1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 434 { 435 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 436 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 437 return -E2BIG; /* 438 * The current segment is filled up 439 * (internal code) 440 */ 441 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 442 return nilfs_segctor_reset_segment_buffer(sci); 443 } 444 445 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 446 { 447 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 448 int err; 449 450 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 451 err = nilfs_segctor_feed_segment(sci); 452 if (err) 453 return err; 454 segbuf = sci->sc_curseg; 455 } 456 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 457 if (likely(!err)) 458 segbuf->sb_sum.flags |= NILFS_SS_SR; 459 return err; 460 } 461 462 /* 463 * Functions for making segment summary and payloads 464 */ 465 static int nilfs_segctor_segsum_block_required( 466 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 467 unsigned int binfo_size) 468 { 469 unsigned int blocksize = sci->sc_super->s_blocksize; 470 /* Size of finfo and binfo is enough small against blocksize */ 471 472 return ssp->offset + binfo_size + 473 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 474 blocksize; 475 } 476 477 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 478 struct inode *inode) 479 { 480 sci->sc_curseg->sb_sum.nfinfo++; 481 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 482 nilfs_segctor_map_segsum_entry( 483 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 484 485 if (NILFS_I(inode)->i_root && 486 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 487 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 488 /* skip finfo */ 489 } 490 491 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 492 struct inode *inode) 493 { 494 struct nilfs_finfo *finfo; 495 struct nilfs_inode_info *ii; 496 struct nilfs_segment_buffer *segbuf; 497 __u64 cno; 498 499 if (sci->sc_blk_cnt == 0) 500 return; 501 502 ii = NILFS_I(inode); 503 504 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 505 cno = ii->i_cno; 506 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 507 cno = 0; 508 else 509 cno = sci->sc_cno; 510 511 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 512 sizeof(*finfo)); 513 finfo->fi_ino = cpu_to_le64(inode->i_ino); 514 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 515 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 516 finfo->fi_cno = cpu_to_le64(cno); 517 518 segbuf = sci->sc_curseg; 519 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 520 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 521 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 522 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 523 } 524 525 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 526 struct buffer_head *bh, 527 struct inode *inode, 528 unsigned int binfo_size) 529 { 530 struct nilfs_segment_buffer *segbuf; 531 int required, err = 0; 532 533 retry: 534 segbuf = sci->sc_curseg; 535 required = nilfs_segctor_segsum_block_required( 536 sci, &sci->sc_binfo_ptr, binfo_size); 537 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 538 nilfs_segctor_end_finfo(sci, inode); 539 err = nilfs_segctor_feed_segment(sci); 540 if (err) 541 return err; 542 goto retry; 543 } 544 if (unlikely(required)) { 545 err = nilfs_segbuf_extend_segsum(segbuf); 546 if (unlikely(err)) 547 goto failed; 548 } 549 if (sci->sc_blk_cnt == 0) 550 nilfs_segctor_begin_finfo(sci, inode); 551 552 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 553 /* Substitution to vblocknr is delayed until update_blocknr() */ 554 nilfs_segbuf_add_file_buffer(segbuf, bh); 555 sci->sc_blk_cnt++; 556 failed: 557 return err; 558 } 559 560 /* 561 * Callback functions that enumerate, mark, and collect dirty blocks 562 */ 563 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 564 struct buffer_head *bh, struct inode *inode) 565 { 566 int err; 567 568 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 569 if (err < 0) 570 return err; 571 572 err = nilfs_segctor_add_file_block(sci, bh, inode, 573 sizeof(struct nilfs_binfo_v)); 574 if (!err) 575 sci->sc_datablk_cnt++; 576 return err; 577 } 578 579 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 580 struct buffer_head *bh, 581 struct inode *inode) 582 { 583 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 584 } 585 586 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 587 struct buffer_head *bh, 588 struct inode *inode) 589 { 590 WARN_ON(!buffer_dirty(bh)); 591 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 592 } 593 594 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 595 struct nilfs_segsum_pointer *ssp, 596 union nilfs_binfo *binfo) 597 { 598 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 599 sci, ssp, sizeof(*binfo_v)); 600 *binfo_v = binfo->bi_v; 601 } 602 603 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 604 struct nilfs_segsum_pointer *ssp, 605 union nilfs_binfo *binfo) 606 { 607 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 608 sci, ssp, sizeof(*vblocknr)); 609 *vblocknr = binfo->bi_v.bi_vblocknr; 610 } 611 612 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 613 .collect_data = nilfs_collect_file_data, 614 .collect_node = nilfs_collect_file_node, 615 .collect_bmap = nilfs_collect_file_bmap, 616 .write_data_binfo = nilfs_write_file_data_binfo, 617 .write_node_binfo = nilfs_write_file_node_binfo, 618 }; 619 620 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 621 struct buffer_head *bh, struct inode *inode) 622 { 623 int err; 624 625 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 626 if (err < 0) 627 return err; 628 629 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 630 if (!err) 631 sci->sc_datablk_cnt++; 632 return err; 633 } 634 635 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 636 struct buffer_head *bh, struct inode *inode) 637 { 638 WARN_ON(!buffer_dirty(bh)); 639 return nilfs_segctor_add_file_block(sci, bh, inode, 640 sizeof(struct nilfs_binfo_dat)); 641 } 642 643 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 644 struct nilfs_segsum_pointer *ssp, 645 union nilfs_binfo *binfo) 646 { 647 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 648 sizeof(*blkoff)); 649 *blkoff = binfo->bi_dat.bi_blkoff; 650 } 651 652 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 653 struct nilfs_segsum_pointer *ssp, 654 union nilfs_binfo *binfo) 655 { 656 struct nilfs_binfo_dat *binfo_dat = 657 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 658 *binfo_dat = binfo->bi_dat; 659 } 660 661 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 