1 /* 2 * segment.c - NILFS segment constructor. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 * 22 */ 23 24 #include <linux/pagemap.h> 25 #include <linux/buffer_head.h> 26 #include <linux/writeback.h> 27 #include <linux/bio.h> 28 #include <linux/completion.h> 29 #include <linux/blkdev.h> 30 #include <linux/backing-dev.h> 31 #include <linux/freezer.h> 32 #include <linux/kthread.h> 33 #include <linux/crc32.h> 34 #include <linux/pagevec.h> 35 #include <linux/slab.h> 36 #include "nilfs.h" 37 #include "btnode.h" 38 #include "page.h" 39 #include "segment.h" 40 #include "sufile.h" 41 #include "cpfile.h" 42 #include "ifile.h" 43 #include "segbuf.h" 44 45 46 /* 47 * Segment constructor 48 */ 49 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 50 51 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments 52 appended in collection retry loop */ 53 54 /* Construction mode */ 55 enum { 56 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 57 SC_LSEG_DSYNC, /* Flush data blocks of a given file and make 58 a logical segment without a super root */ 59 SC_FLUSH_FILE, /* Flush data files, leads to segment writes without 60 creating a checkpoint */ 61 SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without 62 a checkpoint */ 63 }; 64 65 /* Stage numbers of dirty block collection */ 66 enum { 67 NILFS_ST_INIT = 0, 68 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 69 NILFS_ST_FILE, 70 NILFS_ST_IFILE, 71 NILFS_ST_CPFILE, 72 NILFS_ST_SUFILE, 73 NILFS_ST_DAT, 74 NILFS_ST_SR, /* Super root */ 75 NILFS_ST_DSYNC, /* Data sync blocks */ 76 NILFS_ST_DONE, 77 }; 78 79 /* State flags of collection */ 80 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 81 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 82 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 83 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 84 85 /* Operations depending on the construction mode and file type */ 86 struct nilfs_sc_operations { 87 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 88 struct inode *); 89 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 90 struct inode *); 91 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 92 struct inode *); 93 void (*write_data_binfo)(struct nilfs_sc_info *, 94 struct nilfs_segsum_pointer *, 95 union nilfs_binfo *); 96 void (*write_node_binfo)(struct nilfs_sc_info *, 97 struct nilfs_segsum_pointer *, 98 union nilfs_binfo *); 99 }; 100 101 /* 102 * Other definitions 103 */ 104 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 105 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 107 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 108 109 #define nilfs_cnt32_gt(a, b) \ 110 (typecheck(__u32, a) && typecheck(__u32, b) && \ 111 ((__s32)(b) - (__s32)(a) < 0)) 112 #define nilfs_cnt32_ge(a, b) \ 113 (typecheck(__u32, a) && typecheck(__u32, b) && \ 114 ((__s32)(a) - (__s32)(b) >= 0)) 115 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a) 116 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a) 117 118 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti) 119 { 120 struct nilfs_transaction_info *cur_ti = current->journal_info; 121 void *save = NULL; 122 123 if (cur_ti) { 124 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 125 return ++cur_ti->ti_count; 126 else { 127 /* 128 * If journal_info field is occupied by other FS, 129 * it is saved and will be restored on 130 * nilfs_transaction_commit(). 131 */ 132 printk(KERN_WARNING 133 "NILFS warning: journal info from a different " 134 "FS\n"); 135 save = current->journal_info; 136 } 137 } 138 if (!ti) { 139 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 140 if (!ti) 141 return -ENOMEM; 142 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 143 } else { 144 ti->ti_flags = 0; 145 } 146 ti->ti_count = 0; 147 ti->ti_save = save; 148 ti->ti_magic = NILFS_TI_MAGIC; 149 current->journal_info = ti; 150 return 0; 151 } 152 153 /** 154 * nilfs_transaction_begin - start indivisible file operations. 155 * @sb: super block 156 * @ti: nilfs_transaction_info 157 * @vacancy_check: flags for vacancy rate checks 158 * 159 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 160 * the segment semaphore, to make a segment construction and write tasks 161 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 162 * The region enclosed by these two functions can be nested. To avoid a 163 * deadlock, the semaphore is only acquired or released in the outermost call. 164 * 165 * This function allocates a nilfs_transaction_info struct to keep context 166 * information on it. It is initialized and hooked onto the current task in 167 * the outermost call. If a pre-allocated struct is given to @ti, it is used 168 * instead; otherwise a new struct is assigned from a slab. 169 * 170 * When @vacancy_check flag is set, this function will check the amount of 171 * free space, and will wait for the GC to reclaim disk space if low capacity. 172 * 173 * Return Value: On success, 0 is returned. On error, one of the following 174 * negative error code is returned. 175 * 176 * %-ENOMEM - Insufficient memory available. 177 * 178 * %-ENOSPC - No space left on device 179 */ 180 int nilfs_transaction_begin(struct super_block *sb, 181 struct nilfs_transaction_info *ti, 182 int vacancy_check) 183 { 184 struct the_nilfs *nilfs; 185 int ret = nilfs_prepare_segment_lock(ti); 186 187 if (unlikely(ret < 0)) 188 return ret; 189 if (ret > 0) 190 return 0; 191 192 sb_start_intwrite(sb); 193 194 nilfs = sb->s_fs_info; 195 down_read(&nilfs->ns_segctor_sem); 196 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 197 up_read(&nilfs->ns_segctor_sem); 198 ret = -ENOSPC; 199 goto failed; 200 } 201 return 0; 202 203 failed: 204 ti = current->journal_info; 205 current->journal_info = ti->ti_save; 206 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 207 kmem_cache_free(nilfs_transaction_cachep, ti); 208 sb_end_intwrite(sb); 209 return ret; 210 } 211 212 /** 213 * nilfs_transaction_commit - commit indivisible file operations. 214 * @sb: super block 215 * 216 * nilfs_transaction_commit() releases the read semaphore which is 217 * acquired by nilfs_transaction_begin(). This is only performed 218 * in outermost call of this function. If a commit flag is set, 219 * nilfs_transaction_commit() sets a timer to start the segment 220 * constructor. If a sync flag is set, it starts construction 221 * directly. 222 */ 223 int nilfs_transaction_commit(struct super_block *sb) 224 { 225 struct nilfs_transaction_info *ti = current->journal_info; 226 struct the_nilfs *nilfs = sb->s_fs_info; 227 int err = 0; 228 229 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 230 ti->ti_flags |= NILFS_TI_COMMIT; 231 if (ti->ti_count > 0) { 232 ti->ti_count--; 233 return 0; 234 } 235 if (nilfs->ns_writer) { 236 struct nilfs_sc_info *sci = nilfs->ns_writer; 237 238 if (ti->ti_flags & NILFS_TI_COMMIT) 239 nilfs_segctor_start_timer(sci); 240 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 241 nilfs_segctor_do_flush(sci, 0); 242 } 243 up_read(&nilfs->ns_segctor_sem); 244 current->journal_info = ti->ti_save; 245 246 if (ti->ti_flags & NILFS_TI_SYNC) 247 err = nilfs_construct_segment(sb); 248 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 249 kmem_cache_free(nilfs_transaction_cachep, ti); 250 sb_end_intwrite(sb); 251 return err; 252 } 253 254 void nilfs_transaction_abort(struct super_block *sb) 255 { 256 struct nilfs_transaction_info *ti = current->journal_info; 257 struct the_nilfs *nilfs = sb->s_fs_info; 258 259 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 260 if (ti->ti_count > 0) { 261 ti->ti_count--; 262 return; 263 } 264 up_read(&nilfs->ns_segctor_sem); 265 266 current->journal_info = ti->ti_save; 267 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 268 kmem_cache_free(nilfs_transaction_cachep, ti); 269 sb_end_intwrite(sb); 270 } 271 272 void nilfs_relax_pressure_in_lock(struct super_block *sb) 273 { 274 struct the_nilfs *nilfs = sb->s_fs_info; 275 struct nilfs_sc_info *sci = nilfs->ns_writer; 276 277 if (!sci || !sci->sc_flush_request) 278 return; 279 280 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 281 up_read(&nilfs->ns_segctor_sem); 282 283 down_write(&nilfs->ns_segctor_sem); 284 if (sci->sc_flush_request && 285 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 286 struct nilfs_transaction_info *ti = current->journal_info; 287 288 ti->ti_flags |= NILFS_TI_WRITER; 289 nilfs_segctor_do_immediate_flush(sci); 290 ti->ti_flags &= ~NILFS_TI_WRITER; 291 } 292 downgrade_write(&nilfs->ns_segctor_sem); 293 } 294 295 static void nilfs_transaction_lock(struct super_block *sb, 296 struct nilfs_transaction_info *ti, 297 int gcflag) 298 { 299 struct nilfs_transaction_info *cur_ti = current->journal_info; 300 struct the_nilfs *nilfs = sb->s_fs_info; 301 struct nilfs_sc_info *sci = nilfs->ns_writer; 302 303 WARN_ON(cur_ti); 304 ti->ti_flags = NILFS_TI_WRITER; 305 ti->ti_count = 0; 306 ti->ti_save = cur_ti; 307 ti->ti_magic = NILFS_TI_MAGIC; 308 current->journal_info = ti; 309 310 for (;;) { 311 down_write(&nilfs->ns_segctor_sem); 312 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 313 break; 314 315 nilfs_segctor_do_immediate_flush(sci); 316 317 up_write(&nilfs->ns_segctor_sem); 318 yield(); 319 } 320 if (gcflag) 321 ti->ti_flags |= NILFS_TI_GC; 322 } 323 324 static void nilfs_transaction_unlock(struct super_block *sb) 325 { 326 struct nilfs_transaction_info *ti = current->journal_info; 327 struct the_nilfs *nilfs = sb->s_fs_info; 328 329 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 330 BUG_ON(ti->ti_count > 0); 331 332 up_write(&nilfs->ns_segctor_sem); 333 current->journal_info = ti->ti_save; 334 } 335 336 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 337 struct nilfs_segsum_pointer *ssp, 338 unsigned bytes) 339 { 340 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 341 unsigned blocksize = sci->sc_super->s_blocksize; 342 void *p; 343 344 if (unlikely(ssp->offset + bytes > blocksize)) { 345 ssp->offset = 0; 346 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 347 &segbuf->sb_segsum_buffers)); 348 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 349 } 350 p = ssp->bh->b_data + ssp->offset; 351 ssp->offset += bytes; 352 return p; 353 } 354 355 /** 356 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 357 * @sci: nilfs_sc_info 358 */ 359 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 360 { 361 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 362 struct buffer_head *sumbh; 363 unsigned sumbytes; 364 unsigned flags = 0; 365 int err; 366 367 if (nilfs_doing_gc()) 368 flags = NILFS_SS_GC; 369 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 370 if (unlikely(err)) 371 return err; 372 373 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 374 sumbytes = segbuf->sb_sum.sumbytes; 375 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 376 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 377 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 378 return 0; 379 } 380 381 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 382 { 383 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 384 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 385 return -E2BIG; /* The current segment is filled up 386 (internal code) */ 387 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 388 return nilfs_segctor_reset_segment_buffer(sci); 389 } 390 391 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 392 { 393 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 394 int err; 395 396 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 397 err = nilfs_segctor_feed_segment(sci); 398 if (err) 399 return err; 400 segbuf = sci->sc_curseg; 401 } 402 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 403 if (likely(!err)) 404 segbuf->sb_sum.flags |= NILFS_SS_SR; 405 return err; 406 } 407 408 /* 409 * Functions for making segment summary and payloads 410 */ 411 static int nilfs_segctor_segsum_block_required( 412 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 413 unsigned binfo_size) 414 { 415 unsigned blocksize = sci->sc_super->s_blocksize; 416 /* Size of finfo and binfo is enough small against blocksize */ 417 418 return ssp->offset + binfo_size + 419 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 420 blocksize; 421 } 422 423 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 424 struct inode *inode) 425 { 426 sci->sc_curseg->sb_sum.nfinfo++; 427 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 428 nilfs_segctor_map_segsum_entry( 429 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 430 431 if (NILFS_I(inode)->i_root && 432 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 433 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 434 /* skip finfo */ 435 } 436 437 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 438 struct inode *inode) 439 { 440 struct nilfs_finfo *finfo; 441 struct nilfs_inode_info *ii; 442 struct nilfs_segment_buffer *segbuf; 443 __u64 cno; 444 445 if (sci->sc_blk_cnt == 0) 446 return; 447 448 ii = NILFS_I(inode); 449 450 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 451 cno = ii->i_cno; 452 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 453 cno = 0; 454 else 455 cno = sci->sc_cno; 456 457 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 458 sizeof(*finfo)); 459 finfo->fi_ino = cpu_to_le64(inode->i_ino); 460 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 461 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 462 finfo->fi_cno = cpu_to_le64(cno); 463 464 segbuf = sci->sc_curseg; 465 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 466 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 467 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 468 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 469 } 470 471 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 472 struct buffer_head *bh, 473 struct inode *inode, 474 unsigned binfo_size) 475 { 476 struct nilfs_segment_buffer *segbuf; 477 int required, err = 0; 478 479 retry: 480 segbuf = sci->sc_curseg; 481 required = nilfs_segctor_segsum_block_required( 482 sci, &sci->sc_binfo_ptr, binfo_size); 483 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 484 nilfs_segctor_end_finfo(sci, inode); 485 err = nilfs_segctor_feed_segment(sci); 486 if (err) 487 return err; 488 goto retry; 489 } 490 if (unlikely(required)) { 491 err = nilfs_segbuf_extend_segsum(segbuf); 492 if (unlikely(err)) 493 goto failed; 494 } 495 if (sci->sc_blk_cnt == 0) 496 nilfs_segctor_begin_finfo(sci, inode); 497 498 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 499 /* Substitution to vblocknr is delayed until update_blocknr() */ 500 nilfs_segbuf_add_file_buffer(segbuf, bh); 501 sci->sc_blk_cnt++; 502 failed: 503 return err; 504 } 505 506 /* 507 * Callback functions that enumerate, mark, and collect dirty blocks 508 */ 509 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 510 struct buffer_head *bh, struct inode *inode) 511 { 512 int err; 513 514 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 515 if (err < 0) 516 return err; 517 518 err = nilfs_segctor_add_file_block(sci, bh, inode, 519 sizeof(struct nilfs_binfo_v)); 520 if (!err) 521 sci->sc_datablk_cnt++; 522 return err; 523 } 524 525 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 526 struct buffer_head *bh, 527 struct inode *inode) 528 { 529 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 530 } 531 532 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 533 struct buffer_head *bh, 534 struct inode *inode) 535 { 536 WARN_ON(!buffer_dirty(bh)); 537 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 538 } 539 540 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 541 struct nilfs_segsum_pointer *ssp, 542 union nilfs_binfo *binfo) 543 { 544 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 545 sci, ssp, sizeof(*binfo_v)); 546 *binfo_v = binfo->bi_v; 547 } 548 549 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 550 struct nilfs_segsum_pointer *ssp, 551 union nilfs_binfo *binfo) 552 { 553 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 554 sci, ssp, sizeof(*vblocknr)); 555 *vblocknr = binfo->bi_v.bi_vblocknr; 556 } 557 558 static struct nilfs_sc_operations nilfs_sc_file_ops = { 559 .collect_data = nilfs_collect_file_data, 560 .collect_node = nilfs_collect_file_node, 561 .collect_bmap = nilfs_collect_file_bmap, 562 .write_data_binfo = nilfs_write_file_data_binfo, 563 .write_node_binfo = nilfs_write_file_node_binfo, 564 }; 565 566 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 567 struct buffer_head *bh, struct inode *inode) 568 { 569 int err; 570 571 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 572 if (err < 0) 573 return err; 574 575 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 576 if (!err) 577 sci->sc_datablk_cnt++; 578 return err; 579 } 580 581 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 582 struct buffer_head *bh, struct inode *inode) 583 { 584 WARN_ON(!buffer_dirty(bh)); 585 return nilfs_segctor_add_file_block(sci, bh, inode, 586 sizeof(struct nilfs_binfo_dat)); 587 } 588 589 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 590 struct nilfs_segsum_pointer *ssp, 591 union nilfs_binfo *binfo) 592 { 593 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 594 sizeof(*blkoff)); 595 *blkoff = binfo->bi_dat.bi_blkoff; 596 } 597 598 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 599 struct nilfs_segsum_pointer *ssp, 600 union nilfs_binfo *binfo) 601 { 602 struct nilfs_binfo_dat *binfo_dat = 603 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 604 *binfo_dat = binfo->bi_dat; 605 } 606 607 static struct nilfs_sc_operations nilfs_sc_dat_ops = { 608 .collect_data = nilfs_collect_dat_data, 609 .collect_node = nilfs_collect_file_node, 610 .collect_bmap = nilfs_collect_dat_bmap, 611 .write_data_binfo = nilfs_write_dat_data_binfo, 612 .write_node_binfo = nilfs_write_dat_node_binfo, 613 }; 614 615 static struct nilfs_sc_operations nilfs_sc_dsync_ops = { 616 .collect_data = nilfs_collect_file_data, 617 .collect_node = NULL, 618 .collect_bmap = NULL, 619 .write_data_binfo = nilfs_write_file_data_binfo, 620 .write_node_binfo = NULL, 621 }; 622 623 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 624 struct list_head *listp, 625 size_t nlimit, 626 loff_t start, loff_t end) 627 { 628 struct address_space *mapping = inode->i_mapping; 629 struct pagevec pvec; 630 pgoff_t index = 0, last = ULONG_MAX; 631 size_t ndirties = 0; 632 int i; 633 634 if (unlikely(start != 0 || end != LLONG_MAX)) { 635 /* 636 * A valid range is given for sync-ing data pages. The 637 * range is rounded to per-page; extra dirty buffers 638 * may be included if blocksize < pagesize. 639 */ 640 index = start >> PAGE_SHIFT; 641 last = end >> PAGE_SHIFT; 642 } 643 pagevec_init(&pvec, 0); 644 repeat: 645 if (unlikely(index > last) || 646 !