1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 /** 434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area 435 * @sci: segment constructor object 436 * 437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of 438 * the current segment summary block. 439 */ 440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) 441 { 442 struct nilfs_segsum_pointer *ssp; 443 444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; 445 if (ssp->offset < ssp->bh->b_size) 446 memset(ssp->bh->b_data + ssp->offset, 0, 447 ssp->bh->b_size - ssp->offset); 448 } 449 450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 451 { 452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 454 return -E2BIG; /* 455 * The current segment is filled up 456 * (internal code) 457 */ 458 nilfs_segctor_zeropad_segsum(sci); 459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 460 return nilfs_segctor_reset_segment_buffer(sci); 461 } 462 463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 464 { 465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 466 int err; 467 468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 469 err = nilfs_segctor_feed_segment(sci); 470 if (err) 471 return err; 472 segbuf = sci->sc_curseg; 473 } 474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 475 if (likely(!err)) 476 segbuf->sb_sum.flags |= NILFS_SS_SR; 477 return err; 478 } 479 480 /* 481 * Functions for making segment summary and payloads 482 */ 483 static int nilfs_segctor_segsum_block_required( 484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 485 unsigned int binfo_size) 486 { 487 unsigned int blocksize = sci->sc_super->s_blocksize; 488 /* Size of finfo and binfo is enough small against blocksize */ 489 490 return ssp->offset + binfo_size + 491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 492 blocksize; 493 } 494 495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 496 struct inode *inode) 497 { 498 sci->sc_curseg->sb_sum.nfinfo++; 499 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 500 nilfs_segctor_map_segsum_entry( 501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 502 503 if (NILFS_I(inode)->i_root && 504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 506 /* skip finfo */ 507 } 508 509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 510 struct inode *inode) 511 { 512 struct nilfs_finfo *finfo; 513 struct nilfs_inode_info *ii; 514 struct nilfs_segment_buffer *segbuf; 515 __u64 cno; 516 517 if (sci->sc_blk_cnt == 0) 518 return; 519 520 ii = NILFS_I(inode); 521 522 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 523 cno = ii->i_cno; 524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 525 cno = 0; 526 else 527 cno = sci->sc_cno; 528 529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 530 sizeof(*finfo)); 531 finfo->fi_ino = cpu_to_le64(inode->i_ino); 532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 534 finfo->fi_cno = cpu_to_le64(cno); 535 536 segbuf = sci->sc_curseg; 537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 539 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 541 } 542 543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 544 struct buffer_head *bh, 545 struct inode *inode, 546 unsigned int binfo_size) 547 { 548 struct nilfs_segment_buffer *segbuf; 549 int required, err = 0; 550 551 retry: 552 segbuf = sci->sc_curseg; 553 required = nilfs_segctor_segsum_block_required( 554 sci, &sci->sc_binfo_ptr, binfo_size); 555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 556 nilfs_segctor_end_finfo(sci, inode); 557 err = nilfs_segctor_feed_segment(sci); 558 if (err) 559 return err; 560 goto retry; 561 } 562 if (unlikely(required)) { 563 nilfs_segctor_zeropad_segsum(sci); 564 err = nilfs_segbuf_extend_segsum(segbuf); 565 if (unlikely(err)) 566 goto failed; 567 } 568 if (sci->sc_blk_cnt == 0) 569 nilfs_segctor_begin_finfo(sci, inode); 570 571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 572 /* Substitution to vblocknr is delayed until update_blocknr() */ 573 nilfs_segbuf_add_file_buffer(segbuf, bh); 574 sci->sc_blk_cnt++; 575 failed: 576 return err; 577 } 578 579 /* 580 * Callback functions that enumerate, mark, and collect dirty blocks 581 */ 582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 583 struct buffer_head *bh, struct inode *inode) 584 { 585 int err; 586 587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 588 if (err < 0) 589 return err; 590 591 err = nilfs_segctor_add_file_block(sci, bh, inode, 592 sizeof(struct nilfs_binfo_v)); 593 if (!err) 594 sci->sc_datablk_cnt++; 595 return err; 596 } 597 598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 599 struct buffer_head *bh, 600 struct inode *inode) 601 { 602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 603 } 604 605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 606 struct buffer_head *bh, 607 struct inode *inode) 608 { 609 WARN_ON(!buffer_dirty(bh)); 610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 611 } 612 613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 614 struct nilfs_segsum_pointer *ssp, 615 union nilfs_binfo *binfo) 616 { 617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 618 sci, ssp, sizeof(*binfo_v)); 619 *binfo_v = binfo->bi_v; 620 } 621 622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 623 struct nilfs_segsum_pointer *ssp, 624 union nilfs_binfo *binfo) 625 { 626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 627 sci, ssp, sizeof(*vblocknr)); 628 *vblocknr = binfo->bi_v.bi_vblocknr; 629 } 630 631 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 632 .collect_data = nilfs_collect_file_data, 633 .collect_node = nilfs_collect_file_node, 634 .collect_bmap = nilfs_collect_file_bmap, 635 .write_data_binfo = nilfs_write_file_data_binfo, 636 .write_node_binfo = nilfs_write_file_node_binfo, 637 }; 638 639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 640 struct buffer_head *bh, struct inode *inode) 641 { 642 int err; 643 644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 645 if (err < 0) 646 return err; 647 648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 649 if (!err) 650 sci->sc_datablk_cnt++; 651 return err; 652 } 653 654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 655 struct buffer_head *bh, struct inode *inode) 656 { 657 WARN_ON(!buffer_dirty(bh)); 658 return nilfs_segctor_add_file_block(sci, bh, inode, 659 sizeof(struct nilfs_binfo_dat)); 660 } 661 662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 663 struct nilfs_segsum_pointer *ssp, 664 union nilfs_binfo *binfo) 665 { 666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 667 sizeof(*blkoff)); 668 *blkoff = binfo->bi_dat.bi_blkoff; 669 } 670 671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 672 struct nilfs_segsum_pointer *ssp, 673 union nilfs_binfo *binfo) 674 { 675 struct nilfs_binfo_dat *binfo_dat = 676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 677 *binfo_dat = binfo->bi_dat; 678 } 679 680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 681 .collect_data = nilfs_collect_dat_data, 682 .collect_node = nilfs_collect_file_node, 683 .collect_bmap = nilfs_collect_dat_bmap, 684 .write_data_binfo = nilfs_write_dat_data_binfo, 685 .write_node_binfo = nilfs_write_dat_node_binfo, 686 }; 687 688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 689 .collect_data = nilfs_collect_file_data, 690 .collect_node = NULL, 691 .collect_bmap = NULL, 692 .write_data_binfo = nilfs_write_file_data_binfo, 693 .write_node_binfo = NULL, 694 }; 695 696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 697 struct list_head *listp, 698 size_t nlimit, 699 loff_t start, loff_t end) 700 { 701 struct address_space *mapping = inode->i_mapping; 702 struct folio_batch fbatch; 703 pgoff_t index = 0, last = ULONG_MAX; 704 size_t ndirties = 0; 705 int i; 706 707 if (unlikely(start != 0 || end != LLONG_MAX)) { 708 /* 709 * A valid range is given for sync-ing data pages. The 710 * range is rounded to per-page; extra dirty buffers 711 * may be included if blocksize < pagesize. 