1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 /** 434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area 435 * @sci: segment constructor object 436 * 437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of 438 * the current segment summary block. 439 */ 440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) 441 { 442 struct nilfs_segsum_pointer *ssp; 443 444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; 445 if (ssp->offset < ssp->bh->b_size) 446 memset(ssp->bh->b_data + ssp->offset, 0, 447 ssp->bh->b_size - ssp->offset); 448 } 449 450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 451 { 452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 454 return -E2BIG; /* 455 * The current segment is filled up 456 * (internal code) 457 */ 458 nilfs_segctor_zeropad_segsum(sci); 459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 460 return nilfs_segctor_reset_segment_buffer(sci); 461 } 462 463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 464 { 465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 466 int err; 467 468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 469 err = nilfs_segctor_feed_segment(sci); 470 if (err) 471 return err; 472 segbuf = sci->sc_curseg; 473 } 474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 475 if (likely(!err)) 476 segbuf->sb_sum.flags |= NILFS_SS_SR; 477 return err; 478 } 479 480 /* 481 * Functions for making segment summary and payloads 482 */ 483 static int nilfs_segctor_segsum_block_required( 484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 485 unsigned int binfo_size) 486 { 487 unsigned int blocksize = sci->sc_super->s_blocksize; 488 /* Size of finfo and binfo is enough small against blocksize */ 489 490 return ssp->offset + binfo_size + 491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 492 blocksize; 493 } 494 495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 496 struct inode *inode) 497 { 498 sci->sc_curseg->sb_sum.nfinfo++; 499 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 500 nilfs_segctor_map_segsum_entry( 501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 502 503 if (NILFS_I(inode)->i_root && 504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 506 /* skip finfo */ 507 } 508 509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 510 struct inode *inode) 511 { 512 struct nilfs_finfo *finfo; 513 struct nilfs_inode_info *ii; 514 struct nilfs_segment_buffer *segbuf; 515 __u64 cno; 516 517 if (sci->sc_blk_cnt == 0) 518 return; 519 520 ii = NILFS_I(inode); 521 522 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 523 cno = ii->i_cno; 524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 525 cno = 0; 526 else 527 cno = sci->sc_cno; 528 529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 530 sizeof(*finfo)); 531 finfo->fi_ino = cpu_to_le64(inode->i_ino); 532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 534 finfo->fi_cno = cpu_to_le64(cno); 535 536 segbuf = sci->sc_curseg; 537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 539 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 541 } 542 543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 544 struct buffer_head *bh, 545 struct inode *inode, 546 unsigned int binfo_size) 547 { 548 struct nilfs_segment_buffer *segbuf; 549 int required, err = 0; 550 551 retry: 552 segbuf = sci->sc_curseg; 553 required = nilfs_segctor_segsum_block_required( 554 sci, &sci->sc_binfo_ptr, binfo_size); 555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 556 nilfs_segctor_end_finfo(sci, inode); 557 err = nilfs_segctor_feed_segment(sci); 558 if (err) 559 return err; 560 goto retry; 561 } 562 if (unlikely(required)) { 563 nilfs_segctor_zeropad_segsum(sci); 564 err = nilfs_segbuf_extend_segsum(segbuf); 565 if (unlikely(err)) 566 goto failed; 567 } 568 if (sci->sc_blk_cnt == 0) 569 nilfs_segctor_begin_finfo(sci, inode); 570 571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 572 /* Substitution to vblocknr is delayed until update_blocknr() */ 573 nilfs_segbuf_add_file_buffer(segbuf, bh); 574 sci->sc_blk_cnt++; 575 failed: 576 return err; 577 } 578 579 /* 580 * Callback functions that enumerate, mark, and collect dirty blocks 581 */ 582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 583 struct buffer_head *bh, struct inode *inode) 584 { 585 int err; 586 587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 588 if (err < 0) 589 return err; 590 591 err = nilfs_segctor_add_file_block(sci, bh, inode, 592 sizeof(struct nilfs_binfo_v)); 593 if (!err) 594 sci->sc_datablk_cnt++; 595 return err; 596 } 597 598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 599 struct buffer_head *bh, 600 struct inode *inode) 601 { 602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 603 } 604 605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 606 struct buffer_head *bh, 607 struct inode *inode) 608 { 609 WARN_ON(!buffer_dirty(bh)); 610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 611 } 612 613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 614 struct nilfs_segsum_pointer *ssp, 615 union nilfs_binfo *binfo) 616 { 617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 618 sci, ssp, sizeof(*binfo_v)); 619 *binfo_v = binfo->bi_v; 620 } 621 622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 623 struct nilfs_segsum_pointer *ssp, 624 union nilfs_binfo *binfo) 625 { 626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 627 sci, ssp, sizeof(*vblocknr)); 628 *vblocknr = binfo->bi_v.bi_vblocknr; 629 } 630 631 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 632 .collect_data = nilfs_collect_file_data, 633 .collect_node = nilfs_collect_file_node, 634 .collect_bmap = nilfs_collect_file_bmap, 635 .write_data_binfo = nilfs_write_file_data_binfo, 636 .write_node_binfo = nilfs_write_file_node_binfo, 637 }; 638 639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 640 struct buffer_head *bh, struct inode *inode) 641 { 642 int err; 643 644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 645 if (err < 0) 646 return err; 647 648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 649 if (!err) 650 sci->sc_datablk_cnt++; 651 return err; 652 } 653 654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 655 struct buffer_head *bh, struct inode *inode) 656 { 657 WARN_ON(!buffer_dirty(bh)); 658 return nilfs_segctor_add_file_block(sci, bh, inode, 659 sizeof(struct nilfs_binfo_dat)); 660 } 661 662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 663 struct nilfs_segsum_pointer *ssp, 664 union nilfs_binfo *binfo) 665 { 666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 667 sizeof(*blkoff)); 668 *blkoff = binfo->bi_dat.bi_blkoff; 669 } 670 671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 672 struct nilfs_segsum_pointer *ssp, 673 union nilfs_binfo *binfo) 674 { 675 struct nilfs_binfo_dat *binfo_dat = 676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 677 *binfo_dat = binfo->bi_dat; 678 } 679 680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 681 .collect_data = nilfs_collect_dat_data, 682 .collect_node = nilfs_collect_file_node, 683 .collect_bmap = nilfs_collect_dat_bmap, 684 .write_data_binfo = nilfs_write_dat_data_binfo, 685 .write_node_binfo = nilfs_write_dat_node_binfo, 686 }; 687 688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 689 .collect_data = nilfs_collect_file_data, 690 .collect_node = NULL, 691 .collect_bmap = NULL, 692 .write_data_binfo = nilfs_write_file_data_binfo, 693 .write_node_binfo = NULL, 694 }; 695 696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 697 struct list_head *listp, 698 size_t nlimit, 699 loff_t start, loff_t end) 700 { 701 struct address_space *mapping = inode->i_mapping; 702 struct folio_batch fbatch; 703 pgoff_t index = 0, last = ULONG_MAX; 704 size_t ndirties = 0; 705 int i; 706 707 if (unlikely(start != 0 || end != LLONG_MAX)) { 708 /* 709 * A valid range is given for sync-ing data pages. The 710 * range is rounded to per-page; extra dirty buffers 711 * may be included if blocksize < pagesize. 