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, 647 min_t(pgoff_t, last - index, 648 PAGEVEC_SIZE - 1) + 1)) 649 return ndirties; 650 651 for (i = 0; i < pagevec_count(&pvec); i++) { 652 struct buffer_head *bh, *head; 653 struct page *page = pvec.pages[i]; 654 655 if (unlikely(page->index > last)) 656 break; 657 658 lock_page(page); 659 if (!page_has_buffers(page)) 660 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 661 unlock_page(page); 662 663 bh = head = page_buffers(page); 664 do { 665 if (!buffer_dirty(bh) || buffer_async_write(bh)) 666 continue; 667 get_bh(bh); 668 list_add_tail(&bh->b_assoc_buffers, listp); 669 ndirties++; 670 if (unlikely(ndirties >= nlimit)) { 671 pagevec_release(&pvec); 672 cond_resched(); 673 return ndirties; 674 } 675 } while (bh = bh->b_this_page, bh != head); 676 } 677 pagevec_release(&pvec); 678 cond_resched(); 679 goto repeat; 680 } 681 682 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 683 struct list_head *listp) 684 { 685 struct nilfs_inode_info *ii = NILFS_I(inode); 686 struct address_space *mapping = &ii->i_btnode_cache; 687 struct pagevec pvec; 688 struct buffer_head *bh, *head; 689 unsigned int i; 690 pgoff_t index = 0; 691 692 pagevec_init(&pvec, 0); 693 694 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, 695 PAGEVEC_SIZE)) { 696 for (i = 0; i < pagevec_count(&pvec); i++) { 697 bh = head = page_buffers(pvec.pages[i]); 698 do { 699 if (buffer_dirty(bh) && 700 !buffer_async_write(bh)) { 701 get_bh(bh); 702 list_add_tail(&bh->b_assoc_buffers, 703 listp); 704 } 705 bh = bh->b_this_page; 706 } while (bh != head); 707 } 708 pagevec_release(&pvec); 709 cond_resched(); 710 } 711 } 712 713 static void nilfs_dispose_list(struct the_nilfs *nilfs, 714 struct list_head *head, int force) 715 { 716 struct nilfs_inode_info *ii, *n; 717 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 718 unsigned nv = 0; 719 720 while (!list_empty(head)) { 721 spin_lock(&nilfs->ns_inode_lock); 722 list_for_each_entry_safe(ii, n, head, i_dirty) { 723 list_del_init(&ii->i_dirty); 724 if (force) { 725 if (unlikely(ii->i_bh)) { 726 brelse(ii->i_bh); 727 ii->i_bh = NULL; 728 } 729 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 730 set_bit(NILFS_I_QUEUED, &ii->i_state); 731 list_add_tail(&ii->i_dirty, 732 &nilfs->ns_dirty_files); 733 continue; 734 } 735 ivec[nv++] = ii; 736 if (nv == SC_N_INODEVEC) 737 break; 738 } 739 spin_unlock(&nilfs->ns_inode_lock); 740 741 for (pii = ivec; nv > 0; pii++, nv--) 742 iput(&(*pii)->vfs_inode); 743 } 744 } 745 746 static void nilfs_iput_work_func(struct work_struct *work) 747 { 748 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 749 sc_iput_work); 750 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 751 752 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 753 } 754 755 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 756 struct nilfs_root *root) 757 { 758 int ret = 0; 759 760 if (nilfs_mdt_fetch_dirty(root->ifile)) 761 ret++; 762 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 763 ret++; 764 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 765 ret++; 766 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 767 ret++; 768 return ret; 769 } 770 771 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 772 { 773 return list_empty(&sci->sc_dirty_files) && 774 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 775 sci->sc_nfreesegs == 0 && 776 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 777 } 778 779 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 780 { 781 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 782 int ret = 0; 783 784 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 785 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 786 787 spin_lock(&nilfs->ns_inode_lock); 788 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 789 ret++; 790 791 spin_unlock(&nilfs->ns_inode_lock); 792 return ret; 793 } 794 795 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 796 { 797 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 798 799 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 800 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 801 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 802 nilfs_mdt_clear_dirty(nilfs->ns_dat); 803 } 804 805 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 806 { 807 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 808 struct buffer_head *bh_cp; 809 struct nilfs_checkpoint *raw_cp; 810 int err; 811 812 /* XXX: this interface will be changed */ 813 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 814 &raw_cp, &bh_cp); 815 if (likely(!err)) { 816 /* The following code is duplicated with cpfile. But, it is 817 needed to collect the checkpoint even if it was not newly 818 created */ 819 mark_buffer_dirty(bh_cp); 820 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 821 nilfs_cpfile_put_checkpoint( 822 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 823 } else 824 WARN_ON(err == -EINVAL || err == -ENOENT); 825 826 return err; 827 } 828 829 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 830 { 831 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 832 struct buffer_head *bh_cp; 833 struct nilfs_checkpoint *raw_cp; 834 int err; 835 836 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 837 &raw_cp, &bh_cp); 838 if (unlikely(err)) { 839 WARN_ON(err == -EINVAL || err == -ENOENT); 840 goto failed_ibh; 841 } 842 raw_cp->cp_snapshot_list.ssl_next = 0; 843 raw_cp->cp_snapshot_list.ssl_prev = 0; 844 raw_cp->cp_inodes_count = 845 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 846 raw_cp->cp_blocks_count = 847 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 848 raw_cp->cp_nblk_inc = 849 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 850 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 851 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 852 853 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 854 nilfs_checkpoint_clear_minor(raw_cp); 855 else 856 nilfs_checkpoint_set_minor(raw_cp); 857 858 nilfs_write_inode_common(sci->sc_root->ifile, 859 &raw_cp->cp_ifile_inode, 1); 860 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 861 return 0; 862 863 failed_ibh: 864 return err; 865 } 866 867 static void nilfs_fill_in_file_bmap(struct inode *ifile, 868 struct nilfs_inode_info *ii) 869 870 { 871 struct buffer_head *ibh; 872 struct nilfs_inode *raw_inode; 873 874 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 875 ibh = ii->i_bh; 876 BUG_ON(!ibh); 877 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 878 ibh); 879 nilfs_bmap_write(ii->i_bmap, raw_inode); 880 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 881 } 882 } 883 884 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 885 { 886 struct nilfs_inode_info *ii; 887 888 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 889 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 890 set_bit(NILFS_I_COLLECTED, &ii->i_state); 891 } 892 } 893 894 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 895 struct the_nilfs *nilfs) 896 { 897 struct buffer_head *bh_sr; 898 struct nilfs_super_root *raw_sr; 899 unsigned isz, srsz; 900 901 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 902 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 903 isz = nilfs->ns_inode_size; 904 srsz = NILFS_SR_BYTES(isz); 905 906 raw_sr->sr_bytes = cpu_to_le16(srsz); 907 raw_sr->sr_nongc_ctime 908 = cpu_to_le64(nilfs_doing_gc() ? 909 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 910 raw_sr->sr_flags = 0; 911 912 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 913 NILFS_SR_DAT_OFFSET(isz), 1); 914 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 915 NILFS_SR_CPFILE_OFFSET(isz), 1); 916 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 917 NILFS_SR_SUFILE_OFFSET(isz), 1); 918 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 919 } 920 921 static void nilfs_redirty_inodes(struct list_head *head) 922 { 923 struct nilfs_inode_info *ii; 924 925 list_for_each_entry(ii, head, i_dirty) { 926 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 927 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 928 } 929 } 930 931 static void nilfs_drop_collected_inodes(struct list_head *head) 932 { 933 struct nilfs_inode_info *ii; 934 935 list_for_each_entry(ii, head, i_dirty) { 936 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 937 continue; 938 939 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 940 set_bit(NILFS_I_UPDATED, &ii->i_state); 941 } 942 } 943 944 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 945 struct inode *inode, 946 struct list_head *listp, 947 int (*collect)(struct nilfs_sc_info *, 948 struct buffer_head *, 949 struct inode *)) 950 { 951 struct buffer_head *bh, *n; 952 int err = 0; 953 954 if (collect) { 955 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 956 list_del_init(&bh->b_assoc_buffers); 957 err = collect(sci, bh, inode); 958 brelse(bh); 959 if (unlikely(err)) 960 goto dispose_buffers; 961 } 962 return 0; 963 } 964 965 dispose_buffers: 966 while (!list_empty(listp)) { 967 bh = list_first_entry(listp, struct buffer_head, 968 b_assoc_buffers); 969 list_del_init(&bh->b_assoc_buffers); 970 brelse(bh); 971 } 972 return err; 973 } 974 975 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 976 { 977 /* Remaining number of blocks within segment buffer */ 978 return sci->sc_segbuf_nblocks - 979 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 980 } 981 982 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 983 struct inode *inode, 984 struct nilfs_sc_operations *sc_ops) 985 { 986 LIST_HEAD(data_buffers); 987 LIST_HEAD(node_buffers); 988 int err; 989 990 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 991 size_t n, rest = nilfs_segctor_buffer_rest(sci); 992 993 n = nilfs_lookup_dirty_data_buffers( 994 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 995 if (n > rest) { 996 err = nilfs_segctor_apply_buffers( 997 sci, inode, &data_buffers, 998 sc_ops->collect_data); 999 BUG_ON(!err); /* always receive -E2BIG or true error */ 1000 goto break_or_fail; 1001 } 1002 } 1003 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1004 1005 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1006 err = nilfs_segctor_apply_buffers( 1007 sci, inode, &data_buffers, sc_ops->collect_data); 1008 if (unlikely(err)) { 1009 /* dispose node list */ 1010 nilfs_segctor_apply_buffers( 1011 sci, inode, &node_buffers, NULL); 1012 goto break_or_fail; 1013 } 1014 sci->sc_stage.flags |= NILFS_CF_NODE; 1015 } 1016 /* Collect node */ 1017 err = nilfs_segctor_apply_buffers( 1018 sci, inode, &node_buffers, sc_ops->collect_node); 1019 if (unlikely(err)) 1020 goto break_or_fail; 1021 1022 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1023 err = nilfs_segctor_apply_buffers( 1024 sci, inode, &node_buffers, sc_ops->collect_bmap); 1025 if (unlikely(err)) 1026 goto break_or_fail; 1027 1028 nilfs_segctor_end_finfo(sci, inode); 1029 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1030 1031 break_or_fail: 1032 return err; 1033 } 1034 1035 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1036 