712 */ 713 index = start >> PAGE_SHIFT; 714 last = end >> PAGE_SHIFT; 715 } 716 folio_batch_init(&fbatch); 717 repeat: 718 if (unlikely(index > last) || 719 !filemap_get_folios_tag(mapping, &index, last, 720 PAGECACHE_TAG_DIRTY, &fbatch)) 721 return ndirties; 722 723 for (i = 0; i < folio_batch_count(&fbatch); i++) { 724 struct buffer_head *bh, *head; 725 struct folio *folio = fbatch.folios[i]; 726 727 folio_lock(folio); 728 if (unlikely(folio->mapping != mapping)) { 729 /* Exclude folios removed from the address space */ 730 folio_unlock(folio); 731 continue; 732 } 733 head = folio_buffers(folio); 734 if (!head) 735 head = create_empty_buffers(folio, 736 i_blocksize(inode), 0); 737 folio_unlock(folio); 738 739 bh = head; 740 do { 741 if (!buffer_dirty(bh) || buffer_async_write(bh)) 742 continue; 743 get_bh(bh); 744 list_add_tail(&bh->b_assoc_buffers, listp); 745 ndirties++; 746 if (unlikely(ndirties >= nlimit)) { 747 folio_batch_release(&fbatch); 748 cond_resched(); 749 return ndirties; 750 } 751 } while (bh = bh->b_this_page, bh != head); 752 } 753 folio_batch_release(&fbatch); 754 cond_resched(); 755 goto repeat; 756 } 757 758 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 759 struct list_head *listp) 760 { 761 struct nilfs_inode_info *ii = NILFS_I(inode); 762 struct inode *btnc_inode = ii->i_assoc_inode; 763 struct folio_batch fbatch; 764 struct buffer_head *bh, *head; 765 unsigned int i; 766 pgoff_t index = 0; 767 768 if (!btnc_inode) 769 return; 770 folio_batch_init(&fbatch); 771 772 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 773 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 774 for (i = 0; i < folio_batch_count(&fbatch); i++) { 775 bh = head = folio_buffers(fbatch.folios[i]); 776 do { 777 if (buffer_dirty(bh) && 778 !buffer_async_write(bh)) { 779 get_bh(bh); 780 list_add_tail(&bh->b_assoc_buffers, 781 listp); 782 } 783 bh = bh->b_this_page; 784 } while (bh != head); 785 } 786 folio_batch_release(&fbatch); 787 cond_resched(); 788 } 789 } 790 791 static void nilfs_dispose_list(struct the_nilfs *nilfs, 792 struct list_head *head, int force) 793 { 794 struct nilfs_inode_info *ii, *n; 795 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 796 unsigned int nv = 0; 797 798 while (!list_empty(head)) { 799 spin_lock(&nilfs->ns_inode_lock); 800 list_for_each_entry_safe(ii, n, head, i_dirty) { 801 list_del_init(&ii->i_dirty); 802 if (force) { 803 if (unlikely(ii->i_bh)) { 804 brelse(ii->i_bh); 805 ii->i_bh = NULL; 806 } 807 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 808 set_bit(NILFS_I_QUEUED, &ii->i_state); 809 list_add_tail(&ii->i_dirty, 810 &nilfs->ns_dirty_files); 811 continue; 812 } 813 ivec[nv++] = ii; 814 if (nv == SC_N_INODEVEC) 815 break; 816 } 817 spin_unlock(&nilfs->ns_inode_lock); 818 819 for (pii = ivec; nv > 0; pii++, nv--) 820 iput(&(*pii)->vfs_inode); 821 } 822 } 823 824 static void nilfs_iput_work_func(struct work_struct *work) 825 { 826 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 827 sc_iput_work); 828 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 829 830 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 831 } 832 833 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 834 struct nilfs_root *root) 835 { 836 int ret = 0; 837 838 if (nilfs_mdt_fetch_dirty(root->ifile)) 839 ret++; 840 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 841 ret++; 842 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 843 ret++; 844 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 845 ret++; 846 return ret; 847 } 848 849 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 850 { 851 return list_empty(&sci->sc_dirty_files) && 852 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 853 sci->sc_nfreesegs == 0 && 854 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 855 } 856 857 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 858 { 859 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 860 int ret = 0; 861 862 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 863 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 864 865 spin_lock(&nilfs->ns_inode_lock); 866 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 867 ret++; 868 869 spin_unlock(&nilfs->ns_inode_lock); 870 return ret; 871 } 872 873 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 874 { 875 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 876 877 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 878 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 879 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 880 nilfs_mdt_clear_dirty(nilfs->ns_dat); 881 } 882 883 static void nilfs_fill_in_file_bmap(struct inode *ifile, 884 struct nilfs_inode_info *ii) 885 886 { 887 struct buffer_head *ibh; 888 struct nilfs_inode *raw_inode; 889 890 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 891 ibh = ii->i_bh; 892 BUG_ON(!ibh); 893 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 894 ibh); 895 nilfs_bmap_write(ii->i_bmap, raw_inode); 896 nilfs_ifile_unmap_inode(raw_inode); 897 } 898 } 899 900 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 901 { 902 struct nilfs_inode_info *ii; 903 904 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 905 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 906 set_bit(NILFS_I_COLLECTED, &ii->i_state); 907 } 908 } 909 910 /** 911 * nilfs_write_root_mdt_inode - export root metadata inode information to 912 * the on-disk inode 913 * @inode: inode object of the root metadata file 914 * @raw_inode: on-disk inode 915 * 916 * nilfs_write_root_mdt_inode() writes inode information and bmap data of 917 * @inode to the inode area of the metadata file allocated on the super root 918 * block created to finalize the log. Since super root blocks are configured 919 * each time, this function zero-fills the unused area of @raw_inode. 920 */ 921 static void nilfs_write_root_mdt_inode(struct inode *inode, 922 struct nilfs_inode *raw_inode) 923 { 924 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 925 926 nilfs_write_inode_common(inode, raw_inode); 927 928 /* zero-fill unused portion of raw_inode */ 929 raw_inode->i_xattr = 0; 930 raw_inode->i_pad = 0; 931 memset((void *)raw_inode + sizeof(*raw_inode), 0, 932 nilfs->ns_inode_size - sizeof(*raw_inode)); 933 934 nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode); 935 } 936 937 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 938 struct the_nilfs *nilfs) 939 { 940 struct buffer_head *bh_sr; 941 struct nilfs_super_root *raw_sr; 942 unsigned int isz, srsz; 943 944 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 945 946 lock_buffer(bh_sr); 947 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 948 isz = nilfs->ns_inode_size; 949 srsz = NILFS_SR_BYTES(isz); 950 951 raw_sr->sr_sum = 0; /* Ensure initialization within this update */ 952 raw_sr->sr_bytes = cpu_to_le16(srsz); 953 raw_sr->sr_nongc_ctime 954 = cpu_to_le64(nilfs_doing_gc() ? 955 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 956 raw_sr->sr_flags = 0; 957 958 nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr + 959 NILFS_SR_DAT_OFFSET(isz)); 960 nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr + 961 NILFS_SR_CPFILE_OFFSET(isz)); 962 nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr + 963 NILFS_SR_SUFILE_OFFSET(isz)); 964 965 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 966 set_buffer_uptodate(bh_sr); 967 unlock_buffer(bh_sr); 968 } 969 970 static void nilfs_redirty_inodes(struct list_head *head) 971 { 972 struct nilfs_inode_info *ii; 973 974 list_for_each_entry(ii, head, i_dirty) { 975 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 976 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 977 } 978 } 979 980 static void nilfs_drop_collected_inodes(struct list_head *head) 981 { 982 struct nilfs_inode_info *ii; 983 984 list_for_each_entry(ii, head, i_dirty) { 985 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 986 continue; 987 988 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 989 set_bit(NILFS_I_UPDATED, &ii->i_state); 990 } 991 } 992 993 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 994 struct inode *inode, 995 struct list_head *listp, 996 int (*collect)(struct nilfs_sc_info *, 997 struct buffer_head *, 998 struct inode *)) 999 { 1000 struct buffer_head *bh, *n; 1001 int err = 0; 1002 1003 if (collect) { 1004 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1005 list_del_init(&bh->b_assoc_buffers); 1006 err = collect(sci, bh, inode); 1007 brelse(bh); 1008 if (unlikely(err)) 1009 goto dispose_buffers; 1010 } 1011 return 0; 1012 } 1013 1014 dispose_buffers: 1015 while (!list_empty(listp)) { 1016 bh = list_first_entry(listp, struct buffer_head, 1017 b_assoc_buffers); 1018 list_del_init(&bh->b_assoc_buffers); 1019 brelse(bh); 1020 } 1021 return err; 1022 } 1023 1024 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1025 { 1026 /* Remaining number of blocks within segment buffer */ 1027 return sci->sc_segbuf_nblocks - 1028 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1029 } 1030 1031 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1032 struct inode *inode, 1033 const struct nilfs_sc_operations *sc_ops) 1034 { 1035 LIST_HEAD(data_buffers); 1036 LIST_HEAD(node_buffers); 1037 int err; 1038 1039 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1040 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1041 1042 n = nilfs_lookup_dirty_data_buffers( 1043 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1044 if (n > rest) { 1045 err = nilfs_segctor_apply_buffers( 1046 sci, inode, &data_buffers, 1047 sc_ops->collect_data); 1048 BUG_ON(!err); /* always receive -E2BIG or true error */ 1049 goto break_or_fail; 1050 } 1051 } 1052 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1053 