1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 /** 434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area 435 * @sci: segment constructor object 436 * 437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of 438 * the current segment summary block. 439 */ 440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) 441 { 442 struct nilfs_segsum_pointer *ssp; 443 444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; 445 if (ssp->offset < ssp->bh->b_size) 446 memset(ssp->bh->b_data + ssp->offset, 0, 447 ssp->bh->b_size - ssp->offset); 448 } 449 450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 451 { 452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 454 return -E2BIG; /* 455 * The current segment is filled up 456 * (internal code) 457 */ 458 nilfs_segctor_zeropad_segsum(sci); 459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 460 return nilfs_segctor_reset_segment_buffer(sci); 461 } 462 463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 464 { 465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 466 int err; 467 468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 469 err = nilfs_segctor_feed_segment(sci); 470 if (err) 471 return err; 472 segbuf = sci->sc_curseg; 473 } 474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 475 if (likely(!err)) 476 segbuf->sb_sum.flags |= NILFS_SS_SR; 477 return err; 478 } 479 480 /* 481 * Functions for making segment summary and payloads 482 */ 483 static int nilfs_segctor_segsum_block_required( 484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 485 unsigned int binfo_size) 486 { 487 unsigned int blocksize = sci->sc_super->s_blocksize; 488 /* Size of finfo and binfo is enough small against blocksize */ 489 490 return ssp->offset + binfo_size + 491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 492 blocksize; 493 } 494 495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 496 struct inode *inode) 497 { 498 sci->sc_curseg->sb_sum.nfinfo++; 499 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 500 nilfs_segctor_map_segsum_entry( 501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 502 503 if (NILFS_I(inode)->i_root && 504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 506 /* skip finfo */ 507 } 508 509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 510 struct inode *inode) 511 { 512 struct nilfs_finfo *finfo; 513 struct nilfs_inode_info *ii; 514 struct nilfs_segment_buffer *segbuf; 515 __u64 cno; 516 517 if (sci->sc_blk_cnt == 0) 518 return; 519 520 ii = NILFS_I(inode); 521 522 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 523 cno = ii->i_cno; 524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 525 cno = 0; 526 else 527 cno = sci->sc_cno; 528 529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 530 sizeof(*finfo)); 531 finfo->fi_ino = cpu_to_le64(inode->i_ino); 532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 534 finfo->fi_cno = cpu_to_le64(cno); 535 536 segbuf = sci->sc_curseg; 537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 539 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 541 } 542 543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 544 struct buffer_head *bh, 545 struct inode *inode, 546 unsigned int binfo_size) 547 { 548 struct nilfs_segment_buffer *segbuf; 549 int required, err = 0; 550 551 retry: 552 segbuf = sci->sc_curseg; 553 required = nilfs_segctor_segsum_block_required( 554 sci, &sci->sc_binfo_ptr, binfo_size); 555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 556 nilfs_segctor_end_finfo(sci, inode); 557 err = nilfs_segctor_feed_segment(sci); 558 if (err) 559 return err; 560 goto retry; 561 } 562 if (unlikely(required)) { 563 nilfs_segctor_zeropad_segsum(sci); 564 err = nilfs_segbuf_extend_segsum(segbuf); 565 if (unlikely(err)) 566 goto failed; 567 } 568 if (sci->sc_blk_cnt == 0) 569 nilfs_segctor_begin_finfo(sci, inode); 570 571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 572 /* Substitution to vblocknr is delayed until update_blocknr() */ 573 nilfs_segbuf_add_file_buffer(segbuf, bh); 574 sci->sc_blk_cnt++; 575 failed: 576 return err; 577 } 578 579 /* 580 * Callback functions that enumerate, mark, and collect dirty blocks 581 */ 582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 583 struct buffer_head *bh, struct inode *inode) 584 { 585 int err; 586 587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 588 if (err < 0) 589 return err; 590 591 err = nilfs_segctor_add_file_block(sci, bh, inode, 592 sizeof(struct nilfs_binfo_v)); 593 if (!err) 594 sci->sc_datablk_cnt++; 595 return err; 596 } 597 598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 599 struct buffer_head *bh, 600 struct inode *inode) 601 { 602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 603 } 604 605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 606 struct buffer_head *bh, 607 struct inode *inode) 608 { 609 WARN_ON(!buffer_dirty(bh)); 610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 611 } 612 613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 614 struct nilfs_segsum_pointer *ssp, 615 union nilfs_binfo *binfo) 616 { 617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 618 sci, ssp, sizeof(*binfo_v)); 619 *binfo_v = binfo->bi_v; 620 } 621 622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 623 struct nilfs_segsum_pointer *ssp, 624 union nilfs_binfo *binfo) 625 { 626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 627 sci, ssp, sizeof(*vblocknr)); 628 *vblocknr = binfo->bi_v.bi_vblocknr; 629 } 630 631 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 632 .collect_data = nilfs_collect_file_data, 633 .collect_node = nilfs_collect_file_node, 634 .collect_bmap = nilfs_collect_file_bmap, 635 .write_data_binfo = nilfs_write_file_data_binfo, 636 .write_node_binfo = nilfs_write_file_node_binfo, 637 }; 638 639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 640 struct buffer_head *bh, struct inode *inode) 641 { 642 int err; 643 644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 645 if (err < 0) 646 return err; 647 648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 649 if (!err) 650 sci->sc_datablk_cnt++; 651 return err; 652 } 653 654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 655 struct buffer_head *bh, struct inode *inode) 656 { 657 WARN_ON(!buffer_dirty(bh)); 658 return nilfs_segctor_add_file_block(sci, bh, inode, 659 sizeof(struct nilfs_binfo_dat)); 660 } 661 662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 663 struct nilfs_segsum_pointer *ssp, 664 union nilfs_binfo *binfo) 665 { 666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 667 sizeof(*blkoff)); 668 *blkoff = binfo->bi_dat.bi_blkoff; 669 } 670 671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 672 struct nilfs_segsum_pointer *ssp, 673 union nilfs_binfo *binfo) 674 { 675 struct nilfs_binfo_dat *binfo_dat = 676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 677 *binfo_dat = binfo->bi_dat; 678 } 679 680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 681 .collect_data = nilfs_collect_dat_data, 682 .collect_node = nilfs_collect_file_node, 683 .collect_bmap = nilfs_collect_dat_bmap, 684 .write_data_binfo = nilfs_write_dat_data_binfo, 685 .write_node_binfo = nilfs_write_dat_node_binfo, 686 }; 687 688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 689 .collect_data = nilfs_collect_file_data, 690 .collect_node = NULL, 691 .collect_bmap = NULL, 692 .write_data_binfo = nilfs_write_file_data_binfo, 693 .write_node_binfo = NULL, 694 }; 695 696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 697 struct list_head *listp, 698 size_t nlimit, 699 loff_t start, loff_t end) 700 { 701 struct address_space *mapping = inode->i_mapping; 702 struct folio_batch fbatch; 703 pgoff_t index = 0, last = ULONG_MAX; 704 size_t ndirties = 0; 705 int i; 706 707 if (unlikely(start != 0 || end != LLONG_MAX)) { 708 /* 709 * A valid range is given for sync-ing data pages. The 710 * range is rounded to per-page; extra dirty buffers 711 * may be included if blocksize < pagesize. 