struct inode *inode) 1037 { 1038 LIST_HEAD(data_buffers); 1039 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1040 int err; 1041 1042 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1043 sci->sc_dsync_start, 1044 sci->sc_dsync_end); 1045 1046 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1047 nilfs_collect_file_data); 1048 if (!err) { 1049 nilfs_segctor_end_finfo(sci, inode); 1050 BUG_ON(n > rest); 1051 /* always receive -E2BIG or true error if n > rest */ 1052 } 1053 return err; 1054 } 1055 1056 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1057 { 1058 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1059 struct list_head *head; 1060 struct nilfs_inode_info *ii; 1061 size_t ndone; 1062 int err = 0; 1063 1064 switch (sci->sc_stage.scnt) { 1065 case NILFS_ST_INIT: 1066 /* Pre-processes */ 1067 sci->sc_stage.flags = 0; 1068 1069 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1070 sci->sc_nblk_inc = 0; 1071 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1072 if (mode == SC_LSEG_DSYNC) { 1073 sci->sc_stage.scnt = NILFS_ST_DSYNC; 1074 goto dsync_mode; 1075 } 1076 } 1077 1078 sci->sc_stage.dirty_file_ptr = NULL; 1079 sci->sc_stage.gc_inode_ptr = NULL; 1080 if (mode == SC_FLUSH_DAT) { 1081 sci->sc_stage.scnt = NILFS_ST_DAT; 1082 goto dat_stage; 1083 } 1084 sci->sc_stage.scnt++; /* Fall through */ 1085 case NILFS_ST_GC: 1086 if (nilfs_doing_gc()) { 1087 head = &sci->sc_gc_inodes; 1088 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1089 head, i_dirty); 1090 list_for_each_entry_continue(ii, head, i_dirty) { 1091 err = nilfs_segctor_scan_file( 1092 sci, &ii->vfs_inode, 1093 &nilfs_sc_file_ops); 1094 if (unlikely(err)) { 1095 sci->sc_stage.gc_inode_ptr = list_entry( 1096 ii->i_dirty.prev, 1097 struct nilfs_inode_info, 1098 i_dirty); 1099 goto break_or_fail; 1100 } 1101 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1102 } 1103 sci->sc_stage.gc_inode_ptr = NULL; 1104 } 1105 sci->sc_stage.scnt++; /* Fall through */ 1106 case NILFS_ST_FILE: 1107 head = &sci->sc_dirty_files; 1108 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1109 i_dirty); 1110 list_for_each_entry_continue(ii, head, i_dirty) { 1111 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1112 1113 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1114 &nilfs_sc_file_ops); 1115 if (unlikely(err)) { 1116 sci->sc_stage.dirty_file_ptr = 1117 list_entry(ii->i_dirty.prev, 1118 struct nilfs_inode_info, 1119 i_dirty); 1120 goto break_or_fail; 1121 } 1122 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1123 /* XXX: required ? */ 1124 } 1125 sci->sc_stage.dirty_file_ptr = NULL; 1126 if (mode == SC_FLUSH_FILE) { 1127 sci->sc_stage.scnt = NILFS_ST_DONE; 1128 return 0; 1129 } 1130 sci->sc_stage.scnt++; 1131 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1132 /* Fall through */ 1133 case NILFS_ST_IFILE: 1134 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1135 &nilfs_sc_file_ops); 1136 if (unlikely(err)) 1137 break; 1138 sci->sc_stage.scnt++; 1139 /* Creating a checkpoint */ 1140 err = nilfs_segctor_create_checkpoint(sci); 1141 if (unlikely(err)) 1142 break; 1143 /* Fall through */ 1144 case NILFS_ST_CPFILE: 1145 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1146 &nilfs_sc_file_ops); 1147 if (unlikely(err)) 1148 break; 1149 sci->sc_stage.scnt++; /* Fall through */ 1150 case NILFS_ST_SUFILE: 1151 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1152 sci->sc_nfreesegs, &ndone); 1153 if (unlikely(err)) { 1154 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1155 sci->sc_freesegs, ndone, 1156 NULL); 1157 break; 1158 } 1159 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1160 1161 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1162 &nilfs_sc_file_ops); 1163 if (unlikely(err)) 1164 break; 1165 sci->sc_stage.scnt++; /* Fall through */ 1166 case NILFS_ST_DAT: 1167 dat_stage: 1168 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1169 &nilfs_sc_dat_ops); 1170 if (unlikely(err)) 1171 break; 1172 if (mode == SC_FLUSH_DAT) { 1173 sci->sc_stage.scnt = NILFS_ST_DONE; 1174 return 0; 1175 } 1176 sci->sc_stage.scnt++; /* Fall through */ 1177 case NILFS_ST_SR: 1178 if (mode == SC_LSEG_SR) { 1179 /* Appending a super root */ 1180 err = nilfs_segctor_add_super_root(sci); 1181 if (unlikely(err)) 1182 break; 1183 } 1184 /* End of a logical segment */ 1185 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1186 sci->sc_stage.scnt = NILFS_ST_DONE; 1187 return 0; 1188 case NILFS_ST_DSYNC: 1189 dsync_mode: 1190 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1191 ii = sci->sc_dsync_inode; 1192 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1193 break; 1194 1195 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1196 if (unlikely(err)) 1197 break; 1198 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1199 sci->sc_stage.scnt = NILFS_ST_DONE; 1200 return 0; 1201 case NILFS_ST_DONE: 1202 return 0; 1203 default: 1204 BUG(); 1205 } 1206 1207 break_or_fail: 1208 return err; 1209 } 1210 1211 /** 1212 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1213 * @sci: nilfs_sc_info 1214 * @nilfs: nilfs object 1215 */ 1216 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1217 struct the_nilfs *nilfs) 1218 { 1219 struct nilfs_segment_buffer *segbuf, *prev; 1220 __u64 nextnum; 1221 int err, alloc = 0; 1222 1223 segbuf = nilfs_segbuf_new(sci->sc_super); 1224 if (unlikely(!segbuf)) 1225 return -ENOMEM; 1226 1227 if (list_empty(&sci->sc_write_logs)) { 1228 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1229 nilfs->ns_pseg_offset, nilfs); 1230 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1231 nilfs_shift_to_next_segment(nilfs); 1232 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1233 } 1234 1235 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1236 nextnum = nilfs->ns_nextnum; 1237 1238 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1239 /* Start from the head of a new full segment */ 1240 alloc++; 1241 } else { 1242 /* Continue logs */ 1243 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1244 nilfs_segbuf_map_cont(segbuf, prev); 1245 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1246 nextnum = prev->sb_nextnum; 1247 1248 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1249 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1250 segbuf->sb_sum.seg_seq++; 1251 alloc++; 1252 } 1253 } 1254 1255 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1256 if (err) 1257 goto failed; 1258 1259 if (alloc) { 1260 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1261 if (err) 1262 goto failed; 1263 } 1264 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1265 1266 BUG_ON(!list_empty(&sci->sc_segbufs)); 1267 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1268 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1269 return 0; 1270 1271 failed: 1272 nilfs_segbuf_free(segbuf); 1273 return err; 1274 } 1275 1276 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1277 struct the_nilfs *nilfs, int nadd) 1278 { 1279 struct nilfs_segment_buffer *segbuf, *prev; 1280 struct inode *sufile = nilfs->ns_sufile; 1281 __u64 nextnextnum; 1282 LIST_HEAD(list); 1283 int err, ret, i; 1284 1285 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1286 /* 1287 * Since the segment specified with nextnum might be allocated during 1288 * the previous construction, the buffer including its segusage may 1289 * not be dirty. The following call ensures that the buffer is dirty 1290 * and will pin the buffer on memory until the sufile is written. 1291 */ 1292 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1293 if (unlikely(err)) 1294 return err; 1295 1296 for (i = 0; i < nadd; i++) { 1297 /* extend segment info */ 1298 err = -ENOMEM; 1299 segbuf = nilfs_segbuf_new(sci->sc_super); 1300 if (unlikely(!segbuf)) 1301 goto failed; 1302 1303 /* map this buffer to region of segment on-disk */ 1304 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1305 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1306 1307 /* allocate the next next full segment */ 1308 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1309 if (unlikely(err)) 1310 goto failed_segbuf; 1311 1312 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1313 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1314 1315 list_add_tail(&segbuf->sb_list, &list); 1316 prev = segbuf; 1317 } 1318 list_splice_tail(&list, &sci->sc_segbufs); 1319 return 0; 1320 1321 failed_segbuf: 1322 nilfs_segbuf_free(segbuf); 1323 failed: 1324 list_for_each_entry(segbuf, &list, sb_list) { 1325 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1326 WARN_ON(ret); /* never fails */ 1327 } 1328 nilfs_destroy_logs(&list); 1329 return err; 1330 } 1331 1332 static void nilfs_free_incomplete_logs(struct list_head *logs, 1333 struct the_nilfs *nilfs) 1334 { 1335 struct nilfs_segment_buffer *segbuf, *prev; 1336 struct inode *sufile = nilfs->ns_sufile; 1337 int ret; 1338 1339 segbuf = NILFS_FIRST_SEGBUF(logs); 1340 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1341 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1342 WARN_ON(ret); /* never fails */ 1343 } 1344 if (atomic_read(&segbuf->sb_err)) { 1345 /* Case 1: The first segment failed */ 1346 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1347 /* Case 1a: Partial segment appended into an existing 1348 segment */ 1349 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1350 segbuf->sb_fseg_end); 1351 else /* Case 1b: New full segment */ 1352 set_nilfs_discontinued(nilfs); 1353 } 1354 1355 prev = segbuf; 1356 list_for_each_entry_continue(segbuf, logs, sb_list) { 1357 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1358 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1359 WARN_ON(ret); /* never fails */ 1360 } 1361 if (atomic_read(&segbuf->sb_err) && 1362 segbuf->sb_segnum != nilfs->ns_nextnum) 1363 /* Case 2: extended segment (!