662 .collect_data = nilfs_collect_dat_data, 663 .collect_node = nilfs_collect_file_node, 664 .collect_bmap = nilfs_collect_dat_bmap, 665 .write_data_binfo = nilfs_write_dat_data_binfo, 666 .write_node_binfo = nilfs_write_dat_node_binfo, 667 }; 668 669 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 670 .collect_data = nilfs_collect_file_data, 671 .collect_node = NULL, 672 .collect_bmap = NULL, 673 .write_data_binfo = nilfs_write_file_data_binfo, 674 .write_node_binfo = NULL, 675 }; 676 677 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 678 struct list_head *listp, 679 size_t nlimit, 680 loff_t start, loff_t end) 681 { 682 struct address_space *mapping = inode->i_mapping; 683 struct folio_batch fbatch; 684 pgoff_t index = 0, last = ULONG_MAX; 685 size_t ndirties = 0; 686 int i; 687 688 if (unlikely(start != 0 || end != LLONG_MAX)) { 689 /* 690 * A valid range is given for sync-ing data pages. The 691 * range is rounded to per-page; extra dirty buffers 692 * may be included if blocksize < pagesize. 693 */ 694 index = start >> PAGE_SHIFT; 695 last = end >> PAGE_SHIFT; 696 } 697 folio_batch_init(&fbatch); 698 repeat: 699 if (unlikely(index > last) || 700 !filemap_get_folios_tag(mapping, &index, last, 701 PAGECACHE_TAG_DIRTY, &fbatch)) 702 return ndirties; 703 704 for (i = 0; i < folio_batch_count(&fbatch); i++) { 705 struct buffer_head *bh, *head; 706 struct folio *folio = fbatch.folios[i]; 707 708 folio_lock(folio); 709 head = folio_buffers(folio); 710 if (!head) { 711 create_empty_buffers(&folio->page, i_blocksize(inode), 0); 712 head = folio_buffers(folio); 713 } 714 folio_unlock(folio); 715 716 bh = head; 717 do { 718 if (!buffer_dirty(bh) || buffer_async_write(bh)) 719 continue; 720 get_bh(bh); 721 list_add_tail(&bh->b_assoc_buffers, listp); 722 ndirties++; 723 if (unlikely(ndirties >= nlimit)) { 724 folio_batch_release(&fbatch); 725 cond_resched(); 726 return ndirties; 727 } 728 } while (bh = bh->b_this_page, bh != head); 729 } 730 folio_batch_release(&fbatch); 731 cond_resched(); 732 goto repeat; 733 } 734 735 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 736 struct list_head *listp) 737 { 738 struct nilfs_inode_info *ii = NILFS_I(inode); 739 struct inode *btnc_inode = ii->i_assoc_inode; 740 struct folio_batch fbatch; 741 struct buffer_head *bh, *head; 742 unsigned int i; 743 pgoff_t index = 0; 744 745 if (!btnc_inode) 746 return; 747 folio_batch_init(&fbatch); 748 749 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 750 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 751 for (i = 0; i < folio_batch_count(&fbatch); i++) { 752 bh = head = folio_buffers(fbatch.folios[i]); 753 do { 754 if (buffer_dirty(bh) && 755 !buffer_async_write(bh)) { 756 get_bh(bh); 757 list_add_tail(&bh->b_assoc_buffers, 758 listp); 759 } 760 bh = bh->b_this_page; 761 } while (bh != head); 762 } 763 folio_batch_release(&fbatch); 764 cond_resched(); 765 } 766 } 767 768 static void nilfs_dispose_list(struct the_nilfs *nilfs, 769 struct list_head *head, int force) 770 { 771 struct nilfs_inode_info *ii, *n; 772 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 773 unsigned int nv = 0; 774 775 while (!list_empty(head)) { 776 spin_lock(&nilfs->ns_inode_lock); 777 list_for_each_entry_safe(ii, n, head, i_dirty) { 778 list_del_init(&ii->i_dirty); 779 if (force) { 780 if (unlikely(ii->i_bh)) { 781 brelse(ii->i_bh); 782 ii->i_bh = NULL; 783 } 784 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 785 set_bit(NILFS_I_QUEUED, &ii->i_state); 786 list_add_tail(&ii->i_dirty, 787 &nilfs->ns_dirty_files); 788 continue; 789 } 790 ivec[nv++] = ii; 791 if (nv == SC_N_INODEVEC) 792 break; 793 } 794 spin_unlock(&nilfs->ns_inode_lock); 795 796 for (pii = ivec; nv > 0; pii++, nv--) 797 iput(&(*pii)->vfs_inode); 798 } 799 } 800 801 static void nilfs_iput_work_func(struct work_struct *work) 802 { 803 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 804 sc_iput_work); 805 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 806 807 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 808 } 809 810 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 811 struct nilfs_root *root) 812 { 813 int ret = 0; 814 815 if (nilfs_mdt_fetch_dirty(root->ifile)) 816 ret++; 817 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 818 ret++; 819 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 820 ret++; 821 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 822 ret++; 823 return ret; 824 } 825 826 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 827 { 828 return list_empty(&sci->sc_dirty_files) && 829 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 830 sci->sc_nfreesegs == 0 && 831 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 832 } 833 834 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 835 { 836 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 837 int ret = 0; 838 839 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 840 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 841 842 spin_lock(&nilfs->ns_inode_lock); 843 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 844 ret++; 845 846 spin_unlock(&nilfs->ns_inode_lock); 847 return ret; 848 } 849 850 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 851 { 852 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 853 854 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 855 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 856 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 857 nilfs_mdt_clear_dirty(nilfs->ns_dat); 858 } 859 860 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 861 { 862 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 863 struct buffer_head *bh_cp; 864 struct nilfs_checkpoint *raw_cp; 865 int err; 866 867 /* XXX: this interface will be changed */ 868 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 869 &raw_cp, &bh_cp); 870 if (likely(!err)) { 871 /* 872 * The following code is duplicated with cpfile. But, it is 873 * needed to collect the checkpoint even if it was not newly 874 * created. 