712 */ 713 index = start >> PAGE_SHIFT; 714 last = end >> PAGE_SHIFT; 715 } 716 folio_batch_init(&fbatch); 717 repeat: 718 if (unlikely(index > last) || 719 !filemap_get_folios_tag(mapping, &index, last, 720 PAGECACHE_TAG_DIRTY, &fbatch)) 721 return ndirties; 722 723 for (i = 0; i < folio_batch_count(&fbatch); i++) { 724 struct buffer_head *bh, *head; 725 struct folio *folio = fbatch.folios[i]; 726 727 folio_lock(folio); 728 if (unlikely(folio->mapping != mapping)) { 729 /* Exclude folios removed from the address space */ 730 folio_unlock(folio); 731 continue; 732 } 733 head = folio_buffers(folio); 734 if (!head) { 735 create_empty_buffers(&folio->page, i_blocksize(inode), 0); 736 head = folio_buffers(folio); 737 } 738 folio_unlock(folio); 739 740 bh = head; 741 do { 742 if (!buffer_dirty(bh) || buffer_async_write(bh)) 743 continue; 744 get_bh(bh); 745 list_add_tail(&bh->b_assoc_buffers, listp); 746 ndirties++; 747 if (unlikely(ndirties >= nlimit)) { 748 folio_batch_release(&fbatch); 749 cond_resched(); 750 return ndirties; 751 } 752 } while (bh = bh->b_this_page, bh != head); 753 } 754 folio_batch_release(&fbatch); 755 cond_resched(); 756 goto repeat; 757 } 758 759 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 760 struct list_head *listp) 761 { 762 struct nilfs_inode_info *ii = NILFS_I(inode); 763 struct inode *btnc_inode = ii->i_assoc_inode; 764 struct folio_batch fbatch; 765 struct buffer_head *bh, *head; 766 unsigned int i; 767 pgoff_t index = 0; 768 769 if (!btnc_inode) 770 return; 771 folio_batch_init(&fbatch); 772 773 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 774 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 775 for (i = 0; i < folio_batch_count(&fbatch); i++) { 776 bh = head = folio_buffers(fbatch.folios[i]); 777 do { 778 if (buffer_dirty(bh) && 779 !buffer_async_write(bh)) { 780 get_bh(bh); 781 list_add_tail(&bh->b_assoc_buffers, 782 listp); 783 } 784 bh = bh->b_this_page; 785 } while (bh != head); 786 } 787 folio_batch_release(&fbatch); 788 cond_resched(); 789 } 790 } 791 792 static void nilfs_dispose_list(struct the_nilfs *nilfs, 793 struct list_head *head, int force) 794 { 795 struct nilfs_inode_info *ii, *n; 796 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 797 unsigned int nv = 0; 798 799 while (!list_empty(head)) { 800 spin_lock(&nilfs->ns_inode_lock); 801 list_for_each_entry_safe(ii, n, head, i_dirty) { 802 list_del_init(&ii->i_dirty); 803 if (force) { 804 if (unlikely(ii->i_bh)) { 805 brelse(ii->i_bh); 806 ii->i_bh = NULL; 807 } 808 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 809 set_bit(NILFS_I_QUEUED, &ii->i_state); 810 list_add_tail(&ii->i_dirty, 811 &nilfs->ns_dirty_files); 812 continue; 813 } 814 ivec[nv++] = ii; 815 if (nv == SC_N_INODEVEC) 816 break; 817 } 818 spin_unlock(&nilfs->ns_inode_lock); 819 820 for (pii = ivec; nv > 0; pii++, nv--) 821 iput(&(*pii)->vfs_inode); 822 } 823 } 824 825 static void nilfs_iput_work_func(struct work_struct *work) 826 { 827 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 828 sc_iput_work); 829 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 830 831 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 832 } 833 834 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 835 struct nilfs_root *root) 836 { 837 int ret = 0; 838 839 if (nilfs_mdt_fetch_dirty(root->ifile)) 840 ret++; 841 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 842 ret++; 843 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 844 ret++; 845 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 846 ret++; 847 return ret; 848 } 849 850 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 851 { 852 return list_empty(&sci->sc_dirty_files) && 853 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 854 sci->sc_nfreesegs == 0 && 855 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 856 } 857 858 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 859 { 860 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 861 int ret = 0; 862 863 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 864 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 865 866 spin_lock(&nilfs->ns_inode_lock); 867 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 868 ret++; 869 870 spin_unlock(&nilfs->ns_inode_lock); 871 return ret; 872 } 873 874 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 875 { 876 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 877 878 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 879 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 880 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 881 nilfs_mdt_clear_dirty(nilfs->ns_dat); 882 } 883 884 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 885 { 886 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 887 struct buffer_head *bh_cp; 888 struct nilfs_checkpoint *raw_cp; 889 int err; 890 891 /* XXX: this interface will be changed */ 892 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 893 &raw_cp, &bh_cp); 894 if (likely(!err)) { 895 /* 896 * The following code is duplicated with cpfile. But, it is 897 * needed to collect the checkpoint even if it was not newly 898 * created. 899 */ 900 mark_buffer_dirty(bh_cp); 901 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 902 nilfs_cpfile_put_checkpoint( 903 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 904 } else if (err == -EINVAL || err == -ENOENT) { 905 nilfs_error(sci->sc_super, 906 "checkpoint creation failed due to metadata corruption."); 907 err = -EIO; 908 } 909 return err; 910 } 911 912 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 913 { 914 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 915 struct buffer_head *bh_cp; 916 struct nilfs_checkpoint *raw_cp; 917 int err; 918 919 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 920 &raw_cp, &bh_cp); 921 if (unlikely(err)) { 922 if (err == -EINVAL || err == -ENOENT) { 923 nilfs_error(sci->sc_super, 924 "checkpoint finalization failed due to metadata corruption."); 925 err = -EIO; 926 } 927 goto failed_ibh; 928 } 929 raw_cp->cp_snapshot_list.ssl_next = 0; 930 raw_cp->cp_snapshot_list.ssl_prev = 0; 931 raw_cp->cp_inodes_count = 932 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 933 raw_cp->cp_blocks_count = 934 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 935 raw_cp->cp_nblk_inc = 936 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 937 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 938 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 939 940 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 941 nilfs_checkpoint_clear_minor(raw_cp); 942 else 943 nilfs_checkpoint_set_minor(raw_cp); 944 945 nilfs_write_inode_common(sci->sc_root->ifile, 946 &raw_cp->cp_ifile_inode, 1); 947 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 948 return 0; 949 950 failed_ibh: 951 return err; 952 } 953 954 static void nilfs_fill_in_file_bmap(struct inode *ifile, 955 struct nilfs_inode_info *ii) 956 957 { 958 struct buffer_head *ibh; 959 struct nilfs_inode *raw_inode; 960 961 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 962 ibh = ii->i_bh; 963 BUG_ON(!ibh); 964 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 965 ibh); 966 nilfs_bmap_write(ii->i_bmap, raw_inode); 967 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 968 } 969 } 970 971 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 972 { 973 struct nilfs_inode_info *ii; 974 975 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 976 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 977 set_bit(NILFS_I_COLLECTED, &ii->i_state); 978 } 979 } 980 981 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 982 struct the_nilfs *nilfs) 983 { 984 struct buffer_head *bh_sr; 985 struct nilfs_super_root *raw_sr; 986 unsigned int isz, srsz; 987 988 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 989 990 lock_buffer(bh_sr); 991 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 992 isz = nilfs->ns_inode_size; 993 srsz = NILFS_SR_BYTES(isz); 994 995 raw_sr->sr_sum = 0; /* Ensure initialization within this update */ 996 raw_sr->sr_bytes = cpu_to_le16(srsz); 997 raw_sr->sr_nongc_ctime 998 = cpu_to_le64(nilfs_doing_gc() ? 999 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 1000 raw_sr->sr_flags = 0; 1001 1002 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 1003 NILFS_SR_DAT_OFFSET(isz), 1); 1004 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 1005 NILFS_SR_CPFILE_OFFSET(isz), 1); 1006 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 1007 NILFS_SR_SUFILE_OFFSET(isz), 1); 1008 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 1009 set_buffer_uptodate(bh_sr); 1010 unlock_buffer(bh_sr); 1011 } 1012 1013 static void nilfs_redirty_inodes(struct list_head *head) 1014 { 1015 struct nilfs_inode_info *ii; 1016 1017 list_for_each_entry(ii, head, i_dirty) { 1018 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 1019 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 1020 } 1021 } 1022 1023 static void nilfs_drop_collected_inodes(struct list_head *head) 1024 { 1025 struct nilfs_inode_info *ii; 1026 1027 list_for_each_entry(ii, head, i_dirty) { 1028 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 1029 continue; 1030 1031 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 1032 set_bit(NILFS_I_UPDATED, &ii->i_state); 1033 } 1034 } 1035 1036 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1037 struct inode *inode, 1038 struct list_head *listp, 1039 int (*collect)(struct nilfs_sc_info *, 1040 struct buffer_head *, 1041 struct inode *)) 1042 { 1043 struct buffer_head *bh, *n; 1044 int err = 0; 1045 1046 if (collect) { 1047 