= next) failed */ 1364 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1365 prev = segbuf; 1366 } 1367 } 1368 1369 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1370 struct inode *sufile) 1371 { 1372 struct nilfs_segment_buffer *segbuf; 1373 unsigned long live_blocks; 1374 int ret; 1375 1376 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1377 live_blocks = segbuf->sb_sum.nblocks + 1378 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1379 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1380 live_blocks, 1381 sci->sc_seg_ctime); 1382 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1383 } 1384 } 1385 1386 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1387 { 1388 struct nilfs_segment_buffer *segbuf; 1389 int ret; 1390 1391 segbuf = NILFS_FIRST_SEGBUF(logs); 1392 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1393 segbuf->sb_pseg_start - 1394 segbuf->sb_fseg_start, 0); 1395 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1396 1397 list_for_each_entry_continue(segbuf, logs, sb_list) { 1398 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1399 0, 0); 1400 WARN_ON(ret); /* always succeed */ 1401 } 1402 } 1403 1404 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1405 struct nilfs_segment_buffer *last, 1406 struct inode *sufile) 1407 { 1408 struct nilfs_segment_buffer *segbuf = last; 1409 int ret; 1410 1411 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1412 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1413 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1414 WARN_ON(ret); 1415 } 1416 nilfs_truncate_logs(&sci->sc_segbufs, last); 1417 } 1418 1419 1420 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1421 struct the_nilfs *nilfs, int mode) 1422 { 1423 struct nilfs_cstage prev_stage = sci->sc_stage; 1424 int err, nadd = 1; 1425 1426 /* Collection retry loop */ 1427 for (;;) { 1428 sci->sc_nblk_this_inc = 0; 1429 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1430 1431 err = nilfs_segctor_reset_segment_buffer(sci); 1432 if (unlikely(err)) 1433 goto failed; 1434 1435 err = nilfs_segctor_collect_blocks(sci, mode); 1436 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1437 if (!err) 1438 break; 1439 1440 if (unlikely(err != -E2BIG)) 1441 goto failed; 1442 1443 /* The current segment is filled up */ 1444 if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE) 1445 break; 1446 1447 nilfs_clear_logs(&sci->sc_segbufs); 1448 1449 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1450 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1451 sci->sc_freesegs, 1452 sci->sc_nfreesegs, 1453 NULL); 1454 WARN_ON(err); /* do not happen */ 1455 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1456 } 1457 1458 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1459 if (unlikely(err)) 1460 return err; 1461 1462 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1463 sci->sc_stage = prev_stage; 1464 } 1465 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1466 return 0; 1467 1468 failed: 1469 return err; 1470 } 1471 1472 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1473 struct buffer_head *new_bh) 1474 { 1475 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1476 1477 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1478 /* The caller must release old_bh */ 1479 } 1480 1481 static int 1482 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1483 struct nilfs_segment_buffer *segbuf, 1484 int mode) 1485 { 1486 struct inode *inode = NULL; 1487 sector_t blocknr; 1488 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1489 unsigned long nblocks = 0, ndatablk = 0; 1490 struct nilfs_sc_operations *sc_op = NULL; 1491 struct nilfs_segsum_pointer ssp; 1492 struct nilfs_finfo *finfo = NULL; 1493 union nilfs_binfo binfo; 1494 struct buffer_head *bh, *bh_org; 1495 ino_t ino = 0; 1496 int err = 0; 1497 1498 if (!nfinfo) 1499 goto out; 1500 1501 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1502 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1503 ssp.offset = sizeof(struct nilfs_segment_summary); 1504 1505 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1506 if (bh == segbuf->sb_super_root) 1507 break; 1508 if (!finfo) { 1509 finfo = nilfs_segctor_map_segsum_entry( 1510 sci, &ssp, sizeof(*finfo)); 1511 ino = le64_to_cpu(finfo->fi_ino); 1512 nblocks = le32_to_cpu(finfo->fi_nblocks); 1513 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1514 1515 inode = bh->b_page->mapping->host; 1516 1517 if (mode == SC_LSEG_DSYNC) 1518 sc_op = &nilfs_sc_dsync_ops; 1519 else if (ino == NILFS_DAT_INO) 1520 sc_op = &nilfs_sc_dat_ops; 1521 else /* file blocks */ 1522 sc_op = &nilfs_sc_file_ops; 1523 } 1524 bh_org = bh; 1525 get_bh(bh_org); 1526 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1527 &binfo); 1528 if (bh != bh_org) 1529 nilfs_list_replace_buffer(bh_org, bh); 1530 brelse(bh_org); 1531 if (unlikely(err)) 1532 goto failed_bmap; 1533 1534 if (ndatablk > 0) 1535 sc_op->write_data_binfo(sci, &ssp, &binfo); 1536 else 1537 sc_op->write_node_binfo(sci, &ssp, &binfo); 1538 1539 blocknr++; 1540 if (--nblocks == 0) { 1541 finfo = NULL; 1542 if (--nfinfo == 0) 1543 break; 1544 } else if (ndatablk > 0) 1545 ndatablk--; 1546 } 1547 out: 1548 return 0; 1549 1550 failed_bmap: 1551 return err; 1552 } 1553 1554 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1555 { 1556 struct nilfs_segment_buffer *segbuf; 1557 int err; 1558 1559 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1560 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1561 if (unlikely(err)) 1562 return err; 1563 nilfs_segbuf_fill_in_segsum(segbuf); 1564 } 1565 return 0; 1566 } 1567 1568 static void nilfs_begin_page_io(struct page *page) 1569 { 1570 if (!page || PageWriteback(page)) 1571 /* For split b-tree node pages, this function may be called 1572 twice. We ignore the 2nd or later calls by this check. */ 1573 return; 1574 1575 lock_page(page); 1576 clear_page_dirty_for_io(page); 1577 set_page_writeback(page); 1578 unlock_page(page); 1579 } 1580 1581 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1582 { 1583 struct nilfs_segment_buffer *segbuf; 1584 struct page *bd_page = NULL, *fs_page = NULL; 1585 1586 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1587 struct buffer_head *bh; 1588 1589 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1590 b_assoc_buffers) { 1591 set_buffer_async_write(bh); 1592 if (bh->b_page != bd_page) { 1593 if (bd_page) { 1594 lock_page(bd_page); 1595 clear_page_dirty_for_io(bd_page); 1596 set_page_writeback(bd_page); 1597 unlock_page(bd_page); 1598 } 1599 bd_page = bh->b_page; 1600 } 1601 } 1602 1603 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1604 b_assoc_buffers) { 1605 set_buffer_async_write(bh); 1606 if (bh == segbuf->sb_super_root) { 1607 if (bh->b_page != bd_page) { 1608 lock_page(bd_page); 1609 clear_page_dirty_for_io(bd_page); 1610 set_page_writeback(bd_page); 1611 unlock_page(bd_page); 1612 bd_page = bh->b_page; 1613 } 1614 break; 1615 } 1616 if (bh->b_page != fs_page) { 1617 nilfs_begin_page_io(fs_page); 1618 fs_page = bh->b_page; 1619 } 1620 } 1621 } 1622 if (bd_page) { 1623 lock_page(bd_page); 1624 clear_page_dirty_for_io(bd_page); 1625 set_page_writeback(bd_page); 1626 unlock_page(bd_page); 1627 } 1628 nilfs_begin_page_io(fs_page); 1629 } 1630 1631 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1632 struct the_nilfs *nilfs) 1633 { 1634 int ret; 1635 1636 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1637 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1638 return ret; 1639 } 1640 1641 static void nilfs_end_page_io(struct page *page, int err) 1642 { 1643 if (!page) 1644 return; 1645 1646 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1647 /* 1648 * For b-tree node pages, this function may be called twice 1649 * or more because they might be split in a segment. 1650 */ 1651 if (PageDirty(page)) { 1652 /* 1653 * For pages holding split b-tree node buffers, dirty 1654 * flag on the buffers may be cleared discretely. 1655 * In that case, the page is once redirtied for 1656 * remaining buffers, and it must be cancelled if 1657 * all the buffers get cleaned later. 1658 */ 1659 lock_page(page); 1660 if (nilfs_page_buffers_clean(page)) 1661 __nilfs_clear_page_dirty(page); 1662 unlock_page(page); 1663 } 1664 return; 1665 } 1666 1667 if (!err) { 1668 if (!nilfs_page_buffers_clean(page)) 1669 __set_page_dirty_nobuffers(page); 1670 ClearPageError(page); 1671 } else { 1672 __set_page_dirty_nobuffers(page); 1673 SetPageError(page); 1674 } 1675 1676 end_page_writeback(page); 1677 } 1678 1679 static void nilfs_abort_logs(struct list_head *logs, int err) 1680 { 1681 struct nilfs_segment_buffer *segbuf; 1682 struct page *bd_page = NULL, *fs_page = NULL; 1683 struct buffer_head *bh; 1684 1685 if (list_empty(logs)) 1686 return; 1687 1688 list_for_each_entry(segbuf, logs, sb_list) { 1689 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1690 b_assoc_buffers) { 1691 clear_buffer_async_write(bh); 1692 if (bh->b_page != bd_page) { 1693 if (bd_page) 1694 end_page_writeback(bd_page); 1695 bd_page = bh->b_page; 1696 } 1697 } 1698 1699 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1700 b_assoc_buffers) { 1701 clear_buffer_async_write(bh); 1702 if (bh == segbuf->sb_super_root) { 1703 if (bh->b_page != bd_page) { 1704 end_page_writeback(bd_page); 1705 bd_page = bh->b_page; 1706 } 1707 break; 1708 } 1709 if (bh->b_page != fs_page) { 1710 nilfs_end_page_io(fs_page, err); 1711 fs_page = bh->b_page; 1712 } 1713 } 1714 } 1715 if (bd_page) 1716 end_page_writeback(bd_page); 1717 1718 nilfs_end_page_io(fs_page, err); 1719 } 1720 1721 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1722 struct the_nilfs *nilfs, int err) 1723 { 1724 LIST_HEAD(logs); 1725 int ret; 1726 1727 list_splice_tail_init(&sci->sc_write_logs, &logs); 1728 ret = nilfs_wait_on_logs(&logs); 1729 nilfs_abort_logs(&logs, ret ? : err); 1730 1731 list_splice_tail_init(&sci->sc_segbufs, &logs); 1732 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1733 nilfs_free_incomplete_logs(&logs, nilfs); 1734 1735 