875 */ 876 mark_buffer_dirty(bh_cp); 877 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 878 nilfs_cpfile_put_checkpoint( 879 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 880 } else if (err == -EINVAL || err == -ENOENT) { 881 nilfs_error(sci->sc_super, 882 "checkpoint creation failed due to metadata corruption."); 883 err = -EIO; 884 } 885 return err; 886 } 887 888 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 889 { 890 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 891 struct buffer_head *bh_cp; 892 struct nilfs_checkpoint *raw_cp; 893 int err; 894 895 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 896 &raw_cp, &bh_cp); 897 if (unlikely(err)) { 898 if (err == -EINVAL || err == -ENOENT) { 899 nilfs_error(sci->sc_super, 900 "checkpoint finalization failed due to metadata corruption."); 901 err = -EIO; 902 } 903 goto failed_ibh; 904 } 905 raw_cp->cp_snapshot_list.ssl_next = 0; 906 raw_cp->cp_snapshot_list.ssl_prev = 0; 907 raw_cp->cp_inodes_count = 908 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 909 raw_cp->cp_blocks_count = 910 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 911 raw_cp->cp_nblk_inc = 912 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 913 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 914 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 915 916 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 917 nilfs_checkpoint_clear_minor(raw_cp); 918 else 919 nilfs_checkpoint_set_minor(raw_cp); 920 921 nilfs_write_inode_common(sci->sc_root->ifile, 922 &raw_cp->cp_ifile_inode, 1); 923 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 924 return 0; 925 926 failed_ibh: 927 return err; 928 } 929 930 static void nilfs_fill_in_file_bmap(struct inode *ifile, 931 struct nilfs_inode_info *ii) 932 933 { 934 struct buffer_head *ibh; 935 struct nilfs_inode *raw_inode; 936 937 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 938 ibh = ii->i_bh; 939 BUG_ON(!ibh); 940 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 941 ibh); 942 nilfs_bmap_write(ii->i_bmap, raw_inode); 943 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 944 } 945 } 946 947 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 948 { 949 struct nilfs_inode_info *ii; 950 951 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 952 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 953 set_bit(NILFS_I_COLLECTED, &ii->i_state); 954 } 955 } 956 957 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 958 struct the_nilfs *nilfs) 959 { 960 struct buffer_head *bh_sr; 961 struct nilfs_super_root *raw_sr; 962 unsigned int isz, srsz; 963 964 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 965 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 966 isz = nilfs->ns_inode_size; 967 srsz = NILFS_SR_BYTES(isz); 968 969 raw_sr->sr_bytes = cpu_to_le16(srsz); 970 raw_sr->sr_nongc_ctime 971 = cpu_to_le64(nilfs_doing_gc() ? 972 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 973 raw_sr->sr_flags = 0; 974 975 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 976 NILFS_SR_DAT_OFFSET(isz), 1); 977 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 978 NILFS_SR_CPFILE_OFFSET(isz), 1); 979 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 980 NILFS_SR_SUFILE_OFFSET(isz), 1); 981 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 982 } 983 984 static void nilfs_redirty_inodes(struct list_head *head) 985 { 986 struct nilfs_inode_info *ii; 987 988 list_for_each_entry(ii, head, i_dirty) { 989 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 990 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 991 } 992 } 993 994 static void nilfs_drop_collected_inodes(struct list_head *head) 995 { 996 struct nilfs_inode_info *ii; 997 998 list_for_each_entry(ii, head, i_dirty) { 999 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 1000 continue; 1001 1002 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 1003 set_bit(NILFS_I_UPDATED, &ii->i_state); 1004 } 1005 } 1006 1007 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1008 struct inode *inode, 1009 struct list_head *listp, 1010 int (*collect)(struct nilfs_sc_info *, 1011 struct buffer_head *, 1012 struct inode *)) 1013 { 1014 struct buffer_head *bh, *n; 1015 int err = 0; 1016 1017 if (collect) { 1018 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1019 list_del_init(&bh->b_assoc_buffers); 1020 err = collect(sci, bh, inode); 1021 brelse(bh); 1022 if (unlikely(err)) 1023 goto dispose_buffers; 1024 } 1025 return 0; 1026 } 1027 1028 dispose_buffers: 1029 while (!list_empty(listp)) { 1030 bh = list_first_entry(listp, struct buffer_head, 1031 b_assoc_buffers); 1032 list_del_init(&bh->b_assoc_buffers); 1033 brelse(bh); 1034 } 1035 return err; 1036 } 1037 1038 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1039 { 1040 /* Remaining number of blocks within segment buffer */ 1041 return sci->sc_segbuf_nblocks - 1042 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1043 } 1044 1045 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1046 struct inode *inode, 1047 const struct nilfs_sc_operations *sc_ops) 1048 { 1049 LIST_HEAD(data_buffers); 1050 LIST_HEAD(node_buffers); 1051 int err; 1052 1053 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1054 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1055 1056 n = nilfs_lookup_dirty_data_buffers( 1057 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1058 if (n > rest) { 1059 err = nilfs_segctor_apply_buffers( 1060 sci, inode, &data_buffers, 1061 sc_ops->collect_data); 1062 BUG_ON(!err); /* always receive -E2BIG or true error */ 1063 goto break_or_fail; 1064 } 1065 } 1066 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1067 1068 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1069 err = nilfs_segctor_apply_buffers( 1070 sci, inode, &data_buffers, sc_ops->collect_data); 1071 if (unlikely(err)) { 1072 /* dispose node list */ 1073 nilfs_segctor_apply_buffers( 1074 sci, inode, &node_buffers, NULL); 1075 goto break_or_fail; 1076 } 1077 sci->sc_stage.flags |= NILFS_CF_NODE; 1078 } 1079 /* Collect node */ 1080 err = nilfs_segctor_apply_buffers( 1081 sci, inode, &node_buffers, sc_ops->collect_node); 1082 if (unlikely(err)) 1083 goto break_or_fail; 1084 1085 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1086 err = nilfs_segctor_apply_buffers( 1087 sci, inode, &node_buffers, sc_ops->collect_bmap); 1088 if (unlikely(err)) 1089 goto break_or_fail; 1090 1091 nilfs_segctor_end_finfo(sci, inode); 1092 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1093 1094 break_or_fail: 1095 return err; 1096 } 1097 1098 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1099 struct inode *inode) 1100 { 1101 LIST_HEAD(data_buffers); 1102 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1103 int err; 1104 1105 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1106 sci->sc_dsync_start, 1107 sci->sc_dsync_end); 1108 1109 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1110 nilfs_collect_file_data); 1111 if (!err) { 1112 nilfs_segctor_end_finfo(sci, inode); 1113 BUG_ON(n > rest); 1114 /* always receive -E2BIG or true error if n > rest */ 1115 } 1116 return err; 1117 } 1118 1119 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1120 { 1121 