xref: /linux/fs/nilfs2/segment.c (revision a83c29e1d145cca5240952100acd1cd60f25fb5f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS segment constructor.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 
26 #include "nilfs.h"
27 #include "btnode.h"
28 #include "page.h"
29 #include "segment.h"
30 #include "sufile.h"
31 #include "cpfile.h"
32 #include "ifile.h"
33 #include "segbuf.h"
34 
35 
36 /*
37  * Segment constructor
38  */
39 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
40 
41 #define SC_MAX_SEGDELTA 64   /*
42 			      * Upper limit of the number of segments
43 			      * appended in collection retry loop
44 			      */
45 
46 /* Construction mode */
47 enum {
48 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
49 	SC_LSEG_DSYNC,	/*
50 			 * Flush data blocks of a given file and make
51 			 * a logical segment without a super root.
52 			 */
53 	SC_FLUSH_FILE,	/*
54 			 * Flush data files, leads to segment writes without
55 			 * creating a checkpoint.
56 			 */
57 	SC_FLUSH_DAT,	/*
58 			 * Flush DAT file.  This also creates segments
59 			 * without a checkpoint.
60 			 */
61 };
62 
63 /* Stage numbers of dirty block collection */
64 enum {
65 	NILFS_ST_INIT = 0,
66 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
67 	NILFS_ST_FILE,
68 	NILFS_ST_IFILE,
69 	NILFS_ST_CPFILE,
70 	NILFS_ST_SUFILE,
71 	NILFS_ST_DAT,
72 	NILFS_ST_SR,		/* Super root */
73 	NILFS_ST_DSYNC,		/* Data sync blocks */
74 	NILFS_ST_DONE,
75 };
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
79 
80 /*
81  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83  * the variable must use them because transition of stage count must involve
84  * trace events (trace_nilfs2_collection_stage_transition).
85  *
86  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87  * produce tracepoint events. It is provided just for making the intention
88  * clear.
89  */
90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
91 {
92 	sci->sc_stage.scnt++;
93 	trace_nilfs2_collection_stage_transition(sci);
94 }
95 
96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
97 {
98 	sci->sc_stage.scnt = next_scnt;
99 	trace_nilfs2_collection_stage_transition(sci);
100 }
101 
102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104 	return sci->sc_stage.scnt;
105 }
106 
107 /* State flags of collection */
108 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
110 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112 
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116 			    struct inode *);
117 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118 			    struct inode *);
119 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120 			    struct inode *);
121 	void (*write_data_binfo)(struct nilfs_sc_info *,
122 				 struct nilfs_segsum_pointer *,
123 				 union nilfs_binfo *);
124 	void (*write_node_binfo)(struct nilfs_sc_info *,
125 				 struct nilfs_segsum_pointer *,
126 				 union nilfs_binfo *);
127 };
128 
129 /*
130  * Other definitions
131  */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136 
137 #define nilfs_cnt32_ge(a, b)   \
138 	(typecheck(__u32, a) && typecheck(__u32, b) && \
139 	 ((__s32)((a) - (b)) >= 0))
140 
141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142 				      struct nilfs_transaction_info *ti)
143 {
144 	struct nilfs_transaction_info *cur_ti = current->journal_info;
145 	void *save = NULL;
146 
147 	if (cur_ti) {
148 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149 			return ++cur_ti->ti_count;
150 
151 		/*
152 		 * If journal_info field is occupied by other FS,
153 		 * it is saved and will be restored on
154 		 * nilfs_transaction_commit().
155 		 */
156 		nilfs_warn(sb, "journal info from a different FS");
157 		save = current->journal_info;
158 	}
159 	if (!ti) {
160 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161 		if (!ti)
162 			return -ENOMEM;
163 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164 	} else {
165 		ti->ti_flags = 0;
166 	}
167 	ti->ti_count = 0;
168 	ti->ti_save = save;
169 	ti->ti_magic = NILFS_TI_MAGIC;
170 	current->journal_info = ti;
171 	return 0;
172 }
173 
174 /**
175  * nilfs_transaction_begin - start indivisible file operations.
176  * @sb: super block
177  * @ti: nilfs_transaction_info
178  * @vacancy_check: flags for vacancy rate checks
179  *
180  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181  * the segment semaphore, to make a segment construction and write tasks
182  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
183  * The region enclosed by these two functions can be nested.  To avoid a
184  * deadlock, the semaphore is only acquired or released in the outermost call.
185  *
186  * This function allocates a nilfs_transaction_info struct to keep context
187  * information on it.  It is initialized and hooked onto the current task in
188  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
189  * instead; otherwise a new struct is assigned from a slab.
190  *
191  * When @vacancy_check flag is set, this function will check the amount of
192  * free space, and will wait for the GC to reclaim disk space if low capacity.
193  *
194  * Return Value: On success, 0 is returned. On error, one of the following
195  * negative error code is returned.
196  *
197  * %-ENOMEM - Insufficient memory available.
198  *
199  * %-ENOSPC - No space left on device
200  */
201 int nilfs_transaction_begin(struct super_block *sb,
202 			    struct nilfs_transaction_info *ti,
203 			    int vacancy_check)
204 {
205 	struct the_nilfs *nilfs;
206 	int ret = nilfs_prepare_segment_lock(sb, ti);
207 	struct nilfs_transaction_info *trace_ti;
208 
209 	if (unlikely(ret < 0))
210 		return ret;
211 	if (ret > 0) {
212 		trace_ti = current->journal_info;
213 
214 		trace_nilfs2_transaction_transition(sb, trace_ti,
215 				    trace_ti->ti_count, trace_ti->ti_flags,
216 				    TRACE_NILFS2_TRANSACTION_BEGIN);
217 		return 0;
218 	}
219 
220 	sb_start_intwrite(sb);
221 
222 	nilfs = sb->s_fs_info;
223 	down_read(&nilfs->ns_segctor_sem);
224 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
225 		up_read(&nilfs->ns_segctor_sem);
226 		ret = -ENOSPC;
227 		goto failed;
228 	}
229 
230 	trace_ti = current->journal_info;
231 	trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
232 					    trace_ti->ti_flags,
233 					    TRACE_NILFS2_TRANSACTION_BEGIN);
234 	return 0;
235 
236  failed:
237 	ti = current->journal_info;
238 	current->journal_info = ti->ti_save;
239 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
240 		kmem_cache_free(nilfs_transaction_cachep, ti);
241 	sb_end_intwrite(sb);
242 	return ret;
243 }
244 
245 /**
246  * nilfs_transaction_commit - commit indivisible file operations.
247  * @sb: super block
248  *
249  * nilfs_transaction_commit() releases the read semaphore which is
250  * acquired by nilfs_transaction_begin(). This is only performed
251  * in outermost call of this function.  If a commit flag is set,
252  * nilfs_transaction_commit() sets a timer to start the segment
253  * constructor.  If a sync flag is set, it starts construction
254  * directly.
255  */
256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258 	struct nilfs_transaction_info *ti = current->journal_info;
259 	struct the_nilfs *nilfs = sb->s_fs_info;
260 	int err = 0;
261 
262 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263 	ti->ti_flags |= NILFS_TI_COMMIT;
264 	if (ti->ti_count > 0) {
265 		ti->ti_count--;
266 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268 		return 0;
269 	}
270 	if (nilfs->ns_writer) {
271 		struct nilfs_sc_info *sci = nilfs->ns_writer;
272 
273 		if (ti->ti_flags & NILFS_TI_COMMIT)
274 			nilfs_segctor_start_timer(sci);
275 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276 			nilfs_segctor_do_flush(sci, 0);
277 	}
278 	up_read(&nilfs->ns_segctor_sem);
279 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281 
282 	current->journal_info = ti->ti_save;
283 
284 	if (ti->ti_flags & NILFS_TI_SYNC)
285 		err = nilfs_construct_segment(sb);
286 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 		kmem_cache_free(nilfs_transaction_cachep, ti);
288 	sb_end_intwrite(sb);
289 	return err;
290 }
291 
292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294 	struct nilfs_transaction_info *ti = current->journal_info;
295 	struct the_nilfs *nilfs = sb->s_fs_info;
296 
297 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298 	if (ti->ti_count > 0) {
299 		ti->ti_count--;
300 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302 		return;
303 	}
304 	up_read(&nilfs->ns_segctor_sem);
305 
306 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307 		    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308 
309 	current->journal_info = ti->ti_save;
310 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311 		kmem_cache_free(nilfs_transaction_cachep, ti);
312 	sb_end_intwrite(sb);
313 }
314 
315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317 	struct the_nilfs *nilfs = sb->s_fs_info;
318 	struct nilfs_sc_info *sci = nilfs->ns_writer;
319 
320 	if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
321 		return;
322 
323 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324 	up_read(&nilfs->ns_segctor_sem);
325 
326 	down_write(&nilfs->ns_segctor_sem);
327 	if (sci->sc_flush_request &&
328 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329 		struct nilfs_transaction_info *ti = current->journal_info;
330 
331 		ti->ti_flags |= NILFS_TI_WRITER;
332 		nilfs_segctor_do_immediate_flush(sci);
333 		ti->ti_flags &= ~NILFS_TI_WRITER;
334 	}
335 	downgrade_write(&nilfs->ns_segctor_sem);
336 }
337 
338 static void nilfs_transaction_lock(struct super_block *sb,
339 				   struct nilfs_transaction_info *ti,
340 				   int gcflag)
341 {
342 	struct nilfs_transaction_info *cur_ti = current->journal_info;
343 	struct the_nilfs *nilfs = sb->s_fs_info;
344 	struct nilfs_sc_info *sci = nilfs->ns_writer;
345 
346 	WARN_ON(cur_ti);
347 	ti->ti_flags = NILFS_TI_WRITER;
348 	ti->ti_count = 0;
349 	ti->ti_save = cur_ti;
350 	ti->ti_magic = NILFS_TI_MAGIC;
351 	current->journal_info = ti;
352 
353 	for (;;) {
354 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356 
357 		down_write(&nilfs->ns_segctor_sem);
358 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359 			break;
360 
361 		nilfs_segctor_do_immediate_flush(sci);
362 
363 		up_write(&nilfs->ns_segctor_sem);
364 		cond_resched();
365 	}
366 	if (gcflag)
367 		ti->ti_flags |= NILFS_TI_GC;
368 
369 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372 
373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375 	struct nilfs_transaction_info *ti = current->journal_info;
376 	struct the_nilfs *nilfs = sb->s_fs_info;
377 
378 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379 	BUG_ON(ti->ti_count > 0);
380 
381 	up_write(&nilfs->ns_segctor_sem);
382 	current->journal_info = ti->ti_save;
383 
384 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387 
388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389 					    struct nilfs_segsum_pointer *ssp,
390 					    unsigned int bytes)
391 {
392 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393 	unsigned int blocksize = sci->sc_super->s_blocksize;
394 	void *p;
395 
396 	if (unlikely(ssp->offset + bytes > blocksize)) {
397 		ssp->offset = 0;
398 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399 					       &segbuf->sb_segsum_buffers));
400 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401 	}
402 	p = ssp->bh->b_data + ssp->offset;
403 	ssp->offset += bytes;
404 	return p;
405 }
406 
407 /**
408  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409  * @sci: nilfs_sc_info
410  */
411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
412 {
413 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
414 	struct buffer_head *sumbh;
415 	unsigned int sumbytes;
416 	unsigned int flags = 0;
417 	int err;
418 
419 	if (nilfs_doing_gc())
420 		flags = NILFS_SS_GC;
421 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
422 	if (unlikely(err))
423 		return err;
424 
425 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
426 	sumbytes = segbuf->sb_sum.sumbytes;
427 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
428 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
429 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
430 	return 0;
431 }
432 
433 /**
434  * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
435  * @sci: segment constructor object
436  *
437  * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
438  * the current segment summary block.