712 */ 713 index = start >> PAGE_SHIFT; 714 last = end >> PAGE_SHIFT; 715 } 716 folio_batch_init(&fbatch); 717 repeat: 718 if (unlikely(index > last) || 719 !filemap_get_folios_tag(mapping, &index, last, 720 PAGECACHE_TAG_DIRTY, &fbatch)) 721 return ndirties; 722 723 for (i = 0; i < folio_batch_count(&fbatch); i++) { 724 struct buffer_head *bh, *head; 725 struct folio *folio = fbatch.folios[i]; 726 727 folio_lock(folio); 728 if (unlikely(folio->mapping != mapping)) { 729 /* Exclude folios removed from the address space */ 730 folio_unlock(folio); 731 continue; 732 } 733 head = folio_buffers(folio); 734 if (!head) 735 head = create_empty_buffers(folio, 736 i_blocksize(inode), 0); 737 folio_unlock(folio); 738 739 bh = head; 740 do { 741 if (!buffer_dirty(bh) || buffer_async_write(bh)) 742 continue; 743 get_bh(bh); 744 list_add_tail(&bh->b_assoc_buffers, listp); 745 ndirties++; 746 if (unlikely(ndirties >= nlimit)) { 747 folio_batch_release(&fbatch); 748 cond_resched(); 749 return ndirties; 750 } 751 } while (bh = bh->b_this_page, bh != head); 752 } 753 folio_batch_release(&fbatch); 754 cond_resched(); 755 goto repeat; 756 } 757 758 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 759 struct list_head *listp) 760 { 761 struct nilfs_inode_info *ii = NILFS_I(inode); 762 struct inode *btnc_inode = ii->i_assoc_inode; 763 struct folio_batch fbatch; 764 struct buffer_head *bh, *head; 765 unsigned int i; 766 pgoff_t index = 0; 767 768 if (!btnc_inode) 769 return; 770 folio_batch_init(&fbatch); 771 772 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 773 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 774 for (i = 0; i < folio_batch_count(&fbatch); i++) { 775 bh = head = folio_buffers(fbatch.folios[i]); 776 do { 777 if (buffer_dirty(bh) && 778 !buffer_async_write(bh)) { 779 get_bh(bh); 780 list_add_tail(&bh->b_assoc_buffers, 781 listp); 782 } 783 bh = bh->b_this_page; 784 } while (bh != head); 785 } 786 folio_batch_release(&fbatch); 787 cond_resched(); 788 } 789 } 790 791 static void nilfs_dispose_list(struct the_nilfs *nilfs, 792 struct list_head *head, int force) 793 { 794 struct nilfs_inode_info *ii, *n; 795 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 796 unsigned int nv = 0; 797 798 while (!list_empty(head)) { 799 spin_lock(&nilfs->ns_inode_lock); 800 list_for_each_entry_safe(ii, n, head, i_dirty) { 801 list_del_init(&ii->i_dirty); 802 if (force) { 803 if (unlikely(ii->i_bh)) { 804 brelse(ii->i_bh); 805 ii->i_bh = NULL; 806 } 807 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 808 set_bit(NILFS_I_QUEUED, &ii->i_state); 809 list_add_tail(&ii->i_dirty, 810 &nilfs->ns_dirty_files); 811 continue; 812 } 813 ivec[nv++] = ii; 814 if (nv == SC_N_INODEVEC) 815 break; 816 } 817 spin_unlock(&nilfs->ns_inode_lock); 818 819 for (pii = ivec; nv > 0; pii++, nv--) 820 iput(&(*pii)->vfs_inode); 821 } 822 } 823 824 static void nilfs_iput_work_func(struct work_struct *work) 825 { 826 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 827 sc_iput_work); 828 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 829 830 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 831 } 832 833 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 834 struct nilfs_root *root) 835 { 836 int ret = 0; 837 838 if (nilfs_mdt_fetch_dirty(root->ifile)) 839 ret++; 840 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 841 ret++; 842 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 843 ret++; 844 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 845 ret++; 846 return ret; 847 } 848 849 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 850 { 851 return list_empty(&sci->sc_dirty_files) && 852 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 853 sci->sc_nfreesegs == 0 && 854 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 855 } 856 857 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 858 { 859 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 860 int ret = 0; 861 862 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 863 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 864 865 spin_lock(&nilfs->ns_inode_lock); 866 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 867 ret++; 868 869 spin_unlock(&nilfs->ns_inode_lock); 870 return ret; 871 } 872 873 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 874 { 875 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 876 877 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 878 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 879 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 880 nilfs_mdt_clear_dirty(nilfs->ns_dat); 881 } 882 883 static void nilfs_fill_in_file_bmap(struct inode *ifile, 884 struct nilfs_inode_info *ii) 885 886 { 887 struct buffer_head *ibh; 888 struct nilfs_inode *raw_inode; 889 890 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 891 ibh = ii->i_bh; 892 BUG_ON(!ibh); 893 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 894 ibh); 895 nilfs_bmap_write(ii->i_bmap, raw_inode); 896 nilfs_ifile_unmap_inode(raw_inode); 897 } 898 } 899 900 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 901 { 902 struct nilfs_inode_info *ii; 903 904 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 905 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 906 set_bit(NILFS_I_COLLECTED, &ii->i_state); 907 } 908 } 909 910 /** 911 * nilfs_write_root_mdt_inode - export root metadata inode information to 912 * the on-disk inode 913 * @inode: inode object of the root metadata file 914 * @raw_inode: on-disk inode 915 * 916 * nilfs_write_root_mdt_inode() writes inode information and bmap data of 917 * @inode to the inode area of the metadata file allocated on the super root 918 * block created to finalize the log. Since super root blocks are configured 919 * each time, this function zero-fills the unused area of @raw_inode. 920 */ 921 static void nilfs_write_root_mdt_inode(struct inode *inode, 922 struct nilfs_inode *raw_inode) 923 { 924 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 925 926 nilfs_write_inode_common(inode, raw_inode); 927 928 /* zero-fill unused portion of raw_inode */ 929 raw_inode->i_xattr = 0; 930 raw_inode->i_pad = 0; 931 memset((void *)raw_inode + sizeof(*raw_inode), 0, 932 nilfs->ns_inode_size - sizeof(*raw_inode)); 933 934 nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode); 935 } 936 937 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 938 struct the_nilfs *nilfs) 939 { 940 struct buffer_head *bh_sr; 941 struct nilfs_super_root *raw_sr; 942 unsigned int isz, srsz; 943 944 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 945 946 lock_buffer(bh_sr); 947 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 948 isz = nilfs->ns_inode_size; 949 srsz = NILFS_SR_BYTES(isz); 950 951 raw_sr->sr_sum = 0; /* Ensure initialization within this update */ 952 raw_sr->sr_bytes = cpu_to_le16(srsz); 953 raw_sr->sr_nongc_ctime 954 = cpu_to_le64(nilfs_doing_gc() ? 955 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 956 raw_sr->sr_flags = 0; 957 958 nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr + 959 NILFS_SR_DAT_OFFSET(isz)); 960 nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr + 961 NILFS_SR_CPFILE_OFFSET(isz)); 962 nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr + 963 NILFS_SR_SUFILE_OFFSET(isz)); 964 965 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 966 set_buffer_uptodate(bh_sr); 967 unlock_buffer(bh_sr); 968 } 969 970 static void nilfs_redirty_inodes(struct list_head *head) 971 { 972 struct nilfs_inode_info *ii; 973 974 list_for_each_entry(ii, head, i_dirty) { 975 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 976 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 977 } 978 } 979 980 static void nilfs_drop_collected_inodes(struct list_head *head) 981 { 982 struct nilfs_inode_info *ii; 983 984 list_for_each_entry(ii, head, i_dirty) { 985 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 986 continue; 987 988 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 989 set_bit(NILFS_I_UPDATED, &ii->i_state); 990 } 991 } 992 993 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 994 struct inode *inode, 995 struct list_head *listp, 996 int (*collect)(struct nilfs_sc_info *, 997 struct buffer_head *, 998 struct inode *)) 999 { 1000 struct buffer_head *bh, *n; 1001 int err = 0; 1002 1003 if (collect) { 1004 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1005 list_del_init(&bh->b_assoc_buffers); 1006 err = collect(sci, bh, inode); 1007 brelse(bh); 1008 if (unlikely(err)) 1009 goto dispose_buffers; 1010 } 1011 return 0; 1012 } 1013 1014 dispose_buffers: 1015 while (!list_empty(listp)) { 1016 bh = list_first_entry(listp, struct buffer_head, 1017 b_assoc_buffers); 1018 list_del_init(&bh->b_assoc_buffers); 1019 brelse(bh); 1020 } 1021 return err; 1022 } 1023 1024 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1025 { 1026 /* Remaining number of blocks within segment buffer */ 1027 return sci->sc_segbuf_nblocks - 1028 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1029 } 1030 1031 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1032 struct inode *inode, 1033 const struct nilfs_sc_operations *sc_ops) 1034 { 1035 LIST_HEAD(data_buffers); 1036 LIST_HEAD(node_buffers); 1037 int err; 1038 1039 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1040 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1041 1042 n = nilfs_lookup_dirty_data_buffers( 1043 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1044 if (n > rest) { 1045 err = nilfs_segctor_apply_buffers( 1046 sci, inode, &data_buffers, 1047 sc_ops->collect_data); 1048 BUG_ON(!err); /* always receive -E2BIG or true error */ 1049 goto break_or_fail; 1050 } 1051 } 1052 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1053 