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1122 struct list_head *head; 1123 struct nilfs_inode_info *ii; 1124 size_t ndone; 1125 int err = 0; 1126 1127 switch (nilfs_sc_cstage_get(sci)) { 1128 case NILFS_ST_INIT: 1129 /* Pre-processes */ 1130 sci->sc_stage.flags = 0; 1131 1132 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1133 sci->sc_nblk_inc = 0; 1134 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1135 if (mode == SC_LSEG_DSYNC) { 1136 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1137 goto dsync_mode; 1138 } 1139 } 1140 1141 sci->sc_stage.dirty_file_ptr = NULL; 1142 sci->sc_stage.gc_inode_ptr = NULL; 1143 if (mode == SC_FLUSH_DAT) { 1144 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1145 goto dat_stage; 1146 } 1147 nilfs_sc_cstage_inc(sci); 1148 fallthrough; 1149 case NILFS_ST_GC: 1150 if (nilfs_doing_gc()) { 1151 head = &sci->sc_gc_inodes; 1152 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1153 head, i_dirty); 1154 list_for_each_entry_continue(ii, head, i_dirty) { 1155 err = nilfs_segctor_scan_file( 1156 sci, &ii->vfs_inode, 1157 &nilfs_sc_file_ops); 1158 if (unlikely(err)) { 1159 sci->sc_stage.gc_inode_ptr = list_entry( 1160 ii->i_dirty.prev, 1161 struct nilfs_inode_info, 1162 i_dirty); 1163 goto break_or_fail; 1164 } 1165 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1166 } 1167 sci->sc_stage.gc_inode_ptr = NULL; 1168 } 1169 nilfs_sc_cstage_inc(sci); 1170 fallthrough; 1171 case NILFS_ST_FILE: 1172 head = &sci->sc_dirty_files; 1173 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1174 i_dirty); 1175 list_for_each_entry_continue(ii, head, i_dirty) { 1176 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1177 1178 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1179 &nilfs_sc_file_ops); 1180 if (unlikely(err)) { 1181 sci->sc_stage.dirty_file_ptr = 1182 list_entry(ii->i_dirty.prev, 1183 struct nilfs_inode_info, 1184 i_dirty); 1185 goto break_or_fail; 1186 } 1187 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1188 /* XXX: required ? */ 1189 } 1190 sci->sc_stage.dirty_file_ptr = NULL; 1191 if (mode == SC_FLUSH_FILE) { 1192 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1193 return 0; 1194 } 1195 nilfs_sc_cstage_inc(sci); 1196 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1197 fallthrough; 1198 case NILFS_ST_IFILE: 1199 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1200 &nilfs_sc_file_ops); 1201 if (unlikely(err)) 1202 break; 1203 nilfs_sc_cstage_inc(sci); 1204 /* Creating a checkpoint */ 1205 err = nilfs_segctor_create_checkpoint(sci); 1206 if (unlikely(err)) 1207 break; 1208 fallthrough; 1209 case NILFS_ST_CPFILE: 1210 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1211 &nilfs_sc_file_ops); 1212 if (unlikely(err)) 1213 break; 1214 nilfs_sc_cstage_inc(sci); 1215 fallthrough; 1216 case NILFS_ST_SUFILE: 1217 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1218 sci->sc_nfreesegs, &ndone); 1219 if (unlikely(err)) { 1220 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1221 sci->sc_freesegs, ndone, 1222 NULL); 1223 break; 1224 } 1225 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1226 1227 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1228 &nilfs_sc_file_ops); 1229 if (unlikely(err)) 1230 break; 1231 nilfs_sc_cstage_inc(sci); 1232 fallthrough; 1233 case NILFS_ST_DAT: 1234 dat_stage: 1235 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1236 &nilfs_sc_dat_ops); 1237 if (unlikely(err)) 1238 break; 1239 if (mode == SC_FLUSH_DAT) { 1240 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1241 return 0; 1242 } 1243 nilfs_sc_cstage_inc(sci); 1244 fallthrough; 1245 case NILFS_ST_SR: 1246 if (mode == SC_LSEG_SR) { 1247 /* Appending a super root */ 1248 err = nilfs_segctor_add_super_root(sci); 1249 if (unlikely(err)) 1250 break; 1251 } 1252 /* End of a logical segment */ 1253 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1254 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1255 return 0; 1256 case NILFS_ST_DSYNC: 1257 dsync_mode: 1258 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1259 ii = sci->sc_dsync_inode; 1260 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1261 break; 1262 1263 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1264 if (unlikely(err)) 1265 break; 1266 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1267 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1268 return 0; 1269 case NILFS_ST_DONE: 1270 return 0; 1271 default: 1272 BUG(); 1273 } 1274 1275 break_or_fail: 1276 return err; 1277 } 1278 1279 /** 1280 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1281 * @sci: nilfs_sc_info 1282 * @nilfs: nilfs object 1283 */ 1284 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1285 struct the_nilfs *nilfs) 1286 { 1287 struct nilfs_segment_buffer *segbuf, *prev; 1288 __u64 nextnum; 1289 int err, alloc = 0; 1290 1291 segbuf = nilfs_segbuf_new(sci->sc_super); 1292 if (unlikely(!segbuf)) 1293 return -ENOMEM; 1294 1295 if (list_empty(&sci->sc_write_logs)) { 1296 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1297 nilfs->ns_pseg_offset, nilfs); 1298 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1299 nilfs_shift_to_next_segment(nilfs); 1300 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1301 } 1302 1303 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1304 nextnum = nilfs->ns_nextnum; 1305 1306 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1307 /* Start from the head of a new full segment */ 1308 alloc++; 1309 } else { 1310 /* Continue logs */ 1311 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1312 nilfs_segbuf_map_cont(segbuf, prev); 1313 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1314 nextnum = prev->sb_nextnum; 1315 1316 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1317 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1318 segbuf->sb_sum.seg_seq++; 1319 alloc++; 1320 } 1321 } 1322 1323 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1324 if (err) 1325 goto failed; 1326 1327 if (alloc) { 1328 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1329 if (err) 1330 goto failed; 1331 } 1332 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1333 1334 BUG_ON(!list_empty(&sci->sc_segbufs)); 1335 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1336 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1337 return 0; 1338 1339 failed: 1340 nilfs_segbuf_free(segbuf); 1341 return err; 1342 } 1343 1344 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1345 struct the_nilfs *nilfs, int nadd) 1346 { 1347 struct nilfs_segment_buffer *segbuf, *prev; 1348 struct inode *sufile = nilfs->ns_sufile; 1349 __u64 nextnextnum; 1350 LIST_HEAD(list); 1351 int err, ret, i; 1352 1353 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1354 /* 1355 * Since the segment specified with nextnum might be allocated during 1356 * the previous construction, the buffer including its segusage may 1357 * not be dirty. The following call ensures that the buffer is dirty 1358 * and will pin the buffer on memory until the sufile is written. 