1054 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1055 err = nilfs_segctor_apply_buffers( 1056 sci, inode, &data_buffers, sc_ops->collect_data); 1057 if (unlikely(err)) { 1058 /* dispose node list */ 1059 nilfs_segctor_apply_buffers( 1060 sci, inode, &node_buffers, NULL); 1061 goto break_or_fail; 1062 } 1063 sci->sc_stage.flags |= NILFS_CF_NODE; 1064 } 1065 /* Collect node */ 1066 err = nilfs_segctor_apply_buffers( 1067 sci, inode, &node_buffers, sc_ops->collect_node); 1068 if (unlikely(err)) 1069 goto break_or_fail; 1070 1071 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1072 err = nilfs_segctor_apply_buffers( 1073 sci, inode, &node_buffers, sc_ops->collect_bmap); 1074 if (unlikely(err)) 1075 goto break_or_fail; 1076 1077 nilfs_segctor_end_finfo(sci, inode); 1078 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1079 1080 break_or_fail: 1081 return err; 1082 } 1083 1084 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1085 struct inode *inode) 1086 { 1087 LIST_HEAD(data_buffers); 1088 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1089 int err; 1090 1091 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1092 sci->sc_dsync_start, 1093 sci->sc_dsync_end); 1094 1095 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1096 nilfs_collect_file_data); 1097 if (!err) { 1098 nilfs_segctor_end_finfo(sci, inode); 1099 BUG_ON(n > rest); 1100 /* always receive -E2BIG or true error if n > rest */ 1101 } 1102 return err; 1103 } 1104 1105 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1106 { 1107 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1108 struct list_head *head; 1109 struct nilfs_inode_info *ii; 1110 size_t ndone; 1111 int err = 0; 1112 1113 switch (nilfs_sc_cstage_get(sci)) { 1114 case NILFS_ST_INIT: 1115 /* Pre-processes */ 1116 sci->sc_stage.flags = 0; 1117 1118 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1119 sci->sc_nblk_inc = 0; 1120 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1121 if (mode == SC_LSEG_DSYNC) { 1122 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1123 goto dsync_mode; 1124 } 1125 } 1126 1127 sci->sc_stage.dirty_file_ptr = NULL; 1128 sci->sc_stage.gc_inode_ptr = NULL; 1129 if (mode == SC_FLUSH_DAT) { 1130 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1131 goto dat_stage; 1132 } 1133 nilfs_sc_cstage_inc(sci); 1134 fallthrough; 1135 case NILFS_ST_GC: 1136 if (nilfs_doing_gc()) { 1137 head = &sci->sc_gc_inodes; 1138 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1139 head, i_dirty); 1140 list_for_each_entry_continue(ii, head, i_dirty) { 1141 err = nilfs_segctor_scan_file( 1142 sci, &ii->vfs_inode, 1143 &nilfs_sc_file_ops); 1144 if (unlikely(err)) { 1145 sci->sc_stage.gc_inode_ptr = list_entry( 1146 ii->i_dirty.prev, 1147 struct nilfs_inode_info, 1148 i_dirty); 1149 goto break_or_fail; 1150 } 1151 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1152 } 1153 sci->sc_stage.gc_inode_ptr = NULL; 1154 } 1155 nilfs_sc_cstage_inc(sci); 1156 fallthrough; 1157 case NILFS_ST_FILE: 1158 head = &sci->sc_dirty_files; 1159 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1160 i_dirty); 1161 list_for_each_entry_continue(ii, head, i_dirty) { 1162 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1163 1164 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1165 &nilfs_sc_file_ops); 1166 if (unlikely(err)) { 1167 sci->sc_stage.dirty_file_ptr = 1168 list_entry(ii->i_dirty.prev, 1169 struct nilfs_inode_info, 1170 i_dirty); 1171 goto break_or_fail; 1172 } 1173 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1174 /* XXX: required ? */ 1175 } 1176 sci->sc_stage.dirty_file_ptr = NULL; 1177 if (mode == SC_FLUSH_FILE) { 1178 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1179 return 0; 1180 } 1181 nilfs_sc_cstage_inc(sci); 1182 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1183 fallthrough; 1184 case NILFS_ST_IFILE: 1185 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1186 &nilfs_sc_file_ops); 1187 if (unlikely(err)) 1188 break; 1189 nilfs_sc_cstage_inc(sci); 1190 /* Creating a checkpoint */ 1191 err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile, 1192 nilfs->ns_cno); 1193 if (unlikely(err)) 1194 break; 1195 fallthrough; 1196 case NILFS_ST_CPFILE: 1197 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1198 &nilfs_sc_file_ops); 1199 if (unlikely(err)) 1200 break; 1201 nilfs_sc_cstage_inc(sci); 1202 fallthrough; 1203 case NILFS_ST_SUFILE: 1204 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1205 sci->sc_nfreesegs, &ndone); 1206 if (unlikely(err)) { 1207 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1208 sci->sc_freesegs, ndone, 1209 NULL); 1210 break; 1211 } 1212 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1213 1214 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1215 &nilfs_sc_file_ops); 1216 if (unlikely(err)) 1217 break; 1218 nilfs_sc_cstage_inc(sci); 1219 fallthrough; 1220 case NILFS_ST_DAT: 1221 dat_stage: 1222 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1223 &nilfs_sc_dat_ops); 1224 if (unlikely(err)) 1225 break; 1226 if (mode == SC_FLUSH_DAT) { 1227 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1228 return 0; 1229 } 1230 nilfs_sc_cstage_inc(sci); 1231 fallthrough; 1232 case NILFS_ST_SR: 1233 if (mode == SC_LSEG_SR) { 1234 /* Appending a super root */ 1235 err = nilfs_segctor_add_super_root(sci); 1236 if (unlikely(err)) 1237 break; 1238 } 1239 /* End of a logical segment */ 1240 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1241 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1242 return 0; 1243 case NILFS_ST_DSYNC: 1244 dsync_mode: 1245 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1246 ii = sci->sc_dsync_inode; 1247 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1248 break; 1249 1250 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1251 if (unlikely(err)) 1252 break; 1253 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1254 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1255 return 0; 1256 case NILFS_ST_DONE: 1257 return 0; 1258 default: 1259 BUG(); 1260 } 1261 1262 break_or_fail: 1263 return err; 1264 } 1265 1266 /** 1267 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1268 * @sci: nilfs_sc_info 1269 * @nilfs: nilfs object 1270 */ 1271 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1272 struct the_nilfs *nilfs) 1273 { 1274 struct nilfs_segment_buffer *segbuf, *prev; 1275 __u64 nextnum; 1276 int err, alloc = 0; 1277 1278 segbuf = nilfs_segbuf_new(sci->sc_super); 1279 if (unlikely(!segbuf)) 1280 return -ENOMEM; 1281 1282 if (list_empty(&sci->sc_write_logs)) { 1283 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1284 nilfs->ns_pseg_offset, nilfs); 1285 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1286 nilfs_shift_to_next_segment(nilfs); 1287 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1288 } 1289 1290 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1291 nextnum = nilfs->ns_nextnum; 1292 1293 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1294 /* Start from the head of a new full segment */ 1295 alloc++; 1296 } else { 1297 /* Continue logs */ 1298 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1299 nilfs_segbuf_map_cont(segbuf, prev); 1300 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1301 nextnum = prev->sb_nextnum; 1302 1303 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1304 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1305 segbuf->sb_sum.seg_seq++; 1306 alloc++; 1307 } 1308 } 1309 1310 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1311 if (err) 1312 goto failed; 1313 1314 if (alloc) { 1315 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1316 if (err) 1317 goto failed; 1318 } 1319 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1320 1321 BUG_ON(!list_empty(&sci->sc_segbufs)); 1322 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1323 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1324 return 0; 1325 1326 failed: 1327 nilfs_segbuf_free(segbuf); 1328 return err; 1329 } 1330 1331 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1332 struct the_nilfs *nilfs, int nadd) 1333 { 1334 struct nilfs_segment_buffer *segbuf, *prev; 1335 struct inode *sufile = nilfs->ns_sufile; 1336 __u64 nextnextnum; 1337 LIST_HEAD(list); 1338 int err, ret, i; 1339 1340 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1341 /* 1342 * Since the segment specified with nextnum might be allocated during 1343 * the previous construction, the buffer including its segusage may 1344 * not be dirty. The following call ensures that the buffer is dirty 1345 * and will pin the buffer on memory until the sufile is written. 