1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * segment.c - NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_gt(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(b) - (__s32)(a) < 0)) 140 #define nilfs_cnt32_ge(a, b) \ 141 (typecheck(__u32, a) && typecheck(__u32, b) && \ 142 ((__s32)(a) - (__s32)(b) >= 0)) 143 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a) 144 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a) 145 146 static int nilfs_prepare_segment_lock(struct super_block *sb, 147 struct nilfs_transaction_info *ti) 148 { 149 struct nilfs_transaction_info *cur_ti = current->journal_info; 150 void *save = NULL; 151 152 if (cur_ti) { 153 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 154 return ++cur_ti->ti_count; 155 156 /* 157 * If journal_info field is occupied by other FS, 158 * it is saved and will be restored on 159 * nilfs_transaction_commit(). 160 */ 161 nilfs_warn(sb, "journal info from a different FS"); 162 save = current->journal_info; 163 } 164 if (!ti) { 165 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 166 if (!ti) 167 return -ENOMEM; 168 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 169 } else { 170 ti->ti_flags = 0; 171 } 172 ti->ti_count = 0; 173 ti->ti_save = save; 174 ti->ti_magic = NILFS_TI_MAGIC; 175 current->journal_info = ti; 176 return 0; 177 } 178 179 /** 180 * nilfs_transaction_begin - start indivisible file operations. 181 * @sb: super block 182 * @ti: nilfs_transaction_info 183 * @vacancy_check: flags for vacancy rate checks 184 * 185 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 186 * the segment semaphore, to make a segment construction and write tasks 187 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 188 * The region enclosed by these two functions can be nested. To avoid a 189 * deadlock, the semaphore is only acquired or released in the outermost call. 190 * 191 * This function allocates a nilfs_transaction_info struct to keep context 192 * information on it. It is initialized and hooked onto the current task in 193 * the outermost call. If a pre-allocated struct is given to @ti, it is used 194 * instead; otherwise a new struct is assigned from a slab. 195 * 196 * When @vacancy_check flag is set, this function will check the amount of 197 * free space, and will wait for the GC to reclaim disk space if low capacity. 198 * 199 * Return Value: On success, 0 is returned. On error, one of the following 200 * negative error code is returned. 201 * 202 * %-ENOMEM - Insufficient memory available. 203 * 204 * %-ENOSPC - No space left on device 205 */ 206 int nilfs_transaction_begin(struct super_block *sb, 207 struct nilfs_transaction_info *ti, 208 int vacancy_check) 209 { 210 struct the_nilfs *nilfs; 211 int ret = nilfs_prepare_segment_lock(sb, ti); 212 struct nilfs_transaction_info *trace_ti; 213 214 if (unlikely(ret < 0)) 215 return ret; 216 if (ret > 0) { 217 trace_ti = current->journal_info; 218 219 trace_nilfs2_transaction_transition(sb, trace_ti, 220 trace_ti->ti_count, trace_ti->ti_flags, 221 TRACE_NILFS2_TRANSACTION_BEGIN); 222 return 0; 223 } 224 225 sb_start_intwrite(sb); 226 227 nilfs = sb->s_fs_info; 228 down_read(&nilfs->ns_segctor_sem); 229 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 230 up_read(&nilfs->ns_segctor_sem); 231 ret = -ENOSPC; 232 goto failed; 233 } 234 235 trace_ti = current->journal_info; 236 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 237 trace_ti->ti_flags, 238 TRACE_NILFS2_TRANSACTION_BEGIN); 239 return 0; 240 241 failed: 242 ti = current->journal_info; 243 current->journal_info = ti->ti_save; 244 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 245 kmem_cache_free(nilfs_transaction_cachep, ti); 246 sb_end_intwrite(sb); 247 return ret; 248 } 249 250 /** 251 * nilfs_transaction_commit - commit indivisible file operations. 252 * @sb: super block 253 * 254 * nilfs_transaction_commit() releases the read semaphore which is 255 * acquired by nilfs_transaction_begin(). This is only performed 256 * in outermost call of this function. If a commit flag is set, 257 * nilfs_transaction_commit() sets a timer to start the segment 258 * constructor. If a sync flag is set, it starts construction 259 * directly. 260 */ 261 int nilfs_transaction_commit(struct super_block *sb) 262 { 263 struct nilfs_transaction_info *ti = current->journal_info; 264 struct the_nilfs *nilfs = sb->s_fs_info; 265 int err = 0; 266 267 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 268 ti->ti_flags |= NILFS_TI_COMMIT; 269 if (ti->ti_count > 0) { 270 ti->ti_count--; 271 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 272 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 273 return 0; 274 } 275 if (nilfs->ns_writer) { 276 struct nilfs_sc_info *sci = nilfs->ns_writer; 277 278 if (ti->ti_flags & NILFS_TI_COMMIT) 279 nilfs_segctor_start_timer(sci); 280 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 281 nilfs_segctor_do_flush(sci, 0); 282 } 283 up_read(&nilfs->ns_segctor_sem); 284 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 285 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 286 287 current->journal_info = ti->ti_save; 288 289 if (ti->ti_flags & NILFS_TI_SYNC) 290 err = nilfs_construct_segment(sb); 291 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 292 kmem_cache_free(nilfs_transaction_cachep, ti); 293 sb_end_intwrite(sb); 294 return err; 295 } 296 297 void nilfs_transaction_abort(struct super_block *sb) 298 { 299 struct nilfs_transaction_info *ti = current->journal_info; 300 struct the_nilfs *nilfs = sb->s_fs_info; 301 302 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 303 if (ti->ti_count > 0) { 304 ti->ti_count--; 305 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 306 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 307 return; 308 } 309 up_read(&nilfs->ns_segctor_sem); 310 311 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 312 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 313 314 current->journal_info = ti->ti_save; 315 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 316 kmem_cache_free(nilfs_transaction_cachep, ti); 317 sb_end_intwrite(sb); 318 } 319 320 void nilfs_relax_pressure_in_lock(struct super_block *sb) 321 { 322 struct the_nilfs *nilfs = sb->s_fs_info; 323 struct nilfs_sc_info *sci = nilfs->ns_writer; 324 325 if (!sci || !sci->sc_flush_request) 326 return; 327 328 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 329 up_read(&nilfs->ns_segctor_sem); 330 331 down_write(&nilfs->ns_segctor_sem); 332 if (sci->sc_flush_request && 333 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 334 struct nilfs_transaction_info *ti = current->journal_info; 335 336 ti->ti_flags |= NILFS_TI_WRITER; 337 nilfs_segctor_do_immediate_flush(sci); 338 ti->ti_flags &= ~NILFS_TI_WRITER; 339 } 340 downgrade_write(&nilfs->ns_segctor_sem); 341 } 342 343 static void nilfs_transaction_lock(struct super_block *sb, 344 struct nilfs_transaction_info *ti, 345 int gcflag) 346 { 347 struct nilfs_transaction_info *cur_ti = current->journal_info; 348 struct the_nilfs *nilfs = sb->s_fs_info; 349 struct nilfs_sc_info *sci = nilfs->ns_writer; 350 351 WARN_ON(cur_ti); 352 ti->ti_flags = NILFS_TI_WRITER; 353 ti->ti_count = 0; 354 ti->ti_save = cur_ti; 355 ti->ti_magic = NILFS_TI_MAGIC; 356 current->journal_info = ti; 357 358 for (;;) { 359 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 360 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 361 362 down_write(&nilfs->ns_segctor_sem); 363 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 364 break; 365 366 nilfs_segctor_do_immediate_flush(sci); 367 368 up_write(&nilfs->ns_segctor_sem); 369 cond_resched(); 370 } 371 if (gcflag) 372 ti->ti_flags |= NILFS_TI_GC; 373 374 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 375 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 376 } 377 378 static void nilfs_transaction_unlock(struct super_block *sb) 379 { 380 struct nilfs_transaction_info *ti = current->journal_info; 381 struct the_nilfs *nilfs = sb->s_fs_info; 382 383 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 384 BUG_ON(ti->ti_count > 0); 385 386 up_write(&nilfs->ns_segctor_sem); 387 current->journal_info = ti->ti_save; 388 389 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 390 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 391 } 392 393 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 394 struct nilfs_segsum_pointer *ssp, 395 unsigned int bytes) 396 { 397 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 398 unsigned int blocksize = sci->sc_super->s_blocksize; 399 void *p; 400 401 if (unlikely(ssp->offset + bytes > blocksize)) { 402 ssp->offset = 0; 403 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 404 &segbuf->sb_segsum_buffers)); 405 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 406 } 407 p = ssp->bh->b_data + ssp->offset; 408 ssp->offset += bytes; 409 return p; 410 } 411 412 /** 413 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 414 * @sci: nilfs_sc_info 415 */ 416 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 417 { 418 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 419 struct buffer_head *sumbh; 420 unsigned int sumbytes; 421 unsigned int flags = 0; 422 int err; 423 424 if (nilfs_doing_gc()) 425 flags = NILFS_SS_GC; 426 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 427 if (unlikely(err)) 428 return err; 429 430 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 431 sumbytes = segbuf->sb_sum.sumbytes; 432 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 433 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 434 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 435 return 0; 436 } 437 438 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 439 { 440 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 441 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 