1054 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1055 err = nilfs_segctor_apply_buffers( 1056 sci, inode, &data_buffers, sc_ops->collect_data); 1057 if (unlikely(err)) { 1058 /* dispose node list */ 1059 nilfs_segctor_apply_buffers( 1060 sci, inode, &node_buffers, NULL); 1061 goto break_or_fail; 1062 } 1063 sci->sc_stage.flags |= NILFS_CF_NODE; 1064 } 1065 /* Collect node */ 1066 err = nilfs_segctor_apply_buffers( 1067 sci, inode, &node_buffers, sc_ops->collect_node); 1068 if (unlikely(err)) 1069 goto break_or_fail; 1070 1071 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1072 err = nilfs_segctor_apply_buffers( 1073 sci, inode, &node_buffers, sc_ops->collect_bmap); 1074 if (unlikely(err)) 1075 goto break_or_fail; 1076 1077 nilfs_segctor_end_finfo(sci, inode); 1078 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1079 1080 break_or_fail: 1081 return err; 1082 } 1083 1084 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1085 struct inode *inode) 1086 { 1087 LIST_HEAD(data_buffers); 1088 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1089 int err; 1090 1091 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1092 sci->sc_dsync_start, 1093 sci->sc_dsync_end); 1094 1095 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1096 nilfs_collect_file_data); 1097 if (!err) { 1098 nilfs_segctor_end_finfo(sci, inode); 1099 BUG_ON(n > rest); 1100 /* always receive -E2BIG or true error if n > rest */ 1101 } 1102 return err; 1103 } 1104 1105 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1106 { 1107 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1108 struct list_head *head; 1109 struct nilfs_inode_info *ii; 1110 size_t ndone; 1111 int err = 0; 1112 1113 switch (nilfs_sc_cstage_get(sci)) { 1114 case NILFS_ST_INIT: 1115 /* Pre-processes */ 1116 sci->sc_stage.flags = 0; 1117 1118 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1119 sci->sc_nblk_inc = 0; 1120 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1121 if (mode == SC_LSEG_DSYNC) { 1122 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1123 goto dsync_mode; 1124 } 1125 } 1126 1127 sci->sc_stage.dirty_file_ptr = NULL; 1128 sci->sc_stage.gc_inode_ptr = NULL; 1129 if (mode == SC_FLUSH_DAT) { 1130 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1131 goto dat_stage; 1132 } 1133 nilfs_sc_cstage_inc(sci); 1134 fallthrough; 1135 case NILFS_ST_GC: 1136 if (nilfs_doing_gc()) { 1137 head = &sci->sc_gc_inodes; 1138 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1139 head, i_dirty); 1140 list_for_each_entry_continue(ii, head, i_dirty) { 1141 err = nilfs_segctor_scan_file( 1142 sci, &ii->vfs_inode, 1143 &nilfs_sc_file_ops); 1144 if (unlikely(err)) { 1145 sci->sc_stage.gc_inode_ptr = list_entry( 1146 ii->i_dirty.prev, 1147 struct nilfs_inode_info, 1148 i_dirty); 1149 goto break_or_fail; 1150 } 1151 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1152 } 1153 sci->sc_stage.gc_inode_ptr = NULL; 1154 } 1155 nilfs_sc_cstage_inc(sci); 1156 fallthrough; 1157 case NILFS_ST_FILE: 1158 head = &sci->sc_dirty_files; 1159 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1160 i_dirty); 1161 list_for_each_entry_continue(ii, head, i_dirty) { 1162 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1163 1164 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1165 &nilfs_sc_file_ops); 1166 if (unlikely(err)) { 1167 sci->sc_stage.dirty_file_ptr = 1168 list_entry(ii->i_dirty.prev, 1169 struct nilfs_inode_info, 1170 i_dirty); 1171 goto break_or_fail; 1172 } 1173 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1174 /* XXX: required ? */ 1175 } 1176 sci->sc_stage.dirty_file_ptr = NULL; 1177 if (mode == SC_FLUSH_FILE) { 1178 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1179 return 0; 1180 } 1181 nilfs_sc_cstage_inc(sci); 1182 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1183 fallthrough; 1184 case NILFS_ST_IFILE: 1185 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1186 &nilfs_sc_file_ops); 1187 if (unlikely(err)) 1188 break; 1189 nilfs_sc_cstage_inc(sci); 1190 /* Creating a checkpoint */ 1191 err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile, 1192 nilfs->ns_cno); 1193 if (unlikely(err)) 1194 break; 1195 fallthrough; 1196 case NILFS_ST_CPFILE: 1197 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1198 &nilfs_sc_file_ops); 1199 if (unlikely(err)) 1200 break; 1201 nilfs_sc_cstage_inc(sci); 1202 fallthrough; 1203 case NILFS_ST_SUFILE: 1204 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1205 sci->sc_nfreesegs, &ndone); 1206 if (unlikely(err)) { 1207 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1208 sci->sc_freesegs, ndone, 1209 NULL); 1210 break; 1211 } 1212 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1213 1214 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1215 &nilfs_sc_file_ops); 1216 if (unlikely(err)) 1217 break; 1218 nilfs_sc_cstage_inc(sci); 1219 fallthrough; 1220 case NILFS_ST_DAT: 1221 dat_stage: 1222 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1223 &nilfs_sc_dat_ops); 1224 if (unlikely(err)) 1225 break; 1226 if (mode == SC_FLUSH_DAT) { 1227 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1228 return 0; 1229 } 1230 nilfs_sc_cstage_inc(sci); 1231 fallthrough; 1232 case NILFS_ST_SR: 1233 if (mode == SC_LSEG_SR) { 1234 /* Appending a super root */ 1235 err = nilfs_segctor_add_super_root(sci); 1236 if (unlikely(err)) 1237 break; 1238 } 1239 /* End of a logical segment */ 1240 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1241 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1242 return 0; 1243 case NILFS_ST_DSYNC: 1244 dsync_mode: 1245 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1246 ii = sci->sc_dsync_inode; 1247 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1248 break; 1249 1250 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1251 if (unlikely(err)) 1252 break; 1253 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1254 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1255 return 0; 1256 case NILFS_ST_DONE: 1257 return 0; 1258 default: 1259 BUG(); 1260 } 1261 1262 break_or_fail: 1263 return err; 1264 } 1265 1266 /** 1267 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1268 * @sci: nilfs_sc_info 1269 * @nilfs: nilfs object 1270 */ 1271 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1272 struct the_nilfs *nilfs) 1273 { 1274 struct nilfs_segment_buffer *segbuf, *prev; 1275 __u64 nextnum; 1276 int err, alloc = 0; 1277 1278 segbuf = nilfs_segbuf_new(sci->sc_super); 1279 if (unlikely(!segbuf)) 1280 return -ENOMEM; 1281 1282 if (list_empty(&sci->sc_write_logs)) { 1283 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1284 nilfs->ns_pseg_offset, nilfs); 1285 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1286 nilfs_shift_to_next_segment(nilfs); 1287 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1288 } 1289 1290 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1291 nextnum = nilfs->ns_nextnum; 1292 1293 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1294 /* Start from the head of a new full segment */ 1295 alloc++; 1296 } else { 1297 /* Continue logs */ 1298 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1299 nilfs_segbuf_map_cont(segbuf, prev); 1300 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1301 nextnum = prev->sb_nextnum; 1302 1303 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1304 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1305 segbuf->sb_sum.seg_seq++; 1306 alloc++; 1307 } 1308 } 1309 1310 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1311 if (err) 1312 goto failed; 1313 1314 if (alloc) { 1315 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1316 if (err) 1317 goto failed; 1318 } 1319 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1320 1321 BUG_ON(!list_empty(&sci->sc_segbufs)); 1322 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1323 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1324 return 0; 1325 1326 failed: 1327 nilfs_segbuf_free(segbuf); 1328 return err; 1329 } 1330 1331 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1332 struct the_nilfs *nilfs, int nadd) 1333 { 1334 struct nilfs_segment_buffer *segbuf, *prev; 1335 struct inode *sufile = nilfs->ns_sufile; 1336 __u64 nextnextnum; 1337 LIST_HEAD(list); 1338 int err, ret, i; 1339 1340 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1341 /* 1342 * Since the segment specified with nextnum might be allocated during 1343 * the previous construction, the buffer including its segusage may 1344 * not be dirty. The following call ensures that the buffer is dirty 1345 * and will pin the buffer on memory until the sufile is written. 