1346 */ 1347 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1348 if (unlikely(err)) 1349 return err; 1350 1351 for (i = 0; i < nadd; i++) { 1352 /* extend segment info */ 1353 err = -ENOMEM; 1354 segbuf = nilfs_segbuf_new(sci->sc_super); 1355 if (unlikely(!segbuf)) 1356 goto failed; 1357 1358 /* map this buffer to region of segment on-disk */ 1359 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1360 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1361 1362 /* allocate the next next full segment */ 1363 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1364 if (unlikely(err)) 1365 goto failed_segbuf; 1366 1367 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1368 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1369 1370 list_add_tail(&segbuf->sb_list, &list); 1371 prev = segbuf; 1372 } 1373 list_splice_tail(&list, &sci->sc_segbufs); 1374 return 0; 1375 1376 failed_segbuf: 1377 nilfs_segbuf_free(segbuf); 1378 failed: 1379 list_for_each_entry(segbuf, &list, sb_list) { 1380 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1381 WARN_ON(ret); /* never fails */ 1382 } 1383 nilfs_destroy_logs(&list); 1384 return err; 1385 } 1386 1387 static void nilfs_free_incomplete_logs(struct list_head *logs, 1388 struct the_nilfs *nilfs) 1389 { 1390 struct nilfs_segment_buffer *segbuf, *prev; 1391 struct inode *sufile = nilfs->ns_sufile; 1392 int ret; 1393 1394 segbuf = NILFS_FIRST_SEGBUF(logs); 1395 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1396 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1397 WARN_ON(ret); /* never fails */ 1398 } 1399 if (atomic_read(&segbuf->sb_err)) { 1400 /* Case 1: The first segment failed */ 1401 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1402 /* 1403 * Case 1a: Partial segment appended into an existing 1404 * segment 1405 */ 1406 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1407 segbuf->sb_fseg_end); 1408 else /* Case 1b: New full segment */ 1409 set_nilfs_discontinued(nilfs); 1410 } 1411 1412 prev = segbuf; 1413 list_for_each_entry_continue(segbuf, logs, sb_list) { 1414 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1415 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1416 WARN_ON(ret); /* never fails */ 1417 } 1418 if (atomic_read(&segbuf->sb_err) && 1419 segbuf->sb_segnum != nilfs->ns_nextnum) 1420 /* Case 2: extended segment (!= next) failed */ 1421 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1422 prev = segbuf; 1423 } 1424 } 1425 1426 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1427 struct inode *sufile) 1428 { 1429 struct nilfs_segment_buffer *segbuf; 1430 unsigned long live_blocks; 1431 int ret; 1432 1433 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1434 live_blocks = segbuf->sb_sum.nblocks + 1435 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1436 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1437 live_blocks, 1438 sci->sc_seg_ctime); 1439 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1440 } 1441 } 1442 1443 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1444 { 1445 struct nilfs_segment_buffer *segbuf; 1446 int ret; 1447 1448 segbuf = NILFS_FIRST_SEGBUF(logs); 1449 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1450 segbuf->sb_pseg_start - 1451 segbuf->sb_fseg_start, 0); 1452 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1453 1454 list_for_each_entry_continue(segbuf, logs, sb_list) { 1455 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1456 0, 0); 1457 WARN_ON(ret); /* always succeed */ 1458 } 1459 } 1460 1461 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1462 struct nilfs_segment_buffer *last, 1463 struct inode *sufile) 1464 { 1465 struct nilfs_segment_buffer *segbuf = last; 1466 int ret; 1467 1468 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1469 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1470 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1471 WARN_ON(ret); 1472 } 1473 nilfs_truncate_logs(&sci->sc_segbufs, last); 1474 } 1475 1476 1477 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1478 struct the_nilfs *nilfs, int mode) 1479 { 1480 struct nilfs_cstage prev_stage = sci->sc_stage; 1481 int err, nadd = 1; 1482 1483 /* Collection retry loop */ 1484 for (;;) { 1485 sci->sc_nblk_this_inc = 0; 1486 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1487 1488 err = nilfs_segctor_reset_segment_buffer(sci); 1489 if (unlikely(err)) 1490 goto failed; 1491 1492 err = nilfs_segctor_collect_blocks(sci, mode); 1493 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1494 if (!err) 1495 break; 1496 1497 if (unlikely(err != -E2BIG)) 1498 goto failed; 1499 1500 /* The current segment is filled up */ 1501 if (mode != SC_LSEG_SR || 1502 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1503 break; 1504 1505 nilfs_clear_logs(&sci->sc_segbufs); 1506 1507 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1508 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1509 sci->sc_freesegs, 1510 sci->sc_nfreesegs, 1511 NULL); 1512 WARN_ON(err); /* do not happen */ 1513 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1514 } 1515 1516 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1517 if (unlikely(err)) 1518 return err; 1519 1520 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1521 sci->sc_stage = prev_stage; 1522 } 1523 nilfs_segctor_zeropad_segsum(sci); 1524 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1525 return 0; 1526 1527 failed: 1528 return err; 1529 } 1530 1531 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1532 struct buffer_head *new_bh) 1533 { 1534 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1535 1536 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1537 /* The caller must release old_bh */ 1538 } 1539 1540 static int 1541 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1542 struct nilfs_segment_buffer *segbuf, 1543 int mode) 1544 { 1545 struct inode *inode = NULL; 1546 sector_t blocknr; 1547 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1548 unsigned long nblocks = 0, ndatablk = 0; 1549 const struct nilfs_sc_operations *sc_op = NULL; 1550 struct nilfs_segsum_pointer ssp; 1551 struct nilfs_finfo *finfo = NULL; 1552 union nilfs_binfo binfo; 1553 struct buffer_head *bh, *bh_org; 1554 ino_t ino = 0; 1555 int err = 0; 1556 1557 if (!nfinfo) 1558 goto out; 1559 1560 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1561 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1562 ssp.offset = sizeof(struct nilfs_segment_summary); 1563 1564 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1565 if (bh == segbuf->sb_super_root) 1566 break; 1567 if (!finfo) { 1568 finfo = nilfs_segctor_map_segsum_entry( 1569 sci, &ssp, sizeof(*finfo)); 1570 ino = le64_to_cpu(finfo->fi_ino); 1571 nblocks = le32_to_cpu(finfo->fi_nblocks); 1572 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1573 1574 inode = bh->b_folio->mapping->host; 1575 1576 if (mode == SC_LSEG_DSYNC) 1577 sc_op = &nilfs_sc_dsync_ops; 1578 else if (ino == NILFS_DAT_INO) 1579 sc_op = &nilfs_sc_dat_ops; 1580 else /* file blocks */ 1581 sc_op = &nilfs_sc_file_ops; 1582 } 1583 bh_org = bh; 1584 get_bh(bh_org); 1585 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1586 &binfo); 1587 if (bh != bh_org) 1588 nilfs_list_replace_buffer(bh_org, bh); 1589 brelse(bh_org); 1590 if (unlikely(err)) 1591 goto failed_bmap; 1592 1593 if (ndatablk > 0) 1594 sc_op->write_data_binfo(sci, &ssp, &binfo); 1595 else 1596 sc_op->write_node_binfo(sci, &ssp, &binfo); 1597 1598 blocknr++; 1599 if (--nblocks == 0) { 1600 finfo = NULL; 1601 if (--nfinfo == 0) 1602 break; 1603 } else if (ndatablk > 0) 1604 ndatablk--; 1605 } 1606 out: 1607 return 0; 1608 1609 failed_bmap: 1610 return err; 1611 } 1612 1613 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1614 { 1615 struct nilfs_segment_buffer *segbuf; 1616 int err; 1617 1618 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1619 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1620 if (unlikely(err)) 1621 return err; 1622 nilfs_segbuf_fill_in_segsum(segbuf); 1623 } 1624 return 0; 1625 } 1626 1627 static void nilfs_begin_folio_io(struct folio *folio) 1628 { 1629 if (!folio || folio_test_writeback(folio)) 1630 /* 1631 * For split b-tree node pages, this function may be called 1632 * twice. We ignore the 2nd or later calls by this check. 