sects_per_block,
1146 					nblocks * sects_per_block,
1147 					GFP_NOFS, 0);
1148 			if (!ret)
1149 				ndiscarded += nblocks;
1150 		}
1151 	}
1152 
1153 out_sem:
1154 	up_read(&NILFS_MDT(sufile)->mi_sem);
1155 
1156 	range->len = ndiscarded << nilfs->ns_blocksize_bits;
1157 	return ret;
1158 }
1159 
1160 /**
1161  * nilfs_sufile_read - read or get sufile inode
1162  * @sb: super block instance
1163  * @susize: size of a segment usage entry
1164  * @raw_inode: on-disk sufile inode
1165  * @inodep: buffer to store the inode
1166  */
1167 int nilfs_sufile_read(struct super_block *sb, size_t susize,
1168 		      struct nilfs_inode *raw_inode, struct inode **inodep)
1169 {
1170 	struct inode *sufile;
1171 	struct nilfs_sufile_info *sui;
1172 	struct buffer_head *header_bh;
1173 	struct nilfs_sufile_header *header;
1174 	void *kaddr;
1175 	int err;
1176 
1177 	if (susize > sb->s_blocksize) {
1178 		printk(KERN_ERR
1179 		       "NILFS: too large segment usage size: %zu bytes.\n",
1180 		       susize);
1181 		return -EINVAL;
1182 	} else if (susize < NILFS_MIN_SEGMENT_USAGE_SIZE) {
1183 		printk(KERN_ERR
1184 		       "NILFS: too small segment usage size: %zu bytes.\n",
1185 		       susize);
1186 		return -EINVAL;
1187 	}
1188 
1189 	sufile = nilfs_iget_locked(sb, NULL, NILFS_SUFILE_INO);
1190 	if (unlikely(!sufile))
1191 		return -ENOMEM;
1192 	if (!(sufile->i_state & I_NEW))
1193 		goto out;
1194 
1195 	err = nilfs_mdt_init(sufile, NILFS_MDT_GFP, sizeof(*sui));
1196 	if (err)
1197 		goto failed;
1198 
1199 	nilfs_mdt_set_entry_size(sufile, susize,
1200 				 sizeof(struct nilfs_sufile_header));
1201 
1202 	err = nilfs_read_inode_common(sufile, raw_inode);
1203 	if (err)
1204 		goto failed;
1205 
1206 	err = nilfs_sufile_get_header_block(sufile, &header_bh);
1207 	if (err)
1208 		goto failed;
1209 
1210 	sui = NILFS_SUI(sufile);
1211 	kaddr = kmap_atomic(header_bh->b_page);
1212 	header = kaddr + bh_offset(header_bh);
1213 	sui->ncleansegs = le64_to_cpu(header->sh_ncleansegs);
1214 	kunmap_atomic(kaddr);
1215 	brelse(header_bh);
1216 
1217 	sui->allocmax = nilfs_sufile_get_nsegments(sufile) - 1;
1218 	sui->allocmin = 0;
1219 
1220 	unlock_new_inode(sufile);
1221  out:
1222 	*inodep = sufile;
1223 	return 0;
1224  failed:
1225 	iget_failed(sufile);
1226 	return err;
1227 }
1228