1346 */ 1347 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1348 if (unlikely(err)) 1349 return err; 1350 1351 for (i = 0; i < nadd; i++) { 1352 /* extend segment info */ 1353 err = -ENOMEM; 1354 segbuf = nilfs_segbuf_new(sci->sc_super); 1355 if (unlikely(!segbuf)) 1356 goto failed; 1357 1358 /* map this buffer to region of segment on-disk */ 1359 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1360 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1361 1362 /* allocate the next next full segment */ 1363 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1364 if (unlikely(err)) 1365 goto failed_segbuf; 1366 1367 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1368 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1369 1370 list_add_tail(&segbuf->sb_list, &list); 1371 prev = segbuf; 1372 } 1373 list_splice_tail(&list, &sci->sc_segbufs); 1374 return 0; 1375 1376 failed_segbuf: 1377 nilfs_segbuf_free(segbuf); 1378 failed: 1379 list_for_each_entry(segbuf, &list, sb_list) { 1380 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1381 WARN_ON(ret); /* never fails */ 1382 } 1383 nilfs_destroy_logs(&list); 1384 return err; 1385 } 1386 1387 static void nilfs_free_incomplete_logs(struct list_head *logs, 1388 struct the_nilfs *nilfs) 1389 { 1390 struct nilfs_segment_buffer *segbuf, *prev; 1391 struct inode *sufile = nilfs->ns_sufile; 1392 int ret; 1393 1394 segbuf = NILFS_FIRST_SEGBUF(logs); 1395 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1396 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1397 WARN_ON(ret); /* never fails */ 1398 } 1399 if (atomic_read(&segbuf->sb_err)) { 1400 /* Case 1: The first segment failed */ 1401 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1402 /* 1403 * Case 1a: Partial segment appended into an existing 1404 * segment 1405 */ 1406 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1407 segbuf->sb_fseg_end); 1408 else /* Case 1b: New full segment */ 1409 set_nilfs_discontinued(nilfs); 1410 } 1411 1412 prev = segbuf; 1413 list_for_each_entry_continue(segbuf, logs, sb_list) { 1414 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1415 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1416 WARN_ON(ret); /* never fails */ 1417 } 1418 if (atomic_read(&segbuf->sb_err) && 1419 segbuf->sb_segnum != nilfs->ns_nextnum) 1420 /* Case 2: extended segment (!= next) failed */ 1421 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1422 prev = segbuf; 1423 } 1424 } 1425 1426 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1427 struct inode *sufile) 1428 { 1429 struct nilfs_segment_buffer *segbuf; 1430 unsigned long live_blocks; 1431 int ret; 1432 1433 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1434 live_blocks = segbuf->sb_sum.nblocks + 1435 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1436 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1437 live_blocks, 1438 sci->sc_seg_ctime); 1439 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1440 } 1441 } 1442 1443 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1444 { 1445 struct nilfs_segment_buffer *segbuf; 1446 int ret; 1447 1448 segbuf = NILFS_FIRST_SEGBUF(logs); 1449 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1450 segbuf->sb_pseg_start - 1451 segbuf->sb_fseg_start, 0); 1452 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1453 1454 list_for_each_entry_continue(segbuf, logs, sb_list) { 1455 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1456 0, 0); 1457 WARN_ON(ret); /* always succeed */ 1458 } 1459 } 1460 1461 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1462 struct nilfs_segment_buffer *last, 1463 struct inode *sufile) 1464 { 1465 struct nilfs_segment_buffer *segbuf = last; 1466 int ret; 1467 1468 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1469 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1470 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1471 WARN_ON(ret); 1472 } 1473 nilfs_truncate_logs(&sci->sc_segbufs, last); 1474 } 1475 1476 1477 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1478 struct the_nilfs *nilfs, int mode) 1479 { 1480 struct nilfs_cstage prev_stage = sci->sc_stage; 1481 int err, nadd = 1; 1482 1483 /* Collection retry loop */ 1484 for (;;) { 1485 sci->sc_nblk_this_inc = 0; 1486 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1487 1488 err = nilfs_segctor_reset_segment_buffer(sci); 1489 if (unlikely(err)) 1490 goto failed; 1491 1492 err = nilfs_segctor_collect_blocks(sci, mode); 1493 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1494 if (!err) 1495 break; 1496 1497 if (unlikely(err != -E2BIG)) 1498 goto failed; 1499 1500 /* The current segment is filled up */ 1501 if (mode != SC_LSEG_SR || 1502 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1503 break; 1504 1505 nilfs_clear_logs(&sci->sc_segbufs); 1506 1507 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1508 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1509 sci->sc_freesegs, 1510 sci->sc_nfreesegs, 1511 NULL); 1512 WARN_ON(err); /* do not happen */ 1513 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1514 } 1515 1516 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1517 if (unlikely(err)) 1518 return err; 1519 1520 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1521 sci->sc_stage = prev_stage; 1522 } 1523 nilfs_segctor_zeropad_segsum(sci); 1524 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1525 return 0; 1526 1527 failed: 1528 return err; 1529 } 1530 1531 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1532 struct buffer_head *new_bh) 1533 { 1534 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1535 1536 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1537 /* The caller must release old_bh */ 1538 } 1539 1540 static int 1541 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1542 struct nilfs_segment_buffer *segbuf, 1543 int mode) 1544 { 1545 struct inode *inode = NULL; 1546 sector_t blocknr; 1547 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1548 unsigned long nblocks = 0, ndatablk = 0; 1549 const struct nilfs_sc_operations *sc_op = NULL; 1550 struct nilfs_segsum_pointer ssp; 1551 struct nilfs_finfo *finfo = NULL; 1552 union nilfs_binfo binfo; 1553 struct buffer_head *bh, *bh_org; 1554 ino_t ino = 0; 1555 int err = 0; 1556 1557 if (!nfinfo) 1558 goto out; 1559 1560 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1561 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1562 ssp.offset = sizeof(struct nilfs_segment_summary); 1563 1564 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1565 if (bh == segbuf->sb_super_root) 1566 break; 1567 if (!finfo) { 1568 finfo = nilfs_segctor_map_segsum_entry( 1569 sci, &ssp, sizeof(*finfo)); 1570 ino = le64_to_cpu(finfo->fi_ino); 1571 nblocks = le32_to_cpu(finfo->fi_nblocks); 1572 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1573 1574 inode = bh->b_folio->mapping->host; 1575 1576 if (mode == SC_LSEG_DSYNC) 1577 sc_op = &nilfs_sc_dsync_ops; 1578 else if (ino == NILFS_DAT_INO) 1579 sc_op = &nilfs_sc_dat_ops; 1580 else /* file blocks */ 1581 sc_op = &nilfs_sc_file_ops; 1582 } 1583 bh_org = bh; 1584 get_bh(bh_org); 1585 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1586 &binfo); 1587 if (bh != bh_org) 1588 nilfs_list_replace_buffer(bh_org, bh); 1589 brelse(bh_org); 1590 if (unlikely(err)) 1591 goto failed_bmap; 1592 1593 if (ndatablk > 0) 1594 sc_op->write_data_binfo(sci, &ssp, &binfo); 1595 else 1596 sc_op->write_node_binfo(sci, &ssp, &binfo); 1597 1598 blocknr++; 1599 if (--nblocks == 0) { 1600 finfo = NULL; 1601 if (--nfinfo == 0) 1602 break; 1603 } else if (ndatablk > 0) 1604 ndatablk--; 1605 } 1606 out: 1607 return 0; 1608 1609 failed_bmap: 1610 return err; 1611 } 1612 1613 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1614 { 1615 struct nilfs_segment_buffer *segbuf; 1616 int err; 1617 1618 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1619 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1620 if (unlikely(err)) 1621 return err; 1622 nilfs_segbuf_fill_in_segsum(segbuf); 1623 } 1624 return 0; 1625 } 1626 1627 static void nilfs_begin_folio_io(struct folio *folio) 1628 { 1629 if (!folio || folio_test_writeback(folio)) 1630 /* 1631 * For split b-tree node pages, this function may be called 1632 * twice. We ignore the 2nd or later calls by this check. 