1633 */ 1634 return; 1635 1636 folio_lock(folio); 1637 folio_clear_dirty_for_io(folio); 1638 folio_start_writeback(folio); 1639 folio_unlock(folio); 1640 } 1641 1642 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1643 { 1644 struct nilfs_segment_buffer *segbuf; 1645 struct folio *bd_folio = NULL, *fs_folio = NULL; 1646 1647 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1648 struct buffer_head *bh; 1649 1650 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1651 b_assoc_buffers) { 1652 if (bh->b_folio != bd_folio) { 1653 if (bd_folio) { 1654 folio_lock(bd_folio); 1655 folio_wait_writeback(bd_folio); 1656 folio_clear_dirty_for_io(bd_folio); 1657 folio_start_writeback(bd_folio); 1658 folio_unlock(bd_folio); 1659 } 1660 bd_folio = bh->b_folio; 1661 } 1662 } 1663 1664 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1665 b_assoc_buffers) { 1666 if (bh == segbuf->sb_super_root) { 1667 if (bh->b_folio != bd_folio) { 1668 folio_lock(bd_folio); 1669 folio_wait_writeback(bd_folio); 1670 folio_clear_dirty_for_io(bd_folio); 1671 folio_start_writeback(bd_folio); 1672 folio_unlock(bd_folio); 1673 bd_folio = bh->b_folio; 1674 } 1675 break; 1676 } 1677 set_buffer_async_write(bh); 1678 if (bh->b_folio != fs_folio) { 1679 nilfs_begin_folio_io(fs_folio); 1680 fs_folio = bh->b_folio; 1681 } 1682 } 1683 } 1684 if (bd_folio) { 1685 folio_lock(bd_folio); 1686 folio_wait_writeback(bd_folio); 1687 folio_clear_dirty_for_io(bd_folio); 1688 folio_start_writeback(bd_folio); 1689 folio_unlock(bd_folio); 1690 } 1691 nilfs_begin_folio_io(fs_folio); 1692 } 1693 1694 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1695 struct the_nilfs *nilfs) 1696 { 1697 int ret; 1698 1699 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1700 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1701 return ret; 1702 } 1703 1704 static void nilfs_end_folio_io(struct folio *folio, int err) 1705 { 1706 if (!folio) 1707 return; 1708 1709 if (buffer_nilfs_node(folio_buffers(folio)) && 1710 !folio_test_writeback(folio)) { 1711 /* 1712 * For b-tree node pages, this function may be called twice 1713 * or more because they might be split in a segment. 1714 */ 1715 if (folio_test_dirty(folio)) { 1716 /* 1717 * For pages holding split b-tree node buffers, dirty 1718 * flag on the buffers may be cleared discretely. 1719 * In that case, the page is once redirtied for 1720 * remaining buffers, and it must be cancelled if 1721 * all the buffers get cleaned later. 1722 */ 1723 folio_lock(folio); 1724 if (nilfs_folio_buffers_clean(folio)) 1725 __nilfs_clear_folio_dirty(folio); 1726 folio_unlock(folio); 1727 } 1728 return; 1729 } 1730 1731 if (err || !nilfs_folio_buffers_clean(folio)) 1732 filemap_dirty_folio(folio->mapping, folio); 1733 1734 folio_end_writeback(folio); 1735 } 1736 1737 static void nilfs_abort_logs(struct list_head *logs, int err) 1738 { 1739 struct nilfs_segment_buffer *segbuf; 1740 struct folio *bd_folio = NULL, *fs_folio = NULL; 1741 struct buffer_head *bh; 1742 1743 if (list_empty(logs)) 1744 return; 1745 1746 list_for_each_entry(segbuf, logs, sb_list) { 1747 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1748 b_assoc_buffers) { 1749 clear_buffer_uptodate(bh); 1750 if (bh->b_folio != bd_folio) { 1751 if (bd_folio) 1752 folio_end_writeback(bd_folio); 1753 bd_folio = bh->b_folio; 1754 } 1755 } 1756 1757 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1758 b_assoc_buffers) { 1759 if (bh == segbuf->sb_super_root) { 1760 clear_buffer_uptodate(bh); 1761 if (bh->b_folio != bd_folio) { 1762 folio_end_writeback(bd_folio); 1763 bd_folio = bh->b_folio; 1764 } 1765 break; 1766 } 1767 clear_buffer_async_write(bh); 1768 if (bh->b_folio != fs_folio) { 1769 nilfs_end_folio_io(fs_folio, err); 1770 fs_folio = bh->b_folio; 1771 } 1772 } 1773 } 1774 if (bd_folio) 1775 folio_end_writeback(bd_folio); 1776 1777 nilfs_end_folio_io(fs_folio, err); 1778 } 1779 1780 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1781 struct the_nilfs *nilfs, int err) 1782 { 1783 LIST_HEAD(logs); 1784 int ret; 1785 1786 list_splice_tail_init(&sci->sc_write_logs, &logs); 1787 ret = nilfs_wait_on_logs(&logs); 1788 nilfs_abort_logs(&logs, ret ? : err); 1789 1790 list_splice_tail_init(&sci->sc_segbufs, &logs); 1791 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1792 nilfs_free_incomplete_logs(&logs, nilfs); 1793 1794 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1795 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1796 sci->sc_freesegs, 1797 sci->sc_nfreesegs, 1798 NULL); 1799 WARN_ON(ret); /* do not happen */ 1800 } 1801 1802 nilfs_destroy_logs(&logs); 1803 } 1804 1805 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1806 struct nilfs_segment_buffer *segbuf) 1807 { 1808 nilfs->ns_segnum = segbuf->sb_segnum; 1809 nilfs->ns_nextnum = segbuf->sb_nextnum; 1810 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1811 + segbuf->sb_sum.nblocks; 1812 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1813 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1814 } 1815 1816 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1817 { 1818 struct nilfs_segment_buffer *segbuf; 1819 struct folio *bd_folio = NULL, *fs_folio = NULL; 1820 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1821 int update_sr = false; 1822 1823 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1824 struct buffer_head *bh; 1825 1826 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1827 b_assoc_buffers) { 1828 set_buffer_uptodate(bh); 1829 clear_buffer_dirty(bh); 1830 if (bh->b_folio != bd_folio) { 1831 if (bd_folio) 1832 folio_end_writeback(bd_folio); 1833 bd_folio = bh->b_folio; 1834 } 1835 } 1836 /* 1837 * We assume that the buffers which belong to the same folio 1838 * continue over the buffer list. 1839 * Under this assumption, the last BHs of folios is 1840 * identifiable by the discontinuity of bh->b_folio 1841 * (folio != fs_folio). 1842 * 1843 * For B-tree node blocks, however, this assumption is not 1844 * guaranteed. The cleanup code of B-tree node folios needs 1845 * special care. 1846 */ 1847 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1848 b_assoc_buffers) { 1849 const unsigned long set_bits = BIT(BH_Uptodate); 1850 const unsigned long clear_bits = 1851 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1852 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1853 BIT(BH_NILFS_Redirected)); 1854 1855 if (bh == segbuf->sb_super_root) { 1856 set_buffer_uptodate(bh); 1857 clear_buffer_dirty(bh); 1858 if (bh->b_folio != bd_folio) { 1859 folio_end_writeback(bd_folio); 1860 bd_folio = bh->b_folio; 1861 } 1862 update_sr = true; 1863 break; 1864 } 1865 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1866 if (bh->b_folio != fs_folio) { 1867 nilfs_end_folio_io(fs_folio, 0); 1868 fs_folio = bh->b_folio; 1869 } 1870 } 1871 1872 if (!nilfs_segbuf_simplex(segbuf)) { 1873 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1874 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1875 sci->sc_lseg_stime = jiffies; 1876 } 1877 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1878 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1879 } 1880 } 1881 /* 1882 * Since folios may continue over multiple segment buffers, 1883 * end of the last folio must be checked outside of the loop. 1884 */ 1885 if (bd_folio) 1886 folio_end_writeback(bd_folio); 1887 1888 nilfs_end_folio_io(fs_folio, 0); 1889 1890 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1891 1892 if (nilfs_doing_gc()) 1893 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1894 else 1895 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1896 1897 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1898 1899 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1900 nilfs_set_next_segment(nilfs, segbuf); 1901 1902 if (update_sr) { 1903 nilfs->ns_flushed_device = 0; 1904 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1905 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1906 1907 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1908 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1909 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1910 nilfs_segctor_clear_metadata_dirty(sci); 1911 } else 1912 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1913 } 1914 1915 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1916 { 1917 int ret; 1918 1919 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1920 if (!ret) { 1921 nilfs_segctor_complete_write(sci); 1922 nilfs_destroy_logs(&sci->sc_write_logs); 1923 } 1924 return ret; 1925 } 1926 1927 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1928 struct the_nilfs *nilfs) 1929 { 1930 struct nilfs_inode_info *ii, *n; 1931 struct inode *ifile = sci->sc_root->ifile; 1932 1933 spin_lock(&nilfs->ns_inode_lock); 1934 retry: 1935 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1936 if (!ii->i_bh) { 1937 struct buffer_head *ibh; 1938 int err; 1939 1940 spin_unlock(&nilfs->ns_inode_lock); 1941 err = nilfs_ifile_get_inode_block( 1942 ifile, ii->vfs_inode.i_ino, &ibh); 1943 if (unlikely(err)) { 1944 nilfs_warn(sci->sc_super, 1945 "log writer: error %d getting inode block (ino=%lu)", 1946 err, ii->vfs_inode.i_ino); 1947 return err; 1948 } 1949 spin_lock(&nilfs->ns_inode_lock); 1950 if (likely(!ii->i_bh)) 1951 ii->i_bh = ibh; 1952 else 1953 brelse(ibh); 1954 goto retry; 1955 } 1956 1957 // Always redirty the buffer to avoid race condition 1958 mark_buffer_dirty(ii->i_bh); 1959 nilfs_mdt_mark_dirty(ifile); 1960 1961 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1962 set_bit(NILFS_I_BUSY, &ii->i_state); 1963 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1964 } 1965 spin_unlock(&nilfs->ns_inode_lock); 1966 1967 return 0; 1968 } 1969 1970 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 1971 struct the_nilfs *nilfs) 1972 { 1973 struct nilfs_inode_info *ii, *n; 1974 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 1975 int defer_iput = false; 1976 1977 spin_lock(&nilfs->ns_inode_lock); 1978 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 1979 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 1980 test_bit(NILFS_I_DIRTY, &ii->i_state)) 1981 continue; 1982 1983 clear_bit(NILFS_I_BUSY, &ii->i_state); 1984 brelse(ii->i_bh); 1985 ii->i_bh = NULL; 1986 list_del_init(&ii->i_dirty); 1987 if (!ii->vfs_inode.i_nlink || during_mount) { 1988 /* 1989 * Defer calling iput() to avoid deadlocks if 1990 * i_nlink == 0 or mount is not yet finished. 