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1048 list_del_init(&bh->b_assoc_buffers); 1049 err = collect(sci, bh, inode); 1050 brelse(bh); 1051 if (unlikely(err)) 1052 goto dispose_buffers; 1053 } 1054 return 0; 1055 } 1056 1057 dispose_buffers: 1058 while (!list_empty(listp)) { 1059 bh = list_first_entry(listp, struct buffer_head, 1060 b_assoc_buffers); 1061 list_del_init(&bh->b_assoc_buffers); 1062 brelse(bh); 1063 } 1064 return err; 1065 } 1066 1067 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1068 { 1069 /* Remaining number of blocks within segment buffer */ 1070 return sci->sc_segbuf_nblocks - 1071 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1072 } 1073 1074 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1075 struct inode *inode, 1076 const struct nilfs_sc_operations *sc_ops) 1077 { 1078 LIST_HEAD(data_buffers); 1079 LIST_HEAD(node_buffers); 1080 int err; 1081 1082 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1083 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1084 1085 n = nilfs_lookup_dirty_data_buffers( 1086 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1087 if (n > rest) { 1088 err = nilfs_segctor_apply_buffers( 1089 sci, inode, &data_buffers, 1090 sc_ops->collect_data); 1091 BUG_ON(!err); /* always receive -E2BIG or true error */ 1092 goto break_or_fail; 1093 } 1094 } 1095 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1096 1097 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1098 err = nilfs_segctor_apply_buffers( 1099 sci, inode, &data_buffers, sc_ops->collect_data); 1100 if (unlikely(err)) { 1101 /* dispose node list */ 1102 nilfs_segctor_apply_buffers( 1103 sci, inode, &node_buffers, NULL); 1104 goto break_or_fail; 1105 } 1106 sci->sc_stage.flags |= NILFS_CF_NODE; 1107 } 1108 /* Collect node */ 1109 err = nilfs_segctor_apply_buffers( 1110 sci, inode, &node_buffers, sc_ops->collect_node); 1111 if (unlikely(err)) 1112 goto break_or_fail; 1113 1114 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1115 err = nilfs_segctor_apply_buffers( 1116 sci, inode, &node_buffers, sc_ops->collect_bmap); 1117 if (unlikely(err)) 1118 goto break_or_fail; 1119 1120 nilfs_segctor_end_finfo(sci, inode); 1121 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1122 1123 break_or_fail: 1124 return err; 1125 } 1126 1127 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1128 struct inode *inode) 1129 { 1130 LIST_HEAD(data_buffers); 1131 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1132 int err; 1133 1134 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1135 sci->sc_dsync_start, 1136 sci->sc_dsync_end); 1137 1138 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1139 nilfs_collect_file_data); 1140 if (!err) { 1141 nilfs_segctor_end_finfo(sci, inode); 1142 BUG_ON(n > rest); 1143 /* always receive -E2BIG or true error if n > rest */ 1144 } 1145 return err; 1146 } 1147 1148 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1149 { 1150 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1151 struct list_head *head; 1152 struct nilfs_inode_info *ii; 1153 size_t ndone; 1154 int err = 0; 1155 1156 switch (nilfs_sc_cstage_get(sci)) { 1157 case NILFS_ST_INIT: 1158 /* Pre-processes */ 1159 sci->sc_stage.flags = 0; 1160 1161 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1162 sci->sc_nblk_inc = 0; 1163 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1164 if (mode == SC_LSEG_DSYNC) { 1165 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1166 goto dsync_mode; 1167 } 1168 } 1169 1170 sci->sc_stage.dirty_file_ptr = NULL; 1171 sci->sc_stage.gc_inode_ptr = NULL; 1172 if (mode == SC_FLUSH_DAT) { 1173 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1174 goto dat_stage; 1175 } 1176 nilfs_sc_cstage_inc(sci); 1177 fallthrough; 1178 case NILFS_ST_GC: 1179 if (nilfs_doing_gc()) { 1180 head = &sci->sc_gc_inodes; 1181 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1182 head, i_dirty); 1183 list_for_each_entry_continue(ii, head, i_dirty) { 1184 err = nilfs_segctor_scan_file( 1185 sci, &ii->vfs_inode, 1186 &nilfs_sc_file_ops); 1187 if (unlikely(err)) { 1188 sci->sc_stage.gc_inode_ptr = list_entry( 1189 ii->i_dirty.prev, 1190 struct nilfs_inode_info, 1191 i_dirty); 1192 goto break_or_fail; 1193 } 1194 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1195 } 1196 sci->sc_stage.gc_inode_ptr = NULL; 1197 } 1198 nilfs_sc_cstage_inc(sci); 1199 fallthrough; 1200 case NILFS_ST_FILE: 1201 head = &sci->sc_dirty_files; 1202 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1203 i_dirty); 1204 list_for_each_entry_continue(ii, head, i_dirty) { 1205 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1206 1207 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1208 &nilfs_sc_file_ops); 1209 if (unlikely(err)) { 1210 sci->sc_stage.dirty_file_ptr = 1211 list_entry(ii->i_dirty.prev, 1212 struct nilfs_inode_info, 1213 i_dirty); 1214 goto break_or_fail; 1215 } 1216 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1217 /* XXX: required ? */ 1218 } 1219 sci->sc_stage.dirty_file_ptr = NULL; 1220 if (mode == SC_FLUSH_FILE) { 1221 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1222 return 0; 1223 } 1224 nilfs_sc_cstage_inc(sci); 1225 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1226 fallthrough; 1227 case NILFS_ST_IFILE: 1228 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1229 &nilfs_sc_file_ops); 1230 if (unlikely(err)) 1231 break; 1232 nilfs_sc_cstage_inc(sci); 1233 /* Creating a checkpoint */ 1234 err = nilfs_segctor_create_checkpoint(sci); 1235 if (unlikely(err)) 1236 break; 1237 fallthrough; 1238 case NILFS_ST_CPFILE: 1239 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1240 &nilfs_sc_file_ops); 1241 if (unlikely(err)) 1242 break; 1243 nilfs_sc_cstage_inc(sci); 1244 fallthrough; 1245 case NILFS_ST_SUFILE: 1246 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1247 sci->sc_nfreesegs, &ndone); 1248 if (unlikely(err)) { 1249 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1250 sci->sc_freesegs, ndone, 1251 NULL); 1252 break; 1253 } 1254 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1255 1256 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1257 &nilfs_sc_file_ops); 1258 if (unlikely(err)) 1259 break; 1260 nilfs_sc_cstage_inc(sci); 1261 fallthrough; 1262 case NILFS_ST_DAT: 1263 dat_stage: 1264 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1265 &nilfs_sc_dat_ops); 1266 if (unlikely(err)) 1267 break; 1268 if (mode == SC_FLUSH_DAT) { 1269 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1270 return 0; 1271 } 1272 nilfs_sc_cstage_inc(sci); 1273 fallthrough; 1274 case NILFS_ST_SR: 1275 if (mode == SC_LSEG_SR) { 1276 /* Appending a super root */ 1277 err = nilfs_segctor_add_super_root(sci); 1278 if (unlikely(err)) 1279 break; 1280 } 1281 /* End of a logical segment */ 1282 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1283 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1284 return 0; 1285 case NILFS_ST_DSYNC: 1286 dsync_mode: 1287 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1288 ii = sci->sc_dsync_inode; 1289 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1290 break; 1291 1292 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1293 if (unlikely(err)) 1294 break; 1295 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1296 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1297 return 0; 1298 case NILFS_ST_DONE: 1299 return 0; 1300 default: 1301 BUG(); 1302 } 1303 1304 break_or_fail: 1305 return err; 1306 } 1307 1308 /** 1309 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1310 * @sci: nilfs_sc_info 1311 * @nilfs: nilfs object 1312 */ 1313 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1314 struct the_nilfs *nilfs) 1315 { 1316 struct nilfs_segment_buffer *segbuf, *prev; 1317 __u64 nextnum; 1318 int err, alloc = 0; 1319 1320 segbuf = nilfs_segbuf_new(sci->sc_super); 1321 if (unlikely(!segbuf)) 1322 return -ENOMEM; 1323 1324 if (list_empty(&sci->sc_write_logs)) { 1325 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1326 nilfs->ns_pseg_offset, nilfs); 1327 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1328 nilfs_shift_to_next_segment(nilfs); 1329 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1330 } 1331 1332 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1333 nextnum = nilfs->ns_nextnum; 1334 1335 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1336 /* Start from the head of a new full segment */ 1337 alloc++; 1338 } else { 1339 /* Continue logs */ 1340 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1341 nilfs_segbuf_map_cont(segbuf, prev); 1342 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1343 nextnum = prev->sb_nextnum; 1344 1345 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1346 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1347 segbuf->sb_sum.seg_seq++; 1348 alloc++; 1349 } 1350 } 1351 1352 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1353 if (err) 1354 goto failed; 1355 1356 if (alloc) { 1357 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1358 if (err) 1359 goto failed; 1360 } 1361 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1362 1363 BUG_ON(!list_empty(&sci->sc_segbufs)); 1364 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1365 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1366 return 0; 1367 1368 failed: 1369 nilfs_segbuf_free(segbuf); 1370 return err; 1371 } 1372 1373 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1374 struct the_nilfs *nilfs, int nadd) 1375 { 1376 struct nilfs_segment_buffer *segbuf, *prev; 1377 struct inode *sufile = nilfs->ns_sufile; 1378 __u64 nextnextnum; 1379 LIST_HEAD(list); 1380 int err, ret, i; 1381 1382 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1383 /* 1384 * Since the segment specified with nextnum might be allocated during 1385 * the previous construction, the buffer including its segusage may 1386 * not be dirty. The following call ensures that the buffer is dirty 1387 * and will pin the buffer on memory until the sufile is written. 