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1736 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1737 sci->sc_freesegs, 1738 sci->sc_nfreesegs, 1739 NULL); 1740 WARN_ON(ret); /* do not happen */ 1741 } 1742 1743 nilfs_destroy_logs(&logs); 1744 } 1745 1746 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1747 struct nilfs_segment_buffer *segbuf) 1748 { 1749 nilfs->ns_segnum = segbuf->sb_segnum; 1750 nilfs->ns_nextnum = segbuf->sb_nextnum; 1751 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1752 + segbuf->sb_sum.nblocks; 1753 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1754 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1755 } 1756 1757 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1758 { 1759 struct nilfs_segment_buffer *segbuf; 1760 struct page *bd_page = NULL, *fs_page = NULL; 1761 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1762 int update_sr = false; 1763 1764 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1765 struct buffer_head *bh; 1766 1767 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1768 b_assoc_buffers) { 1769 set_buffer_uptodate(bh); 1770 clear_buffer_dirty(bh); 1771 clear_buffer_async_write(bh); 1772 if (bh->b_page != bd_page) { 1773 if (bd_page) 1774 end_page_writeback(bd_page); 1775 bd_page = bh->b_page; 1776 } 1777 } 1778 /* 1779 * We assume that the buffers which belong to the same page 1780 * continue over the buffer list. 1781 * Under this assumption, the last BHs of pages is 1782 * identifiable by the discontinuity of bh->b_page 1783 * (page != fs_page). 1784 * 1785 * For B-tree node blocks, however, this assumption is not 1786 * guaranteed. The cleanup code of B-tree node pages needs 1787 * special care. 1788 */ 1789 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1790 b_assoc_buffers) { 1791 set_buffer_uptodate(bh); 1792 clear_buffer_dirty(bh); 1793 clear_buffer_async_write(bh); 1794 clear_buffer_delay(bh); 1795 clear_buffer_nilfs_volatile(bh); 1796 clear_buffer_nilfs_redirected(bh); 1797 if (bh == segbuf->sb_super_root) { 1798 if (bh->b_page != bd_page) { 1799 end_page_writeback(bd_page); 1800 bd_page = bh->b_page; 1801 } 1802 update_sr = true; 1803 break; 1804 } 1805 if (bh->b_page != fs_page) { 1806 nilfs_end_page_io(fs_page, 0); 1807 fs_page = bh->b_page; 1808 } 1809 } 1810 1811 if (!nilfs_segbuf_simplex(segbuf)) { 1812 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1813 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1814 sci->sc_lseg_stime = jiffies; 1815 } 1816 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1817 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1818 } 1819 } 1820 /* 1821 * Since pages may continue over multiple segment buffers, 1822 * end of the last page must be checked outside of the loop. 1823 */ 1824 if (bd_page) 1825 end_page_writeback(bd_page); 1826 1827 nilfs_end_page_io(fs_page, 0); 1828 1829 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1830 1831 if (nilfs_doing_gc()) 1832 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1833 else 1834 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1835 1836 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1837 1838 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1839 nilfs_set_next_segment(nilfs, segbuf); 1840 1841 if (update_sr) { 1842 nilfs->ns_flushed_device = 0; 1843 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1844 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1845 1846 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1847 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1848 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1849 nilfs_segctor_clear_metadata_dirty(sci); 1850 } else 1851 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1852 } 1853 1854 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1855 { 1856 int ret; 1857 1858 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1859 if (!ret) { 1860 nilfs_segctor_complete_write(sci); 1861 nilfs_destroy_logs(&sci->sc_write_logs); 1862 } 1863 return ret; 1864 } 1865 1866 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1867 struct the_nilfs *nilfs) 1868 { 1869 struct nilfs_inode_info *ii, *n; 1870 struct inode *ifile = sci->sc_root->ifile; 1871 1872 spin_lock(&nilfs->ns_inode_lock); 1873 retry: 1874 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1875 if (!ii->i_bh) { 1876 struct buffer_head *ibh; 1877 int err; 1878 1879 spin_unlock(&nilfs->ns_inode_lock); 1880 err = nilfs_ifile_get_inode_block( 1881 ifile, ii->vfs_inode.i_ino, &ibh); 1882 if (unlikely(err)) { 1883 nilfs_warning(sci->sc_super, __func__, 1884 "failed to get inode block.\n"); 1885 return err; 1886 } 1887 mark_buffer_dirty(ibh); 1888 nilfs_mdt_mark_dirty(ifile); 1889 spin_lock(&nilfs->ns_inode_lock); 1890 if (likely(!ii->i_bh)) 1891 ii->i_bh = ibh; 1892 else 1893 brelse(ibh); 1894 goto retry; 1895 } 1896 1897 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1898 set_bit(NILFS_I_BUSY, &ii->i_state); 1899 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1900 } 1901 spin_unlock(&nilfs->ns_inode_lock); 1902 1903 return 0; 1904 } 1905 1906 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 1907 struct the_nilfs *nilfs) 1908 { 1909 struct nilfs_inode_info *ii, *n; 1910 int defer_iput = false; 1911 1912 spin_lock(&nilfs->ns_inode_lock); 1913 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 1914 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 1915 test_bit(NILFS_I_DIRTY, &ii->i_state)) 1916 continue; 1917 1918 clear_bit(NILFS_I_BUSY, &ii->i_state); 1919 brelse(ii->i_bh); 1920 ii->i_bh = NULL; 1921 list_del_init(&ii->i_dirty); 1922 if (!ii->vfs_inode.i_nlink) { 1923 /* 1924 * Defer calling iput() to avoid a deadlock 1925 * over I_SYNC flag for inodes with i_nlink == 0 1926 */ 1927 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 1928 defer_iput = true; 1929 } else { 1930 spin_unlock(&nilfs->ns_inode_lock); 1931 iput(&ii->vfs_inode); 1932 spin_lock(&nilfs->ns_inode_lock); 1933 } 1934 } 1935 spin_unlock(&nilfs->ns_inode_lock); 1936 1937 if (defer_iput) 1938 schedule_work(&sci->sc_iput_work); 1939 } 1940 1941 /* 1942 * Main procedure of segment constructor 1943 */ 1944 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 1945 { 1946 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1947 int err; 1948 1949 sci->sc_stage.scnt = NILFS_ST_INIT; 1950 sci->sc_cno = nilfs->ns_cno; 1951 1952 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 1953 if (unlikely(err)) 1954 goto out; 1955 1956 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 1957 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1958 1959 if (nilfs_segctor_clean(sci)) 1960 goto out; 1961 1962 do { 1963 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 1964 1965 err = nilfs_segctor_begin_construction(sci, nilfs); 1966 if (unlikely(err)) 1967 goto out; 1968 1969 /* Update time stamp */ 1970 sci->sc_seg_ctime = get_seconds(); 1971 1972 err = nilfs_segctor_collect(sci, nilfs, mode); 1973 if (unlikely(err)) 1974 goto failed; 1975 1976 /* Avoid empty segment */ 1977 if (sci->sc_stage.scnt == NILFS_ST_DONE && 1978 nilfs_segbuf_empty(sci->sc_curseg)) { 1979 nilfs_segctor_abort_construction(sci, nilfs, 1); 1980 goto out; 1981 } 1982 1983 err = nilfs_segctor_assign(sci, mode); 1984 if (unlikely(err)) 1985 goto failed; 1986 1987 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 1988 nilfs_segctor_fill_in_file_bmap(sci); 1989 1990 if (mode == SC_LSEG_SR && 1991 sci->sc_stage.scnt >= NILFS_ST_CPFILE) { 1992 err = nilfs_segctor_fill_in_checkpoint(sci); 1993 if (unlikely(err)) 1994 goto failed_to_write; 1995 1996 nilfs_segctor_fill_in_super_root(sci, nilfs); 1997 } 1998 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 1999 2000 /* Write partial segments */ 2001 nilfs_segctor_prepare_write(sci); 2002 2003 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2004 nilfs->ns_crc_seed); 2005 2006 err = nilfs_segctor_write(sci, nilfs); 2007 if (unlikely(err)) 2008 goto failed_to_write; 2009 2010 if (sci->sc_stage.scnt == NILFS_ST_DONE || 2011 nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) { 2012 /* 2013 * At this point, we avoid double buffering 2014 * for blocksize < pagesize because page dirty 2015 * flag is turned off during write and dirty 2016 * buffers are not properly collected for 2017 * pages crossing over segments. 2018 */ 2019 err = nilfs_segctor_wait(sci); 2020 if (err) 2021 goto failed_to_write; 2022 } 2023 } while (sci->sc_stage.scnt != NILFS_ST_DONE); 2024 2025 out: 2026 nilfs_segctor_drop_written_files(sci, nilfs); 2027 return err; 2028 2029 failed_to_write: 2030 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2031 nilfs_redirty_inodes(&sci->sc_dirty_files); 2032 2033 failed: 2034 if (nilfs_doing_gc()) 2035 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2036 nilfs_segctor_abort_construction(sci, nilfs, err); 2037 goto out; 2038 } 2039 2040 /** 2041 * nilfs_segctor_start_timer - set timer of background write 2042 * @sci: nilfs_sc_info 2043 * 2044 * If the timer has already been set, it ignores the new request. 2045 * This function MUST be called within a section locking the segment 2046 * semaphore. 2047 */ 2048 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2049 { 2050 spin_lock(&sci->sc_state_lock); 2051 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2052 sci->sc_timer.expires = jiffies + sci->sc_interval; 2053 add_timer(&sci->sc_timer); 2054 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2055 } 2056 spin_unlock(&sci->sc_state_lock); 2057 } 2058 2059 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2060 { 2061 spin_lock(&sci->sc_state_lock); 2062 if (!