1991 */ 1992 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 1993 defer_iput = true; 1994 } else { 1995 spin_unlock(&nilfs->ns_inode_lock); 1996 iput(&ii->vfs_inode); 1997 spin_lock(&nilfs->ns_inode_lock); 1998 } 1999 } 2000 spin_unlock(&nilfs->ns_inode_lock); 2001 2002 if (defer_iput) 2003 schedule_work(&sci->sc_iput_work); 2004 } 2005 2006 /* 2007 * Main procedure of segment constructor 2008 */ 2009 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2010 { 2011 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2012 int err; 2013 2014 if (sb_rdonly(sci->sc_super)) 2015 return -EROFS; 2016 2017 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2018 sci->sc_cno = nilfs->ns_cno; 2019 2020 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2021 if (unlikely(err)) 2022 goto out; 2023 2024 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2025 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2026 2027 if (nilfs_segctor_clean(sci)) 2028 goto out; 2029 2030 do { 2031 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2032 2033 err = nilfs_segctor_begin_construction(sci, nilfs); 2034 if (unlikely(err)) 2035 goto out; 2036 2037 /* Update time stamp */ 2038 sci->sc_seg_ctime = ktime_get_real_seconds(); 2039 2040 err = nilfs_segctor_collect(sci, nilfs, mode); 2041 if (unlikely(err)) 2042 goto failed; 2043 2044 /* Avoid empty segment */ 2045 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2046 nilfs_segbuf_empty(sci->sc_curseg)) { 2047 nilfs_segctor_abort_construction(sci, nilfs, 1); 2048 goto out; 2049 } 2050 2051 err = nilfs_segctor_assign(sci, mode); 2052 if (unlikely(err)) 2053 goto failed; 2054 2055 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2056 nilfs_segctor_fill_in_file_bmap(sci); 2057 2058 if (mode == SC_LSEG_SR && 2059 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2060 err = nilfs_cpfile_finalize_checkpoint( 2061 nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root, 2062 sci->sc_nblk_inc + sci->sc_nblk_this_inc, 2063 sci->sc_seg_ctime, 2064 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)); 2065 if (unlikely(err)) 2066 goto failed_to_write; 2067 2068 nilfs_segctor_fill_in_super_root(sci, nilfs); 2069 } 2070 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2071 2072 /* Write partial segments */ 2073 nilfs_segctor_prepare_write(sci); 2074 2075 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2076 nilfs->ns_crc_seed); 2077 2078 err = nilfs_segctor_write(sci, nilfs); 2079 if (unlikely(err)) 2080 goto failed_to_write; 2081 2082 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2083 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2084 /* 2085 * At this point, we avoid double buffering 2086 * for blocksize < pagesize because page dirty 2087 * flag is turned off during write and dirty 2088 * buffers are not properly collected for 2089 * pages crossing over segments. 2090 */ 2091 err = nilfs_segctor_wait(sci); 2092 if (err) 2093 goto failed_to_write; 2094 } 2095 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2096 2097 out: 2098 nilfs_segctor_drop_written_files(sci, nilfs); 2099 return err; 2100 2101 failed_to_write: 2102 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2103 nilfs_redirty_inodes(&sci->sc_dirty_files); 2104 2105 failed: 2106 if (nilfs_doing_gc()) 2107 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2108 nilfs_segctor_abort_construction(sci, nilfs, err); 2109 goto out; 2110 } 2111 2112 /** 2113 * nilfs_segctor_start_timer - set timer of background write 2114 * @sci: nilfs_sc_info 2115 * 2116 * If the timer has already been set, it ignores the new request. 2117 * This function MUST be called within a section locking the segment 2118 * semaphore. 2119 */ 2120 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2121 { 2122 spin_lock(&sci->sc_state_lock); 2123 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2124 if (sci->sc_task) { 2125 sci->sc_timer.expires = jiffies + sci->sc_interval; 2126 add_timer(&sci->sc_timer); 2127 } 2128 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2129 } 2130 spin_unlock(&sci->sc_state_lock); 2131 } 2132 2133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2134 { 2135 spin_lock(&sci->sc_state_lock); 2136 if (!(sci->sc_flush_request & BIT(bn))) { 2137 unsigned long prev_req = sci->sc_flush_request; 2138 2139 sci->sc_flush_request |= BIT(bn); 2140 if (!prev_req) 2141 wake_up(&sci->sc_wait_daemon); 2142 } 2143 spin_unlock(&sci->sc_state_lock); 2144 } 2145 2146 /** 2147 * nilfs_flush_segment - trigger a segment construction for resource control 2148 * @sb: super block 2149 * @ino: inode number of the file to be flushed out. 2150 */ 2151 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2152 { 2153 struct the_nilfs *nilfs = sb->s_fs_info; 2154 struct nilfs_sc_info *sci = nilfs->ns_writer; 2155 2156 if (!sci || nilfs_doing_construction()) 2157 return; 2158 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2159 /* assign bit 0 to data files */ 2160 } 2161 2162 struct nilfs_segctor_wait_request { 2163 wait_queue_entry_t wq; 2164 __u32 seq; 2165 int err; 2166 atomic_t done; 2167 }; 2168 2169 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2170 { 2171 struct nilfs_segctor_wait_request wait_req; 2172 int err = 0; 2173 2174 init_wait(&wait_req.wq); 2175 wait_req.err = 0; 2176 atomic_set(&wait_req.done, 0); 2177 init_waitqueue_entry(&wait_req.wq, current); 2178 2179 /* 2180 * To prevent a race issue where completion notifications from the 2181 * log writer thread are missed, increment the request sequence count 2182 * "sc_seq_request" and insert a wait queue entry using the current 2183 * sequence number into the "sc_wait_request" queue at the same time 2184 * within the lock section of "sc_state_lock". 2185 */ 2186 spin_lock(&sci->sc_state_lock); 2187 wait_req.seq = ++sci->sc_seq_request; 2188 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2189 spin_unlock(&sci->sc_state_lock); 2190 2191 wake_up(&sci->sc_wait_daemon); 2192 2193 for (;;) { 2194 set_current_state(TASK_INTERRUPTIBLE); 2195 2196 /* 2197 * Synchronize only while the log writer thread is alive. 2198 * Leave flushing out after the log writer thread exits to 2199 * the cleanup work in nilfs_segctor_destroy(). 2200 */ 2201 if (!sci->sc_task) 2202 break; 2203 2204 if (atomic_read(&wait_req.done)) { 2205 err = wait_req.err; 2206 break; 2207 } 2208 if (!signal_pending(current)) { 2209 schedule(); 2210 continue; 2211 } 2212 err = -ERESTARTSYS; 2213 break; 2214 } 2215 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2216 return err; 2217 } 2218 2219 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force) 2220 { 2221 struct nilfs_segctor_wait_request *wrq, *n; 2222 unsigned long flags; 2223 2224 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2225 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2226 if (!atomic_read(&wrq->done) && 2227 (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) { 2228 wrq->err = err; 2229 atomic_set(&wrq->done, 1); 2230 } 2231 if (atomic_read(&wrq->done)) { 2232 wrq->wq.func(&wrq->wq, 2233 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2234 0, NULL); 2235 } 2236 } 2237 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2238 } 2239 2240 /** 2241 * nilfs_construct_segment - construct a logical segment 2242 * @sb: super block 2243 * 2244 * Return Value: On success, 0 is returned. On errors, one of the following 2245 * negative error code is returned. 2246 * 2247 * %-EROFS - Read only filesystem. 2248 * 2249 * %-EIO - I/O error 2250 * 2251 * %-ENOSPC - No space left on device (only in a panic state). 2252 * 2253 * %-ERESTARTSYS - Interrupted. 2254 * 2255 * %-ENOMEM - Insufficient memory available. 2256 */ 2257 int nilfs_construct_segment(struct super_block *sb) 2258 { 2259 struct the_nilfs *nilfs = sb->s_fs_info; 2260 struct nilfs_sc_info *sci = nilfs->ns_writer; 2261 struct nilfs_transaction_info *ti; 2262 2263 if (sb_rdonly(sb) || unlikely(!sci)) 2264 return -EROFS; 2265 2266 /* A call inside transactions causes a deadlock. */ 2267 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2268 2269 return nilfs_segctor_sync(sci); 2270 } 2271 2272 /** 2273 * nilfs_construct_dsync_segment - construct a data-only logical segment 2274 * @sb: super block 2275 * @inode: inode whose data blocks should be written out 2276 * @start: start byte offset 2277 * @end: end byte offset (inclusive) 2278 * 2279 * Return Value: On success, 0 is returned. On errors, one of the following 2280 * negative error code is returned. 