439  */
440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
441 {
442 	struct nilfs_segsum_pointer *ssp;
443 
444 	ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
445 	if (ssp->offset < ssp->bh->b_size)
446 		memset(ssp->bh->b_data + ssp->offset, 0,
447 		       ssp->bh->b_size - ssp->offset);
448 }
449 
450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
451 {
452 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
453 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
454 		return -E2BIG; /*
455 				* The current segment is filled up
456 				* (internal code)
457 				*/
458 	nilfs_segctor_zeropad_segsum(sci);
459 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
460 	return nilfs_segctor_reset_segment_buffer(sci);
461 }
462 
463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
464 {
465 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
466 	int err;
467 
468 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
469 		err = nilfs_segctor_feed_segment(sci);
470 		if (err)
471 			return err;
472 		segbuf = sci->sc_curseg;
473 	}
474 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
475 	if (likely(!err))
476 		segbuf->sb_sum.flags |= NILFS_SS_SR;
477 	return err;
478 }
479 
480 /*
481  * Functions for making segment summary and payloads
482  */
483 static int nilfs_segctor_segsum_block_required(
484 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
485 	unsigned int binfo_size)
486 {
487 	unsigned int blocksize = sci->sc_super->s_blocksize;
488 	/* Size of finfo and binfo is enough small against blocksize */
489 
490 	return ssp->offset + binfo_size +
491 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
492 		blocksize;
493 }
494 
495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
496 				      struct inode *inode)
497 {
498 	sci->sc_curseg->sb_sum.nfinfo++;
499 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
500 	nilfs_segctor_map_segsum_entry(
501 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
502 
503 	if (NILFS_I(inode)->i_root &&
504 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
505 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
506 	/* skip finfo */
507 }
508 
509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
510 				    struct inode *inode)
511 {
512 	struct nilfs_finfo *finfo;
513 	struct nilfs_inode_info *ii;
514 	struct nilfs_segment_buffer *segbuf;
515 	__u64 cno;
516 
517 	if (sci->sc_blk_cnt == 0)
518 		return;
519 
520 	ii = NILFS_I(inode);
521 
522 	if (ii->i_type & NILFS_I_TYPE_GC)
523 		cno = ii->i_cno;
524 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
525 		cno = 0;
526 	else
527 		cno = sci->sc_cno;
528 
529 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
530 						 sizeof(*finfo));
531 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
532 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
533 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
534 	finfo->fi_cno = cpu_to_le64(cno);
535 
536 	segbuf = sci->sc_curseg;
537 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
538 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
539 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
540 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
541 }
542 
543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
544 					struct buffer_head *bh,
545 					struct inode *inode,
546 					unsigned int binfo_size)
547 {
548 	struct nilfs_segment_buffer *segbuf;
549 	int required, err = 0;
550 
551  retry:
552 	segbuf = sci->sc_curseg;
553 	required = nilfs_segctor_segsum_block_required(
554 		sci, &sci->sc_binfo_ptr, binfo_size);
555 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
556 		nilfs_segctor_end_finfo(sci, inode);
557 		err = nilfs_segctor_feed_segment(sci);
558 		if (err)
559 			return err;
560 		goto retry;
561 	}
562 	if (unlikely(required)) {
563 		nilfs_segctor_zeropad_segsum(sci);
564 		err = nilfs_segbuf_extend_segsum(segbuf);
565 		if (unlikely(err))
566 			goto failed;
567 	}
568 	if (sci->sc_blk_cnt == 0)
569 		nilfs_segctor_begin_finfo(sci, inode);
570 
571 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
572 	/* Substitution to vblocknr is delayed until update_blocknr() */
573 	nilfs_segbuf_add_file_buffer(segbuf, bh);
574 	sci->sc_blk_cnt++;
575  failed:
576 	return err;
577 }
578 
579 /*
580  * Callback functions that enumerate, mark, and collect dirty blocks
581  */
582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
583 				   struct buffer_head *bh, struct inode *inode)
584 {
585 	int err;
586 
587 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
588 	if (err < 0)
589 		return err;
590 
591 	err = nilfs_segctor_add_file_block(sci, bh, inode,
592 					   sizeof(struct nilfs_binfo_v));
593 	if (!err)
594 		sci->sc_datablk_cnt++;
595 	return err;
596 }
597 
598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
599 				   struct buffer_head *bh,
600 				   struct inode *inode)
601 {
602 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
603 }
604 
605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
606 				   struct buffer_head *bh,
607 				   struct inode *inode)
608 {
609 	WARN_ON(!buffer_dirty(bh));
610 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
611 }
612 
613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
614 					struct nilfs_segsum_pointer *ssp,
615 					union nilfs_binfo *binfo)
616 {
617 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
618 		sci, ssp, sizeof(*binfo_v));
619 	*binfo_v = binfo->bi_v;
620 }
621 
622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
623 					struct nilfs_segsum_pointer *ssp,
624 					union nilfs_binfo *binfo)
625 {
626 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
627 		sci, ssp, sizeof(*vblocknr));
628 	*vblocknr = binfo->bi_v.bi_vblocknr;
629 }
630 
631 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
632 	.collect_data = nilfs_collect_file_data,
633 	.collect_node = nilfs_collect_file_node,
634 	.collect_bmap = nilfs_collect_file_bmap,
635 	.write_data_binfo = nilfs_write_file_data_binfo,
636 	.write_node_binfo = nilfs_write_file_node_binfo,
637 };
638 
639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
640 				  struct buffer_head *bh, struct inode *inode)
641 {
642 	int err;
643 
644 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
645 	if (err < 0)
646 		return err;
647 
648 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
649 	if (!err)
650 		sci->sc_datablk_cnt++;
651 	return err;
652 }
653 
654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
655 				  struct buffer_head *bh, struct inode *inode)
656 {
657 	WARN_ON(!buffer_dirty(bh));
658 	return nilfs_segctor_add_file_block(sci, bh, inode,
659 					    sizeof(struct nilfs_binfo_dat));
660 }
661 
662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
663 				       struct nilfs_segsum_pointer *ssp,
664 				       union nilfs_binfo *binfo)
665 {
666 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
667 							  sizeof(*blkoff));
668 	*blkoff = binfo->bi_dat.bi_blkoff;
669 }
670 
671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
672 				       struct nilfs_segsum_pointer *ssp,
673 				       union nilfs_binfo *binfo)
674 {
675 	struct nilfs_binfo_dat *binfo_dat =
676 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
677 	*binfo_dat = binfo->bi_dat;
678 }
679 
680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
681 	.collect_data = nilfs_collect_dat_data,
682 	.collect_node = nilfs_collect_file_node,
683 	.collect_bmap = nilfs_collect_dat_bmap,
684 	.write_data_binfo = nilfs_write_dat_data_binfo,
685 	.write_node_binfo = nilfs_write_dat_node_binfo,
686 };
687 
688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
689 	.collect_data = nilfs_collect_file_data,
690 	.collect_node = NULL,
691 	.collect_bmap = NULL,
692 	.write_data_binfo = nilfs_write_file_data_binfo,
693 	.write_node_binfo = NULL,
694 };
695 
696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
697 					      struct list_head *listp,
698 					      size_t nlimit,
699 					      loff_t start, loff_t end)
700 {
701 	struct address_space *mapping = inode->i_mapping;
702 	struct folio_batch fbatch;
703 	pgoff_t index = 0, last = ULONG_MAX;
704 	size_t ndirties = 0;
705 	int i;
706 
707 	if (unlikely(start != 0 || end != LLONG_MAX)) {
708 		/*
709 		 * A valid range is given for sync-ing data pages. The
710 		 * range is rounded to per-page; extra dirty buffers
711 		 * may be included if blocksize < pagesize.