442 return -E2BIG; /* 443 * The current segment is filled up 444 * (internal code) 445 */ 446 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 447 return nilfs_segctor_reset_segment_buffer(sci); 448 } 449 450 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 451 { 452 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 453 int err; 454 455 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 456 err = nilfs_segctor_feed_segment(sci); 457 if (err) 458 return err; 459 segbuf = sci->sc_curseg; 460 } 461 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 462 if (likely(!err)) 463 segbuf->sb_sum.flags |= NILFS_SS_SR; 464 return err; 465 } 466 467 /* 468 * Functions for making segment summary and payloads 469 */ 470 static int nilfs_segctor_segsum_block_required( 471 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 472 unsigned int binfo_size) 473 { 474 unsigned int blocksize = sci->sc_super->s_blocksize; 475 /* Size of finfo and binfo is enough small against blocksize */ 476 477 return ssp->offset + binfo_size + 478 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 479 blocksize; 480 } 481 482 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 483 struct inode *inode) 484 { 485 sci->sc_curseg->sb_sum.nfinfo++; 486 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 487 nilfs_segctor_map_segsum_entry( 488 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 489 490 if (NILFS_I(inode)->i_root && 491 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 492 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 493 /* skip finfo */ 494 } 495 496 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 497 struct inode *inode) 498 { 499 struct nilfs_finfo *finfo; 500 struct nilfs_inode_info *ii; 501 struct nilfs_segment_buffer *segbuf; 502 __u64 cno; 503 504 if (sci->sc_blk_cnt == 0) 505 return; 506 507 ii = NILFS_I(inode); 508 509 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 510 cno = ii->i_cno; 511 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 512 cno = 0; 513 else 514 cno = sci->sc_cno; 515 516 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 517 sizeof(*finfo)); 518 finfo->fi_ino = cpu_to_le64(inode->i_ino); 519 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 520 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 521 finfo->fi_cno = cpu_to_le64(cno); 522 523 segbuf = sci->sc_curseg; 524 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 525 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 526 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 527 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 528 } 529 530 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 531 struct buffer_head *bh, 532 struct inode *inode, 533 unsigned int binfo_size) 534 { 535 struct nilfs_segment_buffer *segbuf; 536 int required, err = 0; 537 538 retry: 539 segbuf = sci->sc_curseg; 540 required = nilfs_segctor_segsum_block_required( 541 sci, &sci->sc_binfo_ptr, binfo_size); 542 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 543 nilfs_segctor_end_finfo(sci, inode); 544 err = nilfs_segctor_feed_segment(sci); 545 if (err) 546 return err; 547 goto retry; 548 } 549 if (unlikely(required)) { 550 err = nilfs_segbuf_extend_segsum(segbuf); 551 if (unlikely(err)) 552 goto failed; 553 } 554 if (sci->sc_blk_cnt == 0) 555 nilfs_segctor_begin_finfo(sci, inode); 556 557 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 558 /* Substitution to vblocknr is delayed until update_blocknr() */ 559 nilfs_segbuf_add_file_buffer(segbuf, bh); 560 sci->sc_blk_cnt++; 561 failed: 562 return err; 563 } 564 565 /* 566 * Callback functions that enumerate, mark, and collect dirty blocks 567 */ 568 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 569 struct buffer_head *bh, struct inode *inode) 570 { 571 int err; 572 573 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 574 if (err < 0) 575 return err; 576 577 err = nilfs_segctor_add_file_block(sci, bh, inode, 578 sizeof(struct nilfs_binfo_v)); 579 if (!err) 580 sci->sc_datablk_cnt++; 581 return err; 582 } 583 584 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 585 struct buffer_head *bh, 586 struct inode *inode) 587 { 588 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 589 } 590 591 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 592 struct buffer_head *bh, 593 struct inode *inode) 594 { 595 WARN_ON(!buffer_dirty(bh)); 596 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 597 } 598 599 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 600 struct nilfs_segsum_pointer *ssp, 601 union nilfs_binfo *binfo) 602 { 603 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 604 sci, ssp, sizeof(*binfo_v)); 605 *binfo_v = binfo->bi_v; 606 } 607 608 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 609 struct nilfs_segsum_pointer *ssp, 610 union nilfs_binfo *binfo) 611 { 612 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 613 sci, ssp, sizeof(*vblocknr)); 614 *vblocknr = binfo->bi_v.bi_vblocknr; 615 } 616 617 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 618 .collect_data = nilfs_collect_file_data, 619 .collect_node = nilfs_collect_file_node, 620 .collect_bmap = nilfs_collect_file_bmap, 621 .write_data_binfo = nilfs_write_file_data_binfo, 622 .write_node_binfo = nilfs_write_file_node_binfo, 623 }; 624 625 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 626 struct buffer_head *bh, struct inode *inode) 627 { 628 int err; 629 630 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 631 if (err < 0) 632 return err; 633 634 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 635 if (!err) 636 sci->sc_datablk_cnt++; 637 return err; 638 } 639 640 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 641 struct buffer_head *bh, struct inode *inode) 642 { 643 WARN_ON(!buffer_dirty(bh)); 644 return nilfs_segctor_add_file_block(sci, bh, inode, 645 sizeof(struct nilfs_binfo_dat)); 646 } 647 648 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 649 struct nilfs_segsum_pointer *ssp, 650 union nilfs_binfo *binfo) 651 { 652 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 653 sizeof(*blkoff)); 654 *blkoff = binfo->bi_dat.bi_blkoff; 655 } 656 657 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 658 struct nilfs_segsum_pointer *ssp, 659 union nilfs_binfo *binfo) 660 { 661 struct nilfs_binfo_dat *binfo_dat = 662 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 663 *binfo_dat = binfo->bi_dat; 664 } 665 666 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 667 .collect_data = nilfs_collect_dat_data, 668 .collect_node = nilfs_collect_file_node, 669 .collect_bmap = nilfs_collect_dat_bmap, 670 .write_data_binfo = nilfs_write_dat_data_binfo, 671 .write_node_binfo = nilfs_write_dat_node_binfo, 672 }; 673 674 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 675 .collect_data = nilfs_collect_file_data, 676 .collect_node = NULL, 677 .collect_bmap = NULL, 678 .write_data_binfo = nilfs_write_file_data_binfo, 679 .write_node_binfo = NULL, 680 }; 681 682 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 683 struct list_head *listp, 684 size_t nlimit, 685 loff_t start, loff_t end) 686 { 687 struct address_space *mapping = inode->i_mapping; 688 struct pagevec pvec; 689 pgoff_t index = 0, last = ULONG_MAX; 690 size_t ndirties = 0; 691 int i; 692 693 if (unlikely(start != 0 || end != LLONG_MAX)) { 694 /* 695 * A valid range is given for sync-ing data pages. The 696 * range is rounded to per-page; extra dirty buffers 697 * may be included if blocksize < pagesize. 698 */ 699 index = start >> PAGE_SHIFT; 700 last = end >> PAGE_SHIFT; 701 } 702 pagevec_init(&pvec); 703 repeat: 704 if (unlikely(index > last) || 705 !pagevec_lookup_range_tag(&pvec, mapping, &index, last, 706 PAGECACHE_TAG_DIRTY)) 707 return ndirties; 708 709 for (i = 0; i < pagevec_count(&pvec); i++) { 710 struct buffer_head *bh, *head; 711 struct page *page = pvec.pages[i]; 712 713 lock_page(page); 714 if (!page_has_buffers(page)) 715 create_empty_buffers(page, i_blocksize(inode), 0); 716 unlock_page(page); 717 718 bh = head = page_buffers(page); 719 do { 720 if (!buffer_dirty(bh) || buffer_async_write(bh)) 721 continue; 722 get_bh(bh); 723 list_add_tail(&bh->b_assoc_buffers, listp); 724 ndirties++; 725 if (unlikely(ndirties >= nlimit)) { 726 pagevec_release(&pvec); 727 cond_resched(); 728 return ndirties; 729 } 730 } while (bh = bh->b_this_page, bh != head); 731 } 732 pagevec_release(&pvec); 733 cond_resched(); 734 goto repeat; 735 } 736 737 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 738 struct list_head *listp) 739 { 740 struct nilfs_inode_info *ii = NILFS_I(inode); 741 struct address_space *mapping = &ii->i_btnode_cache; 742 struct pagevec pvec; 743 struct buffer_head *bh, *head; 744 unsigned int i; 745 pgoff_t index = 0; 746 747 pagevec_init(&pvec); 748 749 while (pagevec_lookup_tag(&pvec, mapping, &index, 750 PAGECACHE_TAG_DIRTY)) { 751 for (i = 0; i < pagevec_count(&pvec); i++) { 752 bh = head = page_buffers(pvec.pages[i]); 753 do { 754 if (buffer_dirty(bh) && 755 !buffer_async_write(bh)) { 756 get_bh(bh); 757 list_add_tail(&bh->b_assoc_buffers, 758 listp); 759 } 760 bh = bh->b_this_page; 761 } while (bh != head); 762 } 763 pagevec_release(&pvec); 764 cond_resched(); 765 } 766 } 767 768 static void nilfs_dispose_list(struct the_nilfs *nilfs, 769 struct list_head *head, int force) 770 { 771 struct nilfs_inode_info *ii, *n; 772 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 773 unsigned int nv = 0; 774 775 while (!list_empty(head)) { 776 spin_lock(&nilfs->ns_inode_lock); 777 list_for_each_entry_safe(ii, n, head, i_dirty) { 778 list_del_init(&ii->i_dirty); 779 if (force) { 780 if (unlikely(ii->i_bh)) { 781 brelse(ii->i_bh); 782 ii->i_bh = NULL; 783 } 784 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 785 set_bit(NILFS_I_QUEUED, &ii->i_state); 786 list_add_tail(&ii->i_dirty, 