2281 * 2282 * %-EROFS - Read only filesystem. 2283 * 2284 * %-EIO - I/O error 2285 * 2286 * %-ENOSPC - No space left on device (only in a panic state). 2287 * 2288 * %-ERESTARTSYS - Interrupted. 2289 * 2290 * %-ENOMEM - Insufficient memory available. 2291 */ 2292 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2293 loff_t start, loff_t end) 2294 { 2295 struct the_nilfs *nilfs = sb->s_fs_info; 2296 struct nilfs_sc_info *sci = nilfs->ns_writer; 2297 struct nilfs_inode_info *ii; 2298 struct nilfs_transaction_info ti; 2299 int err = 0; 2300 2301 if (sb_rdonly(sb) || unlikely(!sci)) 2302 return -EROFS; 2303 2304 nilfs_transaction_lock(sb, &ti, 0); 2305 2306 ii = NILFS_I(inode); 2307 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2308 nilfs_test_opt(nilfs, STRICT_ORDER) || 2309 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2310 nilfs_discontinued(nilfs)) { 2311 nilfs_transaction_unlock(sb); 2312 err = nilfs_segctor_sync(sci); 2313 return err; 2314 } 2315 2316 spin_lock(&nilfs->ns_inode_lock); 2317 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2318 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2319 spin_unlock(&nilfs->ns_inode_lock); 2320 nilfs_transaction_unlock(sb); 2321 return 0; 2322 } 2323 spin_unlock(&nilfs->ns_inode_lock); 2324 sci->sc_dsync_inode = ii; 2325 sci->sc_dsync_start = start; 2326 sci->sc_dsync_end = end; 2327 2328 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2329 if (!err) 2330 nilfs->ns_flushed_device = 0; 2331 2332 nilfs_transaction_unlock(sb); 2333 return err; 2334 } 2335 2336 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2337 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2338 2339 /** 2340 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2341 * @sci: segment constructor object 2342 */ 2343 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2344 { 2345 bool thread_is_alive; 2346 2347 spin_lock(&sci->sc_state_lock); 2348 sci->sc_seq_accepted = sci->sc_seq_request; 2349 thread_is_alive = (bool)sci->sc_task; 2350 spin_unlock(&sci->sc_state_lock); 2351 2352 /* 2353 * This function does not race with the log writer thread's 2354 * termination. Therefore, deleting sc_timer, which should not be 2355 * done after the log writer thread exits, can be done safely outside 2356 * the area protected by sc_state_lock. 2357 */ 2358 if (thread_is_alive) 2359 del_timer_sync(&sci->sc_timer); 2360 } 2361 2362 /** 2363 * nilfs_segctor_notify - notify the result of request to caller threads 2364 * @sci: segment constructor object 2365 * @mode: mode of log forming 2366 * @err: error code to be notified 2367 */ 2368 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2369 { 2370 /* Clear requests (even when the construction failed) */ 2371 spin_lock(&sci->sc_state_lock); 2372 2373 if (mode == SC_LSEG_SR) { 2374 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2375 sci->sc_seq_done = sci->sc_seq_accepted; 2376 nilfs_segctor_wakeup(sci, err, false); 2377 sci->sc_flush_request = 0; 2378 } else { 2379 if (mode == SC_FLUSH_FILE) 2380 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2381 else if (mode == SC_FLUSH_DAT) 2382 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2383 2384 /* re-enable timer if checkpoint creation was not done */ 2385 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task && 2386 time_before(jiffies, sci->sc_timer.expires)) 2387 add_timer(&sci->sc_timer); 2388 } 2389 spin_unlock(&sci->sc_state_lock); 2390 } 2391 2392 /** 2393 * nilfs_segctor_construct - form logs and write them to disk 2394 * @sci: segment constructor object 2395 * @mode: mode of log forming 2396 */ 2397 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2398 { 2399 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2400 struct nilfs_super_block **sbp; 2401 int err = 0; 2402 2403 nilfs_segctor_accept(sci); 2404 2405 if (nilfs_discontinued(nilfs)) 2406 mode = SC_LSEG_SR; 2407 if (!nilfs_segctor_confirm(sci)) 2408 err = nilfs_segctor_do_construct(sci, mode); 2409 2410 if (likely(!err)) { 2411 if (mode != SC_FLUSH_DAT) 2412 atomic_set(&nilfs->ns_ndirtyblks, 0); 2413 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2414 nilfs_discontinued(nilfs)) { 2415 down_write(&nilfs->ns_sem); 2416 err = -EIO; 2417 sbp = nilfs_prepare_super(sci->sc_super, 2418 nilfs_sb_will_flip(nilfs)); 2419 if (likely(sbp)) { 2420 nilfs_set_log_cursor(sbp[0], nilfs); 2421 err = nilfs_commit_super(sci->sc_super, 2422 NILFS_SB_COMMIT); 2423 } 2424 up_write(&nilfs->ns_sem); 2425 } 2426 } 2427 2428 nilfs_segctor_notify(sci, mode, err); 2429 return err; 2430 } 2431 2432 static void nilfs_construction_timeout(struct timer_list *t) 2433 { 2434 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2435 2436 wake_up_process(sci->sc_timer_task); 2437 } 2438 2439 static void 2440 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2441 { 2442 struct nilfs_inode_info *ii, *n; 2443 2444 list_for_each_entry_safe(ii, n, head, i_dirty) { 2445 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2446 continue; 2447 list_del_init(&ii->i_dirty); 2448 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2449 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2450 iput(&ii->vfs_inode); 2451 } 2452 } 2453 2454 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2455 void **kbufs) 2456 { 2457 struct the_nilfs *nilfs = sb->s_fs_info; 2458 struct nilfs_sc_info *sci = nilfs->ns_writer; 2459 struct nilfs_transaction_info ti; 2460 int err; 2461 2462 if (unlikely(!sci)) 2463 return -EROFS; 2464 2465 nilfs_transaction_lock(sb, &ti, 1); 2466 2467 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2468 if (unlikely(err)) 2469 goto out_unlock; 2470 2471 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2472 if (unlikely(err)) { 2473 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2474 goto out_unlock; 2475 } 2476 2477 sci->sc_freesegs = kbufs[4]; 2478 sci->sc_nfreesegs = argv[4].v_nmembs; 2479 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2480 2481 for (;;) { 2482 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2483 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2484 2485 if (likely(!err)) 2486 break; 2487 2488 nilfs_warn(sb, "error %d cleaning segments", err); 2489 set_current_state(TASK_INTERRUPTIBLE); 2490 schedule_timeout(sci->sc_interval); 2491 } 2492 if (nilfs_test_opt(nilfs, DISCARD)) { 2493 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2494 sci->sc_nfreesegs); 2495 if (ret) { 2496 nilfs_warn(sb, 2497 "error %d on discard request, turning discards off for the device", 2498 ret); 2499 nilfs_clear_opt(nilfs, DISCARD); 2500 } 2501 } 2502 2503 out_unlock: 2504 sci->sc_freesegs = NULL; 2505 sci->sc_nfreesegs = 0; 2506 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2507 nilfs_transaction_unlock(sb); 2508 return err; 2509 } 2510 2511 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2512 { 2513 struct nilfs_transaction_info ti; 2514 2515 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2516 nilfs_segctor_construct(sci, mode); 2517 2518 /* 2519 * Unclosed segment should be retried. We do this using sc_timer. 2520 * Timeout of sc_timer will invoke complete construction which leads 2521 * to close the current logical segment. 2522 */ 2523 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2524 nilfs_segctor_start_timer(sci); 2525 2526 nilfs_transaction_unlock(sci->sc_super); 2527 } 2528 2529 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2530 { 2531 int mode = 0; 2532 2533 spin_lock(&sci->sc_state_lock); 2534 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2535 SC_FLUSH_DAT : SC_FLUSH_FILE; 2536 spin_unlock(&sci->sc_state_lock); 2537 2538 if (mode) { 2539 nilfs_segctor_do_construct(sci, mode); 2540 2541 spin_lock(&sci->sc_state_lock); 2542 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2543 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2544 spin_unlock(&sci->sc_state_lock); 2545 } 2546 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2547 } 2548 2549 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2550 { 2551 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2552 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2553 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2554 return SC_FLUSH_FILE; 2555 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2556 return SC_FLUSH_DAT; 2557 } 2558 return SC_LSEG_SR; 2559 } 2560 2561 /** 2562 * nilfs_segctor_thread - main loop of the segment constructor thread. 