1633 */ 1634 return; 1635 1636 folio_lock(folio); 1637 folio_clear_dirty_for_io(folio); 1638 folio_start_writeback(folio); 1639 folio_unlock(folio); 1640 } 1641 1642 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1643 { 1644 struct nilfs_segment_buffer *segbuf; 1645 struct folio *bd_folio = NULL, *fs_folio = NULL; 1646 1647 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1648 struct buffer_head *bh; 1649 1650 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1651 b_assoc_buffers) { 1652 if (bh->b_folio != bd_folio) { 1653 if (bd_folio) { 1654 folio_lock(bd_folio); 1655 folio_clear_dirty_for_io(bd_folio); 1656 folio_start_writeback(bd_folio); 1657 folio_unlock(bd_folio); 1658 } 1659 bd_folio = bh->b_folio; 1660 } 1661 } 1662 1663 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1664 b_assoc_buffers) { 1665 if (bh == segbuf->sb_super_root) { 1666 if (bh->b_folio != bd_folio) { 1667 folio_lock(bd_folio); 1668 folio_clear_dirty_for_io(bd_folio); 1669 folio_start_writeback(bd_folio); 1670 folio_unlock(bd_folio); 1671 bd_folio = bh->b_folio; 1672 } 1673 break; 1674 } 1675 set_buffer_async_write(bh); 1676 if (bh->b_folio != fs_folio) { 1677 nilfs_begin_folio_io(fs_folio); 1678 fs_folio = bh->b_folio; 1679 } 1680 } 1681 } 1682 if (bd_folio) { 1683 folio_lock(bd_folio); 1684 folio_clear_dirty_for_io(bd_folio); 1685 folio_start_writeback(bd_folio); 1686 folio_unlock(bd_folio); 1687 } 1688 nilfs_begin_folio_io(fs_folio); 1689 } 1690 1691 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1692 struct the_nilfs *nilfs) 1693 { 1694 int ret; 1695 1696 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1697 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1698 return ret; 1699 } 1700 1701 static void nilfs_end_folio_io(struct folio *folio, int err) 1702 { 1703 if (!folio) 1704 return; 1705 1706 if (buffer_nilfs_node(folio_buffers(folio)) && 1707 !folio_test_writeback(folio)) { 1708 /* 1709 * For b-tree node pages, this function may be called twice 1710 * or more because they might be split in a segment. 1711 */ 1712 if (folio_test_dirty(folio)) { 1713 /* 1714 * For pages holding split b-tree node buffers, dirty 1715 * flag on the buffers may be cleared discretely. 1716 * In that case, the page is once redirtied for 1717 * remaining buffers, and it must be cancelled if 1718 * all the buffers get cleaned later. 1719 */ 1720 folio_lock(folio); 1721 if (nilfs_folio_buffers_clean(folio)) 1722 __nilfs_clear_folio_dirty(folio); 1723 folio_unlock(folio); 1724 } 1725 return; 1726 } 1727 1728 if (err || !nilfs_folio_buffers_clean(folio)) 1729 filemap_dirty_folio(folio->mapping, folio); 1730 1731 folio_end_writeback(folio); 1732 } 1733 1734 static void nilfs_abort_logs(struct list_head *logs, int err) 1735 { 1736 struct nilfs_segment_buffer *segbuf; 1737 struct folio *bd_folio = NULL, *fs_folio = NULL; 1738 struct buffer_head *bh; 1739 1740 if (list_empty(logs)) 1741 return; 1742 1743 list_for_each_entry(segbuf, logs, sb_list) { 1744 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1745 b_assoc_buffers) { 1746 clear_buffer_uptodate(bh); 1747 if (bh->b_folio != bd_folio) { 1748 if (bd_folio) 1749 folio_end_writeback(bd_folio); 1750 bd_folio = bh->b_folio; 1751 } 1752 } 1753 1754 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1755 b_assoc_buffers) { 1756 if (bh == segbuf->sb_super_root) { 1757 clear_buffer_uptodate(bh); 1758 if (bh->b_folio != bd_folio) { 1759 folio_end_writeback(bd_folio); 1760 bd_folio = bh->b_folio; 1761 } 1762 break; 1763 } 1764 clear_buffer_async_write(bh); 1765 if (bh->b_folio != fs_folio) { 1766 nilfs_end_folio_io(fs_folio, err); 1767 fs_folio = bh->b_folio; 1768 } 1769 } 1770 } 1771 if (bd_folio) 1772 folio_end_writeback(bd_folio); 1773 1774 nilfs_end_folio_io(fs_folio, err); 1775 } 1776 1777 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1778 struct the_nilfs *nilfs, int err) 1779 { 1780 LIST_HEAD(logs); 1781 int ret; 1782 1783 list_splice_tail_init(&sci->sc_write_logs, &logs); 1784 ret = nilfs_wait_on_logs(&logs); 1785 nilfs_abort_logs(&logs, ret ? : err); 1786 1787 list_splice_tail_init(&sci->sc_segbufs, &logs); 1788 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1789 nilfs_free_incomplete_logs(&logs, nilfs); 1790 1791 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1792 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1793 sci->sc_freesegs, 1794 sci->sc_nfreesegs, 1795 NULL); 1796 WARN_ON(ret); /* do not happen */ 1797 } 1798 1799 nilfs_destroy_logs(&logs); 1800 } 1801 1802 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1803 struct nilfs_segment_buffer *segbuf) 1804 { 1805 nilfs->ns_segnum = segbuf->sb_segnum; 1806 nilfs->ns_nextnum = segbuf->sb_nextnum; 1807 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1808 + segbuf->sb_sum.nblocks; 1809 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1810 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1811 } 1812 1813 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1814 { 1815 struct nilfs_segment_buffer *segbuf; 1816 struct folio *bd_folio = NULL, *fs_folio = NULL; 1817 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1818 int update_sr = false; 1819 1820 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1821 struct buffer_head *bh; 1822 1823 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1824 b_assoc_buffers) { 1825 set_buffer_uptodate(bh); 1826 clear_buffer_dirty(bh); 1827 if (bh->b_folio != bd_folio) { 1828 if (bd_folio) 1829 folio_end_writeback(bd_folio); 1830 bd_folio = bh->b_folio; 1831 } 1832 } 1833 /* 1834 * We assume that the buffers which belong to the same folio 1835 * continue over the buffer list. 1836 * Under this assumption, the last BHs of folios is 1837 * identifiable by the discontinuity of bh->b_folio 1838 * (folio != fs_folio). 1839 * 1840 * For B-tree node blocks, however, this assumption is not 1841 * guaranteed. The cleanup code of B-tree node folios needs 1842 * special care. 1843 */ 1844 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1845 b_assoc_buffers) { 1846 const unsigned long set_bits = BIT(BH_Uptodate); 1847 const unsigned long clear_bits = 1848 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1849 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1850 BIT(BH_NILFS_Redirected)); 1851 1852 if (bh == segbuf->sb_super_root) { 1853 set_buffer_uptodate(bh); 1854 clear_buffer_dirty(bh); 1855 if (bh->b_folio != bd_folio) { 1856 folio_end_writeback(bd_folio); 1857 bd_folio = bh->b_folio; 1858 } 1859 update_sr = true; 1860 break; 1861 } 1862 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1863 if (bh->b_folio != fs_folio) { 1864 nilfs_end_folio_io(fs_folio, 0); 1865 fs_folio = bh->b_folio; 1866 } 1867 } 1868 1869 if (!nilfs_segbuf_simplex(segbuf)) { 1870 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1871 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1872 sci->sc_lseg_stime = jiffies; 1873 } 1874 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1875 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1876 } 1877 } 1878 /* 1879 * Since folios may continue over multiple segment buffers, 1880 * end of the last folio must be checked outside of the loop. 1881 */ 1882 if (bd_folio) 1883 folio_end_writeback(bd_folio); 1884 1885 nilfs_end_folio_io(fs_folio, 0); 1886 1887 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1888 1889 if (nilfs_doing_gc()) 1890 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1891 else 1892 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1893 1894 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1895 1896 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1897 nilfs_set_next_segment(nilfs, segbuf); 1898 1899 if (update_sr) { 1900 nilfs->ns_flushed_device = 0; 1901 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1902 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1903 1904 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1905 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1906 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1907 nilfs_segctor_clear_metadata_dirty(sci); 1908 } else 1909 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1910 } 1911 1912 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1913 { 1914 int ret; 1915 1916 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1917 if (!ret) { 1918 nilfs_segctor_complete_write(sci); 1919 nilfs_destroy_logs(&sci->sc_write_logs); 1920 } 1921 return ret; 1922 } 1923 1924 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1925 struct the_nilfs *nilfs) 1926 { 1927 struct nilfs_inode_info *ii, *n; 1928 struct inode *ifile = sci->sc_root->ifile; 1929 1930 spin_lock(&nilfs->ns_inode_lock); 1931 retry: 1932 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1933 if (!ii->i_bh) { 1934 struct buffer_head *ibh; 1935 int err; 1936 1937 spin_unlock(&nilfs->ns_inode_lock); 1938 err = nilfs_ifile_get_inode_block( 1939 ifile, ii->vfs_inode.i_ino, &ibh); 1940 if (unlikely(err)) { 1941 nilfs_warn(sci->sc_super, 1942 "log writer: error %d getting inode block (ino=%lu)", 1943 err, ii->vfs_inode.i_ino); 1944 return err; 1945 } 1946 spin_lock(&nilfs->ns_inode_lock); 1947 if (likely(!ii->i_bh)) 1948 ii->i_bh = ibh; 1949 else 1950 brelse(ibh); 1951 goto retry; 1952 } 1953 1954 // Always redirty the buffer to avoid race condition 1955 mark_buffer_dirty(ii->i_bh); 1956 nilfs_mdt_mark_dirty(ifile); 1957 1958 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1959 set_bit(NILFS_I_BUSY, &ii->i_state); 1960 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1961 } 1962 spin_unlock(&nilfs->ns_inode_lock); 1963 1964 return 0; 1965 } 1966 1967 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 1968 struct the_nilfs *nilfs) 1969 { 1970 struct nilfs_inode_info *ii, *n; 1971 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 1972 int defer_iput = false; 1973 1974 spin_lock(&nilfs->ns_inode_lock); 1975 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 1976 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 1977 test_bit(NILFS_I_DIRTY, &ii->i_state)) 1978 continue; 1979 1980 clear_bit(NILFS_I_BUSY, &ii->i_state); 1981 brelse(ii->i_bh); 1982 ii->i_bh = NULL; 1983 list_del_init(&ii->i_dirty); 1984 if (!ii->vfs_inode.i_nlink || during_mount) { 1985 /* 1986 * Defer calling iput() to avoid deadlocks if 1987 * i_nlink == 0 or mount is not yet finished. 