787 &nilfs->ns_dirty_files); 788 continue; 789 } 790 ivec[nv++] = ii; 791 if (nv == SC_N_INODEVEC) 792 break; 793 } 794 spin_unlock(&nilfs->ns_inode_lock); 795 796 for (pii = ivec; nv > 0; pii++, nv--) 797 iput(&(*pii)->vfs_inode); 798 } 799 } 800 801 static void nilfs_iput_work_func(struct work_struct *work) 802 { 803 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 804 sc_iput_work); 805 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 806 807 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 808 } 809 810 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 811 struct nilfs_root *root) 812 { 813 int ret = 0; 814 815 if (nilfs_mdt_fetch_dirty(root->ifile)) 816 ret++; 817 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 818 ret++; 819 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 820 ret++; 821 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 822 ret++; 823 return ret; 824 } 825 826 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 827 { 828 return list_empty(&sci->sc_dirty_files) && 829 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 830 sci->sc_nfreesegs == 0 && 831 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 832 } 833 834 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 835 { 836 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 837 int ret = 0; 838 839 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 840 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 841 842 spin_lock(&nilfs->ns_inode_lock); 843 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 844 ret++; 845 846 spin_unlock(&nilfs->ns_inode_lock); 847 return ret; 848 } 849 850 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 851 { 852 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 853 854 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 855 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 856 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 857 nilfs_mdt_clear_dirty(nilfs->ns_dat); 858 } 859 860 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 861 { 862 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 863 struct buffer_head *bh_cp; 864 struct nilfs_checkpoint *raw_cp; 865 int err; 866 867 /* XXX: this interface will be changed */ 868 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 869 &raw_cp, &bh_cp); 870 if (likely(!err)) { 871 /* 872 * The following code is duplicated with cpfile. But, it is 873 * needed to collect the checkpoint even if it was not newly 874 * created. 875 */ 876 mark_buffer_dirty(bh_cp); 877 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 878 nilfs_cpfile_put_checkpoint( 879 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 880 } else 881 WARN_ON(err == -EINVAL || err == -ENOENT); 882 883 return err; 884 } 885 886 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 887 { 888 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 889 struct buffer_head *bh_cp; 890 struct nilfs_checkpoint *raw_cp; 891 int err; 892 893 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 894 &raw_cp, &bh_cp); 895 if (unlikely(err)) { 896 WARN_ON(err == -EINVAL || err == -ENOENT); 897 goto failed_ibh; 898 } 899 raw_cp->cp_snapshot_list.ssl_next = 0; 900 raw_cp->cp_snapshot_list.ssl_prev = 0; 901 raw_cp->cp_inodes_count = 902 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 903 raw_cp->cp_blocks_count = 904 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 905 raw_cp->cp_nblk_inc = 906 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 907 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 908 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 909 910 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 911 nilfs_checkpoint_clear_minor(raw_cp); 912 else 913 nilfs_checkpoint_set_minor(raw_cp); 914 915 nilfs_write_inode_common(sci->sc_root->ifile, 916 &raw_cp->cp_ifile_inode, 1); 917 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 918 return 0; 919 920 failed_ibh: 921 return err; 922 } 923 924 static void nilfs_fill_in_file_bmap(struct inode *ifile, 925 struct nilfs_inode_info *ii) 926 927 { 928 struct buffer_head *ibh; 929 struct nilfs_inode *raw_inode; 930 931 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 932 ibh = ii->i_bh; 933 BUG_ON(!ibh); 934 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 935 ibh); 936 nilfs_bmap_write(ii->i_bmap, raw_inode); 937 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 938 } 939 } 940 941 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 942 { 943 struct nilfs_inode_info *ii; 944 945 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 946 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 947 set_bit(NILFS_I_COLLECTED, &ii->i_state); 948 } 949 } 950 951 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 952 struct the_nilfs *nilfs) 953 { 954 struct buffer_head *bh_sr; 955 struct nilfs_super_root *raw_sr; 956 unsigned int isz, srsz; 957 958 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 959 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 960 isz = nilfs->ns_inode_size; 961 srsz = NILFS_SR_BYTES(isz); 962 963 raw_sr->sr_bytes = cpu_to_le16(srsz); 964 raw_sr->sr_nongc_ctime 965 = cpu_to_le64(nilfs_doing_gc() ? 966 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 967 raw_sr->sr_flags = 0; 968 969 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 970 NILFS_SR_DAT_OFFSET(isz), 1); 971 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 972 NILFS_SR_CPFILE_OFFSET(isz), 1); 973 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 974 NILFS_SR_SUFILE_OFFSET(isz), 1); 975 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 976 } 977 978 static void nilfs_redirty_inodes(struct list_head *head) 979 { 980 struct nilfs_inode_info *ii; 981 982 list_for_each_entry(ii, head, i_dirty) { 983 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 984 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 985 } 986 } 987 988 static void nilfs_drop_collected_inodes(struct list_head *head) 989 { 990 struct nilfs_inode_info *ii; 991 992 list_for_each_entry(ii, head, i_dirty) { 993 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 994 continue; 995 996 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 997 set_bit(NILFS_I_UPDATED, &ii->i_state); 998 } 999 } 1000 1001 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1002 struct inode *inode, 1003 struct list_head *listp, 1004 int (*collect)(struct nilfs_sc_info *, 1005 struct buffer_head *, 1006 struct inode *)) 1007 { 1008 struct buffer_head *bh, *n; 1009 int err = 0; 1010 1011 if (collect) { 1012 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1013 list_del_init(&bh->b_assoc_buffers); 1014 err = collect(sci, bh, inode); 1015 brelse(bh); 1016 if (unlikely(err)) 1017 goto dispose_buffers; 1018 } 1019 return 0; 1020 } 1021 1022 dispose_buffers: 1023 while (!list_empty(listp)) { 1024 bh = list_first_entry(listp, struct buffer_head, 1025 b_assoc_buffers); 1026 list_del_init(&bh->b_assoc_buffers); 1027 brelse(bh); 1028 } 1029 return err; 1030 } 1031 1032 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1033 { 1034 /* Remaining number of blocks within segment buffer */ 1035 return sci->sc_segbuf_nblocks - 1036 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1037 } 1038 1039 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1040 struct inode *inode, 1041 const struct nilfs_sc_operations *sc_ops) 1042 { 1043 LIST_HEAD(data_buffers); 1044 LIST_HEAD(node_buffers); 1045 int err; 1046 1047 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1048 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1049 1050 n = nilfs_lookup_dirty_data_buffers( 1051 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1052 if (n > rest) { 1053 err = nilfs_segctor_apply_buffers( 1054 sci, inode, &data_buffers, 1055 sc_ops->collect_data); 1056 BUG_ON(!err); /* always receive -E2BIG or true error */ 1057 goto break_or_fail; 1058 } 1059 } 1060 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1061 1062 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1063 err = nilfs_segctor_apply_buffers( 1064 sci, inode, &data_buffers, sc_ops->collect_data); 1065 if (unlikely(err)) { 1066 /* dispose node list */ 1067 nilfs_segctor_apply_buffers( 1068 sci, inode, &node_buffers, NULL); 1069 goto break_or_fail; 1070 } 1071 sci->sc_stage.flags |= NILFS_CF_NODE; 1072 } 1073 /* Collect node */ 1074 err = nilfs_segctor_apply_buffers( 1075 sci, inode, &node_buffers, sc_ops->collect_node); 1076 if (unlikely(err)) 1077 goto break_or_fail; 1078 1079 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1080 err = nilfs_segctor_apply_buffers( 1081 sci, inode, &node_buffers, sc_ops->collect_bmap); 1082 if (unlikely(err)) 1083 goto break_or_fail; 1084 1085 nilfs_segctor_end_finfo(sci, inode); 1086 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1087 1088 break_or_fail: 1089 return err; 1090 } 1091 1092 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1093 struct inode *inode) 1094 { 1095 LIST_HEAD(data_buffers); 1096 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1097 int err; 1098 1099 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1100 sci->sc_dsync_start, 1101 sci->sc_dsync_end); 1102 1103 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1104 nilfs_collect_file_data); 1105 if (!err) { 1106 nilfs_segctor_end_finfo(sci, inode); 1107 BUG_ON(n > rest); 1108 /* always receive -E2BIG or true error if n > rest */ 1109 } 1110 return err; 1111 } 1112 1113 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1114 { 1115 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1116 struct list_head *head; 1117 struct nilfs_inode_info *ii; 1118 size_t ndone; 1119 int err = 0; 1120 1121 switch (nilfs_sc_cstage_get(sci)) { 1122 case NILFS_ST_INIT: 1123 /* Pre-processes */ 1124 sci->sc_stage.flags = 0; 1125 1126 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1127 sci->sc_nblk_inc = 0; 1128 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1129 if (mode == SC_LSEG_DSYNC) { 1130 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1131 goto dsync_mode; 1132 } 1133 } 1134 1135 sci->sc_stage.dirty_file_ptr = NULL; 1136 sci->sc_stage.gc_inode_ptr = NULL; 1137 if (mode == SC_FLUSH_DAT) { 1138 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1139 goto dat_stage; 1140 } 1141 nilfs_sc_cstage_inc(sci); 1142 fallthrough; 1143 case NILFS_ST_GC: 1144 if (nilfs_doing_gc()) { 1145 head = &sci->sc_gc_inodes; 1146 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1147 head, i_dirty); 1148 list_for_each_entry_continue(ii, head, i_dirty) { 1149 err = nilfs_segctor_scan_file( 1150 sci, &ii->vfs_inode, 1151 &nilfs_sc_file_ops); 1152 if (unlikely(err)) { 1153 sci->sc_stage.gc_inode_ptr = list_entry( 1154 ii->i_dirty.prev, 1155 struct nilfs_inode_info, 1156 i_dirty); 1157 goto break_or_fail; 1158 } 1159 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1160 } 1161 sci->sc_stage.gc_inode_ptr = NULL; 1162 } 1163 nilfs_sc_cstage_inc(sci); 1164 fallthrough; 1165 case NILFS_ST_FILE: 1166 head = &sci->sc_dirty_files; 1167 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1168 i_dirty); 1169 list_for_each_entry_continue(ii, head, i_dirty) { 1170 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1171 1172 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1173 &nilfs_sc_file_ops); 1174 if (unlikely(err)) { 1175 sci->sc_stage.dirty_file_ptr = 1176 list_entry(ii->i_dirty.prev, 1177 struct nilfs_inode_info, 1178 i_dirty); 1179 goto break_or_fail; 1180 } 1181 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1182 /* XXX: required ? */ 1183 } 1184 sci->sc_stage.dirty_file_ptr = NULL; 1185 if (mode == SC_FLUSH_FILE) { 1186 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1187 return 0; 1188 } 1189 nilfs_sc_cstage_inc(sci); 1190 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1191 fallthrough; 1192 case NILFS_ST_IFILE: 1193 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1194 &nilfs_sc_file_ops); 1195 if (unlikely(err)) 1196 break; 1197 nilfs_sc_cstage_inc(sci); 1198 /* Creating a checkpoint */ 1199 err = nilfs_segctor_create_checkpoint(sci); 1200 if (unlikely(err)) 1201 break; 1202 fallthrough; 1203 case NILFS_ST_CPFILE: 1204 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1205 &nilfs_sc_file_ops); 1206 if (unlikely(err)) 1207 break; 1208 nilfs_sc_cstage_inc(sci); 1209 fallthrough; 1210 case NILFS_ST_SUFILE: 1211 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1212 sci->sc_nfreesegs, &ndone); 1213 if (unlikely(err)) { 1214 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1215 sci->sc_freesegs, ndone, 1216 NULL); 1217 break; 1218 } 1219 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1220 1221 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1222 &nilfs_sc_file_ops); 1223 if (unlikely(err)) 1224 break; 1225 nilfs_sc_cstage_inc(sci); 1226 fallthrough; 1227 case NILFS_ST_DAT: 1228 dat_stage: 1229 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1230 &nilfs_sc_dat_ops); 1231 if (unlikely(err)) 1232 break; 1233 if (mode == SC_FLUSH_DAT) { 1234 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1235 return 0; 1236 } 1237 nilfs_sc_cstage_inc(sci); 1238 fallthrough; 1239 case NILFS_ST_SR: 1240 if (mode == SC_LSEG_SR) { 1241 /* Appending a super root */ 1242 err = nilfs_segctor_add_super_root(sci); 1243 if (unlikely(err)) 1244 break; 1245 } 1246 /* End of a logical segment */ 1247 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1248 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1249 return 0; 1250 case NILFS_ST_DSYNC: 1251 dsync_mode: 1252 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1253 ii = sci->sc_dsync_inode; 1254 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1255 break; 1256 1257 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1258 if (unlikely(err)) 1259 break; 1260 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1261 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1262 return 0; 1263 case NILFS_ST_DONE: 1264 return 0; 1265 default: 1266 BUG(); 1267 } 1268 1269 break_or_fail: 1270 return err; 1271 } 1272 1273 /** 1274 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1275 * @sci: nilfs_sc_info 1276 * @nilfs: nilfs object 1277 */ 1278 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1279 struct the_nilfs *nilfs) 1280 { 1281 struct nilfs_segment_buffer *segbuf, *prev; 1282 __u64 nextnum; 1283 int err, alloc = 0; 1284 1285 segbuf = nilfs_segbuf_new(sci->sc_super); 1286 if (unlikely(!segbuf)) 1287 return -ENOMEM; 1288 1289 if (list_empty(&sci->sc_write_logs)) { 1290 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1291 nilfs->ns_pseg_offset, nilfs); 1292 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1293 nilfs_shift_to_next_segment(nilfs); 1294 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1295 } 1296 1297 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1298 nextnum = nilfs->ns_nextnum; 1299 1300 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1301 /* Start from the head of a new full segment */ 1302 alloc++; 1303 } else { 1304 /* Continue logs */ 1305 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1306 nilfs_segbuf_map_cont(segbuf, prev); 1307 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1308 nextnum = prev->sb_nextnum; 1309 1310 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1311 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1312 segbuf->sb_sum.seg_seq++; 1313 alloc++; 1314 } 1315 } 1316 1317 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1318 if (err) 1319 goto failed; 1320 1321 if (alloc) { 1322 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1323 if (err) 1324 goto failed; 1325 } 1326 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1327 1328 BUG_ON(!list_empty(&sci->sc_segbufs)); 1329 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1330 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1331 return 0; 1332 1333 failed: 1334 nilfs_segbuf_free(segbuf); 1335 return err; 1336 } 1337 1338 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1339 struct the_nilfs *nilfs, int nadd) 1340 { 1341 struct nilfs_segment_buffer *segbuf, *prev; 1342 struct inode *sufile = nilfs->ns_sufile; 1343 __u64 nextnextnum; 1344 LIST_HEAD(list); 1345 int err, ret, i; 1346 1347 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1348 /* 1349 * Since the segment specified with nextnum might be allocated during 1350 * the previous construction, the buffer including its segusage may 1351 * not be dirty. The following call ensures that the buffer is dirty 1352 * and will pin the buffer on memory until the sufile is written. 1353 */ 1354 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1355 if (unlikely(err)) 1356 return err; 1357 1358 for (i = 0; i < nadd; i++) { 1359 /* extend segment info */ 1360 err = -ENOMEM; 1361 segbuf = nilfs_segbuf_new(sci->sc_super); 1362 if (unlikely(!segbuf)) 1363 goto failed; 1364 1365 /* map this buffer to region of segment on-disk */ 1366 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1367 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1368 1369 /* allocate the next next full segment */ 1370 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1371 if (unlikely(err)) 1372 goto failed_segbuf; 1373 1374 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1375 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1376 1377 list_add_tail(&segbuf->sb_list, &list); 1378 prev = segbuf; 1379 } 1380 list_splice_tail(&list, &sci->sc_segbufs); 1381 return 0; 1382 1383 failed_segbuf: 1384 nilfs_segbuf_free(segbuf); 1385 failed: 1386 list_for_each_entry(segbuf, &list, sb_list) { 1387 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1388 WARN_ON(ret); /* never fails */ 1389 } 1390 nilfs_destroy_logs(&list); 1391 return err; 1392 } 1393 1394 static void nilfs_free_incomplete_logs(struct list_head *logs, 1395 struct the_nilfs *nilfs) 1396 { 1397 struct nilfs_segment_buffer *segbuf, *prev; 1398 struct inode *sufile = nilfs->ns_sufile; 1399 int ret; 1400 1401 segbuf = NILFS_FIRST_SEGBUF(logs); 1402 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1403 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1404 WARN_ON(ret); /* never fails */ 1405 } 1406 if (atomic_read(&segbuf->sb_err)) { 1407 /* Case 1: The first segment failed */ 1408 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1409 /* 1410 * Case 1a: Partial segment appended into an existing 1411 * segment 1412 */ 1413 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1414 segbuf->sb_fseg_end); 1415 else /* Case 1b: New full segment */ 1416 set_nilfs_discontinued(nilfs); 1417 } 1418 1419 prev = segbuf; 1420 list_for_each_entry_continue(segbuf, logs, sb_list) { 1421 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1422 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1423 WARN_ON(ret); /* never fails */ 1424 } 1425 if (atomic_read(&segbuf->sb_err) && 1426 segbuf->sb_segnum != nilfs->ns_nextnum) 1427 /* Case 2: extended segment (!