1359 */ 1360 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1361 if (unlikely(err)) 1362 return err; 1363 1364 for (i = 0; i < nadd; i++) { 1365 /* extend segment info */ 1366 err = -ENOMEM; 1367 segbuf = nilfs_segbuf_new(sci->sc_super); 1368 if (unlikely(!segbuf)) 1369 goto failed; 1370 1371 /* map this buffer to region of segment on-disk */ 1372 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1373 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1374 1375 /* allocate the next next full segment */ 1376 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1377 if (unlikely(err)) 1378 goto failed_segbuf; 1379 1380 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1381 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1382 1383 list_add_tail(&segbuf->sb_list, &list); 1384 prev = segbuf; 1385 } 1386 list_splice_tail(&list, &sci->sc_segbufs); 1387 return 0; 1388 1389 failed_segbuf: 1390 nilfs_segbuf_free(segbuf); 1391 failed: 1392 list_for_each_entry(segbuf, &list, sb_list) { 1393 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1394 WARN_ON(ret); /* never fails */ 1395 } 1396 nilfs_destroy_logs(&list); 1397 return err; 1398 } 1399 1400 static void nilfs_free_incomplete_logs(struct list_head *logs, 1401 struct the_nilfs *nilfs) 1402 { 1403 struct nilfs_segment_buffer *segbuf, *prev; 1404 struct inode *sufile = nilfs->ns_sufile; 1405 int ret; 1406 1407 segbuf = NILFS_FIRST_SEGBUF(logs); 1408 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1409 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1410 WARN_ON(ret); /* never fails */ 1411 } 1412 if (atomic_read(&segbuf->sb_err)) { 1413 /* Case 1: The first segment failed */ 1414 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1415 /* 1416 * Case 1a: Partial segment appended into an existing 1417 * segment 1418 */ 1419 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1420 segbuf->sb_fseg_end); 1421 else /* Case 1b: New full segment */ 1422 set_nilfs_discontinued(nilfs); 1423 } 1424 1425 prev = segbuf; 1426 list_for_each_entry_continue(segbuf, logs, sb_list) { 1427 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1428 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1429 WARN_ON(ret); /* never fails */ 1430 } 1431 if (atomic_read(&segbuf->sb_err) && 1432 segbuf->sb_segnum != nilfs->ns_nextnum) 1433 /* Case 2: extended segment (!= next) failed */ 1434 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1435 prev = segbuf; 1436 } 1437 } 1438 1439 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1440 struct inode *sufile) 1441 { 1442 struct nilfs_segment_buffer *segbuf; 1443 unsigned long live_blocks; 1444 int ret; 1445 1446 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1447 live_blocks = segbuf->sb_sum.nblocks + 1448 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1449 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1450 live_blocks, 1451 sci->sc_seg_ctime); 1452 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1453 } 1454 } 1455 1456 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1457 { 1458 struct nilfs_segment_buffer *segbuf; 1459 int ret; 1460 1461 segbuf = NILFS_FIRST_SEGBUF(logs); 1462 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1463 segbuf->sb_pseg_start - 1464 segbuf->sb_fseg_start, 0); 1465 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1466 1467 list_for_each_entry_continue(segbuf, logs, sb_list) { 1468 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1469 0, 0); 1470 WARN_ON(ret); /* always succeed */ 1471 } 1472 } 1473 1474 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1475 struct nilfs_segment_buffer *last, 1476 struct inode *sufile) 1477 { 1478 struct nilfs_segment_buffer *segbuf = last; 1479 int ret; 1480 1481 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1482 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1483 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1484 WARN_ON(ret); 1485 } 1486 nilfs_truncate_logs(&sci->sc_segbufs, last); 1487 } 1488 1489 1490 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1491 struct the_nilfs *nilfs, int mode) 1492 { 1493 struct nilfs_cstage prev_stage = sci->sc_stage; 1494 int err, nadd = 1; 1495 1496 /* Collection retry loop */ 1497 for (;;) { 1498 sci->sc_nblk_this_inc = 0; 1499 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1500 1501 err = nilfs_segctor_reset_segment_buffer(sci); 1502 if (unlikely(err)) 1503 goto failed; 1504 1505 err = nilfs_segctor_collect_blocks(sci, mode); 1506 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1507 if (!err) 1508 break; 1509 1510 if (unlikely(err != -E2BIG)) 1511 goto failed; 1512 1513 /* The current segment is filled up */ 1514 if (mode != SC_LSEG_SR || 1515 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1516 break; 1517 1518 nilfs_clear_logs(&sci->sc_segbufs); 1519 1520 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1521 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1522 sci->sc_freesegs, 1523 sci->sc_nfreesegs, 1524 NULL); 1525 WARN_ON(err); /* do not happen */ 1526 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1527 } 1528 1529 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1530 if (unlikely(err)) 1531 return err; 1532 1533 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1534 sci->sc_stage = prev_stage; 1535 } 1536 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1537 return 0; 1538 1539 failed: 1540 return err; 1541 } 1542 1543 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1544 struct buffer_head *new_bh) 1545 { 1546 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1547 1548 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1549 /* The caller must release old_bh */ 1550 } 1551 1552 static int 1553 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1554 struct nilfs_segment_buffer *segbuf, 1555 int mode) 1556 { 1557 struct inode *inode = NULL; 1558 sector_t blocknr; 1559 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1560 unsigned long nblocks = 0, ndatablk = 0; 1561 const struct nilfs_sc_operations *sc_op = NULL; 1562 struct nilfs_segsum_pointer ssp; 1563 struct nilfs_finfo *finfo = NULL; 1564 union nilfs_binfo binfo; 1565 struct buffer_head *bh, *bh_org; 1566 ino_t ino = 0; 1567 int err = 0; 1568 