1988 */ 1989 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 1990 defer_iput = true; 1991 } else { 1992 spin_unlock(&nilfs->ns_inode_lock); 1993 iput(&ii->vfs_inode); 1994 spin_lock(&nilfs->ns_inode_lock); 1995 } 1996 } 1997 spin_unlock(&nilfs->ns_inode_lock); 1998 1999 if (defer_iput) 2000 schedule_work(&sci->sc_iput_work); 2001 } 2002 2003 /* 2004 * Main procedure of segment constructor 2005 */ 2006 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2007 { 2008 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2009 int err; 2010 2011 if (sb_rdonly(sci->sc_super)) 2012 return -EROFS; 2013 2014 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2015 sci->sc_cno = nilfs->ns_cno; 2016 2017 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2018 if (unlikely(err)) 2019 goto out; 2020 2021 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2022 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2023 2024 if (nilfs_segctor_clean(sci)) 2025 goto out; 2026 2027 do { 2028 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2029 2030 err = nilfs_segctor_begin_construction(sci, nilfs); 2031 if (unlikely(err)) 2032 goto out; 2033 2034 /* Update time stamp */ 2035 sci->sc_seg_ctime = ktime_get_real_seconds(); 2036 2037 err = nilfs_segctor_collect(sci, nilfs, mode); 2038 if (unlikely(err)) 2039 goto failed; 2040 2041 /* Avoid empty segment */ 2042 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2043 nilfs_segbuf_empty(sci->sc_curseg)) { 2044 nilfs_segctor_abort_construction(sci, nilfs, 1); 2045 goto out; 2046 } 2047 2048 err = nilfs_segctor_assign(sci, mode); 2049 if (unlikely(err)) 2050 goto failed; 2051 2052 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2053 nilfs_segctor_fill_in_file_bmap(sci); 2054 2055 if (mode == SC_LSEG_SR && 2056 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2057 err = nilfs_cpfile_finalize_checkpoint( 2058 nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root, 2059 sci->sc_nblk_inc + sci->sc_nblk_this_inc, 2060 sci->sc_seg_ctime, 2061 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)); 2062 if (unlikely(err)) 2063 goto failed_to_write; 2064 2065 nilfs_segctor_fill_in_super_root(sci, nilfs); 2066 } 2067 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2068 2069 /* Write partial segments */ 2070 nilfs_segctor_prepare_write(sci); 2071 2072 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2073 nilfs->ns_crc_seed); 2074 2075 err = nilfs_segctor_write(sci, nilfs); 2076 if (unlikely(err)) 2077 goto failed_to_write; 2078 2079 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2080 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2081 /* 2082 * At this point, we avoid double buffering 2083 * for blocksize < pagesize because page dirty 2084 * flag is turned off during write and dirty 2085 * buffers are not properly collected for 2086 * pages crossing over segments. 2087 */ 2088 err = nilfs_segctor_wait(sci); 2089 if (err) 2090 goto failed_to_write; 2091 } 2092 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2093 2094 out: 2095 nilfs_segctor_drop_written_files(sci, nilfs); 2096 return err; 2097 2098 failed_to_write: 2099 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2100 nilfs_redirty_inodes(&sci->sc_dirty_files); 2101 2102 failed: 2103 if (nilfs_doing_gc()) 2104 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2105 nilfs_segctor_abort_construction(sci, nilfs, err); 2106 goto out; 2107 } 2108 2109 /** 2110 * nilfs_segctor_start_timer - set timer of background write 2111 * @sci: nilfs_sc_info 2112 * 2113 * If the timer has already been set, it ignores the new request. 2114 * This function MUST be called within a section locking the segment 2115 * semaphore. 2116 */ 2117 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2118 { 2119 spin_lock(&sci->sc_state_lock); 2120 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2121 if (sci->sc_task) { 2122 sci->sc_timer.expires = jiffies + sci->sc_interval; 2123 add_timer(&sci->sc_timer); 2124 } 2125 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2126 } 2127 spin_unlock(&sci->sc_state_lock); 2128 } 2129 2130 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2131 { 2132 spin_lock(&sci->sc_state_lock); 2133 if (!(sci->sc_flush_request & BIT(bn))) { 2134 unsigned long prev_req = sci->sc_flush_request; 2135 2136 sci->sc_flush_request |= BIT(bn); 2137 if (!prev_req) 2138 wake_up(&sci->sc_wait_daemon); 2139 } 2140 spin_unlock(&sci->sc_state_lock); 2141 } 2142 2143 /** 2144 * nilfs_flush_segment - trigger a segment construction for resource control 2145 * @sb: super block 2146 * @ino: inode number of the file to be flushed out. 2147 */ 2148 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2149 { 2150 struct the_nilfs *nilfs = sb->s_fs_info; 2151 struct nilfs_sc_info *sci = nilfs->ns_writer; 2152 2153 if (!sci || nilfs_doing_construction()) 2154 return; 2155 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2156 /* assign bit 0 to data files */ 2157 } 2158 2159 struct nilfs_segctor_wait_request { 2160 wait_queue_entry_t wq; 2161 __u32 seq; 2162 int err; 2163 atomic_t done; 2164 }; 2165 2166 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2167 { 2168 struct nilfs_segctor_wait_request wait_req; 2169 int err = 0; 2170 2171 init_wait(&wait_req.wq); 2172 wait_req.err = 0; 2173 atomic_set(&wait_req.done, 0); 2174 init_waitqueue_entry(&wait_req.wq, current); 2175 2176 /* 2177 * To prevent a race issue where completion notifications from the 2178 * log writer thread are missed, increment the request sequence count 2179 * "sc_seq_request" and insert a wait queue entry using the current 2180 * sequence number into the "sc_wait_request" queue at the same time 2181 * within the lock section of "sc_state_lock". 2182 */ 2183 spin_lock(&sci->sc_state_lock); 2184 wait_req.seq = ++sci->sc_seq_request; 2185 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2186 spin_unlock(&sci->sc_state_lock); 2187 2188 wake_up(&sci->sc_wait_daemon); 2189 2190 for (;;) { 2191 set_current_state(TASK_INTERRUPTIBLE); 2192 2193 /* 2194 * Synchronize only while the log writer thread is alive. 2195 * Leave flushing out after the log writer thread exits to 2196 * the cleanup work in nilfs_segctor_destroy(). 2197 */ 2198 if (!sci->sc_task) 2199 break; 2200 2201 if (atomic_read(&wait_req.done)) { 2202 err = wait_req.err; 2203 break; 2204 } 2205 if (!signal_pending(current)) { 2206 schedule(); 2207 continue; 2208 } 2209 err = -ERESTARTSYS; 2210 break; 2211 } 2212 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2213 return err; 2214 } 2215 2216 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force) 2217 { 2218 struct nilfs_segctor_wait_request *wrq, *n; 2219 unsigned long flags; 2220 2221 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2222 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2223 if (!atomic_read(&wrq->done) && 2224 (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) { 2225 wrq->err = err; 2226 atomic_set(&wrq->done, 1); 2227 } 2228 if (atomic_read(&wrq->done)) { 2229 wrq->wq.func(&wrq->wq, 2230 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2231 0, NULL); 2232 } 2233 } 2234 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2235 } 2236 2237 /** 2238 * nilfs_construct_segment - construct a logical segment 2239 * @sb: super block 2240 * 2241 * Return Value: On success, 0 is returned. On errors, one of the following 2242 * negative error code is returned. 2243 * 2244 * %-EROFS - Read only filesystem. 2245 * 2246 * %-EIO - I/O error 2247 * 2248 * %-ENOSPC - No space left on device (only in a panic state). 2249 * 2250 * %-ERESTARTSYS - Interrupted. 2251 * 2252 * %-ENOMEM - Insufficient memory available. 2253 */ 2254 int nilfs_construct_segment(struct super_block *sb) 2255 { 2256 struct the_nilfs *nilfs = sb->s_fs_info; 2257 struct nilfs_sc_info *sci = nilfs->ns_writer; 2258 struct nilfs_transaction_info *ti; 2259 2260 if (sb_rdonly(sb) || unlikely(!sci)) 2261 return -EROFS; 2262 2263 /* A call inside transactions causes a deadlock. */ 2264 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2265 2266 return nilfs_segctor_sync(sci); 2267 } 2268 2269 /** 2270 * nilfs_construct_dsync_segment - construct a data-only logical segment 2271 * @sb: super block 2272 * @inode: inode whose data blocks should be written out 2273 * @start: start byte offset 2274 * @end: end byte offset (inclusive) 2275 * 2276 * Return Value: On success, 0 is returned. On errors, one of the following 2277 * negative error code is returned. 