= next) failed */ 1428 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1429 prev = segbuf; 1430 } 1431 } 1432 1433 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1434 struct inode *sufile) 1435 { 1436 struct nilfs_segment_buffer *segbuf; 1437 unsigned long live_blocks; 1438 int ret; 1439 1440 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1441 live_blocks = segbuf->sb_sum.nblocks + 1442 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1443 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1444 live_blocks, 1445 sci->sc_seg_ctime); 1446 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1447 } 1448 } 1449 1450 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1451 { 1452 struct nilfs_segment_buffer *segbuf; 1453 int ret; 1454 1455 segbuf = NILFS_FIRST_SEGBUF(logs); 1456 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1457 segbuf->sb_pseg_start - 1458 segbuf->sb_fseg_start, 0); 1459 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1460 1461 list_for_each_entry_continue(segbuf, logs, sb_list) { 1462 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1463 0, 0); 1464 WARN_ON(ret); /* always succeed */ 1465 } 1466 } 1467 1468 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1469 struct nilfs_segment_buffer *last, 1470 struct inode *sufile) 1471 { 1472 struct nilfs_segment_buffer *segbuf = last; 1473 int ret; 1474 1475 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1476 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1477 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1478 WARN_ON(ret); 1479 } 1480 nilfs_truncate_logs(&sci->sc_segbufs, last); 1481 } 1482 1483 1484 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1485 struct the_nilfs *nilfs, int mode) 1486 { 1487 struct nilfs_cstage prev_stage = sci->sc_stage; 1488 int err, nadd = 1; 1489 1490 /* Collection retry loop */ 1491 for (;;) { 1492 sci->sc_nblk_this_inc = 0; 1493 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1494 1495 err = nilfs_segctor_reset_segment_buffer(sci); 1496 if (unlikely(err)) 1497 goto failed; 1498 1499 err = nilfs_segctor_collect_blocks(sci, mode); 1500 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1501 if (!err) 1502 break; 1503 1504 if (unlikely(err != -E2BIG)) 1505 goto failed; 1506 1507 /* The current segment is filled up */ 1508 if (mode != SC_LSEG_SR || 1509 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1510 break; 1511 1512 nilfs_clear_logs(&sci->sc_segbufs); 1513 1514 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1515 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1516 sci->sc_freesegs, 1517 sci->sc_nfreesegs, 1518 NULL); 1519 WARN_ON(err); /* do not happen */ 1520 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1521 } 1522 1523 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1524 if (unlikely(err)) 1525 return err; 1526 1527 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1528 sci->sc_stage = prev_stage; 1529 } 1530 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1531 return 0; 1532 1533 failed: 1534 return err; 1535 } 1536 1537 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1538 struct buffer_head *new_bh) 1539 { 1540 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1541 1542 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1543 /* The caller must release old_bh */ 1544 } 1545 1546 static int 1547 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1548 struct nilfs_segment_buffer *segbuf, 1549 int mode) 1550 { 1551 struct inode *inode = NULL; 1552 sector_t blocknr; 1553 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1554 unsigned long nblocks = 0, ndatablk = 0; 1555 const struct nilfs_sc_operations *sc_op = NULL; 1556 struct nilfs_segsum_pointer ssp; 1557 struct nilfs_finfo *finfo = NULL; 1558 union nilfs_binfo binfo; 1559 struct buffer_head *bh, *bh_org; 1560 ino_t ino = 0; 1561 int err = 0; 1562 1563 if (!nfinfo) 1564 goto out; 1565 1566 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1567 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1568 ssp.offset = sizeof(struct nilfs_segment_summary); 1569 1570 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1571 if (bh == segbuf->sb_super_root) 1572 break; 1573 if (!finfo) { 1574 finfo = nilfs_segctor_map_segsum_entry( 1575 sci, &ssp, sizeof(*finfo)); 1576 ino = le64_to_cpu(finfo->fi_ino); 1577 nblocks = le32_to_cpu(finfo->fi_nblocks); 1578 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1579 1580 inode = bh->b_page->mapping->host; 1581 1582 if (mode == SC_LSEG_DSYNC) 1583 sc_op = &nilfs_sc_dsync_ops; 1584 else if (ino == NILFS_DAT_INO) 1585 sc_op = &nilfs_sc_dat_ops; 1586 else /* file blocks */ 1587 sc_op = &nilfs_sc_file_ops; 1588 } 1589 bh_org = bh; 1590 get_bh(bh_org); 1591 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1592 &binfo); 1593 if (bh != bh_org) 1594 nilfs_list_replace_buffer(bh_org, bh); 1595 brelse(bh_org); 1596 if (unlikely(err)) 1597 goto failed_bmap; 1598 1599 if (ndatablk > 0) 1600 sc_op->write_data_binfo(sci, &ssp, &binfo); 1601 else 1602 sc_op->write_node_binfo(sci, &ssp, &binfo); 1603 1604 blocknr++; 1605 if (--nblocks == 0) { 1606 finfo = NULL; 1607 if (--nfinfo == 0) 1608 break; 1609 } else if (ndatablk > 0) 1610 ndatablk--; 1611 } 1612 out: 1613 return 0; 1614 1615 failed_bmap: 1616 return err; 1617 } 1618 1619 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1620 { 1621 struct nilfs_segment_buffer *segbuf; 1622 int err; 1623 1624 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1625 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1626 if (unlikely(err)) 1627 return err; 1628 nilfs_segbuf_fill_in_segsum(segbuf); 1629 } 1630 return 0; 1631 } 1632 1633 static void nilfs_begin_page_io(struct page *page) 1634 { 1635 if (!page || PageWriteback(page)) 1636 /* 1637 * For split b-tree node pages, this function may be called 1638 * twice. We ignore the 2nd or later calls by this check. 1639 */ 1640 return; 1641 1642 lock_page(page); 1643 clear_page_dirty_for_io(page); 1644 set_page_writeback(page); 1645 unlock_page(page); 1646 } 1647 1648 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1649 { 1650 struct nilfs_segment_buffer *segbuf; 1651 struct page *bd_page = NULL, *fs_page = NULL; 1652 1653 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1654 struct buffer_head *bh; 1655 1656 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1657 b_assoc_buffers) { 1658 if (bh->b_page != bd_page) { 1659 if (bd_page) { 1660 lock_page(bd_page); 1661 clear_page_dirty_for_io(bd_page); 1662 set_page_writeback(bd_page); 1663 unlock_page(bd_page); 1664 } 1665 bd_page = bh->b_page; 1666 } 1667 } 1668 1669 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1670 b_assoc_buffers) { 1671 set_buffer_async_write(bh); 1672 if (bh == segbuf->sb_super_root) { 1673 if (bh->b_page != bd_page) { 1674 lock_page(bd_page); 1675 clear_page_dirty_for_io(bd_page); 1676 set_page_writeback(bd_page); 1677 unlock_page(bd_page); 1678 bd_page = bh->b_page; 1679 } 1680 break; 1681 } 1682 if (bh->b_page != fs_page) { 1683 nilfs_begin_page_io(fs_page); 1684 fs_page = bh->b_page; 1685 } 1686 } 1687 } 1688 if (bd_page) { 1689 lock_page(bd_page); 1690 clear_page_dirty_for_io(bd_page); 1691 set_page_writeback(bd_page); 1692 unlock_page(bd_page); 1693 } 1694 nilfs_begin_page_io(fs_page); 1695 } 1696 1697 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1698 struct the_nilfs *nilfs) 1699 { 1700 int ret; 1701 1702 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1703 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1704 return ret; 1705 } 1706 1707 static void nilfs_end_page_io(struct page *page, int err) 1708 { 1709 if (!page) 1710 return; 1711 1712 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1713 /* 1714 * For b-tree node pages, this function may be called twice 1715 * or more because they might be split in a segment. 1716 */ 1717 if (PageDirty(page)) { 1718 /* 1719 * For pages holding split b-tree node buffers, dirty 1720 * flag on the buffers may be cleared discretely. 1721 * In that case, the page is once redirtied for 1722 * remaining buffers, and it must be cancelled if 1723 * all the buffers get cleaned later. 1724 */ 1725 lock_page(page); 1726 if (nilfs_page_buffers_clean(page)) 1727 __nilfs_clear_page_dirty(page); 1728 unlock_page(page); 1729 } 1730 return; 1731 } 1732 1733 if (!err) { 1734 if (!nilfs_page_buffers_clean(page)) 1735 __set_page_dirty_nobuffers(page); 1736 ClearPageError(page); 1737 } else { 1738 __set_page_dirty_nobuffers(page); 1739 SetPageError(page); 1740 } 1741 1742 end_page_writeback(page); 1743 } 1744 1745 static void nilfs_abort_logs(struct list_head *logs, int err) 1746 { 1747 struct nilfs_segment_buffer *segbuf; 1748 struct page *bd_page = NULL, *fs_page = NULL; 1749 struct buffer_head *bh; 1750 1751 if (list_empty(logs)) 1752 return; 1753 1754 list_for_each_entry(segbuf, logs, sb_list) { 1755 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1756 b_assoc_buffers) { 1757 if (bh->b_page != bd_page) { 1758 if (bd_page) 1759 end_page_writeback(bd_page); 1760 bd_page = bh->b_page; 1761 } 1762 } 1763 1764 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1765 b_assoc_buffers) { 1766 clear_buffer_async_write(bh); 1767 if (bh == segbuf->sb_super_root) { 1768 if (bh->b_page != bd_page) { 1769 end_page_writeback(bd_page); 1770 bd_page = bh->b_page; 1771 } 1772 break; 1773 } 1774 if (bh->b_page != fs_page) { 1775 nilfs_end_page_io(fs_page, err); 1776 fs_page = bh->b_page; 1777 } 1778 } 1779 } 1780 if (bd_page) 1781 end_page_writeback(bd_page); 1782 1783 nilfs_end_page_io(fs_page, err); 1784 } 1785 1786 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1787 struct the_nilfs *nilfs, int err) 1788 { 1789 LIST_HEAD(logs); 1790 int ret; 1791 1792 list_splice_tail_init(&sci->sc_write_logs, &logs); 1793 ret = nilfs_wait_on_logs(&logs); 1794 nilfs_abort_logs(&logs, ret ? : err); 1795 1796 list_splice_tail_init(&sci->sc_segbufs, &logs); 1797 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1798 nilfs_free_incomplete_logs(&logs, nilfs); 1799 1800 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1801 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1802 sci->sc_freesegs, 1803 sci->sc_nfreesegs, 1804 NULL); 1805 WARN_ON(ret); /* do not happen */ 1806 } 1807 1808 nilfs_destroy_logs(&logs); 1809 } 1810 1811 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1812 struct nilfs_segment_buffer *segbuf) 1813 { 1814 nilfs->ns_segnum = segbuf->sb_segnum; 1815 nilfs->ns_nextnum = segbuf->sb_nextnum; 1816 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1817 + segbuf->sb_sum.nblocks; 1818 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1819 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1820 } 1821 1822 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1823 { 1824 struct nilfs_segment_buffer *segbuf; 1825 struct page *bd_page = NULL, *fs_page = NULL; 1826 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1827 int update_sr = false; 1828 1829 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1830 struct buffer_head *bh; 1831 1832 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1833 b_assoc_buffers) { 1834 set_buffer_uptodate(bh); 1835 clear_buffer_dirty(bh); 1836 if (bh->b_page != bd_page) { 1837 if (bd_page) 1838 end_page_writeback(bd_page); 1839 bd_page = bh->b_page; 1840 } 1841 } 1842 /* 1843 * We assume that the buffers which belong to the same page 1844 * continue over the buffer list. 1845 * Under this assumption, the last BHs of pages is 1846 * identifiable by the discontinuity of bh->b_page 1847 * (page != fs_page). 