712 		 */
713 		index = start >> PAGE_SHIFT;
714 		last = end >> PAGE_SHIFT;
715 	}
716 	folio_batch_init(&fbatch);
717  repeat:
718 	if (unlikely(index > last) ||
719 	      !filemap_get_folios_tag(mapping, &index, last,
720 		      PAGECACHE_TAG_DIRTY, &fbatch))
721 		return ndirties;
722 
723 	for (i = 0; i < folio_batch_count(&fbatch); i++) {
724 		struct buffer_head *bh, *head;
725 		struct folio *folio = fbatch.folios[i];
726 
727 		folio_lock(folio);
728 		if (unlikely(folio->mapping != mapping)) {
729 			/* Exclude folios removed from the address space */
730 			folio_unlock(folio);
731 			continue;
732 		}
733 		head = folio_buffers(folio);
734 		if (!head)
735 			head = create_empty_buffers(folio,
736 					i_blocksize(inode), 0);
737 		folio_unlock(folio);
738 
739 		bh = head;
740 		do {
741 			if (!buffer_dirty(bh) || buffer_async_write(bh))
742 				continue;
743 			get_bh(bh);
744 			list_add_tail(&bh->b_assoc_buffers, listp);
745 			ndirties++;
746 			if (unlikely(ndirties >= nlimit)) {
747 				folio_batch_release(&fbatch);
748 				cond_resched();
749 				return ndirties;
750 			}
751 		} while (bh = bh->b_this_page, bh != head);
752 	}
753 	folio_batch_release(&fbatch);
754 	cond_resched();
755 	goto repeat;
756 }
757 
758 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
759 					    struct list_head *listp)
760 {
761 	struct nilfs_inode_info *ii = NILFS_I(inode);
762 	struct inode *btnc_inode = ii->i_assoc_inode;
763 	struct folio_batch fbatch;
764 	struct buffer_head *bh, *head;
765 	unsigned int i;
766 	pgoff_t index = 0;
767 
768 	if (!btnc_inode)
769 		return;
770 	folio_batch_init(&fbatch);
771 
772 	while (filemap_get_folios_tag(btnc_inode->i_mapping, &index,
773 				(pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) {
774 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
775 			bh = head = folio_buffers(fbatch.folios[i]);
776 			do {
777 				if (buffer_dirty(bh) &&
778 						!buffer_async_write(bh)) {
779 					get_bh(bh);
780 					list_add_tail(&bh->b_assoc_buffers,
781 						      listp);
782 				}
783 				bh = bh->b_this_page;
784 			} while (bh != head);
785 		}
786 		folio_batch_release(&fbatch);
787 		cond_resched();
788 	}
789 }
790 
791 static void nilfs_dispose_list(struct the_nilfs *nilfs,
792 			       struct list_head *head, int force)
793 {
794 	struct nilfs_inode_info *ii, *n;
795 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
796 	unsigned int nv = 0;
797 
798 	while (!list_empty(head)) {
799 		spin_lock(&nilfs->ns_inode_lock);
800 		list_for_each_entry_safe(ii, n, head, i_dirty) {
801 			list_del_init(&ii->i_dirty);
802 			if (force) {
803 				if (unlikely(ii->i_bh)) {
804 					brelse(ii->i_bh);
805 					ii->i_bh = NULL;
806 				}
807 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
808 				set_bit(NILFS_I_QUEUED, &ii->i_state);
809 				list_add_tail(&ii->i_dirty,
810 					      &nilfs->ns_dirty_files);
811 				continue;
812 			}
813 			ivec[nv++] = ii;
814 			if (nv == SC_N_INODEVEC)
815 				break;
816 		}
817 		spin_unlock(&nilfs->ns_inode_lock);
818 
819 		for (pii = ivec; nv > 0; pii++, nv--)
820 			iput(&(*pii)->vfs_inode);
821 	}
822 }
823 
824 static void nilfs_iput_work_func(struct work_struct *work)
825 {
826 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
827 						 sc_iput_work);
828 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
829 
830 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
831 }
832 
833 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
834 				     struct nilfs_root *root)
835 {
836 	int ret = 0;
837 
838 	if (nilfs_mdt_fetch_dirty(root->ifile))
839 		ret++;
840 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
841 		ret++;
842 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
843 		ret++;
844 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
845 		ret++;
846 	return ret;
847 }
848 
849 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
850 {
851 	return list_empty(&sci->sc_dirty_files) &&
852 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
853 		sci->sc_nfreesegs == 0 &&
854 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
855 }
856 
857 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
858 {
859 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
860 	int ret = 0;
861 
862 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
863 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
864 
865 	spin_lock(&nilfs->ns_inode_lock);
866 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
867 		ret++;
868 
869 	spin_unlock(&nilfs->ns_inode_lock);
870 	return ret;
871 }
872 
873 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
874 {
875 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
876 
877 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
878 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
879 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
880 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
881 }
882 
883 static void nilfs_fill_in_file_bmap(struct inode *ifile,
884 				    struct nilfs_inode_info *ii)
885 
886 {
887 	struct buffer_head *ibh;
888 	struct nilfs_inode *raw_inode;
889 
890 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
891 		ibh = ii->i_bh;
892 		BUG_ON(!ibh);
893 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
894 						  ibh);
895 		nilfs_bmap_write(ii->i_bmap, raw_inode);
896 		nilfs_ifile_unmap_inode(raw_inode);
897 	}
898 }
899 
900 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
901 {
902 	struct nilfs_inode_info *ii;
903 
904 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
905 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
906 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
907 	}
908 }
909 
910 /**
911  * nilfs_write_root_mdt_inode - export root metadata inode information to
912  *                              the on-disk inode
913  * @inode:     inode object of the root metadata file
914  * @raw_inode: on-disk inode
915  *
916  * nilfs_write_root_mdt_inode() writes inode information and bmap data of
917  * @inode to the inode area of the metadata file allocated on the super root
918  * block created to finalize the log.  Since super root blocks are configured
919  * each time, this function zero-fills the unused area of @raw_inode.
920  */
921 static void nilfs_write_root_mdt_inode(struct inode *inode,
922 				       struct nilfs_inode *raw_inode)
923 {
924 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
925 
926 	nilfs_write_inode_common(inode, raw_inode);
927 
928 	/* zero-fill unused portion of raw_inode */
929 	raw_inode->i_xattr = 0;
930 	raw_inode->i_pad = 0;
931 	memset((void *)raw_inode + sizeof(*raw_inode), 0,
932 	       nilfs->ns_inode_size - sizeof(*raw_inode));
933 
934 	nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode);
935 }
936 
937 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
938 					     struct the_nilfs *nilfs)
939 {
940 	struct buffer_head *bh_sr;
941 	struct nilfs_super_root *raw_sr;
942 	unsigned int isz, srsz;
943 
944 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
945 
946 	lock_buffer(bh_sr);
947 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
948 	isz = nilfs->ns_inode_size;
949 	srsz = NILFS_SR_BYTES(isz);
950 
951 	raw_sr->sr_sum = 0;  /* Ensure initialization within this update */
952 	raw_sr->sr_bytes = cpu_to_le16(srsz);
953 	raw_sr->sr_nongc_ctime
954 		= cpu_to_le64(nilfs_doing_gc() ?
955 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
956 	raw_sr->sr_flags = 0;
957 
958 	nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr +
959 				   NILFS_SR_DAT_OFFSET(isz));
960 	nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr +
961 				   NILFS_SR_CPFILE_OFFSET(isz));
962 	nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr +
963 				   NILFS_SR_SUFILE_OFFSET(isz));
964 
965 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
966 	set_buffer_uptodate(bh_sr);
967 	unlock_buffer(bh_sr);
968 }
969 
970 static void nilfs_redirty_inodes(struct list_head *head)
971 {
972 	struct nilfs_inode_info *ii;
973 
974 	list_for_each_entry(ii, head, i_dirty) {
975 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
976 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
977 	}
978 }
979 
980 static void nilfs_drop_collected_inodes(struct list_head *head)
981 {
982 	struct nilfs_inode_info *ii;
983 
984 	list_for_each_entry(ii, head, i_dirty) {
985 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
986 			continue;
987 
988 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
989 		set_bit(NILFS_I_UPDATED, &ii->i_state);
990 	}
991 }
992 
993 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
994 				       struct inode *inode,
995 				       struct list_head *listp,
996 				       int (*collect)(struct nilfs_sc_info *,
997 						      struct buffer_head *,
998 						      struct inode *))
999 {
1000 	struct buffer_head *bh, *n;
1001 	int err = 0;
1002 
1003 	if (collect) {
1004 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1005 			list_del_init(&bh->b_assoc_buffers);
1006 			err = collect(sci, bh, inode);
1007 			brelse(bh);
1008 			if (unlikely(err))
1009 				goto dispose_buffers;
1010 		}
1011 		return 0;
1012 	}
1013 
1014  dispose_buffers:
1015 	while (!list_empty(listp)) {
1016 		bh = list_first_entry(listp, struct buffer_head,
1017 				      b_assoc_buffers);
1018 		list_del_init(&bh->b_assoc_buffers);
1019 		brelse(bh);
1020 	}
1021 	return err;
1022 }
1023 
1024 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1025 {
1026 	/* Remaining number of blocks within segment buffer */
1027 	return sci->sc_segbuf_nblocks -
1028 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1029 }
1030 
1031 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1032 				   struct inode *inode,
1033 				   const struct nilfs_sc_operations *sc_ops)
1034 {
1035 	LIST_HEAD(data_buffers);
1036 	LIST_HEAD(node_buffers);
1037 	int err;
1038 
1039 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1040 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1041 
1042 		n = nilfs_lookup_dirty_data_buffers(
1043 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1044 		if (n > rest) {
1045 			err = nilfs_segctor_apply_buffers(
1046 				sci, inode, &data_buffers,
1047 				sc_ops->collect_data);
1048 			BUG_ON(!err); /* always receive -E2BIG or true error */
1049 			goto break_or_fail;
1050 		}
1051 	}
1052 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1053 
1054 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1055 		err = nilfs_segctor_apply_buffers(
1056 			sci, inode, &data_buffers, sc_ops->collect_data);
1057 		if (unlikely(err)) {
1058 			/* dispose node list */
1059 			nilfs_segctor_apply_buffers(
1060 				sci, inode, &node_buffers, NULL);
1061 			goto break_or_fail;
1062 		}
1063 		sci->sc_stage.flags |= NILFS_CF_NODE;
1064 	}
1065 	/* Collect node */
1066 	err = nilfs_segctor_apply_buffers(
1067 		sci, inode, &node_buffers, sc_ops->collect_node);
1068 	if (unlikely(err))
1069 		goto break_or_fail;
1070 
1071 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1072 	err = nilfs_segctor_apply_buffers(
1073 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1074 	if (unlikely(err))
1075 		goto break_or_fail;
1076 
1077 	nilfs_segctor_end_finfo(sci, inode);
1078 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1079 
1080  break_or_fail:
1081 	return err;
1082 }
1083 
1084 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1085 					 struct inode *inode)
1086 {
1087 	LIST_HEAD(data_buffers);
1088 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1089 	int err;
1090 
1091 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1092 					    sci->sc_dsync_start,
1093 					    sci->sc_dsync_end);
1094 
1095 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1096 					  nilfs_collect_file_data);
1097 	if (!err) {
1098 		nilfs_segctor_end_finfo(sci, inode);
1099 		BUG_ON(n > rest);
1100 		/* always receive -E2BIG or true error if n > rest */
1101 	}
1102 	return err;
1103 }
1104 
1105 /**
1106  * nilfs_free_segments - free the segments given by an array of segment numbers
1107  * @nilfs:   nilfs object
1108  * @segnumv: array of segment numbers to be freed
1109  * @nsegs:   number of segments to be freed in @segnumv
1110  *
1111  * nilfs_free_segments() wraps nilfs_sufile_freev() and
1112  * nilfs_sufile_cancel_freev(), and edits the segment usage metadata file
1113  * (sufile) to free all segments given by @segnumv and @nsegs at once.  If
1114  * it fails midway, it cancels the changes so that none of the segments are
1115  * freed.  If @nsegs is 0, this function does nothing.
1116  *
1117  * The freeing of segments is not finalized until the writing of a log with
1118  * a super root block containing this sufile change is complete, and it can
1119  * be canceled with nilfs_sufile_cancel_freev() until then.
1120  *
1121  * Return: 0 on success, or the following negative error code on failure.
1122  * * %-EINVAL	- Invalid segment number.
1123  * * %-EIO	- I/O error (including metadata corruption).
1124  * * %-ENOMEM	- Insufficient memory available.
1125  */
1126 static int nilfs_free_segments(struct the_nilfs *nilfs, __u64 *segnumv,
1127 			       size_t nsegs)
1128 {
1129 	size_t ndone;
1130 	int ret;
1131 
1132 	if (!nsegs)
1133 		return 0;
1134 
1135 	ret = nilfs_sufile_freev(nilfs->ns_sufile, segnumv, nsegs, &ndone);
1136 	if (unlikely(ret)) {
1137 		nilfs_sufile_cancel_freev(nilfs->ns_sufile, segnumv, ndone,
1138 					  NULL);
1139 		/*
1140 		 * If a segment usage of the segments to be freed is in a
1141 		 * hole block, nilfs_sufile_freev() will return -ENOENT.
1142 		 * In this case, -EINVAL should be returned to the caller
1143 		 * since there is something wrong with the given segment
1144 		 * number array.  This error can only occur during GC, so
1145 		 * there is no need to worry about it propagating to other
1146 		 * callers (such as fsync).