2278 * 2279 * %-EROFS - Read only filesystem. 2280 * 2281 * %-EIO - I/O error 2282 * 2283 * %-ENOSPC - No space left on device (only in a panic state). 2284 * 2285 * %-ERESTARTSYS - Interrupted. 2286 * 2287 * %-ENOMEM - Insufficient memory available. 2288 */ 2289 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2290 loff_t start, loff_t end) 2291 { 2292 struct the_nilfs *nilfs = sb->s_fs_info; 2293 struct nilfs_sc_info *sci = nilfs->ns_writer; 2294 struct nilfs_inode_info *ii; 2295 struct nilfs_transaction_info ti; 2296 int err = 0; 2297 2298 if (sb_rdonly(sb) || unlikely(!sci)) 2299 return -EROFS; 2300 2301 nilfs_transaction_lock(sb, &ti, 0); 2302 2303 ii = NILFS_I(inode); 2304 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2305 nilfs_test_opt(nilfs, STRICT_ORDER) || 2306 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2307 nilfs_discontinued(nilfs)) { 2308 nilfs_transaction_unlock(sb); 2309 err = nilfs_segctor_sync(sci); 2310 return err; 2311 } 2312 2313 spin_lock(&nilfs->ns_inode_lock); 2314 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2315 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2316 spin_unlock(&nilfs->ns_inode_lock); 2317 nilfs_transaction_unlock(sb); 2318 return 0; 2319 } 2320 spin_unlock(&nilfs->ns_inode_lock); 2321 sci->sc_dsync_inode = ii; 2322 sci->sc_dsync_start = start; 2323 sci->sc_dsync_end = end; 2324 2325 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2326 if (!err) 2327 nilfs->ns_flushed_device = 0; 2328 2329 nilfs_transaction_unlock(sb); 2330 return err; 2331 } 2332 2333 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2334 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2335 2336 /** 2337 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2338 * @sci: segment constructor object 2339 */ 2340 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2341 { 2342 bool thread_is_alive; 2343 2344 spin_lock(&sci->sc_state_lock); 2345 sci->sc_seq_accepted = sci->sc_seq_request; 2346 thread_is_alive = (bool)sci->sc_task; 2347 spin_unlock(&sci->sc_state_lock); 2348 2349 /* 2350 * This function does not race with the log writer thread's 2351 * termination. Therefore, deleting sc_timer, which should not be 2352 * done after the log writer thread exits, can be done safely outside 2353 * the area protected by sc_state_lock. 2354 */ 2355 if (thread_is_alive) 2356 del_timer_sync(&sci->sc_timer); 2357 } 2358 2359 /** 2360 * nilfs_segctor_notify - notify the result of request to caller threads 2361 * @sci: segment constructor object 2362 * @mode: mode of log forming 2363 * @err: error code to be notified 2364 */ 2365 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2366 { 2367 /* Clear requests (even when the construction failed) */ 2368 spin_lock(&sci->sc_state_lock); 2369 2370 if (mode == SC_LSEG_SR) { 2371 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2372 sci->sc_seq_done = sci->sc_seq_accepted; 2373 nilfs_segctor_wakeup(sci, err, false); 2374 sci->sc_flush_request = 0; 2375 } else { 2376 if (mode == SC_FLUSH_FILE) 2377 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2378 else if (mode == SC_FLUSH_DAT) 2379 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2380 2381 /* re-enable timer if checkpoint creation was not done */ 2382 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task && 2383 time_before(jiffies, sci->sc_timer.expires)) 2384 add_timer(&sci->sc_timer); 2385 } 2386 spin_unlock(&sci->sc_state_lock); 2387 } 2388 2389 /** 2390 * nilfs_segctor_construct - form logs and write them to disk 2391 * @sci: segment constructor object 2392 * @mode: mode of log forming 2393 */ 2394 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2395 { 2396 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2397 struct nilfs_super_block **sbp; 2398 int err = 0; 2399 2400 nilfs_segctor_accept(sci); 2401 2402 if (nilfs_discontinued(nilfs)) 2403 mode = SC_LSEG_SR; 2404 if (!nilfs_segctor_confirm(sci)) 2405 err = nilfs_segctor_do_construct(sci, mode); 2406 2407 if (likely(!err)) { 2408 if (mode != SC_FLUSH_DAT) 2409 atomic_set(&nilfs->ns_ndirtyblks, 0); 2410 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2411 nilfs_discontinued(nilfs)) { 2412 down_write(&nilfs->ns_sem); 2413 err = -EIO; 2414 sbp = nilfs_prepare_super(sci->sc_super, 2415 nilfs_sb_will_flip(nilfs)); 2416 if (likely(sbp)) { 2417 nilfs_set_log_cursor(sbp[0], nilfs); 2418 err = nilfs_commit_super(sci->sc_super, 2419 NILFS_SB_COMMIT); 2420 } 2421 up_write(&nilfs->ns_sem); 2422 } 2423 } 2424 2425 nilfs_segctor_notify(sci, mode, err); 2426 return err; 2427 } 2428 2429 static void nilfs_construction_timeout(struct timer_list *t) 2430 { 2431 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2432 2433 wake_up_process(sci->sc_timer_task); 2434 } 2435 2436 static void 2437 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2438 { 2439 struct nilfs_inode_info *ii, *n; 2440 2441 list_for_each_entry_safe(ii, n, head, i_dirty) { 2442 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2443 continue; 2444 list_del_init(&ii->i_dirty); 2445 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2446 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2447 iput(&ii->vfs_inode); 2448 } 2449 } 2450 2451 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2452 void **kbufs) 2453 { 2454 struct the_nilfs *nilfs = sb->s_fs_info; 2455 struct nilfs_sc_info *sci = nilfs->ns_writer; 2456 struct nilfs_transaction_info ti; 2457 int err; 2458 2459 if (unlikely(!sci)) 2460 return -EROFS; 2461 2462 nilfs_transaction_lock(sb, &ti, 1); 2463 2464 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2465 if (unlikely(err)) 2466 goto out_unlock; 2467 2468 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2469 if (unlikely(err)) { 2470 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2471 goto out_unlock; 2472 } 2473 2474 sci->sc_freesegs = kbufs[4]; 2475 sci->sc_nfreesegs = argv[4].v_nmembs; 2476 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2477 2478 for (;;) { 2479 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2480 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2481 2482 if (likely(!err)) 2483 break; 2484 2485 nilfs_warn(sb, "error %d cleaning segments", err); 2486 set_current_state(TASK_INTERRUPTIBLE); 2487 schedule_timeout(sci->sc_interval); 2488 } 2489 if (nilfs_test_opt(nilfs, DISCARD)) { 2490 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2491 sci->sc_nfreesegs); 2492 if (ret) { 2493 nilfs_warn(sb, 2494 "error %d on discard request, turning discards off for the device", 2495 ret); 2496 nilfs_clear_opt(nilfs, DISCARD); 2497 } 2498 } 2499 2500 out_unlock: 2501 sci->sc_freesegs = NULL; 2502 sci->sc_nfreesegs = 0; 2503 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2504 nilfs_transaction_unlock(sb); 2505 return err; 2506 } 2507 2508 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2509 { 2510 struct nilfs_transaction_info ti; 2511 2512 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2513 nilfs_segctor_construct(sci, mode); 2514 2515 /* 2516 * Unclosed segment should be retried. We do this using sc_timer. 2517 * Timeout of sc_timer will invoke complete construction which leads 2518 * to close the current logical segment. 2519 */ 2520 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2521 nilfs_segctor_start_timer(sci); 2522 2523 nilfs_transaction_unlock(sci->sc_super); 2524 } 2525 2526 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2527 { 2528 int mode = 0; 2529 2530 spin_lock(&sci->sc_state_lock); 2531 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2532 SC_FLUSH_DAT : SC_FLUSH_FILE; 2533 spin_unlock(&sci->sc_state_lock); 2534 2535 if (mode) { 2536 nilfs_segctor_do_construct(sci, mode); 2537 2538 spin_lock(&sci->sc_state_lock); 2539 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2540 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2541 spin_unlock(&sci->sc_state_lock); 2542 } 2543 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2544 } 2545 2546 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2547 { 2548 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2549 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2550 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2551 return SC_FLUSH_FILE; 2552 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2553 return SC_FLUSH_DAT; 2554 } 2555 return SC_LSEG_SR; 2556 } 2557 2558 /** 2559 * nilfs_segctor_thread - main loop of the segment constructor thread. 2560 * @arg: pointer to a struct nilfs_sc_info. 2561 * 2562 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2563 * to execute segment constructions. 