1848 * 1849 * For B-tree node blocks, however, this assumption is not 1850 * guaranteed. The cleanup code of B-tree node pages needs 1851 * special care. 1852 */ 1853 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1854 b_assoc_buffers) { 1855 const unsigned long set_bits = BIT(BH_Uptodate); 1856 const unsigned long clear_bits = 1857 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1858 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1859 BIT(BH_NILFS_Redirected)); 1860 1861 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1862 if (bh == segbuf->sb_super_root) { 1863 if (bh->b_page != bd_page) { 1864 end_page_writeback(bd_page); 1865 bd_page = bh->b_page; 1866 } 1867 update_sr = true; 1868 break; 1869 } 1870 if (bh->b_page != fs_page) { 1871 nilfs_end_page_io(fs_page, 0); 1872 fs_page = bh->b_page; 1873 } 1874 } 1875 1876 if (!nilfs_segbuf_simplex(segbuf)) { 1877 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1878 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1879 sci->sc_lseg_stime = jiffies; 1880 } 1881 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1882 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1883 } 1884 } 1885 /* 1886 * Since pages may continue over multiple segment buffers, 1887 * end of the last page must be checked outside of the loop. 1888 */ 1889 if (bd_page) 1890 end_page_writeback(bd_page); 1891 1892 nilfs_end_page_io(fs_page, 0); 1893 1894 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1895 1896 if (nilfs_doing_gc()) 1897 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1898 else 1899 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1900 1901 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1902 1903 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1904 nilfs_set_next_segment(nilfs, segbuf); 1905 1906 if (update_sr) { 1907 nilfs->ns_flushed_device = 0; 1908 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1909 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1910 1911 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1912 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1913 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1914 nilfs_segctor_clear_metadata_dirty(sci); 1915 } else 1916 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1917 } 1918 1919 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1920 { 1921 int ret; 1922 1923 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1924 if (!ret) { 1925 nilfs_segctor_complete_write(sci); 1926 nilfs_destroy_logs(&sci->sc_write_logs); 1927 } 1928 return ret; 1929 } 1930 1931 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1932 struct the_nilfs *nilfs) 1933 { 1934 struct nilfs_inode_info *ii, *n; 1935 struct inode *ifile = sci->sc_root->ifile; 1936 1937 spin_lock(&nilfs->ns_inode_lock); 1938 retry: 1939 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1940 if (!ii->i_bh) { 1941 struct buffer_head *ibh; 1942 int err; 1943 1944 spin_unlock(&nilfs->ns_inode_lock); 1945 err = nilfs_ifile_get_inode_block( 1946 ifile, ii->vfs_inode.i_ino, &ibh); 1947 if (unlikely(err)) { 1948 nilfs_warn(sci->sc_super, 1949 "log writer: error %d getting inode block (ino=%lu)", 1950 err, ii->vfs_inode.i_ino); 1951 return err; 1952 } 1953 spin_lock(&nilfs->ns_inode_lock); 1954 if (likely(!ii->i_bh)) 1955 ii->i_bh = ibh; 1956 else 1957 brelse(ibh); 1958 goto retry; 1959 } 1960 1961 // Always redirty the buffer to avoid race condition 1962 mark_buffer_dirty(ii->i_bh); 1963 nilfs_mdt_mark_dirty(ifile); 1964 1965 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1966 set_bit(NILFS_I_BUSY, &ii->i_state); 1967 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1968 } 1969 spin_unlock(&nilfs->ns_inode_lock); 1970 1971 return 0; 1972 } 1973 1974 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 1975 struct the_nilfs *nilfs) 1976 { 1977 struct nilfs_inode_info *ii, *n; 1978 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 1979 int defer_iput = false; 1980 1981 spin_lock(&nilfs->ns_inode_lock); 1982 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 1983 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 1984 test_bit(NILFS_I_DIRTY, &ii->i_state)) 1985 continue; 1986 1987 clear_bit(NILFS_I_BUSY, &ii->i_state); 1988 brelse(ii->i_bh); 1989 ii->i_bh = NULL; 1990 list_del_init(&ii->i_dirty); 1991 if (!ii->vfs_inode.i_nlink || during_mount) { 1992 /* 1993 * Defer calling iput() to avoid deadlocks if 1994 * i_nlink == 0 or mount is not yet finished. 1995 */ 1996 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 1997 defer_iput = true; 1998 } else { 1999 spin_unlock(&nilfs->ns_inode_lock); 2000 iput(&ii->vfs_inode); 2001 spin_lock(&nilfs->ns_inode_lock); 2002 } 2003 } 2004 spin_unlock(&nilfs->ns_inode_lock); 2005 2006 if (defer_iput) 2007 schedule_work(&sci->sc_iput_work); 2008 } 2009 2010 /* 2011 * Main procedure of segment constructor 2012 */ 2013 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2014 { 2015 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2016 int err; 2017 2018 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2019 sci->sc_cno = nilfs->ns_cno; 2020 2021 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2022 if (unlikely(err)) 2023 goto out; 2024 2025 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2026 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2027 2028 if (nilfs_segctor_clean(sci)) 2029 goto out; 2030 2031 do { 2032 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2033 2034 err = nilfs_segctor_begin_construction(sci, nilfs); 2035 if (unlikely(err)) 2036 goto out; 2037 2038 /* Update time stamp */ 2039 sci->sc_seg_ctime = ktime_get_real_seconds(); 2040 2041 err = nilfs_segctor_collect(sci, nilfs, mode); 2042 if (unlikely(err)) 2043 goto failed; 2044 2045 /* Avoid empty segment */ 2046 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2047 nilfs_segbuf_empty(sci->sc_curseg)) { 2048 nilfs_segctor_abort_construction(sci, nilfs, 1); 2049 goto out; 2050 } 2051 2052 err = nilfs_segctor_assign(sci, mode); 2053 if (unlikely(err)) 2054 goto failed; 2055 2056 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2057 nilfs_segctor_fill_in_file_bmap(sci); 2058 2059 if (mode == SC_LSEG_SR && 2060 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2061 err = nilfs_segctor_fill_in_checkpoint(sci); 2062 if (unlikely(err)) 2063 goto failed_to_write; 2064 2065 nilfs_segctor_fill_in_super_root(sci, nilfs); 2066 } 2067 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2068 2069 /* Write partial segments */ 2070 nilfs_segctor_prepare_write(sci); 2071 2072 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2073 nilfs->ns_crc_seed); 2074 2075 err = nilfs_segctor_write(sci, nilfs); 2076 if (unlikely(err)) 2077 goto failed_to_write; 2078 2079 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2080 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2081 /* 2082 * At this point, we avoid double buffering 2083 * for blocksize < pagesize because page dirty 2084 * flag is turned off during write and dirty 2085 * buffers are not properly collected for 2086 * pages crossing over segments. 2087 */ 2088 err = nilfs_segctor_wait(sci); 2089 if (err) 2090 goto failed_to_write; 2091 } 2092 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2093 2094 out: 2095 nilfs_segctor_drop_written_files(sci, nilfs); 2096 return err; 2097 2098 failed_to_write: 2099 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2100 nilfs_redirty_inodes(&sci->sc_dirty_files); 2101 2102 failed: 2103 if (nilfs_doing_gc()) 2104 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2105 nilfs_segctor_abort_construction(sci, nilfs, err); 2106 goto out; 2107 } 2108 2109 /** 2110 * nilfs_segctor_start_timer - set timer of background write 2111 * @sci: nilfs_sc_info 2112 * 2113 * If the timer has already been set, it ignores the new request. 2114 * This function MUST be called within a section locking the segment 2115 * semaphore. 2116 */ 2117 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2118 { 2119 spin_lock(&sci->sc_state_lock); 2120 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2121 sci->sc_timer.expires = jiffies + sci->sc_interval; 2122 add_timer(&sci->sc_timer); 2123 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2124 } 2125 spin_unlock(&sci->sc_state_lock); 2126 } 2127 2128 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2129 { 2130 spin_lock(&sci->sc_state_lock); 2131 if (!