1147 		 */
1148 		if (ret == -ENOENT) {
1149 			nilfs_err(nilfs->ns_sb,
1150 				  "The segment usage entry %llu to be freed is invalid (in a hole)",
1151 				  (unsigned long long)segnumv[ndone]);
1152 			ret = -EINVAL;
1153 		}
1154 	}
1155 	return ret;
1156 }
1157 
1158 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1159 {
1160 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1161 	struct list_head *head;
1162 	struct nilfs_inode_info *ii;
1163 	int err = 0;
1164 
1165 	switch (nilfs_sc_cstage_get(sci)) {
1166 	case NILFS_ST_INIT:
1167 		/* Pre-processes */
1168 		sci->sc_stage.flags = 0;
1169 
1170 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1171 			sci->sc_nblk_inc = 0;
1172 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1173 			if (mode == SC_LSEG_DSYNC) {
1174 				nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1175 				goto dsync_mode;
1176 			}
1177 		}
1178 
1179 		sci->sc_stage.dirty_file_ptr = NULL;
1180 		sci->sc_stage.gc_inode_ptr = NULL;
1181 		if (mode == SC_FLUSH_DAT) {
1182 			nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1183 			goto dat_stage;
1184 		}
1185 		nilfs_sc_cstage_inc(sci);
1186 		fallthrough;
1187 	case NILFS_ST_GC:
1188 		if (nilfs_doing_gc()) {
1189 			head = &sci->sc_gc_inodes;
1190 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1191 						head, i_dirty);
1192 			list_for_each_entry_continue(ii, head, i_dirty) {
1193 				err = nilfs_segctor_scan_file(
1194 					sci, &ii->vfs_inode,
1195 					&nilfs_sc_file_ops);
1196 				if (unlikely(err)) {
1197 					sci->sc_stage.gc_inode_ptr = list_entry(
1198 						ii->i_dirty.prev,
1199 						struct nilfs_inode_info,
1200 						i_dirty);
1201 					goto break_or_fail;
1202 				}
1203 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1204 			}
1205 			sci->sc_stage.gc_inode_ptr = NULL;
1206 		}
1207 		nilfs_sc_cstage_inc(sci);
1208 		fallthrough;
1209 	case NILFS_ST_FILE:
1210 		head = &sci->sc_dirty_files;
1211 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1212 					i_dirty);
1213 		list_for_each_entry_continue(ii, head, i_dirty) {
1214 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1215 
1216 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1217 						      &nilfs_sc_file_ops);
1218 			if (unlikely(err)) {
1219 				sci->sc_stage.dirty_file_ptr =
1220 					list_entry(ii->i_dirty.prev,
1221 						   struct nilfs_inode_info,
1222 						   i_dirty);
1223 				goto break_or_fail;
1224 			}
1225 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1226 			/* XXX: required ? */
1227 		}
1228 		sci->sc_stage.dirty_file_ptr = NULL;
1229 		if (mode == SC_FLUSH_FILE) {
1230 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1231 			return 0;
1232 		}
1233 		nilfs_sc_cstage_inc(sci);
1234 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1235 		fallthrough;
1236 	case NILFS_ST_IFILE:
1237 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1238 					      &nilfs_sc_file_ops);
1239 		if (unlikely(err))
1240 			break;
1241 		nilfs_sc_cstage_inc(sci);
1242 		/* Creating a checkpoint */
1243 		err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile,
1244 						     nilfs->ns_cno);
1245 		if (unlikely(err))
1246 			break;
1247 		fallthrough;
1248 	case NILFS_ST_CPFILE:
1249 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1250 					      &nilfs_sc_file_ops);
1251 		if (unlikely(err))
1252 			break;
1253 		nilfs_sc_cstage_inc(sci);
1254 		fallthrough;
1255 	case NILFS_ST_SUFILE:
1256 		err = nilfs_free_segments(nilfs, sci->sc_freesegs,
1257 					  sci->sc_nfreesegs);
1258 		if (unlikely(err))
1259 			break;
1260 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1261 
1262 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1263 					      &nilfs_sc_file_ops);
1264 		if (unlikely(err))
1265 			break;
1266 		nilfs_sc_cstage_inc(sci);
1267 		fallthrough;
1268 	case NILFS_ST_DAT:
1269  dat_stage:
1270 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1271 					      &nilfs_sc_dat_ops);
1272 		if (unlikely(err))
1273 			break;
1274 		if (mode == SC_FLUSH_DAT) {
1275 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1276 			return 0;
1277 		}
1278 		nilfs_sc_cstage_inc(sci);
1279 		fallthrough;
1280 	case NILFS_ST_SR:
1281 		if (mode == SC_LSEG_SR) {
1282 			/* Appending a super root */
1283 			err = nilfs_segctor_add_super_root(sci);
1284 			if (unlikely(err))
1285 				break;
1286 		}
1287 		/* End of a logical segment */
1288 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1289 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1290 		return 0;
1291 	case NILFS_ST_DSYNC:
1292  dsync_mode:
1293 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1294 		ii = sci->sc_dsync_inode;
1295 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1296 			break;
1297 
1298 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1299 		if (unlikely(err))
1300 			break;
1301 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1302 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1303 		return 0;
1304 	case NILFS_ST_DONE:
1305 		return 0;
1306 	default:
1307 		BUG();
1308 	}
1309 
1310  break_or_fail:
1311 	return err;
1312 }
1313 
1314 /**
1315  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1316  * @sci: nilfs_sc_info
1317  * @nilfs: nilfs object
1318  */
1319 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1320 					    struct the_nilfs *nilfs)
1321 {
1322 	struct nilfs_segment_buffer *segbuf, *prev;
1323 	__u64 nextnum;
1324 	int err, alloc = 0;
1325 
1326 	segbuf = nilfs_segbuf_new(sci->sc_super);
1327 	if (unlikely(!segbuf))
1328 		return -ENOMEM;
1329 
1330 	if (list_empty(&sci->sc_write_logs)) {
1331 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1332 				 nilfs->ns_pseg_offset, nilfs);
1333 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1334 			nilfs_shift_to_next_segment(nilfs);
1335 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1336 		}
1337 
1338 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1339 		nextnum = nilfs->ns_nextnum;
1340 
1341 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1342 			/* Start from the head of a new full segment */
1343 			alloc++;
1344 	} else {
1345 		/* Continue logs */
1346 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1347 		nilfs_segbuf_map_cont(segbuf, prev);
1348 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1349 		nextnum = prev->sb_nextnum;
1350 
1351 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1352 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1353 			segbuf->sb_sum.seg_seq++;
1354 			alloc++;
1355 		}
1356 	}
1357 
1358 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1359 	if (err)
1360 		goto failed;
1361 
1362 	if (alloc) {
1363 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1364 		if (err)
1365 			goto failed;
1366 	}
1367 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1368 
1369 	BUG_ON(!list_empty(&sci->sc_segbufs));
1370 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1371 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1372 	return 0;
1373 
1374  failed:
1375 	nilfs_segbuf_free(segbuf);
1376 	return err;
1377 }
1378 
1379 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1380 					 struct the_nilfs *nilfs, int nadd)
1381 {
1382 	struct nilfs_segment_buffer *segbuf, *prev;
1383 	struct inode *sufile = nilfs->ns_sufile;
1384 	__u64 nextnextnum;
1385 	LIST_HEAD(list);
1386 	int err, ret, i;
1387 
1388 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1389 	/*
1390 	 * Since the segment specified with nextnum might be allocated during
1391 	 * the previous construction, the buffer including its segusage may
1392 	 * not be dirty.  The following call ensures that the buffer is dirty
1393 	 * and will pin the buffer on memory until the sufile is written.
1394 	 */
1395 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1396 	if (unlikely(err))
1397 		return err;
1398 
1399 	for (i = 0; i < nadd; i++) {
1400 		/* extend segment info */
1401 		err = -ENOMEM;
1402 		segbuf = nilfs_segbuf_new(sci->sc_super);
1403 		if (unlikely(!segbuf))
1404 			goto failed;
1405 
1406 		/* map this buffer to region of segment on-disk */
1407 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1408 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1409 
1410 		/* allocate the next next full segment */
1411 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1412 		if (unlikely(err))
1413 			goto failed_segbuf;
1414 
1415 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1416 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1417 
1418 		list_add_tail(&segbuf->sb_list, &list);
1419 		prev = segbuf;
1420 	}
1421 	list_splice_tail(&list, &sci->sc_segbufs);
1422 	return 0;
1423 
1424  failed_segbuf:
1425 	nilfs_segbuf_free(segbuf);
1426  failed:
1427 	list_for_each_entry(segbuf, &list, sb_list) {
1428 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1429 		WARN_ON(ret); /* never fails */
1430 	}
1431 	nilfs_destroy_logs(&list);
1432 	return err;
1433 }
1434 
1435 static void nilfs_free_incomplete_logs(struct list_head *logs,
1436 				       struct the_nilfs *nilfs)
1437 {
1438 	struct nilfs_segment_buffer *segbuf, *prev;
1439 	struct inode *sufile = nilfs->ns_sufile;
1440 	int ret;
1441 
1442 	segbuf = NILFS_FIRST_SEGBUF(logs);
1443 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1444 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1445 		WARN_ON(ret); /* never fails */
1446 	}
1447 	if (atomic_read(&segbuf->sb_err)) {
1448 		/* Case 1: The first segment failed */
1449 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1450 			/*
1451 			 * Case 1a:  Partial segment appended into an existing
1452 			 * segment
1453 			 */
1454 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1455 						segbuf->sb_fseg_end);
1456 		else /* Case 1b:  New full segment */
1457 			set_nilfs_discontinued(nilfs);
1458 	}
1459 
1460 	prev = segbuf;
1461 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1462 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1463 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1464 			WARN_ON(ret); /* never fails */
1465 		}
1466 		if (atomic_read(&segbuf->sb_err) &&
1467 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1468 			/* Case 2: extended segment (!= next) failed */
1469 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1470 		prev = segbuf;
1471 	}
1472 }
1473 
1474 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1475 					  struct inode *sufile)
1476 {
1477 	struct nilfs_segment_buffer *segbuf;
1478 	unsigned long live_blocks;
1479 	int ret;
1480 
1481 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1482 		live_blocks = segbuf->sb_sum.nblocks +
1483 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1484 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1485 						     live_blocks,
1486 						     sci->sc_seg_ctime);
1487 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1488 	}
1489 }
1490 
1491 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1492 {
1493 	struct nilfs_segment_buffer *segbuf;
1494 	int ret;
1495 
1496 	segbuf = NILFS_FIRST_SEGBUF(logs);
1497 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1498 					     segbuf->sb_pseg_start -
1499 					     segbuf->sb_fseg_start, 0);
1500 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1501 
1502 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1503 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1504 						     0, 0);
1505 		WARN_ON(ret); /* always succeed */
1506 	}
1507 }
1508 
1509 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1510 					    struct nilfs_segment_buffer *last,
1511 					    struct inode *sufile)
1512 {
1513 	struct nilfs_segment_buffer *segbuf = last;
1514 	int ret;
1515 
1516 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1517 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1518 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1519 		WARN_ON(ret);
1520 	}