1569 if (!nfinfo) 1570 goto out; 1571 1572 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1573 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1574 ssp.offset = sizeof(struct nilfs_segment_summary); 1575 1576 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1577 if (bh == segbuf->sb_super_root) 1578 break; 1579 if (!finfo) { 1580 finfo = nilfs_segctor_map_segsum_entry( 1581 sci, &ssp, sizeof(*finfo)); 1582 ino = le64_to_cpu(finfo->fi_ino); 1583 nblocks = le32_to_cpu(finfo->fi_nblocks); 1584 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1585 1586 inode = bh->b_folio->mapping->host; 1587 1588 if (mode == SC_LSEG_DSYNC) 1589 sc_op = &nilfs_sc_dsync_ops; 1590 else if (ino == NILFS_DAT_INO) 1591 sc_op = &nilfs_sc_dat_ops; 1592 else /* file blocks */ 1593 sc_op = &nilfs_sc_file_ops; 1594 } 1595 bh_org = bh; 1596 get_bh(bh_org); 1597 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1598 &binfo); 1599 if (bh != bh_org) 1600 nilfs_list_replace_buffer(bh_org, bh); 1601 brelse(bh_org); 1602 if (unlikely(err)) 1603 goto failed_bmap; 1604 1605 if (ndatablk > 0) 1606 sc_op->write_data_binfo(sci, &ssp, &binfo); 1607 else 1608 sc_op->write_node_binfo(sci, &ssp, &binfo); 1609 1610 blocknr++; 1611 if (--nblocks == 0) { 1612 finfo = NULL; 1613 if (--nfinfo == 0) 1614 break; 1615 } else if (ndatablk > 0) 1616 ndatablk--; 1617 } 1618 out: 1619 return 0; 1620 1621 failed_bmap: 1622 return err; 1623 } 1624 1625 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1626 { 1627 struct nilfs_segment_buffer *segbuf; 1628 int err; 1629 1630 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1631 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1632 if (unlikely(err)) 1633 return err; 1634 nilfs_segbuf_fill_in_segsum(segbuf); 1635 } 1636 return 0; 1637 } 1638 1639 static void nilfs_begin_page_io(struct page *page) 1640 { 1641 if (!page || PageWriteback(page)) 1642 /* 1643 * For split b-tree node pages, this function may be called 1644 * twice. We ignore the 2nd or later calls by this check. 1645 */ 1646 return; 1647 1648 lock_page(page); 1649 clear_page_dirty_for_io(page); 1650 set_page_writeback(page); 1651 unlock_page(page); 1652 } 1653 1654 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1655 { 1656 struct nilfs_segment_buffer *segbuf; 1657 struct page *bd_page = NULL, *fs_page = NULL; 1658 1659 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1660 struct buffer_head *bh; 1661 1662 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1663 b_assoc_buffers) { 1664 if (bh->b_page != bd_page) { 1665 if (bd_page) { 1666 lock_page(bd_page); 1667 clear_page_dirty_for_io(bd_page); 1668 set_page_writeback(bd_page); 1669 unlock_page(bd_page); 1670 } 1671 bd_page = bh->b_page; 1672 } 1673 } 1674 1675 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1676 b_assoc_buffers) { 1677 set_buffer_async_write(bh); 1678 if (bh == segbuf->sb_super_root) { 1679 if (bh->b_page != bd_page) { 1680 lock_page(bd_page); 1681 clear_page_dirty_for_io(bd_page); 1682 set_page_writeback(bd_page); 1683 unlock_page(bd_page); 1684 bd_page = bh->b_page; 1685 } 1686 break; 1687 } 1688 if (bh->b_page != fs_page) { 1689 nilfs_begin_page_io(fs_page); 1690 fs_page = bh->b_page; 1691 } 1692 } 1693 } 1694 if (bd_page) { 1695 lock_page(bd_page); 1696 clear_page_dirty_for_io(bd_page); 1697 set_page_writeback(bd_page); 1698 unlock_page(bd_page); 1699 } 1700 nilfs_begin_page_io(fs_page); 1701 } 1702 1703 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1704 struct the_nilfs *nilfs) 1705 { 1706 int ret; 1707 1708 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1709 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1710 return ret; 1711 } 1712 1713 static void nilfs_end_page_io(struct page *page, int err) 1714 { 1715 if (!page) 1716 return; 1717 1718 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1719 /* 1720 * For b-tree node pages, this function may be called twice 1721 * or more because they might be split in a segment. 1722 */ 1723 if (PageDirty(page)) { 1724 /* 1725 * For pages holding split b-tree node buffers, dirty 1726 * flag on the buffers may be cleared discretely. 1727 * In that case, the page is once redirtied for 1728 * remaining buffers, and it must be cancelled if 1729 * all the buffers get cleaned later. 1730 */ 1731 lock_page(page); 1732 if (nilfs_page_buffers_clean(page)) 1733 __nilfs_clear_page_dirty(page); 1734 unlock_page(page); 1735 } 1736 return; 1737 } 1738 1739 if (!err) { 1740 if (!nilfs_page_buffers_clean(page)) 1741 __set_page_dirty_nobuffers(page); 1742 ClearPageError(page); 1743 } else { 1744 __set_page_dirty_nobuffers(page); 1745 SetPageError(page); 1746 } 1747 1748 end_page_writeback(page); 1749 } 1750 1751 static void nilfs_abort_logs(struct list_head *logs, int err) 1752 { 1753 struct nilfs_segment_buffer *segbuf; 1754 struct page *bd_page = NULL, *fs_page = NULL; 1755 struct buffer_head *bh; 1756 1757 if (list_empty(logs)) 1758 return; 1759 1760 list_for_each_entry(segbuf, logs, sb_list) { 1761 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1762 b_assoc_buffers) { 1763 if (bh->b_page != bd_page) { 1764 if (bd_page) 1765 end_page_writeback(bd_page); 1766 bd_page = bh->b_page; 1767 } 1768 } 1769 1770 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1771 b_assoc_buffers) { 1772 clear_buffer_async_write(bh); 1773 if (bh == segbuf->sb_super_root) { 1774 if (bh->b_page != bd_page) { 1775 end_page_writeback(bd_page); 1776 bd_page = bh->b_page; 1777 } 1778 break; 1779 } 1780 if (bh->b_page != fs_page) { 1781 nilfs_end_page_io(fs_page, err); 1782 fs_page = bh->b_page; 1783 } 1784 } 1785 } 1786 if (bd_page) 1787 end_page_writeback(bd_page); 1788 1789 nilfs_end_page_io(fs_page, err); 1790 } 1791 1792 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1793 struct the_nilfs *nilfs, int err) 1794 { 1795 LIST_HEAD(logs); 1796 int ret; 1797 1798 list_splice_tail_init(&sci->sc_write_logs, &logs); 1799 ret = nilfs_wait_on_logs(&logs); 1800 nilfs_abort_logs(&logs, ret ? : err); 1801 1802 list_splice_tail_init(&sci->sc_segbufs, &logs); 1803 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1804 nilfs_free_incomplete_logs(&logs, nilfs); 1805 1806 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1807 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1808 sci->sc_freesegs, 1809 sci->sc_nfreesegs, 1810 NULL); 1811 WARN_ON(ret); /* do not happen */ 1812 } 1813 1814 nilfs_destroy_logs(&logs); 1815 } 1816 1817 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1818 struct nilfs_segment_buffer *segbuf) 1819 { 1820 nilfs->ns_segnum = segbuf->sb_segnum; 1821 nilfs->ns_nextnum = segbuf->sb_nextnum; 1822 