1388 */ 1389 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1390 if (unlikely(err)) 1391 return err; 1392 1393 for (i = 0; i < nadd; i++) { 1394 /* extend segment info */ 1395 err = -ENOMEM; 1396 segbuf = nilfs_segbuf_new(sci->sc_super); 1397 if (unlikely(!segbuf)) 1398 goto failed; 1399 1400 /* map this buffer to region of segment on-disk */ 1401 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1402 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1403 1404 /* allocate the next next full segment */ 1405 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1406 if (unlikely(err)) 1407 goto failed_segbuf; 1408 1409 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1410 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1411 1412 list_add_tail(&segbuf->sb_list, &list); 1413 prev = segbuf; 1414 } 1415 list_splice_tail(&list, &sci->sc_segbufs); 1416 return 0; 1417 1418 failed_segbuf: 1419 nilfs_segbuf_free(segbuf); 1420 failed: 1421 list_for_each_entry(segbuf, &list, sb_list) { 1422 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1423 WARN_ON(ret); /* never fails */ 1424 } 1425 nilfs_destroy_logs(&list); 1426 return err; 1427 } 1428 1429 static void nilfs_free_incomplete_logs(struct list_head *logs, 1430 struct the_nilfs *nilfs) 1431 { 1432 struct nilfs_segment_buffer *segbuf, *prev; 1433 struct inode *sufile = nilfs->ns_sufile; 1434 int ret; 1435 1436 segbuf = NILFS_FIRST_SEGBUF(logs); 1437 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1438 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1439 WARN_ON(ret); /* never fails */ 1440 } 1441 if (atomic_read(&segbuf->sb_err)) { 1442 /* Case 1: The first segment failed */ 1443 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1444 /* 1445 * Case 1a: Partial segment appended into an existing 1446 * segment 1447 */ 1448 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1449 segbuf->sb_fseg_end); 1450 else /* Case 1b: New full segment */ 1451 set_nilfs_discontinued(nilfs); 1452 } 1453 1454 prev = segbuf; 1455 list_for_each_entry_continue(segbuf, logs, sb_list) { 1456 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1457 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1458 WARN_ON(ret); /* never fails */ 1459 } 1460 if (atomic_read(&segbuf->sb_err) && 1461 segbuf->sb_segnum != nilfs->ns_nextnum) 1462 /* Case 2: extended segment (!= next) failed */ 1463 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1464 prev = segbuf; 1465 } 1466 } 1467 1468 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1469 struct inode *sufile) 1470 { 1471 struct nilfs_segment_buffer *segbuf; 1472 unsigned long live_blocks; 1473 int ret; 1474 1475 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1476 live_blocks = segbuf->sb_sum.nblocks + 1477 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1478 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1479 live_blocks, 1480 sci->sc_seg_ctime); 1481 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1482 } 1483 } 1484 1485 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1486 { 1487 struct nilfs_segment_buffer *segbuf; 1488 int ret; 1489 1490 segbuf = NILFS_FIRST_SEGBUF(logs); 1491 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1492 segbuf->sb_pseg_start - 1493 segbuf->sb_fseg_start, 0); 1494 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1495 1496 list_for_each_entry_continue(segbuf, logs, sb_list) { 1497 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1498 0, 0); 1499 WARN_ON(ret); /* always succeed */ 1500 } 1501 } 1502 1503 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1504 struct nilfs_segment_buffer *last, 1505 struct inode *sufile) 1506 { 1507 struct nilfs_segment_buffer *segbuf = last; 1508 int ret; 1509 1510 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1511 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1512 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1513 WARN_ON(ret); 1514 } 1515 nilfs_truncate_logs(&sci->sc_segbufs, last); 1516 } 1517 1518 1519 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1520 struct the_nilfs *nilfs, int mode) 1521 { 1522 struct nilfs_cstage prev_stage = sci->sc_stage; 1523 int err, nadd = 1; 1524 1525 /* Collection retry loop */ 1526 for (;;) { 1527 sci->sc_nblk_this_inc = 0; 1528 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1529 1530 err = nilfs_segctor_reset_segment_buffer(sci); 1531 if (unlikely(err)) 1532 goto failed; 1533 1534 err = nilfs_segctor_collect_blocks(sci, mode); 1535 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1536 if (!err) 1537 break; 1538 1539 if (unlikely(err != -E2BIG)) 1540 goto failed; 1541 1542 /* The current segment is filled up */ 1543 if (mode != SC_LSEG_SR || 1544 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1545 break; 1546 1547 nilfs_clear_logs(&sci->sc_segbufs); 1548 1549 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1550 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1551 sci->sc_freesegs, 1552 sci->sc_nfreesegs, 1553 NULL); 1554 WARN_ON(err); /* do not happen */ 1555 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1556 } 1557 1558 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1559 if (unlikely(err)) 1560 return err; 1561 1562 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1563 sci->sc_stage = prev_stage; 1564 } 1565 nilfs_segctor_zeropad_segsum(sci); 1566 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1567 return 0; 1568 1569 failed: 1570 return err; 1571 } 1572 1573 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1574 struct buffer_head *new_bh) 1575 { 1576 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1577 1578 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1579 /* The caller must release old_bh */ 1580 } 1581 1582 static int 1583 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1584 struct nilfs_segment_buffer *segbuf, 1585 int mode) 1586 { 1587 struct inode *inode = NULL; 1588 sector_t blocknr; 1589 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1590 unsigned long nblocks = 0, ndatablk = 0; 1591 const struct nilfs_sc_operations *sc_op = NULL; 1592 struct nilfs_segsum_pointer ssp; 1593 struct nilfs_finfo *finfo = NULL; 1594 union nilfs_binfo binfo; 1595 struct buffer_head *bh, *bh_org; 1596 ino_t ino = 0; 1597 int err = 0; 1598 1599 if (!nfinfo) 1600 goto out; 1601 1602 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1603 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1604 ssp.offset = sizeof(struct nilfs_segment_summary); 1605 1606 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1607 if (bh == segbuf->sb_super_root) 1608 break; 1609 if (!finfo) { 1610 finfo = nilfs_segctor_map_segsum_entry( 1611 sci, &ssp, sizeof(*finfo)); 1612 ino = le64_to_cpu(finfo->fi_ino); 1613 nblocks = le32_to_cpu(finfo->fi_nblocks); 1614 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1615 1616 inode = bh->b_folio->mapping->host; 1617 1618 if (mode == SC_LSEG_DSYNC) 1619 sc_op = &nilfs_sc_dsync_ops; 1620 else if (ino == NILFS_DAT_INO) 1621 sc_op = &nilfs_sc_dat_ops; 1622 else /* file blocks */ 1623 sc_op = &nilfs_sc_file_ops; 1624 } 1625 bh_org = bh; 1626 get_bh(bh_org); 1627 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1628 &binfo); 1629 if (bh != bh_org) 1630 nilfs_list_replace_buffer(bh_org, bh); 1631 brelse(bh_org); 1632 if (unlikely(err)) 1633 goto failed_bmap; 1634 1635 if (ndatablk > 0) 1636 sc_op->write_data_binfo(sci, &ssp, &binfo); 1637 else 1638 sc_op->write_node_binfo(sci, &ssp, &binfo); 1639 1640 blocknr++; 1641 if (--nblocks == 0) { 1642 finfo = NULL; 1643 if (--nfinfo == 0) 1644 break; 1645 } else if (ndatablk > 0) 1646 ndatablk--; 1647 } 1648 out: 1649 return 0; 1650 1651 failed_bmap: 1652 return err; 1653 } 1654 1655 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1656 { 1657 struct nilfs_segment_buffer *segbuf; 1658 int err; 1659 1660 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1661 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1662 if (unlikely(err)) 1663 return err; 1664 nilfs_segbuf_fill_in_segsum(segbuf); 1665 } 1666 return 0; 1667 } 1668 1669 static void nilfs_begin_page_io(struct page *page) 1670 { 1671 if (!page || PageWriteback(page)) 1672 /* 1673 * For split b-tree node pages, this function may be called 1674 * twice. We ignore the 2nd or later calls by this check. 