(sci->sc_flush_request & BIT(bn))) { 2132 unsigned long prev_req = sci->sc_flush_request; 2133 2134 sci->sc_flush_request |= BIT(bn); 2135 if (!prev_req) 2136 wake_up(&sci->sc_wait_daemon); 2137 } 2138 spin_unlock(&sci->sc_state_lock); 2139 } 2140 2141 /** 2142 * nilfs_flush_segment - trigger a segment construction for resource control 2143 * @sb: super block 2144 * @ino: inode number of the file to be flushed out. 2145 */ 2146 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2147 { 2148 struct the_nilfs *nilfs = sb->s_fs_info; 2149 struct nilfs_sc_info *sci = nilfs->ns_writer; 2150 2151 if (!sci || nilfs_doing_construction()) 2152 return; 2153 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2154 /* assign bit 0 to data files */ 2155 } 2156 2157 struct nilfs_segctor_wait_request { 2158 wait_queue_entry_t wq; 2159 __u32 seq; 2160 int err; 2161 atomic_t done; 2162 }; 2163 2164 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2165 { 2166 struct nilfs_segctor_wait_request wait_req; 2167 int err = 0; 2168 2169 spin_lock(&sci->sc_state_lock); 2170 init_wait(&wait_req.wq); 2171 wait_req.err = 0; 2172 atomic_set(&wait_req.done, 0); 2173 wait_req.seq = ++sci->sc_seq_request; 2174 spin_unlock(&sci->sc_state_lock); 2175 2176 init_waitqueue_entry(&wait_req.wq, current); 2177 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2178 set_current_state(TASK_INTERRUPTIBLE); 2179 wake_up(&sci->sc_wait_daemon); 2180 2181 for (;;) { 2182 if (atomic_read(&wait_req.done)) { 2183 err = wait_req.err; 2184 break; 2185 } 2186 if (!signal_pending(current)) { 2187 schedule(); 2188 continue; 2189 } 2190 err = -ERESTARTSYS; 2191 break; 2192 } 2193 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2194 return err; 2195 } 2196 2197 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2198 { 2199 struct nilfs_segctor_wait_request *wrq, *n; 2200 unsigned long flags; 2201 2202 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2203 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2204 if (!atomic_read(&wrq->done) && 2205 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2206 wrq->err = err; 2207 atomic_set(&wrq->done, 1); 2208 } 2209 if (atomic_read(&wrq->done)) { 2210 wrq->wq.func(&wrq->wq, 2211 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2212 0, NULL); 2213 } 2214 } 2215 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2216 } 2217 2218 /** 2219 * nilfs_construct_segment - construct a logical segment 2220 * @sb: super block 2221 * 2222 * Return Value: On success, 0 is retured. On errors, one of the following 2223 * negative error code is returned. 2224 * 2225 * %-EROFS - Read only filesystem. 2226 * 2227 * %-EIO - I/O error 2228 * 2229 * %-ENOSPC - No space left on device (only in a panic state). 2230 * 2231 * %-ERESTARTSYS - Interrupted. 2232 * 2233 * %-ENOMEM - Insufficient memory available. 2234 */ 2235 int nilfs_construct_segment(struct super_block *sb) 2236 { 2237 struct the_nilfs *nilfs = sb->s_fs_info; 2238 struct nilfs_sc_info *sci = nilfs->ns_writer; 2239 struct nilfs_transaction_info *ti; 2240 int err; 2241 2242 if (!sci) 2243 return -EROFS; 2244 2245 /* A call inside transactions causes a deadlock. */ 2246 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2247 2248 err = nilfs_segctor_sync(sci); 2249 return err; 2250 } 2251 2252 /** 2253 * nilfs_construct_dsync_segment - construct a data-only logical segment 2254 * @sb: super block 2255 * @inode: inode whose data blocks should be written out 2256 * @start: start byte offset 2257 * @end: end byte offset (inclusive) 2258 * 2259 * Return Value: On success, 0 is retured. On errors, one of the following 2260 * negative error code is returned. 2261 * 2262 * %-EROFS - Read only filesystem. 2263 * 2264 * %-EIO - I/O error 2265 * 2266 * %-ENOSPC - No space left on device (only in a panic state). 2267 * 2268 * %-ERESTARTSYS - Interrupted. 2269 * 2270 * %-ENOMEM - Insufficient memory available. 2271 */ 2272 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2273 loff_t start, loff_t end) 2274 { 2275 struct the_nilfs *nilfs = sb->s_fs_info; 2276 struct nilfs_sc_info *sci = nilfs->ns_writer; 2277 struct nilfs_inode_info *ii; 2278 struct nilfs_transaction_info ti; 2279 int err = 0; 2280 2281 if (!sci) 2282 return -EROFS; 2283 2284 nilfs_transaction_lock(sb, &ti, 0); 2285 2286 ii = NILFS_I(inode); 2287 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2288 nilfs_test_opt(nilfs, STRICT_ORDER) || 2289 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2290 nilfs_discontinued(nilfs)) { 2291 nilfs_transaction_unlock(sb); 2292 err = nilfs_segctor_sync(sci); 2293 return err; 2294 } 2295 2296 spin_lock(&nilfs->ns_inode_lock); 2297 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2298 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2299 spin_unlock(&nilfs->ns_inode_lock); 2300 nilfs_transaction_unlock(sb); 2301 return 0; 2302 } 2303 spin_unlock(&nilfs->ns_inode_lock); 2304 sci->sc_dsync_inode = ii; 2305 sci->sc_dsync_start = start; 2306 sci->sc_dsync_end = end; 2307 2308 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2309 if (!err) 2310 nilfs->ns_flushed_device = 0; 2311 2312 nilfs_transaction_unlock(sb); 2313 return err; 2314 } 2315 2316 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2317 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2318 2319 /** 2320 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2321 * @sci: segment constructor object 2322 */ 2323 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2324 { 2325 spin_lock(&sci->sc_state_lock); 2326 sci->sc_seq_accepted = sci->sc_seq_request; 2327 spin_unlock(&sci->sc_state_lock); 2328 del_timer_sync(&sci->sc_timer); 2329 } 2330 2331 /** 2332 * nilfs_segctor_notify - notify the result of request to caller threads 2333 * @sci: segment constructor object 2334 * @mode: mode of log forming 2335 * @err: error code to be notified 2336 */ 2337 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2338 { 2339 /* Clear requests (even when the construction failed) */ 2340 spin_lock(&sci->sc_state_lock); 2341 2342 if (mode == SC_LSEG_SR) { 2343 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2344 sci->sc_seq_done = sci->sc_seq_accepted; 2345 nilfs_segctor_wakeup(sci, err); 2346 sci->sc_flush_request = 0; 2347 } else { 2348 if (mode == SC_FLUSH_FILE) 2349 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2350 else if (mode == SC_FLUSH_DAT) 2351 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2352 2353 /* re-enable timer if checkpoint creation was not done */ 2354 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2355 time_before(jiffies, sci->sc_timer.expires)) 2356 add_timer(&sci->sc_timer); 2357 } 2358 spin_unlock(&sci->sc_state_lock); 2359 } 2360 2361 /** 2362 * nilfs_segctor_construct - form logs and write them to disk 2363 * @sci: segment constructor object 2364 * @mode: mode of log forming 2365 */ 2366 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2367 { 2368 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2369 struct nilfs_super_block **sbp; 2370 int err = 0; 2371 2372 nilfs_segctor_accept(sci); 2373 2374 if (nilfs_discontinued(nilfs)) 2375 mode = SC_LSEG_SR; 2376 if (!nilfs_segctor_confirm(sci)) 2377 err = nilfs_segctor_do_construct(sci, mode); 2378 2379 if (likely(!err)) { 2380 if (mode != SC_FLUSH_DAT) 2381 atomic_set(&nilfs->ns_ndirtyblks, 0); 2382 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2383 nilfs_discontinued(nilfs)) { 2384 down_write(&nilfs->ns_sem); 2385 err = -EIO; 2386 sbp = nilfs_prepare_super(sci->sc_super, 2387 nilfs_sb_will_flip(nilfs)); 2388 if (likely(sbp)) { 2389 nilfs_set_log_cursor(sbp[0], nilfs); 2390 err = nilfs_commit_super(sci->sc_super, 2391 NILFS_SB_COMMIT); 2392 } 2393 up_write(&nilfs->ns_sem); 2394 } 2395 } 2396 2397 nilfs_segctor_notify(sci, mode, err); 2398 return err; 2399 } 2400 2401 static void nilfs_construction_timeout(struct timer_list *t) 2402 { 2403 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2404 2405 wake_up_process(sci->sc_timer_task); 2406 } 2407 2408 static void 2409 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2410 { 2411 struct nilfs_inode_info *ii, *n; 2412 2413 list_for_each_entry_safe(ii, n, head, i_dirty) { 2414 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2415 continue; 2416 list_del_init(&ii->i_dirty); 2417 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2418 nilfs_btnode_cache_clear(&ii->i_btnode_cache); 2419 iput(&ii->vfs_inode); 2420 } 2421 } 2422 2423 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2424 void **kbufs) 2425 { 2426 struct the_nilfs *nilfs = sb->s_fs_info; 2427 struct nilfs_sc_info *sci = nilfs->ns_writer; 2428 struct nilfs_transaction_info ti; 2429 int err; 2430 2431 if (unlikely(!sci)) 2432 return -EROFS; 2433 2434 nilfs_transaction_lock(sb, &ti, 1); 2435 2436 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2437 if (unlikely(err)) 2438 goto out_unlock; 2439 2440 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2441 if (unlikely(err)) { 2442 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2443 goto out_unlock; 2444 } 2445 2446 sci->sc_freesegs = kbufs[4]; 2447 sci->sc_nfreesegs = argv[4].v_nmembs; 2448 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2449 2450 for (;;) { 2451 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2452 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2453 2454 if (likely(!err)) 2455 break; 2456 2457 nilfs_warn(sb, "error %d cleaning segments", err); 2458 set_current_state(TASK_INTERRUPTIBLE); 2459 schedule_timeout(sci->sc_interval); 2460 } 2461 if (nilfs_test_opt(nilfs, DISCARD)) { 2462 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2463 sci->sc_nfreesegs); 2464 if (ret) { 2465 nilfs_warn(sb, 2466 "error %d on discard request, turning discards off for the device", 2467 ret); 2468 nilfs_clear_opt(nilfs, DISCARD); 2469 } 2470 } 2471 2472 out_unlock: 2473 sci->sc_freesegs = NULL; 2474 sci->sc_nfreesegs = 0; 2475 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2476 nilfs_transaction_unlock(sb); 2477 return err; 2478 } 2479 2480 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2481 { 2482 struct nilfs_transaction_info ti; 2483 2484 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2485 nilfs_segctor_construct(sci, mode); 2486 2487 /* 2488 * Unclosed segment should be retried. We do this using sc_timer. 2489 * Timeout of sc_timer will invoke complete construction which leads 2490 * to close the current logical segment. 