(sci->sc_flush_request & (1 << bn))) { 2063 unsigned long prev_req = sci->sc_flush_request; 2064 2065 sci->sc_flush_request |= (1 << bn); 2066 if (!prev_req) 2067 wake_up(&sci->sc_wait_daemon); 2068 } 2069 spin_unlock(&sci->sc_state_lock); 2070 } 2071 2072 /** 2073 * nilfs_flush_segment - trigger a segment construction for resource control 2074 * @sb: super block 2075 * @ino: inode number of the file to be flushed out. 2076 */ 2077 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2078 { 2079 struct the_nilfs *nilfs = sb->s_fs_info; 2080 struct nilfs_sc_info *sci = nilfs->ns_writer; 2081 2082 if (!sci || nilfs_doing_construction()) 2083 return; 2084 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2085 /* assign bit 0 to data files */ 2086 } 2087 2088 struct nilfs_segctor_wait_request { 2089 wait_queue_t wq; 2090 __u32 seq; 2091 int err; 2092 atomic_t done; 2093 }; 2094 2095 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2096 { 2097 struct nilfs_segctor_wait_request wait_req; 2098 int err = 0; 2099 2100 spin_lock(&sci->sc_state_lock); 2101 init_wait(&wait_req.wq); 2102 wait_req.err = 0; 2103 atomic_set(&wait_req.done, 0); 2104 wait_req.seq = ++sci->sc_seq_request; 2105 spin_unlock(&sci->sc_state_lock); 2106 2107 init_waitqueue_entry(&wait_req.wq, current); 2108 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2109 set_current_state(TASK_INTERRUPTIBLE); 2110 wake_up(&sci->sc_wait_daemon); 2111 2112 for (;;) { 2113 if (atomic_read(&wait_req.done)) { 2114 err = wait_req.err; 2115 break; 2116 } 2117 if (!signal_pending(current)) { 2118 schedule(); 2119 continue; 2120 } 2121 err = -ERESTARTSYS; 2122 break; 2123 } 2124 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2125 return err; 2126 } 2127 2128 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2129 { 2130 struct nilfs_segctor_wait_request *wrq, *n; 2131 unsigned long flags; 2132 2133 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2134 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list, 2135 wq.task_list) { 2136 if (!atomic_read(&wrq->done) && 2137 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2138 wrq->err = err; 2139 atomic_set(&wrq->done, 1); 2140 } 2141 if (atomic_read(&wrq->done)) { 2142 wrq->wq.func(&wrq->wq, 2143 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2144 0, NULL); 2145 } 2146 } 2147 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2148 } 2149 2150 /** 2151 * nilfs_construct_segment - construct a logical segment 2152 * @sb: super block 2153 * 2154 * Return Value: On success, 0 is retured. On errors, one of the following 2155 * negative error code is returned. 2156 * 2157 * %-EROFS - Read only filesystem. 2158 * 2159 * %-EIO - I/O error 2160 * 2161 * %-ENOSPC - No space left on device (only in a panic state). 2162 * 2163 * %-ERESTARTSYS - Interrupted. 2164 * 2165 * %-ENOMEM - Insufficient memory available. 2166 */ 2167 int nilfs_construct_segment(struct super_block *sb) 2168 { 2169 struct the_nilfs *nilfs = sb->s_fs_info; 2170 struct nilfs_sc_info *sci = nilfs->ns_writer; 2171 struct nilfs_transaction_info *ti; 2172 int err; 2173 2174 if (!sci) 2175 return -EROFS; 2176 2177 /* A call inside transactions causes a deadlock. */ 2178 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2179 2180 err = nilfs_segctor_sync(sci); 2181 return err; 2182 } 2183 2184 /** 2185 * nilfs_construct_dsync_segment - construct a data-only logical segment 2186 * @sb: super block 2187 * @inode: inode whose data blocks should be written out 2188 * @start: start byte offset 2189 * @end: end byte offset (inclusive) 2190 * 2191 * Return Value: On success, 0 is retured. On errors, one of the following 2192 * negative error code is returned. 2193 * 2194 * %-EROFS - Read only filesystem. 2195 * 2196 * %-EIO - I/O error 2197 * 2198 * %-ENOSPC - No space left on device (only in a panic state). 2199 * 2200 * %-ERESTARTSYS - Interrupted. 2201 * 2202 * %-ENOMEM - Insufficient memory available. 2203 */ 2204 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2205 loff_t start, loff_t end) 2206 { 2207 struct the_nilfs *nilfs = sb->s_fs_info; 2208 struct nilfs_sc_info *sci = nilfs->ns_writer; 2209 struct nilfs_inode_info *ii; 2210 struct nilfs_transaction_info ti; 2211 int err = 0; 2212 2213 if (!sci) 2214 return -EROFS; 2215 2216 nilfs_transaction_lock(sb, &ti, 0); 2217 2218 ii = NILFS_I(inode); 2219 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2220 nilfs_test_opt(nilfs, STRICT_ORDER) || 2221 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2222 nilfs_discontinued(nilfs)) { 2223 nilfs_transaction_unlock(sb); 2224 err = nilfs_segctor_sync(sci); 2225 return err; 2226 } 2227 2228 spin_lock(&nilfs->ns_inode_lock); 2229 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2230 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2231 spin_unlock(&nilfs->ns_inode_lock); 2232 nilfs_transaction_unlock(sb); 2233 return 0; 2234 } 2235 spin_unlock(&nilfs->ns_inode_lock); 2236 sci->sc_dsync_inode = ii; 2237 sci->sc_dsync_start = start; 2238 sci->sc_dsync_end = end; 2239 2240 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2241 if (!err) 2242 nilfs->ns_flushed_device = 0; 2243 2244 nilfs_transaction_unlock(sb); 2245 return err; 2246 } 2247 2248 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2249 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */ 2250 2251 /** 2252 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2253 * @sci: segment constructor object 2254 */ 2255 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2256 { 2257 spin_lock(&sci->sc_state_lock); 2258 sci->sc_seq_accepted = sci->sc_seq_request; 2259 spin_unlock(&sci->sc_state_lock); 2260 del_timer_sync(&sci->sc_timer); 2261 } 2262 2263 /** 2264 * nilfs_segctor_notify - notify the result of request to caller threads 2265 * @sci: segment constructor object 2266 * @mode: mode of log forming 2267 * @err: error code to be notified 2268 */ 2269 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2270 { 2271 /* Clear requests (even when the construction failed) */ 2272 spin_lock(&sci->sc_state_lock); 2273 2274 if (mode == SC_LSEG_SR) { 2275 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2276 sci->sc_seq_done = sci->sc_seq_accepted; 2277 nilfs_segctor_wakeup(sci, err); 2278 sci->sc_flush_request = 0; 2279 } else { 2280 if (mode == SC_FLUSH_FILE) 2281 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2282 else if (mode == SC_FLUSH_DAT) 2283 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2284 2285 /* re-enable timer if checkpoint creation was not done */ 2286 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2287 time_before(jiffies, sci->sc_timer.expires)) 2288 add_timer(&sci->sc_timer); 2289 } 2290 spin_unlock(&sci->sc_state_lock); 2291 } 2292 2293 /** 2294 * nilfs_segctor_construct - form logs and write them to disk 2295 * @sci: segment constructor object 2296 * @mode: mode of log forming 2297 */ 2298 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2299 { 2300 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2301 struct nilfs_super_block **sbp; 2302 int err = 0; 2303 2304 nilfs_segctor_accept(sci); 2305 2306 if (nilfs_discontinued(nilfs)) 2307 mode = SC_LSEG_SR; 2308 if (!nilfs_segctor_confirm(sci)) 2309 err = nilfs_segctor_do_construct(sci, mode); 2310 2311 if (likely(!err)) { 2312 if (mode != SC_FLUSH_DAT) 2313 atomic_set(&nilfs->ns_ndirtyblks, 0); 2314 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2315 nilfs_discontinued(nilfs)) { 2316 down_write(&nilfs->ns_sem); 2317 err = -EIO; 2318 sbp = nilfs_prepare_super(sci->sc_super, 2319 nilfs_sb_will_flip(nilfs)); 2320 if (likely(sbp)) { 2321 nilfs_set_log_cursor(sbp[0], nilfs); 2322 err = nilfs_commit_super(sci->sc_super, 2323 NILFS_SB_COMMIT); 2324 } 2325 up_write(&nilfs->ns_sem); 2326 } 2327 } 2328 2329 nilfs_segctor_notify(sci, mode, err); 2330 return err; 2331 } 2332 2333 static void nilfs_construction_timeout(unsigned long data) 2334 { 2335 struct task_struct *p = (struct task_struct *)data; 2336 wake_up_process(p); 2337 } 2338 2339 static void 2340 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2341 { 2342 struct nilfs_inode_info *ii, *n; 2343 2344 list_for_each_entry_safe(ii, n, head, i_dirty) { 2345 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2346 continue; 2347 list_del_init(&ii->i_dirty); 2348 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2349 nilfs_btnode_cache_clear(&ii->i_btnode_cache); 2350 iput(&ii->vfs_inode); 2351 } 2352 } 2353 2354 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2355 void **kbufs) 2356 { 2357 struct the_nilfs *nilfs = sb->s_fs_info; 2358 struct nilfs_sc_info *sci = nilfs->ns_writer; 2359 struct nilfs_transaction_info ti; 2360 int err; 2361 2362 if (unlikely(!sci)) 2363 return -EROFS; 2364 2365 nilfs_transaction_lock(sb, &ti, 1); 2366 2367 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2368 if (unlikely(err)) 2369 goto out_unlock; 2370 2371 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2372 if (unlikely(err)) { 2373 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2374 goto out_unlock; 2375 } 2376 2377 sci->sc_freesegs = kbufs[4]; 2378 sci->sc_nfreesegs = argv[4].v_nmembs; 2379 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2380 2381 for (;;) { 2382 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2383 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2384 2385 if (likely(!err)) 2386 break; 2387 2388 nilfs_warning(sb, __func__, 2389 "segment construction failed. (err=%d)", err); 2390 set_current_state(TASK_INTERRUPTIBLE); 2391 schedule_timeout(sci->sc_interval); 2392 } 2393 if (nilfs_test_opt(nilfs, DISCARD)) { 2394 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2395 sci->sc_nfreesegs); 2396 if (ret) { 2397 printk(KERN_WARNING 2398 "NILFS warning: error %d on discard request, " 2399 "turning discards off for the device\n", ret); 2400 nilfs_clear_opt(nilfs, DISCARD); 2401 } 2402 } 2403 2404 out_unlock: 2405 sci->sc_freesegs = NULL; 2406 sci->sc_nfreesegs = 0; 2407 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2408 nilfs_transaction_unlock(sb); 2409 return err; 2410 } 2411 2412 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2413 { 2414 struct nilfs_transaction_info ti; 2415 2416 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2417 nilfs_segctor_construct(sci, mode); 2418 2419 /* 2420 * Unclosed segment should be retried. We do this using sc_timer. 