1675 */ 1676 return; 1677 1678 lock_page(page); 1679 clear_page_dirty_for_io(page); 1680 set_page_writeback(page); 1681 unlock_page(page); 1682 } 1683 1684 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1685 { 1686 struct nilfs_segment_buffer *segbuf; 1687 struct page *bd_page = NULL, *fs_page = NULL; 1688 1689 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1690 struct buffer_head *bh; 1691 1692 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1693 b_assoc_buffers) { 1694 if (bh->b_page != bd_page) { 1695 if (bd_page) { 1696 lock_page(bd_page); 1697 clear_page_dirty_for_io(bd_page); 1698 set_page_writeback(bd_page); 1699 unlock_page(bd_page); 1700 } 1701 bd_page = bh->b_page; 1702 } 1703 } 1704 1705 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1706 b_assoc_buffers) { 1707 set_buffer_async_write(bh); 1708 if (bh == segbuf->sb_super_root) { 1709 if (bh->b_page != bd_page) { 1710 lock_page(bd_page); 1711 clear_page_dirty_for_io(bd_page); 1712 set_page_writeback(bd_page); 1713 unlock_page(bd_page); 1714 bd_page = bh->b_page; 1715 } 1716 break; 1717 } 1718 if (bh->b_page != fs_page) { 1719 nilfs_begin_page_io(fs_page); 1720 fs_page = bh->b_page; 1721 } 1722 } 1723 } 1724 if (bd_page) { 1725 lock_page(bd_page); 1726 clear_page_dirty_for_io(bd_page); 1727 set_page_writeback(bd_page); 1728 unlock_page(bd_page); 1729 } 1730 nilfs_begin_page_io(fs_page); 1731 } 1732 1733 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1734 struct the_nilfs *nilfs) 1735 { 1736 int ret; 1737 1738 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1739 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1740 return ret; 1741 } 1742 1743 static void nilfs_end_page_io(struct page *page, int err) 1744 { 1745 if (!page) 1746 return; 1747 1748 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1749 /* 1750 * For b-tree node pages, this function may be called twice 1751 * or more because they might be split in a segment. 1752 */ 1753 if (PageDirty(page)) { 1754 /* 1755 * For pages holding split b-tree node buffers, dirty 1756 * flag on the buffers may be cleared discretely. 1757 * In that case, the page is once redirtied for 1758 * remaining buffers, and it must be cancelled if 1759 * all the buffers get cleaned later. 1760 */ 1761 lock_page(page); 1762 if (nilfs_page_buffers_clean(page)) 1763 __nilfs_clear_page_dirty(page); 1764 unlock_page(page); 1765 } 1766 return; 1767 } 1768 1769 if (!err) { 1770 if (!nilfs_page_buffers_clean(page)) 1771 __set_page_dirty_nobuffers(page); 1772 ClearPageError(page); 1773 } else { 1774 __set_page_dirty_nobuffers(page); 1775 SetPageError(page); 1776 } 1777 1778 end_page_writeback(page); 1779 } 1780 1781 static void nilfs_abort_logs(struct list_head *logs, int err) 1782 { 1783 struct nilfs_segment_buffer *segbuf; 1784 struct page *bd_page = NULL, *fs_page = NULL; 1785 struct buffer_head *bh; 1786 1787 if (list_empty(logs)) 1788 return; 1789 1790 list_for_each_entry(segbuf, logs, sb_list) { 1791 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1792 b_assoc_buffers) { 1793 clear_buffer_uptodate(bh); 1794 if (bh->b_page != bd_page) { 1795 if (bd_page) 1796 end_page_writeback(bd_page); 1797 bd_page = bh->b_page; 1798 } 1799 } 1800 1801 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1802 b_assoc_buffers) { 1803 clear_buffer_async_write(bh); 1804 if (bh == segbuf->sb_super_root) { 1805 clear_buffer_uptodate(bh); 1806 if (bh->b_page != bd_page) { 1807 end_page_writeback(bd_page); 1808 bd_page = bh->b_page; 1809 } 1810 break; 1811 } 1812 if (bh->b_page != fs_page) { 1813 nilfs_end_page_io(fs_page, err); 1814 fs_page = bh->b_page; 1815 } 1816 } 1817 } 1818 if (bd_page) 1819 end_page_writeback(bd_page); 1820 1821 nilfs_end_page_io(fs_page, err); 1822 } 1823 1824 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1825 struct the_nilfs *nilfs, int err) 1826 { 1827 LIST_HEAD(logs); 1828 int ret; 1829 1830 list_splice_tail_init(&sci->sc_write_logs, &logs); 1831 ret = nilfs_wait_on_logs(&logs); 1832 nilfs_abort_logs(&logs, ret ? : err); 1833 1834 list_splice_tail_init(&sci->sc_segbufs, &logs); 1835 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1836 nilfs_free_incomplete_logs(&logs, nilfs); 1837 1838 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1839 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1840 sci->sc_freesegs, 1841 sci->sc_nfreesegs, 1842 NULL); 1843 WARN_ON(ret); /* do not happen */ 1844 } 1845 1846 nilfs_destroy_logs(&logs); 1847 } 1848 1849 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1850 struct nilfs_segment_buffer *segbuf) 1851 { 1852 nilfs->ns_segnum = segbuf->sb_segnum; 1853 nilfs->ns_nextnum = segbuf->sb_nextnum; 1854 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1855 + segbuf->sb_sum.nblocks; 1856 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1857 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1858 } 1859 1860 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1861 { 1862 struct nilfs_segment_buffer *segbuf; 1863 struct page *bd_page = NULL, *fs_page = NULL; 1864 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1865 int update_sr = false; 1866 1867 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1868 struct buffer_head *bh; 1869 1870 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1871 b_assoc_buffers) { 1872 set_buffer_uptodate(bh); 1873 clear_buffer_dirty(bh); 1874 if (bh->b_page != bd_page) { 1875 if (bd_page) 1876 end_page_writeback(bd_page); 1877 bd_page = bh->b_page; 1878 } 1879 } 1880 /* 1881 * We assume that the buffers which belong to the same page 1882 * continue over the buffer list. 1883 * Under this assumption, the last BHs of pages is 1884 * identifiable by the discontinuity of bh->b_page 1885 * (page != fs_page). 1886 * 1887 * For B-tree node blocks, however, this assumption is not 1888 * guaranteed. The cleanup code of B-tree node pages needs 1889 * special care. 1890 */ 1891 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1892 b_assoc_buffers) { 1893 const unsigned long set_bits = BIT(BH_Uptodate); 1894 const unsigned long clear_bits = 1895 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1896 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1897 BIT(BH_NILFS_Redirected)); 1898 1899 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1900 if (bh == segbuf->sb_super_root) { 1901 if (bh->b_page != bd_page) { 1902 end_page_writeback(bd_page); 1903 bd_page = bh->b_page; 1904 } 1905 update_sr = true; 1906 break; 1907 } 1908 if (bh->b_page != fs_page) { 1909 nilfs_end_page_io(fs_page, 0); 1910 fs_page = bh->b_page; 1911 } 1912 } 1913 1914 if (!nilfs_segbuf_simplex(segbuf)) { 1915 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1916 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1917 sci->sc_lseg_stime = jiffies; 1918 } 1919 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1920 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1921 } 1922 } 1923 /* 1924 * Since pages may continue over multiple segment buffers, 1925 * end of the last page must be checked outside of the loop. 1926 */ 1927 if (bd_page) 1928 end_page_writeback(bd_page); 1929 1930 nilfs_end_page_io(fs_page, 0); 1931 1932 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1933 1934 if (nilfs_doing_gc()) 1935 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1936 else 1937 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1938 1939 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1940 1941 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1942 nilfs_set_next_segment(nilfs, segbuf); 1943 1944 if (update_sr) { 1945 nilfs->ns_flushed_device = 0; 1946 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1947 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1948 1949 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1950 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1951 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1952 nilfs_segctor_clear_metadata_dirty(sci); 1953 } else 1954 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1955 } 1956 1957 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1958 { 1959 int ret; 1960 1961 