1521 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1522 }
1523 
1524 
1525 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1526 				 struct the_nilfs *nilfs, int mode)
1527 {
1528 	struct nilfs_cstage prev_stage = sci->sc_stage;
1529 	int err, nadd = 1;
1530 
1531 	/* Collection retry loop */
1532 	for (;;) {
1533 		sci->sc_nblk_this_inc = 0;
1534 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1535 
1536 		err = nilfs_segctor_reset_segment_buffer(sci);
1537 		if (unlikely(err))
1538 			goto failed;
1539 
1540 		err = nilfs_segctor_collect_blocks(sci, mode);
1541 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1542 		if (!err)
1543 			break;
1544 
1545 		if (unlikely(err != -E2BIG))
1546 			goto failed;
1547 
1548 		/* The current segment is filled up */
1549 		if (mode != SC_LSEG_SR ||
1550 		    nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1551 			break;
1552 
1553 		nilfs_clear_logs(&sci->sc_segbufs);
1554 
1555 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1556 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1557 							sci->sc_freesegs,
1558 							sci->sc_nfreesegs,
1559 							NULL);
1560 			WARN_ON(err); /* do not happen */
1561 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1562 		}
1563 
1564 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1565 		if (unlikely(err))
1566 			return err;
1567 
1568 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1569 		sci->sc_stage = prev_stage;
1570 	}
1571 	nilfs_segctor_zeropad_segsum(sci);
1572 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1573 	return 0;
1574 
1575  failed:
1576 	return err;
1577 }
1578 
1579 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1580 				      struct buffer_head *new_bh)
1581 {
1582 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1583 
1584 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1585 	/* The caller must release old_bh */
1586 }
1587 
1588 static int
1589 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1590 				     struct nilfs_segment_buffer *segbuf,
1591 				     int mode)
1592 {
1593 	struct inode *inode = NULL;
1594 	sector_t blocknr;
1595 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1596 	unsigned long nblocks = 0, ndatablk = 0;
1597 	const struct nilfs_sc_operations *sc_op = NULL;
1598 	struct nilfs_segsum_pointer ssp;
1599 	struct nilfs_finfo *finfo = NULL;
1600 	union nilfs_binfo binfo;
1601 	struct buffer_head *bh, *bh_org;
1602 	ino_t ino = 0;
1603 	int err = 0;
1604 
1605 	if (!nfinfo)
1606 		goto out;
1607 
1608 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1609 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1610 	ssp.offset = sizeof(struct nilfs_segment_summary);
1611 
1612 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1613 		if (bh == segbuf->sb_super_root)
1614 			break;
1615 		if (!finfo) {
1616 			finfo =	nilfs_segctor_map_segsum_entry(
1617 				sci, &ssp, sizeof(*finfo));
1618 			ino = le64_to_cpu(finfo->fi_ino);
1619 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1620 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1621 
1622 			inode = bh->b_folio->mapping->host;
1623 
1624 			if (mode == SC_LSEG_DSYNC)
1625 				sc_op = &nilfs_sc_dsync_ops;
1626 			else if (ino == NILFS_DAT_INO)
1627 				sc_op = &nilfs_sc_dat_ops;
1628 			else /* file blocks */
1629 				sc_op = &nilfs_sc_file_ops;
1630 		}
1631 		bh_org = bh;
1632 		get_bh(bh_org);
1633 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1634 					&binfo);
1635 		if (bh != bh_org)
1636 			nilfs_list_replace_buffer(bh_org, bh);
1637 		brelse(bh_org);
1638 		if (unlikely(err))
1639 			goto failed_bmap;
1640 
1641 		if (ndatablk > 0)
1642 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1643 		else
1644 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1645 
1646 		blocknr++;
1647 		if (--nblocks == 0) {
1648 			finfo = NULL;
1649 			if (--nfinfo == 0)
1650 				break;
1651 		} else if (ndatablk > 0)
1652 			ndatablk--;
1653 	}
1654  out:
1655 	return 0;
1656 
1657  failed_bmap:
1658 	return err;
1659 }
1660 
1661 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1662 {
1663 	struct nilfs_segment_buffer *segbuf;
1664 	int err;
1665 
1666 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1667 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1668 		if (unlikely(err))
1669 			return err;
1670 		nilfs_segbuf_fill_in_segsum(segbuf);
1671 	}
1672 	return 0;
1673 }
1674 
1675 static void nilfs_begin_folio_io(struct folio *folio)
1676 {
1677 	if (!folio || folio_test_writeback(folio))
1678 		/*
1679 		 * For split b-tree node pages, this function may be called
1680 		 * twice.  We ignore the 2nd or later calls by this check.
1681 		 */
1682 		return;
1683 
1684 	folio_lock(folio);
1685 	folio_clear_dirty_for_io(folio);
1686 	folio_start_writeback(folio);
1687 	folio_unlock(folio);
1688 }
1689 
1690 /**
1691  * nilfs_prepare_write_logs - prepare to write logs
1692  * @logs: logs to prepare for writing
1693  * @seed: checksum seed value
1694  *
1695  * nilfs_prepare_write_logs() adds checksums and prepares the block
1696  * buffers/folios for writing logs.  In order to stabilize folios of
1697  * memory-mapped file blocks by putting them in writeback state before
1698  * calculating the checksums, first prepare to write payload blocks other
1699  * than segment summary and super root blocks in which the checksums will
1700  * be embedded.
1701  */
1702 static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed)
1703 {
1704 	struct nilfs_segment_buffer *segbuf;
1705 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1706 	struct buffer_head *bh;
1707 
1708 	/* Prepare to write payload blocks */
1709 	list_for_each_entry(segbuf, logs, sb_list) {
1710 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1711 				    b_assoc_buffers) {
1712 			if (bh == segbuf->sb_super_root)
1713 				break;
1714 			set_buffer_async_write(bh);
1715 			if (bh->b_folio != fs_folio) {
1716 				nilfs_begin_folio_io(fs_folio);
1717 				fs_folio = bh->b_folio;
1718 			}
1719 		}
1720 	}
1721 	nilfs_begin_folio_io(fs_folio);
1722 
1723 	nilfs_add_checksums_on_logs(logs, seed);
1724 
1725 	/* Prepare to write segment summary blocks */
1726 	list_for_each_entry(segbuf, logs, sb_list) {
1727 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1728 				    b_assoc_buffers) {
1729 			mark_buffer_dirty(bh);
1730 			if (bh->b_folio == bd_folio)
1731 				continue;
1732 			if (bd_folio) {
1733 				folio_lock(bd_folio);
1734 				folio_wait_writeback(bd_folio);
1735 				folio_clear_dirty_for_io(bd_folio);
1736 				folio_start_writeback(bd_folio);
1737 				folio_unlock(bd_folio);
1738 			}
1739 			bd_folio = bh->b_folio;
1740 		}
1741 	}
1742 
1743 	/* Prepare to write super root block */
1744 	bh = NILFS_LAST_SEGBUF(logs)->sb_super_root;
1745 	if (bh) {
1746 		mark_buffer_dirty(bh);
1747 		if (bh->b_folio != bd_folio) {
1748 			folio_lock(bd_folio);
1749 			folio_wait_writeback(bd_folio);
1750 			folio_clear_dirty_for_io(bd_folio);
1751 			folio_start_writeback(bd_folio);
1752 			folio_unlock(bd_folio);
1753 			bd_folio = bh->b_folio;
1754 		}
1755 	}
1756 
1757 	if (bd_folio) {
1758 		folio_lock(bd_folio);
1759 		folio_wait_writeback(bd_folio);
1760 		folio_clear_dirty_for_io(bd_folio);
1761 		folio_start_writeback(bd_folio);
1762 		folio_unlock(bd_folio);
1763 	}
1764 }
1765 
1766 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1767 			       struct the_nilfs *nilfs)
1768 {
1769 	int ret;
1770 
1771 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1772 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1773 	return ret;
1774 }
1775 
1776 static void nilfs_end_folio_io(struct folio *folio, int err)
1777 {
1778 	if (!folio)
1779 		return;
1780 
1781 	if (buffer_nilfs_node(folio_buffers(folio)) &&
1782 			!folio_test_writeback(folio)) {
1783 		/*
1784 		 * For b-tree node pages, this function may be called twice
1785 		 * or more because they might be split in a segment.
1786 		 */
1787 		if (folio_test_dirty(folio)) {
1788 			/*
1789 			 * For pages holding split b-tree node buffers, dirty
1790 			 * flag on the buffers may be cleared discretely.
1791 			 * In that case, the page is once redirtied for
1792 			 * remaining buffers, and it must be cancelled if
1793 			 * all the buffers get cleaned later.
1794 			 */
1795 			folio_lock(folio);
1796 			if (nilfs_folio_buffers_clean(folio))
1797 				__nilfs_clear_folio_dirty(folio);
1798 			folio_unlock(folio);
1799 		}
1800 		return;
1801 	}
1802 
1803 	if (err || !nilfs_folio_buffers_clean(folio))
1804 		filemap_dirty_folio(folio->mapping, folio);
1805 
1806 	folio_end_writeback(folio);
1807 }
1808 
1809 static void nilfs_abort_logs(struct list_head *logs, int err)
1810 {
1811 	struct nilfs_segment_buffer *segbuf;
1812 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1813 	struct buffer_head *bh;
1814 
1815 	if (list_empty(logs))
1816 		return;
1817 
1818 	list_for_each_entry(segbuf, logs, sb_list) {
1819 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1820 				    b_assoc_buffers) {
1821 			clear_buffer_uptodate(bh);
1822 			if (bh->b_folio != bd_folio) {
1823 				if (bd_folio)
1824 					folio_end_writeback(bd_folio);
1825 				bd_folio = bh->b_folio;
1826 			}
1827 		}
1828 
1829 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1830 				    b_assoc_buffers) {
1831 			if (bh == segbuf->sb_super_root) {
1832 				clear_buffer_uptodate(bh);
1833 				if (bh->b_folio != bd_folio) {
1834 					folio_end_writeback(bd_folio);
1835 					bd_folio = bh->b_folio;
1836 				}
1837 				break;
1838 			}
1839 			clear_buffer_async_write(bh);
1840 			if (bh->b_folio != fs_folio) {
1841 				nilfs_end_folio_io(fs_folio, err);
1842 				fs_folio = bh->b_folio;
1843 			}
1844 		}
1845 	}
1846 	if (bd_folio)
1847 		folio_end_writeback(bd_folio);
1848 
1849 	nilfs_end_folio_io(fs_folio, err);
1850 }
1851 
1852 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1853 					     struct the_nilfs *nilfs, int err)
1854 {
1855 	LIST_HEAD(logs);
1856 	int ret;
1857 
1858 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1859 	ret = nilfs_wait_on_logs(&logs);
1860 	nilfs_abort_logs(&logs, ret ? : err);
1861 
1862 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1863 	if (list_empty(&logs))
1864 		return; /* if the first segment buffer preparation failed */
1865 
1866 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1867 	nilfs_free_incomplete_logs(&logs, nilfs);
1868 
1869 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1870 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1871 						sci->sc_freesegs,
1872 						sci->sc_nfreesegs,
1873 						NULL);
1874 		WARN_ON(ret); /* do not happen */
1875 	}
1876 
1877 	nilfs_destroy_logs(&logs);
1878 }
1879 
1880 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1881 				   struct nilfs_segment_buffer *segbuf)
1882 {
1883 	nilfs->ns_segnum = segbuf->sb_segnum;
1884 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1885 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1886 		+ segbuf->sb_sum.nblocks;
1887 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1888 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1889 }
1890 
1891 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1892 {
1893 	struct nilfs_segment_buffer *segbuf;
1894 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1895 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1896 	int update_sr = false;
1897 
1898 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1899 		struct buffer_head *bh;
1900 
1901 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1902 				    b_assoc_buffers) {
1903 			set_buffer_uptodate(bh);
1904 			clear_buffer_dirty(bh);
1905 			if (bh->b_folio != bd_folio) {
1906 				if (bd_folio)
1907 					folio_end_writeback(bd_folio);
1908 				bd_folio = bh->b_folio;
1909 			}
1910 		}
1911 		/*
1912 		 * We assume that the buffers which belong to the same folio
1913 		 * continue over the buffer list.