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1823 + segbuf->sb_sum.nblocks; 1824 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1825 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1826 } 1827 1828 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1829 { 1830 struct nilfs_segment_buffer *segbuf; 1831 struct page *bd_page = NULL, *fs_page = NULL; 1832 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1833 int update_sr = false; 1834 1835 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1836 struct buffer_head *bh; 1837 1838 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1839 b_assoc_buffers) { 1840 set_buffer_uptodate(bh); 1841 clear_buffer_dirty(bh); 1842 if (bh->b_page != bd_page) { 1843 if (bd_page) 1844 end_page_writeback(bd_page); 1845 bd_page = bh->b_page; 1846 } 1847 } 1848 /* 1849 * We assume that the buffers which belong to the same page 1850 * continue over the buffer list. 1851 * Under this assumption, the last BHs of pages is 1852 * identifiable by the discontinuity of bh->b_page 1853 * (page != fs_page). 1854 * 1855 * For B-tree node blocks, however, this assumption is not 1856 * guaranteed. The cleanup code of B-tree node pages needs 1857 * special care. 1858 */ 1859 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1860 b_assoc_buffers) { 1861 const unsigned long set_bits = BIT(BH_Uptodate); 1862 const unsigned long clear_bits = 1863 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1864 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1865 BIT(BH_NILFS_Redirected)); 1866 1867 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1868 if (bh == segbuf->sb_super_root) { 1869 if (bh->b_page != bd_page) { 1870 end_page_writeback(bd_page); 1871 bd_page = bh->b_page; 1872 } 1873 update_sr = true; 1874 break; 1875 } 1876 if (bh->b_page != fs_page) { 1877 nilfs_end_page_io(fs_page, 0); 1878 fs_page = bh->b_page; 1879 } 1880 } 1881 1882 if (!nilfs_segbuf_simplex(segbuf)) { 1883 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1884 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1885 sci->sc_lseg_stime = jiffies; 1886 } 1887 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1888 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1889 } 1890 } 1891 /* 1892 * Since pages may continue over multiple segment buffers, 1893 * end of the last page must be checked outside of the loop. 1894 */ 1895 if (bd_page) 1896 end_page_writeback(bd_page); 1897 1898 nilfs_end_page_io(fs_page, 0); 1899 1900 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1901 1902 if (nilfs_doing_gc()) 1903 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1904 else 1905 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1906 1907 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1908 1909 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1910 nilfs_set_next_segment(nilfs, segbuf); 1911 1912 if (update_sr) { 1913 nilfs->ns_flushed_device = 0; 1914 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1915 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1916 1917 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1918 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1919 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1920 nilfs_segctor_clear_metadata_dirty(sci); 1921 } else 1922 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1923 } 1924 1925 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1926 { 1927 int ret; 1928 1929 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1930 if (!ret) { 1931 nilfs_segctor_complete_write(sci); 1932 nilfs_destroy_logs(&sci->sc_write_logs); 1933 } 1934 return ret; 1935 } 1936 1937 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1938 struct the_nilfs *nilfs) 1939 { 1940 struct nilfs_inode_info *ii, *n; 1941 struct inode *ifile = sci->sc_root->ifile; 1942 1943 spin_lock(&nilfs->ns_inode_lock); 1944 retry: 1945 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1946 if (!ii->i_bh) { 1947 struct buffer_head *ibh; 1948 int err; 1949 1950 spin_unlock(&nilfs->ns_inode_lock); 1951 err = nilfs_ifile_get_inode_block( 1952 ifile, ii->vfs_inode.i_ino, &ibh); 1953 if (unlikely(err)) { 1954 nilfs_warn(sci->sc_super, 1955 "log writer: error %d getting inode block (ino=%lu)", 1956 err, ii->vfs_inode.i_ino); 1957 return err; 1958 } 1959 spin_lock(&nilfs->ns_inode_lock); 1960 if (likely(!ii->i_bh)) 1961 ii->i_bh = ibh; 1962 else 1963 brelse(ibh); 1964 goto retry; 1965 } 1966 1967 // Always redirty the buffer to avoid race condition 1968 mark_buffer_dirty(ii->i_bh); 1969 nilfs_mdt_mark_dirty(ifile); 1970 1971 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1972 set_bit(NILFS_I_BUSY, &ii->i_state); 1973 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1974 } 1975 spin_unlock(&nilfs->ns_inode_lock); 1976 1977 return 0; 1978 } 1979 1980 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 1981 struct the_nilfs *nilfs) 1982 { 1983 struct nilfs_inode_info *ii, *n; 1984 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 1985 int defer_iput = false; 1986 1987 spin_lock(&nilfs->ns_inode_lock); 1988 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 1989 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 1990 test_bit(NILFS_I_DIRTY, &ii->i_state)) 1991 continue; 1992 1993 clear_bit(NILFS_I_BUSY, &ii->i_state); 1994 brelse(ii->i_bh); 1995 ii->i_bh = NULL; 1996 list_del_init(&ii->i_dirty); 1997 if (!ii->vfs_inode.i_nlink || during_mount) { 1998 /* 1999 * Defer calling iput() to avoid deadlocks if 2000 * i_nlink == 0 or mount is not yet finished. 2001 */ 2002 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 2003 defer_iput = true; 2004 } else { 2005 spin_unlock(&nilfs->ns_inode_lock); 2006 iput(&ii->vfs_inode); 2007 spin_lock(&nilfs->ns_inode_lock); 2008 } 2009 } 2010 spin_unlock(&nilfs->ns_inode_lock); 2011 2012 if (defer_iput) 2013 schedule_work(&sci->sc_iput_work); 2014 } 2015 2016 /* 2017 * Main procedure of segment constructor 2018 */ 2019 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2020 { 2021 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2022 int err; 2023 2024 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2025 sci->sc_cno = nilfs->ns_cno; 2026 2027 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2028 if (unlikely(err)) 2029 goto out; 2030 2031 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2032 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2033 2034 if (nilfs_segctor_clean(sci)) 2035 goto out; 2036 2037 do { 2038 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2039 2040 err = nilfs_segctor_begin_construction(sci, nilfs); 2041 if (unlikely(err)) 2042 goto out; 2043 2044 /* Update time