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1962 if (!ret) { 1963 nilfs_segctor_complete_write(sci); 1964 nilfs_destroy_logs(&sci->sc_write_logs); 1965 } 1966 return ret; 1967 } 1968 1969 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1970 struct the_nilfs *nilfs) 1971 { 1972 struct nilfs_inode_info *ii, *n; 1973 struct inode *ifile = sci->sc_root->ifile; 1974 1975 spin_lock(&nilfs->ns_inode_lock); 1976 retry: 1977 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1978 if (!ii->i_bh) { 1979 struct buffer_head *ibh; 1980 int err; 1981 1982 spin_unlock(&nilfs->ns_inode_lock); 1983 err = nilfs_ifile_get_inode_block( 1984 ifile, ii->vfs_inode.i_ino, &ibh); 1985 if (unlikely(err)) { 1986 nilfs_warn(sci->sc_super, 1987 "log writer: error %d getting inode block (ino=%lu)", 1988 err, ii->vfs_inode.i_ino); 1989 return err; 1990 } 1991 spin_lock(&nilfs->ns_inode_lock); 1992 if (likely(!ii->i_bh)) 1993 ii->i_bh = ibh; 1994 else 1995 brelse(ibh); 1996 goto retry; 1997 } 1998 1999 // Always redirty the buffer to avoid race condition 2000 mark_buffer_dirty(ii->i_bh); 2001 nilfs_mdt_mark_dirty(ifile); 2002 2003 clear_bit(NILFS_I_QUEUED, &ii->i_state); 2004 set_bit(NILFS_I_BUSY, &ii->i_state); 2005 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 2006 } 2007 spin_unlock(&nilfs->ns_inode_lock); 2008 2009 return 0; 2010 } 2011 2012 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 2013 struct the_nilfs *nilfs) 2014 { 2015 struct nilfs_inode_info *ii, *n; 2016 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 2017 int defer_iput = false; 2018 2019 spin_lock(&nilfs->ns_inode_lock); 2020 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 2021 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 2022 test_bit(NILFS_I_DIRTY, &ii->i_state)) 2023 continue; 2024 2025 clear_bit(NILFS_I_BUSY, &ii->i_state); 2026 brelse(ii->i_bh); 2027 ii->i_bh = NULL; 2028 list_del_init(&ii->i_dirty); 2029 if (!ii->vfs_inode.i_nlink || during_mount) { 2030 /* 2031 * Defer calling iput() to avoid deadlocks if 2032 * i_nlink == 0 or mount is not yet finished. 2033 */ 2034 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 2035 defer_iput = true; 2036 } else { 2037 spin_unlock(&nilfs->ns_inode_lock); 2038 iput(&ii->vfs_inode); 2039 spin_lock(&nilfs->ns_inode_lock); 2040 } 2041 } 2042 spin_unlock(&nilfs->ns_inode_lock); 2043 2044 if (defer_iput) 2045 schedule_work(&sci->sc_iput_work); 2046 } 2047 2048 /* 2049 * Main procedure of segment constructor 2050 */ 2051 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2052 { 2053 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2054 int err; 2055 2056 if (sb_rdonly(sci->sc_super)) 2057 return -EROFS; 2058 2059 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2060 sci->sc_cno = nilfs->ns_cno; 2061 2062 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2063 if (unlikely(err)) 2064 goto out; 2065 2066 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2067 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2068 2069 if (nilfs_segctor_clean(sci)) 2070 goto out; 2071 2072 do { 2073 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2074 2075 err = nilfs_segctor_begin_construction(sci, nilfs); 2076 if (unlikely(err)) 2077 goto out; 2078 2079 /* Update time stamp */ 2080 sci->sc_seg_ctime = ktime_get_real_seconds(); 2081 2082 err = nilfs_segctor_collect(sci, nilfs, mode); 2083 if (unlikely(err)) 2084 goto failed; 2085 2086 /* Avoid empty segment */ 2087 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2088 nilfs_segbuf_empty(sci->sc_curseg)) { 2089 nilfs_segctor_abort_construction(sci, nilfs, 1); 2090 goto out; 2091 } 2092 2093 err = nilfs_segctor_assign(sci, mode); 2094 if (unlikely(err)) 2095 goto failed; 2096 2097 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2098 nilfs_segctor_fill_in_file_bmap(sci); 2099 2100 if (mode == SC_LSEG_SR && 2101 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2102 err = nilfs_segctor_fill_in_checkpoint(sci); 2103 if (unlikely(err)) 2104 goto failed_to_write; 2105 2106 nilfs_segctor_fill_in_super_root(sci, nilfs); 2107 } 2108 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2109 2110 /* Write partial segments */ 2111 nilfs_segctor_prepare_write(sci); 2112 2113 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2114 nilfs->ns_crc_seed); 2115 2116 err = nilfs_segctor_write(sci, nilfs); 2117 if (unlikely(err)) 2118 goto failed_to_write; 2119 2120 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2121 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2122 /* 2123 * At this point, we avoid double buffering 2124 * for blocksize < pagesize because page dirty 2125 * flag is turned off during write and dirty 2126 * buffers are not properly collected for 2127 * pages crossing over segments. 2128 */ 2129 err = nilfs_segctor_wait(sci); 2130 if (err) 2131 goto failed_to_write; 2132 } 2133 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2134 2135 out: 2136 nilfs_segctor_drop_written_files(sci, nilfs); 2137 return err; 2138 2139 failed_to_write: 2140 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2141 nilfs_redirty_inodes(&sci->sc_dirty_files); 2142 2143 failed: 2144 if (nilfs_doing_gc()) 2145 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2146 nilfs_segctor_abort_construction(sci, nilfs, err); 2147 goto out; 2148 } 2149 2150 /** 2151 * nilfs_segctor_start_timer - set timer of background write 2152 * @sci: nilfs_sc_info 2153 * 2154 * If the timer has already been set, it ignores the new request. 2155 * This function MUST be called within a section locking the segment 2156 * semaphore. 2157 */ 2158 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2159 { 2160 spin_lock(&sci->sc_state_lock); 2161 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2162 sci->sc_timer.expires = jiffies + sci->sc_interval; 2163 add_timer(&sci->sc_timer); 2164 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2165 } 2166 spin_unlock(&sci->sc_state_lock); 2167 } 2168 2169 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2170 { 2171 spin_lock(&sci->sc_state_lock); 2172 if (!(sci->sc_flush_request & BIT(bn))) { 2173 unsigned long prev_req = sci->sc_flush_request; 2174 2175 sci->sc_flush_request |= BIT(bn); 2176 if (!prev_req) 2177 wake_up(&sci->sc_wait_daemon); 2178 } 2179 spin_unlock(&sci->sc_state_lock); 2180 } 2181 2182 /** 2183 * nilfs_flush_segment - trigger a segment construction for resource control 2184 * @sb: super block 2185 * @ino: inode number of the file to be flushed out. 2186 */ 2187 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2188 { 2189 struct the_nilfs *nilfs = sb->s_fs_info; 2190 struct nilfs_sc_info *sci = nilfs->ns_writer; 2191 2192 if (!sci || nilfs_doing_construction()) 2193 return; 2194 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2195 /* assign bit 0 to data files */ 2196 } 2197 2198 struct nilfs_segctor_wait_request { 2199 wait_queue_entry_t wq; 2200 __u32 seq; 2201 int err; 2202 atomic_t done; 2203 }; 2204 2205 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2206 { 2207 struct nilfs_segctor_wait_request wait_req; 2208 int err = 0; 2209 2210 spin_lock(&sci->sc_state_lock); 2211 init_wait(&wait_req.wq); 2212 wait_req.err = 0; 2213 atomic_set(&wait_req.done, 0); 2214 wait_req.seq = ++sci->sc_seq_request; 2215 spin_unlock(&sci->sc_state_lock); 2216 2217 init_waitqueue_entry(&wait_req.wq, current); 2218 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2219 set_current_state(TASK_INTERRUPTIBLE); 2220 wake_up(&sci->sc_wait_daemon); 2221 2222 for (;;) { 2223 if (atomic_read(&wait_req.done)) { 2224 err = wait_req.err; 2225 break; 2226 } 2227 if (!signal_pending(current)) { 2228 schedule(); 2229 continue; 2230 } 2231 err = -ERESTARTSYS; 2232 break; 2233 } 2234 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2235 return err; 2236 } 2237 2238 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2239 { 2240 struct nilfs_segctor_wait_request *wrq, *n; 2241 unsigned long flags; 2242 2243 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2244 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2245 if (!atomic_read(&wrq->done) && 2246 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2247 wrq->err = err; 2248 atomic_set(&wrq->done, 1); 2249 } 2250 if (atomic_read(&wrq->done)) { 2251 wrq->wq.func(&wrq->wq, 2252 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2253 0, NULL); 2254 } 2255 } 2256 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2257 } 2258 2259 /** 2260 * nilfs_construct_segment - construct a logical segment 2261 * @sb: super block 2262 * 2263 * Return Value: On success, 0 is returned. On errors, one of the following 2264 * negative error code is returned. 2265 * 2266 * %-EROFS - Read only filesystem. 2267 * 2268 * %-EIO - I/O error 2269 * 2270 * %-ENOSPC - No space left on device (only in a panic state). 