2563 * @arg: pointer to a struct nilfs_sc_info. 2564 * 2565 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2566 * to execute segment constructions. 2567 */ 2568 static int nilfs_segctor_thread(void *arg) 2569 { 2570 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2571 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2572 int timeout = 0; 2573 2574 sci->sc_timer_task = current; 2575 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2576 2577 /* start sync. */ 2578 sci->sc_task = current; 2579 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2580 nilfs_info(sci->sc_super, 2581 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2582 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2583 2584 set_freezable(); 2585 spin_lock(&sci->sc_state_lock); 2586 loop: 2587 for (;;) { 2588 int mode; 2589 2590 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2591 goto end_thread; 2592 2593 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2594 mode = SC_LSEG_SR; 2595 else if (sci->sc_flush_request) 2596 mode = nilfs_segctor_flush_mode(sci); 2597 else 2598 break; 2599 2600 spin_unlock(&sci->sc_state_lock); 2601 nilfs_segctor_thread_construct(sci, mode); 2602 spin_lock(&sci->sc_state_lock); 2603 timeout = 0; 2604 } 2605 2606 2607 if (freezing(current)) { 2608 spin_unlock(&sci->sc_state_lock); 2609 try_to_freeze(); 2610 spin_lock(&sci->sc_state_lock); 2611 } else { 2612 DEFINE_WAIT(wait); 2613 int should_sleep = 1; 2614 2615 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2616 TASK_INTERRUPTIBLE); 2617 2618 if (sci->sc_seq_request != sci->sc_seq_done) 2619 should_sleep = 0; 2620 else if (sci->sc_flush_request) 2621 should_sleep = 0; 2622 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2623 should_sleep = time_before(jiffies, 2624 sci->sc_timer.expires); 2625 2626 if (should_sleep) { 2627 spin_unlock(&sci->sc_state_lock); 2628 schedule(); 2629 spin_lock(&sci->sc_state_lock); 2630 } 2631 finish_wait(&sci->sc_wait_daemon, &wait); 2632 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2633 time_after_eq(jiffies, sci->sc_timer.expires)); 2634 2635 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2636 set_nilfs_discontinued(nilfs); 2637 } 2638 goto loop; 2639 2640 end_thread: 2641 /* end sync. */ 2642 sci->sc_task = NULL; 2643 timer_shutdown_sync(&sci->sc_timer); 2644 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2645 spin_unlock(&sci->sc_state_lock); 2646 return 0; 2647 } 2648 2649 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2650 { 2651 struct task_struct *t; 2652 2653 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2654 if (IS_ERR(t)) { 2655 int err = PTR_ERR(t); 2656 2657 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2658 err); 2659 return err; 2660 } 2661 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2662 return 0; 2663 } 2664 2665 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2666 __acquires(&sci->sc_state_lock) 2667 __releases(&sci->sc_state_lock) 2668 { 2669 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2670 2671 while (sci->sc_task) { 2672 wake_up(&sci->sc_wait_daemon); 2673 spin_unlock(&sci->sc_state_lock); 2674 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2675 spin_lock(&sci->sc_state_lock); 2676 } 2677 } 2678 2679 /* 2680 * Setup & clean-up functions 2681 */ 2682 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2683 struct nilfs_root *root) 2684 { 2685 struct the_nilfs *nilfs = sb->s_fs_info; 2686 struct nilfs_sc_info *sci; 2687 2688 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2689 if (!sci) 2690 return NULL; 2691 2692 sci->sc_super = sb; 2693 2694 nilfs_get_root(root); 2695 sci->sc_root = root; 2696 2697 init_waitqueue_head(&sci->sc_wait_request); 2698 init_waitqueue_head(&sci->sc_wait_daemon); 2699 init_waitqueue_head(&sci->sc_wait_task); 2700 spin_lock_init(&sci->sc_state_lock); 2701 INIT_LIST_HEAD(&sci->sc_dirty_files); 2702 INIT_LIST_HEAD(&sci->sc_segbufs); 2703 INIT_LIST_HEAD(&sci->sc_write_logs); 2704 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2705 INIT_LIST_HEAD(&sci->sc_iput_queue); 2706 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2707 2708 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2709 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2710 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2711 2712 if (nilfs->ns_interval) 2713 sci->sc_interval = HZ * nilfs->ns_interval; 2714 if (nilfs->ns_watermark) 2715 sci->sc_watermark = nilfs->ns_watermark; 2716 return sci; 2717 } 2718 2719 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2720 { 2721 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2722 2723 /* 2724 * The segctord thread was stopped and its timer was removed. 2725 * But some tasks remain. 2726 */ 2727 do { 2728 struct nilfs_transaction_info ti; 2729 2730 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2731 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2732 nilfs_transaction_unlock(sci->sc_super); 2733 2734 flush_work(&sci->sc_iput_work); 2735 2736 } while (ret && ret != -EROFS && retrycount-- > 0); 2737 } 2738 2739 /** 2740 * nilfs_segctor_destroy - destroy the segment constructor. 2741 * @sci: nilfs_sc_info 2742 * 2743 * nilfs_segctor_destroy() kills the segctord thread and frees 2744 * the nilfs_sc_info struct. 2745 * Caller must hold the segment semaphore. 2746 */ 2747 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2748 { 2749 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2750 int flag; 2751 2752 up_write(&nilfs->ns_segctor_sem); 2753 2754 spin_lock(&sci->sc_state_lock); 2755 nilfs_segctor_kill_thread(sci); 2756 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2757 || sci->sc_seq_request != sci->sc_seq_done); 2758 spin_unlock(&sci->sc_state_lock); 2759 2760 /* 2761 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can 2762 * be called from delayed iput() via nilfs_evict_inode() and can race 2763 * with the above log writer thread termination. 2764 */ 2765 nilfs_segctor_wakeup(sci, 0, true); 2766 2767 if (flush_work(&sci->sc_iput_work)) 2768 flag = true; 2769 2770 if (flag || !nilfs_segctor_confirm(sci)) 2771 nilfs_segctor_write_out(sci); 2772 2773 if (!list_empty(&sci->sc_dirty_files)) { 2774 nilfs_warn(sci->sc_super, 2775 "disposed unprocessed dirty file(s) when stopping log writer"); 2776 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2777 } 2778 2779 if (!list_empty(&sci->sc_iput_queue)) { 2780 nilfs_warn(sci->sc_super, 2781 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2782 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2783 } 2784 2785 WARN_ON(!list_empty(&sci->sc_segbufs)); 2786 WARN_ON(!list_empty(&sci->sc_write_logs)); 2787 2788 nilfs_put_root(sci->sc_root); 2789 2790 down_write(&nilfs->ns_segctor_sem); 2791 2792 kfree(sci); 2793 } 2794 2795 /** 2796 * nilfs_attach_log_writer - attach log writer 2797 * @sb: super block instance 2798 * @root: root object of the current filesystem tree 2799 * 2800 * This allocates a log writer object, initializes it, and starts the 2801 * log writer. 2802 * 2803 * Return Value: On success, 0 is returned. On error, one of the following 2804 * negative error code is returned. 2805 * 2806 * %-ENOMEM - Insufficient memory available. 2807 */ 2808 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2809 { 2810 struct the_nilfs *nilfs = sb->s_fs_info; 2811 int err; 2812 2813 if (nilfs->ns_writer) { 2814 /* 2815 * This happens if the filesystem is made read-only by 2816 * __nilfs_error or nilfs_remount and then remounted 2817 * read/write. In these cases, reuse the existing 2818 * writer. 2819 */ 2820 return 0; 2821 } 2822 2823 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2824 if (!nilfs->ns_writer) 2825 return -ENOMEM; 2826 2827 inode_attach_wb(nilfs->ns_bdev->bd_mapping->host, NULL); 2828 2829 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2830 if (unlikely(err)) 2831 nilfs_detach_log_writer(sb); 2832 2833 return err; 2834 } 2835 2836 /** 2837 * nilfs_detach_log_writer - destroy log writer 2838 * @sb: super block instance 2839 * 2840 * This kills log writer daemon, frees the log writer object, and 2841 * destroys list of dirty files. 2842 */ 2843 void nilfs_detach_log_writer(struct super_block *sb) 2844 { 2845 struct the_nilfs *nilfs = sb->s_fs_info; 2846 LIST_HEAD(garbage_list); 2847 2848 down_write(&nilfs->ns_segctor_sem); 2849 if (nilfs->ns_writer) { 2850 nilfs_segctor_destroy(nilfs->ns_writer); 2851 nilfs->ns_writer = NULL; 2852 } 2853 set_nilfs_purging(nilfs); 2854 2855 /* Force to free the list of dirty files */ 2856 spin_lock(&nilfs->ns_inode_lock); 2857 if (!list_empty(&nilfs->ns_dirty_files)) { 2858 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2859 nilfs_warn(sb, 2860 "disposed unprocessed dirty file(s) when detaching log writer"); 2861 } 2862 spin_unlock(&nilfs->ns_inode_lock); 2863 up_write(&nilfs->ns_segctor_sem); 2864 2865 nilfs_dispose_list(nilfs, &garbage_list, 1); 2866 clear_nilfs_purging(nilfs); 2867 } 2868