2564 */ 2565 static int nilfs_segctor_thread(void *arg) 2566 { 2567 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2568 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2569 int timeout = 0; 2570 2571 sci->sc_timer_task = current; 2572 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2573 2574 /* start sync. */ 2575 sci->sc_task = current; 2576 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2577 nilfs_info(sci->sc_super, 2578 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2579 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2580 2581 set_freezable(); 2582 spin_lock(&sci->sc_state_lock); 2583 loop: 2584 for (;;) { 2585 int mode; 2586 2587 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2588 goto end_thread; 2589 2590 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2591 mode = SC_LSEG_SR; 2592 else if (sci->sc_flush_request) 2593 mode = nilfs_segctor_flush_mode(sci); 2594 else 2595 break; 2596 2597 spin_unlock(&sci->sc_state_lock); 2598 nilfs_segctor_thread_construct(sci, mode); 2599 spin_lock(&sci->sc_state_lock); 2600 timeout = 0; 2601 } 2602 2603 2604 if (freezing(current)) { 2605 spin_unlock(&sci->sc_state_lock); 2606 try_to_freeze(); 2607 spin_lock(&sci->sc_state_lock); 2608 } else { 2609 DEFINE_WAIT(wait); 2610 int should_sleep = 1; 2611 2612 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2613 TASK_INTERRUPTIBLE); 2614 2615 if (sci->sc_seq_request != sci->sc_seq_done) 2616 should_sleep = 0; 2617 else if (sci->sc_flush_request) 2618 should_sleep = 0; 2619 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2620 should_sleep = time_before(jiffies, 2621 sci->sc_timer.expires); 2622 2623 if (should_sleep) { 2624 spin_unlock(&sci->sc_state_lock); 2625 schedule(); 2626 spin_lock(&sci->sc_state_lock); 2627 } 2628 finish_wait(&sci->sc_wait_daemon, &wait); 2629 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2630 time_after_eq(jiffies, sci->sc_timer.expires)); 2631 2632 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2633 set_nilfs_discontinued(nilfs); 2634 } 2635 goto loop; 2636 2637 end_thread: 2638 /* end sync. */ 2639 sci->sc_task = NULL; 2640 timer_shutdown_sync(&sci->sc_timer); 2641 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2642 spin_unlock(&sci->sc_state_lock); 2643 return 0; 2644 } 2645 2646 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2647 { 2648 struct task_struct *t; 2649 2650 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2651 if (IS_ERR(t)) { 2652 int err = PTR_ERR(t); 2653 2654 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2655 err); 2656 return err; 2657 } 2658 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2659 return 0; 2660 } 2661 2662 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2663 __acquires(&sci->sc_state_lock) 2664 __releases(&sci->sc_state_lock) 2665 { 2666 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2667 2668 while (sci->sc_task) { 2669 wake_up(&sci->sc_wait_daemon); 2670 spin_unlock(&sci->sc_state_lock); 2671 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2672 spin_lock(&sci->sc_state_lock); 2673 } 2674 } 2675 2676 /* 2677 * Setup & clean-up functions 2678 */ 2679 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2680 struct nilfs_root *root) 2681 { 2682 struct the_nilfs *nilfs = sb->s_fs_info; 2683 struct nilfs_sc_info *sci; 2684 2685 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2686 if (!sci) 2687 return NULL; 2688 2689 sci->sc_super = sb; 2690 2691 nilfs_get_root(root); 2692 sci->sc_root = root; 2693 2694 init_waitqueue_head(&sci->sc_wait_request); 2695 init_waitqueue_head(&sci->sc_wait_daemon); 2696 init_waitqueue_head(&sci->sc_wait_task); 2697 spin_lock_init(&sci->sc_state_lock); 2698 INIT_LIST_HEAD(&sci->sc_dirty_files); 2699 INIT_LIST_HEAD(&sci->sc_segbufs); 2700 INIT_LIST_HEAD(&sci->sc_write_logs); 2701 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2702 INIT_LIST_HEAD(&sci->sc_iput_queue); 2703 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2704 2705 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2706 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2707 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2708 2709 if (nilfs->ns_interval) 2710 sci->sc_interval = HZ * nilfs->ns_interval; 2711 if (nilfs->ns_watermark) 2712 sci->sc_watermark = nilfs->ns_watermark; 2713 return sci; 2714 } 2715 2716 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2717 { 2718 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2719 2720 /* 2721 * The segctord thread was stopped and its timer was removed. 2722 * But some tasks remain. 2723 */ 2724 do { 2725 struct nilfs_transaction_info ti; 2726 2727 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2728 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2729 nilfs_transaction_unlock(sci->sc_super); 2730 2731 flush_work(&sci->sc_iput_work); 2732 2733 } while (ret && ret != -EROFS && retrycount-- > 0); 2734 } 2735 2736 /** 2737 * nilfs_segctor_destroy - destroy the segment constructor. 2738 * @sci: nilfs_sc_info 2739 * 2740 * nilfs_segctor_destroy() kills the segctord thread and frees 2741 * the nilfs_sc_info struct. 2742 * Caller must hold the segment semaphore. 2743 */ 2744 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2745 { 2746 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2747 int flag; 2748 2749 up_write(&nilfs->ns_segctor_sem); 2750 2751 spin_lock(&sci->sc_state_lock); 2752 nilfs_segctor_kill_thread(sci); 2753 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2754 || sci->sc_seq_request != sci->sc_seq_done); 2755 spin_unlock(&sci->sc_state_lock); 2756 2757 /* 2758 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can 2759 * be called from delayed iput() via nilfs_evict_inode() and can race 2760 * with the above log writer thread termination. 2761 */ 2762 nilfs_segctor_wakeup(sci, 0, true); 2763 2764 if (flush_work(&sci->sc_iput_work)) 2765 flag = true; 2766 2767 if (flag || !nilfs_segctor_confirm(sci)) 2768 nilfs_segctor_write_out(sci); 2769 2770 if (!list_empty(&sci->sc_dirty_files)) { 2771 nilfs_warn(sci->sc_super, 2772 "disposed unprocessed dirty file(s) when stopping log writer"); 2773 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2774 } 2775 2776 if (!list_empty(&sci->sc_iput_queue)) { 2777 nilfs_warn(sci->sc_super, 2778 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2779 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2780 } 2781 2782 WARN_ON(!list_empty(&sci->sc_segbufs)); 2783 WARN_ON(!list_empty(&sci->sc_write_logs)); 2784 2785 nilfs_put_root(sci->sc_root); 2786 2787 down_write(&nilfs->ns_segctor_sem); 2788 2789 kfree(sci); 2790 } 2791 2792 /** 2793 * nilfs_attach_log_writer - attach log writer 2794 * @sb: super block instance 2795 * @root: root object of the current filesystem tree 2796 * 2797 * This allocates a log writer object, initializes it, and starts the 2798 * log writer. 2799 * 2800 * Return Value: On success, 0 is returned. On error, one of the following 2801 * negative error code is returned. 2802 * 2803 * %-ENOMEM - Insufficient memory available. 2804 */ 2805 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2806 { 2807 struct the_nilfs *nilfs = sb->s_fs_info; 2808 int err; 2809 2810 if (nilfs->ns_writer) { 2811 /* 2812 * This happens if the filesystem is made read-only by 2813 * __nilfs_error or nilfs_remount and then remounted 2814 * read/write. In these cases, reuse the existing 2815 * writer. 2816 */ 2817 return 0; 2818 } 2819 2820 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2821 if (!nilfs->ns_writer) 2822 return -ENOMEM; 2823 2824 inode_attach_wb(nilfs->ns_bdev->bd_mapping->host, NULL); 2825 2826 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2827 if (unlikely(err)) 2828 nilfs_detach_log_writer(sb); 2829 2830 return err; 2831 } 2832 2833 /** 2834 * nilfs_detach_log_writer - destroy log writer 2835 * @sb: super block instance 2836 * 2837 * This kills log writer daemon, frees the log writer object, and 2838 * destroys list of dirty files. 2839 */ 2840 void nilfs_detach_log_writer(struct super_block *sb) 2841 { 2842 struct the_nilfs *nilfs = sb->s_fs_info; 2843 LIST_HEAD(garbage_list); 2844 2845 down_write(&nilfs->ns_segctor_sem); 2846 if (nilfs->ns_writer) { 2847 nilfs_segctor_destroy(nilfs->ns_writer); 2848 nilfs->ns_writer = NULL; 2849 } 2850 set_nilfs_purging(nilfs); 2851 2852 /* Force to free the list of dirty files */ 2853 spin_lock(&nilfs->ns_inode_lock); 2854 if (!list_empty(&nilfs->ns_dirty_files)) { 2855 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2856 nilfs_warn(sb, 2857 "disposed unprocessed dirty file(s) when detaching log writer"); 2858 } 2859 spin_unlock(&nilfs->ns_inode_lock); 2860 up_write(&nilfs->ns_segctor_sem); 2861 2862 nilfs_dispose_list(nilfs, &garbage_list, 1); 2863 clear_nilfs_purging(nilfs); 2864 } 2865