2271 * 2272 * %-ERESTARTSYS - Interrupted. 2273 * 2274 * %-ENOMEM - Insufficient memory available. 2275 */ 2276 int nilfs_construct_segment(struct super_block *sb) 2277 { 2278 struct the_nilfs *nilfs = sb->s_fs_info; 2279 struct nilfs_sc_info *sci = nilfs->ns_writer; 2280 struct nilfs_transaction_info *ti; 2281 2282 if (sb_rdonly(sb) || unlikely(!sci)) 2283 return -EROFS; 2284 2285 /* A call inside transactions causes a deadlock. */ 2286 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2287 2288 return nilfs_segctor_sync(sci); 2289 } 2290 2291 /** 2292 * nilfs_construct_dsync_segment - construct a data-only logical segment 2293 * @sb: super block 2294 * @inode: inode whose data blocks should be written out 2295 * @start: start byte offset 2296 * @end: end byte offset (inclusive) 2297 * 2298 * Return Value: On success, 0 is returned. On errors, one of the following 2299 * negative error code is returned. 2300 * 2301 * %-EROFS - Read only filesystem. 2302 * 2303 * %-EIO - I/O error 2304 * 2305 * %-ENOSPC - No space left on device (only in a panic state). 2306 * 2307 * %-ERESTARTSYS - Interrupted. 2308 * 2309 * %-ENOMEM - Insufficient memory available. 2310 */ 2311 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2312 loff_t start, loff_t end) 2313 { 2314 struct the_nilfs *nilfs = sb->s_fs_info; 2315 struct nilfs_sc_info *sci = nilfs->ns_writer; 2316 struct nilfs_inode_info *ii; 2317 struct nilfs_transaction_info ti; 2318 int err = 0; 2319 2320 if (sb_rdonly(sb) || unlikely(!sci)) 2321 return -EROFS; 2322 2323 nilfs_transaction_lock(sb, &ti, 0); 2324 2325 ii = NILFS_I(inode); 2326 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2327 nilfs_test_opt(nilfs, STRICT_ORDER) || 2328 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2329 nilfs_discontinued(nilfs)) { 2330 nilfs_transaction_unlock(sb); 2331 err = nilfs_segctor_sync(sci); 2332 return err; 2333 } 2334 2335 spin_lock(&nilfs->ns_inode_lock); 2336 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2337 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2338 spin_unlock(&nilfs->ns_inode_lock); 2339 nilfs_transaction_unlock(sb); 2340 return 0; 2341 } 2342 spin_unlock(&nilfs->ns_inode_lock); 2343 sci->sc_dsync_inode = ii; 2344 sci->sc_dsync_start = start; 2345 sci->sc_dsync_end = end; 2346 2347 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2348 if (!err) 2349 nilfs->ns_flushed_device = 0; 2350 2351 nilfs_transaction_unlock(sb); 2352 return err; 2353 } 2354 2355 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2356 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2357 2358 /** 2359 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2360 * @sci: segment constructor object 2361 */ 2362 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2363 { 2364 spin_lock(&sci->sc_state_lock); 2365 sci->sc_seq_accepted = sci->sc_seq_request; 2366 spin_unlock(&sci->sc_state_lock); 2367 del_timer_sync(&sci->sc_timer); 2368 } 2369 2370 /** 2371 * nilfs_segctor_notify - notify the result of request to caller threads 2372 * @sci: segment constructor object 2373 * @mode: mode of log forming 2374 * @err: error code to be notified 2375 */ 2376 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2377 { 2378 /* Clear requests (even when the construction failed) */ 2379 spin_lock(&sci->sc_state_lock); 2380 2381 if (mode == SC_LSEG_SR) { 2382 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2383 sci->sc_seq_done = sci->sc_seq_accepted; 2384 nilfs_segctor_wakeup(sci, err); 2385 sci->sc_flush_request = 0; 2386 } else { 2387 if (mode == SC_FLUSH_FILE) 2388 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2389 else if (mode == SC_FLUSH_DAT) 2390 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2391 2392 /* re-enable timer if checkpoint creation was not done */ 2393 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2394 time_before(jiffies, sci->sc_timer.expires)) 2395 add_timer(&sci->sc_timer); 2396 } 2397 spin_unlock(&sci->sc_state_lock); 2398 } 2399 2400 /** 2401 * nilfs_segctor_construct - form logs and write them to disk 2402 * @sci: segment constructor object 2403 * @mode: mode of log forming 2404 */ 2405 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2406 { 2407 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2408 struct nilfs_super_block **sbp; 2409 int err = 0; 2410 2411 nilfs_segctor_accept(sci); 2412 2413 if (nilfs_discontinued(nilfs)) 2414 mode = SC_LSEG_SR; 2415 if (!nilfs_segctor_confirm(sci)) 2416 err = nilfs_segctor_do_construct(sci, mode); 2417 2418 if (likely(!err)) { 2419 if (mode != SC_FLUSH_DAT) 2420 atomic_set(&nilfs->ns_ndirtyblks, 0); 2421 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2422 nilfs_discontinued(nilfs)) { 2423 down_write(&nilfs->ns_sem); 2424 err = -EIO; 2425 sbp = nilfs_prepare_super(sci->sc_super, 2426 nilfs_sb_will_flip(nilfs)); 2427 if (likely(sbp)) { 2428 nilfs_set_log_cursor(sbp[0], nilfs); 2429 err = nilfs_commit_super(sci->sc_super, 2430 NILFS_SB_COMMIT); 2431 } 2432 up_write(&nilfs->ns_sem); 2433 } 2434 } 2435 2436 nilfs_segctor_notify(sci, mode, err); 2437 return err; 2438 } 2439 2440 static void nilfs_construction_timeout(struct timer_list *t) 2441 { 2442 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2443 2444 wake_up_process(sci->sc_timer_task); 2445 } 2446 2447 static void 2448 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2449 { 2450 struct nilfs_inode_info *ii, *n; 2451 2452 list_for_each_entry_safe(ii, n, head, i_dirty) { 2453 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2454 continue; 2455 list_del_init(&ii->i_dirty); 2456 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2457 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2458 iput(&ii->vfs_inode); 2459 } 2460 } 2461 2462 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2463 void **kbufs) 2464 { 2465 struct the_nilfs *nilfs = sb->s_fs_info; 2466 struct nilfs_sc_info *sci = nilfs->ns_writer; 2467 struct nilfs_transaction_info ti; 2468 int err; 2469 2470 if (unlikely(!sci)) 2471 return -EROFS; 2472 2473 nilfs_transaction_lock(sb, &ti, 1); 2474 2475 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2476 if (unlikely(err)) 2477 goto out_unlock; 2478 2479 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2480 if (unlikely(err)) { 2481 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2482 goto out_unlock; 2483 } 2484 2485 sci->sc_freesegs = kbufs[4]; 2486 sci->sc_nfreesegs = argv[4].v_nmembs; 2487 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2488 2489 for (;;) { 2490 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2491 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2492 2493 if (likely(!err)) 2494 break; 2495 2496 nilfs_warn(sb, "error %d cleaning segments", err); 2497 set_current_state(TASK_INTERRUPTIBLE); 2498 schedule_timeout(sci->sc_interval); 2499 } 2500 if (nilfs_test_opt(nilfs, DISCARD)) { 2501 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2502 sci->sc_nfreesegs); 2503 if (ret) { 2504 nilfs_warn(sb, 2505 "error %d on discard request, turning discards off for the device", 2506 ret); 2507 nilfs_clear_opt(nilfs, DISCARD); 2508 } 2509 } 2510 2511 out_unlock: 2512 sci->sc_freesegs = NULL; 2513 sci->sc_nfreesegs = 0; 2514 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2515 nilfs_transaction_unlock(sb); 2516 return err; 2517 } 2518 2519 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2520 { 2521 struct nilfs_transaction_info ti; 2522 2523 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2524 nilfs_segctor_construct(sci, mode); 2525 2526 /* 2527 * Unclosed segment should be retried. We do this using sc_timer. 2528 * Timeout of sc_timer will invoke complete construction which leads 2529 * to close the current logical segment. 2530 */ 2531 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2532 nilfs_segctor_start_timer(sci); 2533 2534 nilfs_transaction_unlock(sci->sc_super); 2535 } 2536 2537 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2538 { 2539 int mode = 0; 2540 2541 spin_lock(&sci->sc_state_lock); 2542 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2543 SC_FLUSH_DAT : SC_FLUSH_FILE; 2544 spin_unlock(&sci->sc_state_lock); 2545 2546 if (mode) { 2547 nilfs_segctor_do_construct(sci, mode); 2548 2549 spin_lock(&sci->sc_state_lock); 2550 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2551 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2552 spin_unlock(&sci->sc_state_lock); 2553 } 2554 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2555 } 2556 2557 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2558 { 2559 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2560 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2561 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2562 return SC_FLUSH_FILE; 2563 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2564 return SC_FLUSH_DAT; 2565 } 2566 return SC_LSEG_SR; 2567 } 2568 2569 /** 2570 * nilfs_segctor_thread - main loop of the segment constructor thread. 