2491 */ 2492 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2493 nilfs_segctor_start_timer(sci); 2494 2495 nilfs_transaction_unlock(sci->sc_super); 2496 } 2497 2498 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2499 { 2500 int mode = 0; 2501 2502 spin_lock(&sci->sc_state_lock); 2503 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2504 SC_FLUSH_DAT : SC_FLUSH_FILE; 2505 spin_unlock(&sci->sc_state_lock); 2506 2507 if (mode) { 2508 nilfs_segctor_do_construct(sci, mode); 2509 2510 spin_lock(&sci->sc_state_lock); 2511 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2512 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2513 spin_unlock(&sci->sc_state_lock); 2514 } 2515 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2516 } 2517 2518 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2519 { 2520 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2521 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2522 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2523 return SC_FLUSH_FILE; 2524 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2525 return SC_FLUSH_DAT; 2526 } 2527 return SC_LSEG_SR; 2528 } 2529 2530 /** 2531 * nilfs_segctor_thread - main loop of the segment constructor thread. 2532 * @arg: pointer to a struct nilfs_sc_info. 2533 * 2534 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2535 * to execute segment constructions. 2536 */ 2537 static int nilfs_segctor_thread(void *arg) 2538 { 2539 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2540 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2541 int timeout = 0; 2542 2543 sci->sc_timer_task = current; 2544 2545 /* start sync. */ 2546 sci->sc_task = current; 2547 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2548 nilfs_info(sci->sc_super, 2549 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2550 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2551 2552 spin_lock(&sci->sc_state_lock); 2553 loop: 2554 for (;;) { 2555 int mode; 2556 2557 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2558 goto end_thread; 2559 2560 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2561 mode = SC_LSEG_SR; 2562 else if (sci->sc_flush_request) 2563 mode = nilfs_segctor_flush_mode(sci); 2564 else 2565 break; 2566 2567 spin_unlock(&sci->sc_state_lock); 2568 nilfs_segctor_thread_construct(sci, mode); 2569 spin_lock(&sci->sc_state_lock); 2570 timeout = 0; 2571 } 2572 2573 2574 if (freezing(current)) { 2575 spin_unlock(&sci->sc_state_lock); 2576 try_to_freeze(); 2577 spin_lock(&sci->sc_state_lock); 2578 } else { 2579 DEFINE_WAIT(wait); 2580 int should_sleep = 1; 2581 2582 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2583 TASK_INTERRUPTIBLE); 2584 2585 if (sci->sc_seq_request != sci->sc_seq_done) 2586 should_sleep = 0; 2587 else if (sci->sc_flush_request) 2588 should_sleep = 0; 2589 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2590 should_sleep = time_before(jiffies, 2591 sci->sc_timer.expires); 2592 2593 if (should_sleep) { 2594 spin_unlock(&sci->sc_state_lock); 2595 schedule(); 2596 spin_lock(&sci->sc_state_lock); 2597 } 2598 finish_wait(&sci->sc_wait_daemon, &wait); 2599 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2600 time_after_eq(jiffies, sci->sc_timer.expires)); 2601 2602 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2603 set_nilfs_discontinued(nilfs); 2604 } 2605 goto loop; 2606 2607 end_thread: 2608 spin_unlock(&sci->sc_state_lock); 2609 2610 /* end sync. */ 2611 sci->sc_task = NULL; 2612 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2613 return 0; 2614 } 2615 2616 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2617 { 2618 struct task_struct *t; 2619 2620 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2621 if (IS_ERR(t)) { 2622 int err = PTR_ERR(t); 2623 2624 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2625 err); 2626 return err; 2627 } 2628 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2629 return 0; 2630 } 2631 2632 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2633 __acquires(&sci->sc_state_lock) 2634 __releases(&sci->sc_state_lock) 2635 { 2636 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2637 2638 while (sci->sc_task) { 2639 wake_up(&sci->sc_wait_daemon); 2640 spin_unlock(&sci->sc_state_lock); 2641 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2642 spin_lock(&sci->sc_state_lock); 2643 } 2644 } 2645 2646 /* 2647 * Setup & clean-up functions 2648 */ 2649 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2650 struct nilfs_root *root) 2651 { 2652 struct the_nilfs *nilfs = sb->s_fs_info; 2653 struct nilfs_sc_info *sci; 2654 2655 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2656 if (!sci) 2657 return NULL; 2658 2659 sci->sc_super = sb; 2660 2661 nilfs_get_root(root); 2662 sci->sc_root = root; 2663 2664 init_waitqueue_head(&sci->sc_wait_request); 2665 init_waitqueue_head(&sci->sc_wait_daemon); 2666 init_waitqueue_head(&sci->sc_wait_task); 2667 spin_lock_init(&sci->sc_state_lock); 2668 INIT_LIST_HEAD(&sci->sc_dirty_files); 2669 INIT_LIST_HEAD(&sci->sc_segbufs); 2670 INIT_LIST_HEAD(&sci->sc_write_logs); 2671 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2672 INIT_LIST_HEAD(&sci->sc_iput_queue); 2673 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2674 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2675 2676 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2677 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2678 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2679 2680 if (nilfs->ns_interval) 2681 sci->sc_interval = HZ * nilfs->ns_interval; 2682 if (nilfs->ns_watermark) 2683 sci->sc_watermark = nilfs->ns_watermark; 2684 return sci; 2685 } 2686 2687 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2688 { 2689 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2690 2691 /* 2692 * The segctord thread was stopped and its timer was removed. 2693 * But some tasks remain. 2694 */ 2695 do { 2696 struct nilfs_transaction_info ti; 2697 2698 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2699 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2700 nilfs_transaction_unlock(sci->sc_super); 2701 2702 flush_work(&sci->sc_iput_work); 2703 2704 } while (ret && retrycount-- > 0); 2705 } 2706 2707 /** 2708 * nilfs_segctor_destroy - destroy the segment constructor. 2709 * @sci: nilfs_sc_info 2710 * 2711 * nilfs_segctor_destroy() kills the segctord thread and frees 2712 * the nilfs_sc_info struct. 2713 * Caller must hold the segment semaphore. 2714 */ 2715 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2716 { 2717 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2718 int flag; 2719 2720 up_write(&nilfs->ns_segctor_sem); 2721 2722 spin_lock(&sci->sc_state_lock); 2723 nilfs_segctor_kill_thread(sci); 2724 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2725 || sci->sc_seq_request != sci->sc_seq_done); 2726 spin_unlock(&sci->sc_state_lock); 2727 2728 if (flush_work(&sci->sc_iput_work)) 2729 flag = true; 2730 2731 if (flag || !nilfs_segctor_confirm(sci)) 2732 nilfs_segctor_write_out(sci); 2733 2734 if (!list_empty(&sci->sc_dirty_files)) { 2735 nilfs_warn(sci->sc_super, 2736 "disposed unprocessed dirty file(s) when stopping log writer"); 2737 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2738 } 2739 2740 if (!list_empty(&sci->sc_iput_queue)) { 2741 nilfs_warn(sci->sc_super, 2742 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2743 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2744 } 2745 2746 WARN_ON(!list_empty(&sci->sc_segbufs)); 2747 WARN_ON(!list_empty(&sci->sc_write_logs)); 2748 2749 nilfs_put_root(sci->sc_root); 2750 2751 down_write(&nilfs->ns_segctor_sem); 2752 2753 del_timer_sync(&sci->sc_timer); 2754 kfree(sci); 2755 } 2756 2757 /** 2758 * nilfs_attach_log_writer - attach log writer 2759 * @sb: super block instance 2760 * @root: root object of the current filesystem tree 2761 * 2762 * This allocates a log writer object, initializes it, and starts the 2763 * log writer. 2764 * 2765 * Return Value: On success, 0 is returned. On error, one of the following 2766 * negative error code is returned. 2767 * 2768 * %-ENOMEM - Insufficient memory available. 2769 */ 2770 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2771 { 2772 struct the_nilfs *nilfs = sb->s_fs_info; 2773 int err; 2774 2775 if (nilfs->ns_writer) { 2776 /* 2777 * This happens if the filesystem was remounted 2778 * read/write after nilfs_error degenerated it into a 2779 * read-only mount. 2780 */ 2781 nilfs_detach_log_writer(sb); 2782 } 2783 2784 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2785 if (!nilfs->ns_writer) 2786 return -ENOMEM; 2787 2788 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2789 2790 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2791 if (err) { 2792 kfree(nilfs->ns_writer); 2793 nilfs->ns_writer = NULL; 2794 } 2795 return err; 2796 } 2797 2798 /** 2799 * nilfs_detach_log_writer - destroy log writer 2800 * @sb: super block instance 2801 * 2802 * This kills log writer daemon, frees the log writer object, and 2803 * destroys list of dirty files. 2804 */ 2805 void nilfs_detach_log_writer(struct super_block *sb) 2806 { 2807 struct the_nilfs *nilfs = sb->s_fs_info; 2808 LIST_HEAD(garbage_list); 2809 2810 down_write(&nilfs->ns_segctor_sem); 2811 if (nilfs->ns_writer) { 2812 nilfs_segctor_destroy(nilfs->ns_writer); 2813 nilfs->ns_writer = NULL; 2814 } 2815 2816 /* Force to free the list of dirty files */ 2817 spin_lock(&nilfs->ns_inode_lock); 2818 if (!list_empty(&nilfs->ns_dirty_files)) { 2819 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2820 nilfs_warn(sb, 2821 "disposed unprocessed dirty file(s) when detaching log writer"); 2822 } 2823 spin_unlock(&nilfs->ns_inode_lock); 2824 up_write(&nilfs->ns_segctor_sem); 2825 2826 nilfs_dispose_list(nilfs, &garbage_list, 1); 2827 } 2828