1914 		 * Under this assumption, the last BHs of folios is
1915 		 * identifiable by the discontinuity of bh->b_folio
1916 		 * (folio != fs_folio).
1917 		 *
1918 		 * For B-tree node blocks, however, this assumption is not
1919 		 * guaranteed.  The cleanup code of B-tree node folios needs
1920 		 * special care.
1921 		 */
1922 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1923 				    b_assoc_buffers) {
1924 			const unsigned long set_bits = BIT(BH_Uptodate);
1925 			const unsigned long clear_bits =
1926 				(BIT(BH_Dirty) | BIT(BH_Async_Write) |
1927 				 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1928 				 BIT(BH_NILFS_Redirected));
1929 
1930 			if (bh == segbuf->sb_super_root) {
1931 				set_buffer_uptodate(bh);
1932 				clear_buffer_dirty(bh);
1933 				if (bh->b_folio != bd_folio) {
1934 					folio_end_writeback(bd_folio);
1935 					bd_folio = bh->b_folio;
1936 				}
1937 				update_sr = true;
1938 				break;
1939 			}
1940 			set_mask_bits(&bh->b_state, clear_bits, set_bits);
1941 			if (bh->b_folio != fs_folio) {
1942 				nilfs_end_folio_io(fs_folio, 0);
1943 				fs_folio = bh->b_folio;
1944 			}
1945 		}
1946 
1947 		if (!nilfs_segbuf_simplex(segbuf)) {
1948 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1949 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1950 				sci->sc_lseg_stime = jiffies;
1951 			}
1952 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1953 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1954 		}
1955 	}
1956 	/*
1957 	 * Since folios may continue over multiple segment buffers,
1958 	 * end of the last folio must be checked outside of the loop.
1959 	 */
1960 	if (bd_folio)
1961 		folio_end_writeback(bd_folio);
1962 
1963 	nilfs_end_folio_io(fs_folio, 0);
1964 
1965 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1966 
1967 	if (nilfs_doing_gc())
1968 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1969 	else
1970 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1971 
1972 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1973 
1974 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1975 	nilfs_set_next_segment(nilfs, segbuf);
1976 
1977 	if (update_sr) {
1978 		nilfs->ns_flushed_device = 0;
1979 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1980 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1981 
1982 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1983 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1984 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1985 		nilfs_segctor_clear_metadata_dirty(sci);
1986 	} else
1987 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1988 }
1989 
1990 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1991 {
1992 	int ret;
1993 
1994 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1995 	if (!ret) {
1996 		nilfs_segctor_complete_write(sci);
1997 		nilfs_destroy_logs(&sci->sc_write_logs);
1998 	}
1999 	return ret;
2000 }
2001 
2002 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
2003 					     struct the_nilfs *nilfs)
2004 {
2005 	struct nilfs_inode_info *ii, *n;
2006 	struct inode *ifile = sci->sc_root->ifile;
2007 
2008 	spin_lock(&nilfs->ns_inode_lock);
2009  retry:
2010 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
2011 		if (!ii->i_bh) {
2012 			struct buffer_head *ibh;
2013 			int err;
2014 
2015 			spin_unlock(&nilfs->ns_inode_lock);
2016 			err = nilfs_ifile_get_inode_block(
2017 				ifile, ii->vfs_inode.i_ino, &ibh);
2018 			if (unlikely(err)) {
2019 				nilfs_warn(sci->sc_super,
2020 					   "log writer: error %d getting inode block (ino=%lu)",
2021 					   err, ii->vfs_inode.i_ino);
2022 				return err;
2023 			}
2024 			spin_lock(&nilfs->ns_inode_lock);
2025 			if (likely(!ii->i_bh))
2026 				ii->i_bh = ibh;
2027 			else
2028 				brelse(ibh);
2029 			goto retry;
2030 		}
2031 
2032 		// Always redirty the buffer to avoid race condition
2033 		mark_buffer_dirty(ii->i_bh);
2034 		nilfs_mdt_mark_dirty(ifile);
2035 
2036 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
2037 		set_bit(NILFS_I_BUSY, &ii->i_state);
2038 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
2039 	}
2040 	spin_unlock(&nilfs->ns_inode_lock);
2041 
2042 	return 0;
2043 }
2044 
2045 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
2046 					     struct the_nilfs *nilfs)
2047 {
2048 	struct nilfs_inode_info *ii, *n;
2049 	int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
2050 	int defer_iput = false;
2051 
2052 	spin_lock(&nilfs->ns_inode_lock);
2053 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2054 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2055 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
2056 			continue;
2057 
2058 		clear_bit(NILFS_I_BUSY, &ii->i_state);
2059 		brelse(ii->i_bh);
2060 		ii->i_bh = NULL;
2061 		list_del_init(&ii->i_dirty);
2062 		if (!ii->vfs_inode.i_nlink || during_mount) {
2063 			/*
2064 			 * Defer calling iput() to avoid deadlocks if
2065 			 * i_nlink == 0 or mount is not yet finished.
2066 			 */
2067 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2068 			defer_iput = true;
2069 		} else {
2070 			spin_unlock(&nilfs->ns_inode_lock);
2071 			iput(&ii->vfs_inode);
2072 			spin_lock(&nilfs->ns_inode_lock);
2073 		}
2074 	}
2075 	spin_unlock(&nilfs->ns_inode_lock);
2076 
2077 	if (defer_iput)
2078 		schedule_work(&sci->sc_iput_work);
2079 }
2080 
2081 /*
2082  * Main procedure of segment constructor
2083  */
2084 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2085 {
2086 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2087 	int err;
2088 
2089 	if (sb_rdonly(sci->sc_super))
2090 		return -EROFS;
2091 
2092 	nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2093 	sci->sc_cno = nilfs->ns_cno;
2094 
2095 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2096 	if (unlikely(err))
2097 		goto out;
2098 
2099 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2100 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2101 
2102 	if (nilfs_segctor_clean(sci))
2103 		goto out;
2104 
2105 	do {
2106 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2107 
2108 		err = nilfs_segctor_begin_construction(sci, nilfs);
2109 		if (unlikely(err))
2110 			goto failed;
2111 
2112 		/* Update time stamp */
2113 		sci->sc_seg_ctime = ktime_get_real_seconds();
2114 
2115 		err = nilfs_segctor_collect(sci, nilfs, mode);
2116 		if (unlikely(err))
2117 			goto failed;
2118 
2119 		/* Avoid empty segment */
2120 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2121 		    nilfs_segbuf_empty(sci->sc_curseg)) {
2122 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2123 			goto out;
2124 		}
2125 
2126 		err = nilfs_segctor_assign(sci, mode);
2127 		if (unlikely(err))
2128 			goto failed;
2129 
2130 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2131 			nilfs_segctor_fill_in_file_bmap(sci);
2132 
2133 		if (mode == SC_LSEG_SR &&
2134 		    nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2135 			err = nilfs_cpfile_finalize_checkpoint(
2136 				nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root,
2137 				sci->sc_nblk_inc + sci->sc_nblk_this_inc,
2138 				sci->sc_seg_ctime,
2139 				!test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags));
2140 			if (unlikely(err))
2141 				goto failed_to_write;
2142 
2143 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2144 		}
2145 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2146 
2147 		/* Write partial segments */
2148 		nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed);
2149 
2150 		err = nilfs_segctor_write(sci, nilfs);
2151 		if (unlikely(err))
2152 			goto failed_to_write;
2153 
2154 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2155 		    nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2156 			/*
2157 			 * At this point, we avoid double buffering
2158 			 * for blocksize < pagesize because page dirty
2159 			 * flag is turned off during write and dirty
2160 			 * buffers are not properly collected for
2161 			 * pages crossing over segments.
2162 			 */
2163 			err = nilfs_segctor_wait(sci);
2164 			if (err)
2165 				goto failed_to_write;
2166 		}
2167 	} while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2168 
2169  out:
2170 	nilfs_segctor_drop_written_files(sci, nilfs);
2171 	return err;
2172 
2173  failed_to_write:
2174  failed:
2175 	if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE)
2176 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2177 	if (nilfs_doing_gc())
2178 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2179 	nilfs_segctor_abort_construction(sci, nilfs, err);
2180 	goto out;
2181 }
2182 
2183 /**
2184  * nilfs_segctor_start_timer - set timer of background write
2185  * @sci: nilfs_sc_info
2186  *
2187  * If the timer has already been set, it ignores the new request.
2188  * This function MUST be called within a section locking the segment
2189  * semaphore.
2190  */
2191 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2192 {
2193 	spin_lock(&sci->sc_state_lock);
2194 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2195 		if (sci->sc_task) {
2196 			sci->sc_timer.expires = jiffies + sci->sc_interval;
2197 			add_timer(&sci->sc_timer);
2198 		}
2199 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2200 	}
2201 	spin_unlock(&sci->sc_state_lock);
2202 }
2203 
2204 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2205 {
2206 	spin_lock(&sci->sc_state_lock);
2207 	if (!(sci->sc_flush_request & BIT(bn))) {
2208 		unsigned long prev_req = sci->sc_flush_request;
2209 
2210 		sci->sc_flush_request |= BIT(bn);
2211 		if (!prev_req)
2212 			wake_up(&sci->sc_wait_daemon);
2213 	}
2214 	spin_unlock(&sci->sc_state_lock);
2215 }
2216 
2217 /**
2218  * nilfs_flush_segment - trigger a segment construction for resource control
2219  * @sb: super block
2220  * @ino: inode number of the file to be flushed out.