2571 * @arg: pointer to a struct nilfs_sc_info. 2572 * 2573 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2574 * to execute segment constructions. 2575 */ 2576 static int nilfs_segctor_thread(void *arg) 2577 { 2578 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2579 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2580 int timeout = 0; 2581 2582 sci->sc_timer_task = current; 2583 2584 /* start sync. */ 2585 sci->sc_task = current; 2586 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2587 nilfs_info(sci->sc_super, 2588 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2589 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2590 2591 spin_lock(&sci->sc_state_lock); 2592 loop: 2593 for (;;) { 2594 int mode; 2595 2596 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2597 goto end_thread; 2598 2599 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2600 mode = SC_LSEG_SR; 2601 else if (sci->sc_flush_request) 2602 mode = nilfs_segctor_flush_mode(sci); 2603 else 2604 break; 2605 2606 spin_unlock(&sci->sc_state_lock); 2607 nilfs_segctor_thread_construct(sci, mode); 2608 spin_lock(&sci->sc_state_lock); 2609 timeout = 0; 2610 } 2611 2612 2613 if (freezing(current)) { 2614 spin_unlock(&sci->sc_state_lock); 2615 try_to_freeze(); 2616 spin_lock(&sci->sc_state_lock); 2617 } else { 2618 DEFINE_WAIT(wait); 2619 int should_sleep = 1; 2620 2621 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2622 TASK_INTERRUPTIBLE); 2623 2624 if (sci->sc_seq_request != sci->sc_seq_done) 2625 should_sleep = 0; 2626 else if (sci->sc_flush_request) 2627 should_sleep = 0; 2628 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2629 should_sleep = time_before(jiffies, 2630 sci->sc_timer.expires); 2631 2632 if (should_sleep) { 2633 spin_unlock(&sci->sc_state_lock); 2634 schedule(); 2635 spin_lock(&sci->sc_state_lock); 2636 } 2637 finish_wait(&sci->sc_wait_daemon, &wait); 2638 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2639 time_after_eq(jiffies, sci->sc_timer.expires)); 2640 2641 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2642 set_nilfs_discontinued(nilfs); 2643 } 2644 goto loop; 2645 2646 end_thread: 2647 /* end sync. */ 2648 sci->sc_task = NULL; 2649 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2650 spin_unlock(&sci->sc_state_lock); 2651 return 0; 2652 } 2653 2654 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2655 { 2656 struct task_struct *t; 2657 2658 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2659 if (IS_ERR(t)) { 2660 int err = PTR_ERR(t); 2661 2662 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2663 err); 2664 return err; 2665 } 2666 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2667 return 0; 2668 } 2669 2670 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2671 __acquires(&sci->sc_state_lock) 2672 __releases(&sci->sc_state_lock) 2673 { 2674 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2675 2676 while (sci->sc_task) { 2677 wake_up(&sci->sc_wait_daemon); 2678 spin_unlock(&sci->sc_state_lock); 2679 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2680 spin_lock(&sci->sc_state_lock); 2681 } 2682 } 2683 2684 /* 2685 * Setup & clean-up functions 2686 */ 2687 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2688 struct nilfs_root *root) 2689 { 2690 struct the_nilfs *nilfs = sb->s_fs_info; 2691 struct nilfs_sc_info *sci; 2692 2693 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2694 if (!sci) 2695 return NULL; 2696 2697 sci->sc_super = sb; 2698 2699 nilfs_get_root(root); 2700 sci->sc_root = root; 2701 2702 init_waitqueue_head(&sci->sc_wait_request); 2703 init_waitqueue_head(&sci->sc_wait_daemon); 2704 init_waitqueue_head(&sci->sc_wait_task); 2705 spin_lock_init(&sci->sc_state_lock); 2706 INIT_LIST_HEAD(&sci->sc_dirty_files); 2707 INIT_LIST_HEAD(&sci->sc_segbufs); 2708 INIT_LIST_HEAD(&sci->sc_write_logs); 2709 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2710 INIT_LIST_HEAD(&sci->sc_iput_queue); 2711 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2712 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2713 2714 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2715 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2716 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2717 2718 if (nilfs->ns_interval) 2719 sci->sc_interval = HZ * nilfs->ns_interval; 2720 if (nilfs->ns_watermark) 2721 sci->sc_watermark = nilfs->ns_watermark; 2722 return sci; 2723 } 2724 2725 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2726 { 2727 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2728 2729 /* 2730 * The segctord thread was stopped and its timer was removed. 2731 * But some tasks remain. 2732 */ 2733 do { 2734 struct nilfs_transaction_info ti; 2735 2736 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2737 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2738 nilfs_transaction_unlock(sci->sc_super); 2739 2740 flush_work(&sci->sc_iput_work); 2741 2742 } while (ret && ret != -EROFS && retrycount-- > 0); 2743 } 2744 2745 /** 2746 * nilfs_segctor_destroy - destroy the segment constructor. 2747 * @sci: nilfs_sc_info 2748 * 2749 * nilfs_segctor_destroy() kills the segctord thread and frees 2750 * the nilfs_sc_info struct. 2751 * Caller must hold the segment semaphore. 2752 */ 2753 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2754 { 2755 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2756 int flag; 2757 2758 up_write(&nilfs->ns_segctor_sem); 2759 2760 spin_lock(&sci->sc_state_lock); 2761 nilfs_segctor_kill_thread(sci); 2762 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2763 || sci->sc_seq_request != sci->sc_seq_done); 2764 spin_unlock(&sci->sc_state_lock); 2765 2766 if (flush_work(&sci->sc_iput_work)) 2767 flag = true; 2768 2769 if (flag || !nilfs_segctor_confirm(sci)) 2770 nilfs_segctor_write_out(sci); 2771 2772 if (!list_empty(&sci->sc_dirty_files)) { 2773 nilfs_warn(sci->sc_super, 2774 "disposed unprocessed dirty file(s) when stopping log writer"); 2775 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2776 } 2777 2778 if (!list_empty(&sci->sc_iput_queue)) { 2779 nilfs_warn(sci->sc_super, 2780 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2781 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2782 } 2783 2784 WARN_ON(!list_empty(&sci->sc_segbufs)); 2785 WARN_ON(!list_empty(&sci->sc_write_logs)); 2786 2787 nilfs_put_root(sci->sc_root); 2788 2789 down_write(&nilfs->ns_segctor_sem); 2790 2791 timer_shutdown_sync(&sci->sc_timer); 2792 kfree(sci); 2793 } 2794 2795 /** 2796 * nilfs_attach_log_writer - attach log writer 2797 * @sb: super block instance 2798 * @root: root object of the current filesystem tree 2799 * 2800 * This allocates a log writer object, initializes it, and starts the 2801 * log writer. 2802 * 2803 * Return Value: On success, 0 is returned. On error, one of the following 2804 * negative error code is returned. 2805 * 2806 * %-ENOMEM - Insufficient memory available. 2807 */ 2808 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2809 { 2810 struct the_nilfs *nilfs = sb->s_fs_info; 2811 int err; 2812 2813 if (nilfs->ns_writer) { 2814 /* 2815 * This happens if the filesystem is made read-only by 2816 * __nilfs_error or nilfs_remount and then remounted 2817 * read/write. In these cases, reuse the existing 2818 * writer. 2819 */ 2820 return 0; 2821 } 2822 2823 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2824 if (!nilfs->ns_writer) 2825 return -ENOMEM; 2826 2827 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2828 2829 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2830 if (unlikely(err)) 2831 nilfs_detach_log_writer(sb); 2832 2833 return err; 2834 } 2835 2836 /** 2837 * nilfs_detach_log_writer - destroy log writer 2838 * @sb: super block instance 2839 * 2840 * This kills log writer daemon, frees the log writer object, and 2841 * destroys list of dirty files. 2842 */ 2843 void nilfs_detach_log_writer(struct super_block *sb) 2844 { 2845 struct the_nilfs *nilfs = sb->s_fs_info; 2846 LIST_HEAD(garbage_list); 2847 2848 down_write(&nilfs->ns_segctor_sem); 2849 if (nilfs->ns_writer) { 2850 nilfs_segctor_destroy(nilfs->ns_writer); 2851 nilfs->ns_writer = NULL; 2852 } 2853 set_nilfs_purging(nilfs); 2854 2855 /* Force to free the list of dirty files */ 2856 spin_lock(&nilfs->ns_inode_lock); 2857 if (!list_empty(&nilfs->ns_dirty_files)) { 2858 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2859 nilfs_warn(sb, 2860 "disposed unprocessed dirty file(s) when detaching log writer"); 2861 } 2862 spin_unlock(&nilfs->ns_inode_lock); 2863 up_write(&nilfs->ns_segctor_sem); 2864 2865 nilfs_dispose_list(nilfs, &garbage_list, 1); 2866 clear_nilfs_purging(nilfs); 2867 } 2868