2421 * Timeout of sc_timer will invoke complete construction which leads 2422 * to close the current logical segment. 2423 */ 2424 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2425 nilfs_segctor_start_timer(sci); 2426 2427 nilfs_transaction_unlock(sci->sc_super); 2428 } 2429 2430 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2431 { 2432 int mode = 0; 2433 int err; 2434 2435 spin_lock(&sci->sc_state_lock); 2436 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2437 SC_FLUSH_DAT : SC_FLUSH_FILE; 2438 spin_unlock(&sci->sc_state_lock); 2439 2440 if (mode) { 2441 err = nilfs_segctor_do_construct(sci, mode); 2442 2443 spin_lock(&sci->sc_state_lock); 2444 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2445 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2446 spin_unlock(&sci->sc_state_lock); 2447 } 2448 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2449 } 2450 2451 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2452 { 2453 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2454 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2455 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2456 return SC_FLUSH_FILE; 2457 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2458 return SC_FLUSH_DAT; 2459 } 2460 return SC_LSEG_SR; 2461 } 2462 2463 /** 2464 * nilfs_segctor_thread - main loop of the segment constructor thread. 2465 * @arg: pointer to a struct nilfs_sc_info. 2466 * 2467 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2468 * to execute segment constructions. 2469 */ 2470 static int nilfs_segctor_thread(void *arg) 2471 { 2472 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2473 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2474 int timeout = 0; 2475 2476 sci->sc_timer.data = (unsigned long)current; 2477 sci->sc_timer.function = nilfs_construction_timeout; 2478 2479 /* start sync. */ 2480 sci->sc_task = current; 2481 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2482 printk(KERN_INFO 2483 "segctord starting. Construction interval = %lu seconds, " 2484 "CP frequency < %lu seconds\n", 2485 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2486 2487 spin_lock(&sci->sc_state_lock); 2488 loop: 2489 for (;;) { 2490 int mode; 2491 2492 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2493 goto end_thread; 2494 2495 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2496 mode = SC_LSEG_SR; 2497 else if (!sci->sc_flush_request) 2498 break; 2499 else 2500 mode = nilfs_segctor_flush_mode(sci); 2501 2502 spin_unlock(&sci->sc_state_lock); 2503 nilfs_segctor_thread_construct(sci, mode); 2504 spin_lock(&sci->sc_state_lock); 2505 timeout = 0; 2506 } 2507 2508 2509 if (freezing(current)) { 2510 spin_unlock(&sci->sc_state_lock); 2511 try_to_freeze(); 2512 spin_lock(&sci->sc_state_lock); 2513 } else { 2514 DEFINE_WAIT(wait); 2515 int should_sleep = 1; 2516 2517 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2518 TASK_INTERRUPTIBLE); 2519 2520 if (sci->sc_seq_request != sci->sc_seq_done) 2521 should_sleep = 0; 2522 else if (sci->sc_flush_request) 2523 should_sleep = 0; 2524 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2525 should_sleep = time_before(jiffies, 2526 sci->sc_timer.expires); 2527 2528 if (should_sleep) { 2529 spin_unlock(&sci->sc_state_lock); 2530 schedule(); 2531 spin_lock(&sci->sc_state_lock); 2532 } 2533 finish_wait(&sci->sc_wait_daemon, &wait); 2534 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2535 time_after_eq(jiffies, sci->sc_timer.expires)); 2536 2537 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2538 set_nilfs_discontinued(nilfs); 2539 } 2540 goto loop; 2541 2542 end_thread: 2543 spin_unlock(&sci->sc_state_lock); 2544 2545 /* end sync. */ 2546 sci->sc_task = NULL; 2547 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2548 return 0; 2549 } 2550 2551 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2552 { 2553 struct task_struct *t; 2554 2555 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2556 if (IS_ERR(t)) { 2557 int err = PTR_ERR(t); 2558 2559 printk(KERN_ERR "NILFS: error %d creating segctord thread\n", 2560 err); 2561 return err; 2562 } 2563 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2564 return 0; 2565 } 2566 2567 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2568 __acquires(&sci->sc_state_lock) 2569 __releases(&sci->sc_state_lock) 2570 { 2571 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2572 2573 while (sci->sc_task) { 2574 wake_up(&sci->sc_wait_daemon); 2575 spin_unlock(&sci->sc_state_lock); 2576 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2577 spin_lock(&sci->sc_state_lock); 2578 } 2579 } 2580 2581 /* 2582 * Setup & clean-up functions 2583 */ 2584 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2585 struct nilfs_root *root) 2586 { 2587 struct the_nilfs *nilfs = sb->s_fs_info; 2588 struct nilfs_sc_info *sci; 2589 2590 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2591 if (!sci) 2592 return NULL; 2593 2594 sci->sc_super = sb; 2595 2596 nilfs_get_root(root); 2597 sci->sc_root = root; 2598 2599 init_waitqueue_head(&sci->sc_wait_request); 2600 init_waitqueue_head(&sci->sc_wait_daemon); 2601 init_waitqueue_head(&sci->sc_wait_task); 2602 spin_lock_init(&sci->sc_state_lock); 2603 INIT_LIST_HEAD(&sci->sc_dirty_files); 2604 INIT_LIST_HEAD(&sci->sc_segbufs); 2605 INIT_LIST_HEAD(&sci->sc_write_logs); 2606 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2607 INIT_LIST_HEAD(&sci->sc_iput_queue); 2608 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2609 init_timer(&sci->sc_timer); 2610 2611 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2612 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2613 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2614 2615 if (nilfs->ns_interval) 2616 sci->sc_interval = HZ * nilfs->ns_interval; 2617 if (nilfs->ns_watermark) 2618 sci->sc_watermark = nilfs->ns_watermark; 2619 return sci; 2620 } 2621 2622 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2623 { 2624 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2625 2626 /* The segctord thread was stopped and its timer was removed. 2627 But some tasks remain. */ 2628 do { 2629 struct nilfs_transaction_info ti; 2630 2631 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2632 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2633 nilfs_transaction_unlock(sci->sc_super); 2634 2635 flush_work(&sci->sc_iput_work); 2636 2637 } while (ret && retrycount-- > 0); 2638 } 2639 2640 /** 2641 * nilfs_segctor_destroy - destroy the segment constructor. 2642 * @sci: nilfs_sc_info 2643 * 2644 * nilfs_segctor_destroy() kills the segctord thread and frees 2645 * the nilfs_sc_info struct. 2646 * Caller must hold the segment semaphore. 2647 */ 2648 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2649 { 2650 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2651 int flag; 2652 2653 up_write(&nilfs->ns_segctor_sem); 2654 2655 spin_lock(&sci->sc_state_lock); 2656 nilfs_segctor_kill_thread(sci); 2657 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2658 || sci->sc_seq_request != sci->sc_seq_done); 2659 spin_unlock(&sci->sc_state_lock); 2660 2661 if (flush_work(&sci->sc_iput_work)) 2662 flag = true; 2663 2664 if (flag || !nilfs_segctor_confirm(sci)) 2665 nilfs_segctor_write_out(sci); 2666 2667 if (!list_empty(&sci->sc_dirty_files)) { 2668 nilfs_warning(sci->sc_super, __func__, 2669 "dirty file(s) after the final construction\n"); 2670 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2671 } 2672 2673 if (!list_empty(&sci->sc_iput_queue)) { 2674 nilfs_warning(sci->sc_super, __func__, 2675 "iput queue is not empty\n"); 2676 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2677 } 2678 2679 WARN_ON(!list_empty(&sci->sc_segbufs)); 2680 WARN_ON(!list_empty(&sci->sc_write_logs)); 2681 2682 nilfs_put_root(sci->sc_root); 2683 2684 down_write(&nilfs->ns_segctor_sem); 2685 2686 del_timer_sync(&sci->sc_timer); 2687 kfree(sci); 2688 } 2689 2690 /** 2691 * nilfs_attach_log_writer - attach log writer 2692 * @sb: super block instance 2693 * @root: root object of the current filesystem tree 2694 * 2695 * This allocates a log writer object, initializes it, and starts the 2696 * log writer. 2697 * 2698 * Return Value: On success, 0 is returned. On error, one of the following 2699 * negative error code is returned. 2700 * 2701 * %-ENOMEM - Insufficient memory available. 2702 */ 2703 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2704 { 2705 struct the_nilfs *nilfs = sb->s_fs_info; 2706 int err; 2707 2708 if (nilfs->ns_writer) { 2709 /* 2710 * This happens if the filesystem was remounted 2711 * read/write after nilfs_error degenerated it into a 2712 * read-only mount. 2713 */ 2714 nilfs_detach_log_writer(sb); 2715 } 2716 2717 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2718 if (!nilfs->ns_writer) 2719 return -ENOMEM; 2720 2721 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2722 if (err) { 2723 kfree(nilfs->ns_writer); 2724 nilfs->ns_writer = NULL; 2725 } 2726 return err; 2727 } 2728 2729 /** 2730 * nilfs_detach_log_writer - destroy log writer 2731 * @sb: super block instance 2732 * 2733 * This kills log writer daemon, frees the log writer object, and 2734 * destroys list of dirty files. 2735 */ 2736 void nilfs_detach_log_writer(struct super_block *sb) 2737 { 2738 struct the_nilfs *nilfs = sb->s_fs_info; 2739 LIST_HEAD(garbage_list); 2740 2741 down_write(&nilfs->ns_segctor_sem); 2742 if (nilfs->ns_writer) { 2743 nilfs_segctor_destroy(nilfs->ns_writer); 2744 nilfs->ns_writer = NULL; 2745 } 2746 2747 /* Force to free the list of dirty files */ 2748 spin_lock(&nilfs->ns_inode_lock); 2749 if (!list_empty(&nilfs->ns_dirty_files)) { 2750 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2751 nilfs_warning(sb, __func__, 2752 "Hit dirty file after stopped log writer\n"); 2753 } 2754 spin_unlock(&nilfs->ns_inode_lock); 2755 up_write(&nilfs->ns_segctor_sem); 2756 2757 nilfs_dispose_list(nilfs, &garbage_list, 1); 2758 } 2759