2221  */
2222 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2223 {
2224 	struct the_nilfs *nilfs = sb->s_fs_info;
2225 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2226 
2227 	if (!sci || nilfs_doing_construction())
2228 		return;
2229 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2230 					/* assign bit 0 to data files */
2231 }
2232 
2233 struct nilfs_segctor_wait_request {
2234 	wait_queue_entry_t	wq;
2235 	__u32		seq;
2236 	int		err;
2237 	atomic_t	done;
2238 };
2239 
2240 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2241 {
2242 	struct nilfs_segctor_wait_request wait_req;
2243 	int err = 0;
2244 
2245 	init_wait(&wait_req.wq);
2246 	wait_req.err = 0;
2247 	atomic_set(&wait_req.done, 0);
2248 	init_waitqueue_entry(&wait_req.wq, current);
2249 
2250 	/*
2251 	 * To prevent a race issue where completion notifications from the
2252 	 * log writer thread are missed, increment the request sequence count
2253 	 * "sc_seq_request" and insert a wait queue entry using the current
2254 	 * sequence number into the "sc_wait_request" queue at the same time
2255 	 * within the lock section of "sc_state_lock".
2256 	 */
2257 	spin_lock(&sci->sc_state_lock);
2258 	wait_req.seq = ++sci->sc_seq_request;
2259 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2260 	spin_unlock(&sci->sc_state_lock);
2261 
2262 	wake_up(&sci->sc_wait_daemon);
2263 
2264 	for (;;) {
2265 		set_current_state(TASK_INTERRUPTIBLE);
2266 
2267 		/*
2268 		 * Synchronize only while the log writer thread is alive.
2269 		 * Leave flushing out after the log writer thread exits to
2270 		 * the cleanup work in nilfs_segctor_destroy().
2271 		 */
2272 		if (!sci->sc_task)
2273 			break;
2274 
2275 		if (atomic_read(&wait_req.done)) {
2276 			err = wait_req.err;
2277 			break;
2278 		}
2279 		if (!signal_pending(current)) {
2280 			schedule();
2281 			continue;
2282 		}
2283 		err = -ERESTARTSYS;
2284 		break;
2285 	}
2286 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2287 	return err;
2288 }
2289 
2290 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force)
2291 {
2292 	struct nilfs_segctor_wait_request *wrq, *n;
2293 	unsigned long flags;
2294 
2295 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2296 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2297 		if (!atomic_read(&wrq->done) &&
2298 		    (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) {
2299 			wrq->err = err;
2300 			atomic_set(&wrq->done, 1);
2301 		}
2302 		if (atomic_read(&wrq->done)) {
2303 			wrq->wq.func(&wrq->wq,
2304 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2305 				     0, NULL);
2306 		}
2307 	}
2308 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2309 }
2310 
2311 /**
2312  * nilfs_construct_segment - construct a logical segment
2313  * @sb: super block
2314  *
2315  * Return Value: On success, 0 is returned. On errors, one of the following
2316  * negative error code is returned.
2317  *
2318  * %-EROFS - Read only filesystem.
2319  *
2320  * %-EIO - I/O error
2321  *
2322  * %-ENOSPC - No space left on device (only in a panic state).
2323  *
2324  * %-ERESTARTSYS - Interrupted.
2325  *
2326  * %-ENOMEM - Insufficient memory available.
2327  */
2328 int nilfs_construct_segment(struct super_block *sb)
2329 {
2330 	struct the_nilfs *nilfs = sb->s_fs_info;
2331 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2332 	struct nilfs_transaction_info *ti;
2333 
2334 	if (sb_rdonly(sb) || unlikely(!sci))
2335 		return -EROFS;
2336 
2337 	/* A call inside transactions causes a deadlock. */
2338 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2339 
2340 	return nilfs_segctor_sync(sci);
2341 }
2342 
2343 /**
2344  * nilfs_construct_dsync_segment - construct a data-only logical segment
2345  * @sb: super block
2346  * @inode: inode whose data blocks should be written out
2347  * @start: start byte offset
2348  * @end: end byte offset (inclusive)
2349  *
2350  * Return Value: On success, 0 is returned. On errors, one of the following
2351  * negative error code is returned.
2352  *
2353  * %-EROFS - Read only filesystem.
2354  *
2355  * %-EIO - I/O error
2356  *
2357  * %-ENOSPC - No space left on device (only in a panic state).
2358  *
2359  * %-ERESTARTSYS - Interrupted.
2360  *
2361  * %-ENOMEM - Insufficient memory available.
2362  */
2363 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2364 				  loff_t start, loff_t end)
2365 {
2366 	struct the_nilfs *nilfs = sb->s_fs_info;
2367 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2368 	struct nilfs_inode_info *ii;
2369 	struct nilfs_transaction_info ti;
2370 	int err = 0;
2371 
2372 	if (sb_rdonly(sb) || unlikely(!sci))
2373 		return -EROFS;
2374 
2375 	nilfs_transaction_lock(sb, &ti, 0);
2376 
2377 	ii = NILFS_I(inode);
2378 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2379 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2380 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2381 	    nilfs_discontinued(nilfs)) {
2382 		nilfs_transaction_unlock(sb);
2383 		err = nilfs_segctor_sync(sci);
2384 		return err;
2385 	}
2386 
2387 	spin_lock(&nilfs->ns_inode_lock);
2388 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2389 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2390 		spin_unlock(&nilfs->ns_inode_lock);
2391 		nilfs_transaction_unlock(sb);
2392 		return 0;
2393 	}
2394 	spin_unlock(&nilfs->ns_inode_lock);
2395 	sci->sc_dsync_inode = ii;
2396 	sci->sc_dsync_start = start;
2397 	sci->sc_dsync_end = end;
2398 
2399 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2400 	if (!err)
2401 		nilfs->ns_flushed_device = 0;
2402 
2403 	nilfs_transaction_unlock(sb);
2404 	return err;
2405 }
2406 
2407 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2408 #define FLUSH_DAT_BIT	BIT(NILFS_DAT_INO) /* DAT only */
2409 
2410 /**
2411  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2412  * @sci: segment constructor object
2413  */
2414 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2415 {
2416 	bool thread_is_alive;
2417 
2418 	spin_lock(&sci->sc_state_lock);
2419 	sci->sc_seq_accepted = sci->sc_seq_request;
2420 	thread_is_alive = (bool)sci->sc_task;
2421 	spin_unlock(&sci->sc_state_lock);
2422 
2423 	/*
2424 	 * This function does not race with the log writer thread's
2425 	 * termination.  Therefore, deleting sc_timer, which should not be
2426 	 * done after the log writer thread exits, can be done safely outside
2427 	 * the area protected by sc_state_lock.
2428 	 */
2429 	if (thread_is_alive)
2430 		del_timer_sync(&sci->sc_timer);
2431 }
2432 
2433 /**
2434  * nilfs_segctor_notify - notify the result of request to caller threads
2435  * @sci: segment constructor object
2436  * @mode: mode of log forming
2437  * @err: error code to be notified
2438  */
2439 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2440 {
2441 	/* Clear requests (even when the construction failed) */
2442 	spin_lock(&sci->sc_state_lock);
2443 
2444 	if (mode == SC_LSEG_SR) {
2445 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2446 		sci->sc_seq_done = sci->sc_seq_accepted;
2447 		nilfs_segctor_wakeup(sci, err, false);
2448 		sci->sc_flush_request = 0;
2449 	} else {
2450 		if (mode == SC_FLUSH_FILE)
2451 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2452 		else if (mode == SC_FLUSH_DAT)
2453 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2454 
2455 		/* re-enable timer if checkpoint creation was not done */
2456 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task &&
2457 		    time_before(jiffies, sci->sc_timer.expires))
2458 			add_timer(&sci->sc_timer);
2459 	}
2460 	spin_unlock(&sci->sc_state_lock);
2461 }
2462 
2463 /**
2464  * nilfs_segctor_construct - form logs and write them to disk
2465  * @sci: segment constructor object
2466  * @mode: mode of log forming
2467  */
2468 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2469 {
2470 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2471 	struct nilfs_super_block **sbp;
2472 	int err = 0;
2473 
2474 	nilfs_segctor_accept(sci);
2475 
2476 	if (nilfs_discontinued(nilfs))
2477 		mode = SC_LSEG_SR;
2478 	if (!nilfs_segctor_confirm(sci))
2479 		err = nilfs_segctor_do_construct(sci, mode);
2480 
2481 	if (likely(!err)) {
2482 		if (mode != SC_FLUSH_DAT)
2483 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2484 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2485 		    nilfs_discontinued(nilfs)) {
2486 			down_write(&nilfs->ns_sem);
2487 			err = -EIO;
2488 			sbp = nilfs_prepare_super(sci->sc_super,
2489 						  nilfs_sb_will_flip(nilfs));
2490 			if (likely(sbp)) {
2491 				nilfs_set_log_cursor(sbp[0], nilfs);
2492 				err = nilfs_commit_super(sci->sc_super,
2493 							 NILFS_SB_COMMIT);
2494 			}
2495 			up_write(&nilfs->ns_sem);
2496 		}
2497 	}
2498 
2499 	nilfs_segctor_notify(sci, mode, err);
2500 	return err;
2501 }
2502 
2503 static void nilfs_construction_timeout(struct timer_list *t)
2504 {
2505 	struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2506 
2507 	wake_up_process(sci->sc_task);
2508 }
2509 
2510 static void
2511 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2512 {
2513 	struct nilfs_inode_info *ii, *n;
2514 
2515 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2516 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2517 			continue;
2518 		list_del_init(&ii->i_dirty);
2519 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2520 		nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2521 		iput(&ii->vfs_inode);
2522 	}
2523 }
2524 
2525 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2526 			 void **kbufs)
2527 {
2528 	struct the_nilfs *nilfs = sb->s_fs_info;
2529 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2530 	struct nilfs_transaction_info ti;
2531 	int err;
2532 
2533 	if (unlikely(!sci))
2534 		return -EROFS;
2535 
2536 	nilfs_transaction_lock(sb, &ti, 1);
2537 
2538 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2539 	if (unlikely(err))
2540 		goto out_unlock;
2541 
2542 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2543 	if (unlikely(err)) {
2544 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2545 		goto out_unlock;
2546 	}
2547 
2548 	sci->sc_freesegs = kbufs[4];
2549 	sci->sc_nfreesegs = argv[4].v_nmembs;
2550 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2551 
2552 	for (;;) {
2553 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2554 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2555 
2556 		if (likely(!err))
2557 			break;
2558 
2559 		nilfs_warn(sb, "error %d cleaning segments", err);
2560 		set_current_state(TASK_INTERRUPTIBLE);
2561 		schedule_timeout(sci->sc_interval);
2562 	}
2563 	if (nilfs_test_opt(nilfs, DISCARD)) {
2564 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2565 						 sci->sc_nfreesegs);
2566 		if (ret) {
2567 			nilfs_warn(sb,
2568 				   "error %d on discard request, turning discards off for the device",
2569 				   ret);
2570 			nilfs_clear_opt(nilfs, DISCARD);
2571 		}
2572 	}
2573 
2574  out_unlock:
2575 	sci->sc_freesegs = NULL;
2576 	sci->sc_nfreesegs = 0;
2577 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2578 	nilfs_transaction_unlock(sb);
2579 	return err;
2580 }
2581 
2582 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2583 {
2584 	struct nilfs_transaction_info ti;
2585 
2586 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2587 	nilfs_segctor_construct(sci, mode);
2588 
2589 	/*
2590 	 * Unclosed segment should be retried.  We do this using sc_timer.
2591 	 * Timeout of sc_timer will invoke complete construction which leads
2592 	 * to close the current logical segment.
2593 	 */
2594 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2595 		nilfs_segctor_start_timer(sci);
2596 
2597 	nilfs_transaction_unlock(sci->sc_super);
2598 }
2599 
2600 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2601 {
2602 	int mode = 0;
2603 
2604 	spin_lock(&sci->sc_state_lock);
2605 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2606 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2607 	spin_unlock(&sci->sc_state_lock);
2608 
2609 	if (mode) {
2610 		nilfs_segctor_do_construct(sci, mode);
2611 
2612 		spin_lock(&sci->sc_state_lock);
2613 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2614 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2615 		spin_unlock(&sci->sc_state_lock);
2616 	}
2617 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2618 }
2619 
2620 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2621 {
2622 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2623 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2624 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2625 			return SC_FLUSH_FILE;
2626 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2627 			return SC_FLUSH_DAT;
2628 	}
2629 	return SC_LSEG_SR;
2630 }
2631 
2632 /**
2633  * nilfs_log_write_required - determine whether log writing is required
2634  * @sci:   nilfs_sc_info struct
2635  * @modep: location for storing log writing mode
2636  *
2637  * Return: true if log writing is required, false otherwise.  If log writing
2638  * is required, the mode is stored in the location pointed to by @modep.
2639  */
2640 static bool nilfs_log_write_required(struct nilfs_sc_info *sci, int *modep)
2641 {
2642 	bool timedout, ret = true;
2643 
2644 	spin_lock(&sci->sc_state_lock);
2645 	timedout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2646 		   time_after_eq(jiffies, sci->sc_timer.expires));
2647 	if (timedout || sci->sc_seq_request != sci->sc_seq_done)
2648 		*modep = SC_LSEG_SR;
2649 	else if (sci->sc_flush_request)
2650 		*modep = nilfs_segctor_flush_mode(sci);
2651 	else
2652 		ret = false;
2653 
2654 	spin_unlock(&sci->sc_state_lock);
2655 	return ret;
2656 }
2657 
2658 /**
2659  * nilfs_segctor_thread - main loop of the log writer thread
2660  * @arg: pointer to a struct nilfs_sc_info.
2661  *
2662  * nilfs_segctor_thread() is the main loop function of the log writer kernel
2663  * thread, which determines whether log writing is necessary, and if so,
2664  * performs the log write in the background, or waits if not.  It is also
2665  * used to decide the background writeback of the superblock.
2666  *
2667  * Return: Always 0.
2668  */
2669 static int nilfs_segctor_thread(void *arg)
2670 {
2671 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2672 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2673 
2674 	nilfs_info(sci->sc_super,
2675 		   "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2676 		   sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2677 
2678 	set_freezable();
2679 
2680 	while (!kthread_should_stop()) {
2681 		DEFINE_WAIT(wait);
2682 		bool should_write;
2683 		int mode;
2684 
2685 		if (freezing(current)) {
2686 			try_to_freeze();
2687 			continue;
2688 		}
2689 
2690 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2691 				TASK_INTERRUPTIBLE);
2692 		should_write = nilfs_log_write_required(sci, &mode);
2693 		if (!should_write)
2694 			schedule();
2695 		finish_wait(&sci->sc_wait_daemon, &wait);
2696 
2697 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2698 			set_nilfs_discontinued(nilfs);
2699 
2700 		if (should_write)
2701 			nilfs_segctor_thread_construct(sci, mode);
2702 	}
2703 
2704 	/* end sync. */
2705 	spin_lock(&sci->sc_state_lock);
2706 	sci->sc_task = NULL;
2707 	timer_shutdown_sync(&sci->sc_timer);
2708 	spin_unlock(&sci->sc_state_lock);
2709 	return 0;
2710 }
2711 
2712 /*
2713  * Setup & clean-up functions
2714  */
2715 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2716 					       struct nilfs_root *root)
2717 {
2718 	struct the_nilfs *nilfs = sb->s_fs_info;
2719 	struct nilfs_sc_info *sci;
2720 
2721 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2722 	if (!sci)
2723 		return NULL;
2724 
2725 	sci->sc_super = sb;
2726 
2727 	nilfs_get_root(root);
2728 	sci->sc_root = root;
2729 
2730 	init_waitqueue_head(&sci->sc_wait_request);
2731 	init_waitqueue_head(&sci->sc_wait_daemon);
2732 	spin_lock_init(&sci->sc_state_lock);
2733 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2734 	INIT_LIST_HEAD(&sci->sc_segbufs);
2735 	INIT_LIST_HEAD(&sci->sc_write_logs);
2736 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2737 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2738 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2739 
2740 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2741 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2742 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2743 
2744 	if (nilfs->ns_interval)
2745 		sci->sc_interval = HZ * nilfs->ns_interval;
2746 	if (nilfs->ns_watermark)
2747 		sci->sc_watermark = nilfs->ns_watermark;
2748 	return sci;
2749 }
2750 
2751 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2752 {
2753 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2754 
2755 	/*
2756 	 * The segctord thread was stopped and its timer was removed.
2757 	 * But some tasks remain.
2758 	 */
2759 	do {
2760 		struct nilfs_transaction_info ti;
2761 
2762 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2763 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2764 		nilfs_transaction_unlock(sci->sc_super);
2765 
2766 		flush_work(&sci->sc_iput_work);
2767 
2768 	} while (ret && ret != -EROFS && retrycount-- > 0);
2769 }
2770 
2771 /**
2772  * nilfs_segctor_destroy - destroy the segment constructor.
2773  * @sci: nilfs_sc_info
2774  *
2775  * nilfs_segctor_destroy() kills the segctord thread and frees
2776  * the nilfs_sc_info struct.
2777  * Caller must hold the segment semaphore.
2778  */
2779 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2780 {
2781 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2782 	int flag;
2783 
2784 	up_write(&nilfs->ns_segctor_sem);
2785 
2786 	if (sci->sc_task) {
2787 		wake_up(&sci->sc_wait_daemon);
2788 		kthread_stop(sci->sc_task);
2789 	}
2790 
2791 	spin_lock(&sci->sc_state_lock);
2792 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2793 		|| sci->sc_seq_request != sci->sc_seq_done);
2794 	spin_unlock(&sci->sc_state_lock);
2795 
2796 	/*
2797 	 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
2798 	 * be called from delayed iput() via nilfs_evict_inode() and can race
2799 	 * with the above log writer thread termination.
2800 	 */
2801 	nilfs_segctor_wakeup(sci, 0, true);
2802 
2803 	if (flush_work(&sci->sc_iput_work))
2804 		flag = true;
2805 
2806 	if (flag || !nilfs_segctor_confirm(sci))
2807 		nilfs_segctor_write_out(sci);
2808 
2809 	if (!list_empty(&sci->sc_dirty_files)) {
2810 		nilfs_warn(sci->sc_super,
2811 			   "disposed unprocessed dirty file(s) when stopping log writer");
2812 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2813 	}
2814 
2815 	if (!list_empty(&sci->sc_iput_queue)) {
2816 		nilfs_warn(sci->sc_super,
2817 			   "disposed unprocessed inode(s) in iput queue when stopping log writer");
2818 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2819 	}
2820 
2821 	WARN_ON(!list_empty(&sci->sc_segbufs));
2822 	WARN_ON(!list_empty(&sci->sc_write_logs));
2823 
2824 	nilfs_put_root(sci->sc_root);
2825 
2826 	down_write(&nilfs->ns_segctor_sem);
2827 
2828 	kfree(sci);
2829 }
2830 
2831 /**
2832  * nilfs_attach_log_writer - attach log writer
2833  * @sb: super block instance
2834  * @root: root object of the current filesystem tree
2835  *
2836  * This allocates a log writer object, initializes it, and starts the
2837  * log writer.
2838  *
2839  * Return: 0 on success, or the following negative error code on failure.
2840  * * %-EINTR	- Log writer thread creation failed due to interruption.
2841  * * %-ENOMEM	- Insufficient memory available.
2842  */
2843 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2844 {
2845 	struct the_nilfs *nilfs = sb->s_fs_info;
2846 	struct nilfs_sc_info *sci;
2847 	struct task_struct *t;
2848 	int err;
2849 
2850 	if (nilfs->ns_writer) {
2851 		/*
2852 		 * This happens if the filesystem is made read-only by
2853 		 * __nilfs_error or nilfs_remount and then remounted
2854 		 * read/write.  In these cases, reuse the existing
2855 		 * writer.
2856 		 */
2857 		return 0;
2858 	}
2859 
2860 	sci = nilfs_segctor_new(sb, root);
2861 	if (unlikely(!sci))
2862 		return -ENOMEM;
2863 
2864 	nilfs->ns_writer = sci;
2865 	t = kthread_create(nilfs_segctor_thread, sci, "segctord");
2866 	if (IS_ERR(t)) {
2867 		err = PTR_ERR(t);
2868 		nilfs_err(sb, "error %d creating segctord thread", err);
2869 		nilfs_detach_log_writer(sb);
2870 		return err;
2871 	}
2872 	sci->sc_task = t;
2873 	timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2874 
2875 	wake_up_process(sci->sc_task);
2876 	return 0;
2877 }
2878 
2879 /**
2880  * nilfs_detach_log_writer - destroy log writer
2881  * @sb: super block instance
2882  *
2883  * This kills log writer daemon, frees the log writer object, and
2884  * destroys list of dirty files.
2885  */
2886 void nilfs_detach_log_writer(struct super_block *sb)
2887 {
2888 	struct the_nilfs *nilfs = sb->s_fs_info;
2889 	LIST_HEAD(garbage_list);
2890 
2891 	down_write(&nilfs->ns_segctor_sem);
2892 	if (nilfs->ns_writer) {
2893 		nilfs_segctor_destroy(nilfs->ns_writer);
2894 		nilfs->ns_writer = NULL;
2895 	}
2896 	set_nilfs_purging(nilfs);
2897 
2898 	/* Force to free the list of dirty files */
2899 	spin_lock(&nilfs->ns_inode_lock);
2900 	if (!list_empty(&nilfs->ns_dirty_files)) {
2901 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2902 		nilfs_warn(sb,
2903 			   "disposed unprocessed dirty file(s) when detaching log writer");
2904 	}
2905 	spin_unlock(&nilfs->ns_inode_lock);
2906 	up_write(&nilfs->ns_segctor_sem);
2907 
2908 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2909 	clear_nilfs_purging(nilfs);
2910 }
2911