stamp */ 2045 sci->sc_seg_ctime = ktime_get_real_seconds(); 2046 2047 err = nilfs_segctor_collect(sci, nilfs, mode); 2048 if (unlikely(err)) 2049 goto failed; 2050 2051 /* Avoid empty segment */ 2052 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2053 nilfs_segbuf_empty(sci->sc_curseg)) { 2054 nilfs_segctor_abort_construction(sci, nilfs, 1); 2055 goto out; 2056 } 2057 2058 err = nilfs_segctor_assign(sci, mode); 2059 if (unlikely(err)) 2060 goto failed; 2061 2062 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2063 nilfs_segctor_fill_in_file_bmap(sci); 2064 2065 if (mode == SC_LSEG_SR && 2066 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2067 err = nilfs_segctor_fill_in_checkpoint(sci); 2068 if (unlikely(err)) 2069 goto failed_to_write; 2070 2071 nilfs_segctor_fill_in_super_root(sci, nilfs); 2072 } 2073 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2074 2075 /* Write partial segments */ 2076 nilfs_segctor_prepare_write(sci); 2077 2078 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2079 nilfs->ns_crc_seed); 2080 2081 err = nilfs_segctor_write(sci, nilfs); 2082 if (unlikely(err)) 2083 goto failed_to_write; 2084 2085 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2086 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2087 /* 2088 * At this point, we avoid double buffering 2089 * for blocksize < pagesize because page dirty 2090 * flag is turned off during write and dirty 2091 * buffers are not properly collected for 2092 * pages crossing over segments. 2093 */ 2094 err = nilfs_segctor_wait(sci); 2095 if (err) 2096 goto failed_to_write; 2097 } 2098 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2099 2100 out: 2101 nilfs_segctor_drop_written_files(sci, nilfs); 2102 return err; 2103 2104 failed_to_write: 2105 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2106 nilfs_redirty_inodes(&sci->sc_dirty_files); 2107 2108 failed: 2109 if (nilfs_doing_gc()) 2110 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2111 nilfs_segctor_abort_construction(sci, nilfs, err); 2112 goto out; 2113 } 2114 2115 /** 2116 * nilfs_segctor_start_timer - set timer of background write 2117 * @sci: nilfs_sc_info 2118 * 2119 * If the timer has already been set, it ignores the new request. 2120 * This function MUST be called within a section locking the segment 2121 * semaphore. 2122 */ 2123 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2124 { 2125 spin_lock(&sci->sc_state_lock); 2126 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2127 sci->sc_timer.expires = jiffies + sci->sc_interval; 2128 add_timer(&sci->sc_timer); 2129 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2130 } 2131 spin_unlock(&sci->sc_state_lock); 2132 } 2133 2134 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2135 { 2136 spin_lock(&sci->sc_state_lock); 2137 if (!(sci->sc_flush_request & BIT(bn))) { 2138 unsigned long prev_req = sci->sc_flush_request; 2139 2140 sci->sc_flush_request |= BIT(bn); 2141 if (!prev_req) 2142 wake_up(&sci->sc_wait_daemon); 2143 } 2144 spin_unlock(&sci->sc_state_lock); 2145 } 2146 2147 /** 2148 * nilfs_flush_segment - trigger a segment construction for resource control 2149 * @sb: super block 2150 * @ino: inode number of the file to be flushed out. 2151 */ 2152 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2153 { 2154 struct the_nilfs *nilfs = sb->s_fs_info; 2155 struct nilfs_sc_info *sci = nilfs->ns_writer; 2156 2157 if (!sci || nilfs_doing_construction()) 2158 return; 2159 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2160 /* assign bit 0 to data files */ 2161 } 2162 2163 struct nilfs_segctor_wait_request { 2164 wait_queue_entry_t wq; 2165 __u32 seq; 2166 int err; 2167 atomic_t done; 2168 }; 2169 2170 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2171 { 2172 struct nilfs_segctor_wait_request wait_req; 2173 int err = 0; 2174 2175 spin_lock(&sci->sc_state_lock); 2176 init_wait(&wait_req.wq); 2177 wait_req.err = 0; 2178 atomic_set(&wait_req.done, 0); 2179 wait_req.seq = ++sci->sc_seq_request; 2180 spin_unlock(&sci->sc_state_lock); 2181 2182 init_waitqueue_entry(&wait_req.wq, current); 2183 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2184 set_current_state(TASK_INTERRUPTIBLE); 2185 wake_up(&sci->sc_wait_daemon); 2186 2187 for (;;) { 2188 if (atomic_read(&wait_req.done)) { 2189 err = wait_req.err; 2190 break; 2191 } 2192 if (!signal_pending(current)) { 2193 schedule(); 2194 continue; 2195 } 2196 err = -ERESTARTSYS; 2197 break; 2198 } 2199 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2200 return err; 2201 } 2202 2203 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2204 { 2205 struct nilfs_segctor_wait_request *wrq, *n; 2206 unsigned long flags; 2207 2208 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2209 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2210 if (!atomic_read(&wrq->done) && 2211 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2212 wrq->err = err; 2213 atomic_set(&wrq->done, 1); 2214 } 2215 if (atomic_read(&wrq->done)) { 2216 wrq->wq.func(&wrq->wq, 2217 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2218 0, NULL); 2219 } 2220 } 2221 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2222 } 2223 2224 /** 2225 * nilfs_construct_segment - construct a logical segment 2226 * @sb: super block 2227 * 2228 * Return Value: On success, 0 is returned. On errors, one of the following 2229 * negative error code is returned. 2230 * 2231 * %-EROFS - Read only filesystem. 2232 * 2233 * %-EIO - I/O error 2234 * 2235 * %-ENOSPC - No space left on device (only in a panic state). 2236 * 2237 * %-ERESTARTSYS - Interrupted. 2238 * 2239 * %-ENOMEM - Insufficient memory available. 2240 */ 2241 int nilfs_construct_segment(struct super_block *sb) 2242 { 2243 struct the_nilfs *nilfs = sb->s_fs_info; 2244 struct nilfs_sc_info *sci = nilfs->ns_writer; 2245 struct nilfs_transaction_info *ti; 2246 2247 if (sb_rdonly(sb) || unlikely(!sci)) 2248 return -EROFS; 2249 2250 /* A call inside transactions causes a deadlock. */ 2251 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2252 2253 return nilfs_segctor_sync(sci); 2254 } 2255 2256 /** 2257 * nilfs_construct_dsync_segment - construct a data-only logical segment 2258 * @sb: super block 2259 * @inode: inode whose data blocks should be written out 2260 * @start: start byte offset 2261 * @end: end byte offset (inclusive) 2262 * 2263 * Return Value: On success, 0 is returned. On errors, one of the following 2264 * negative error code is returned. 2265 * 2266 * %-EROFS - Read only filesystem. 2267 * 2268 * %-EIO - I/O error 2269 * 2270 * %-ENOSPC - No space left on device (only in a panic state). 2271 * 2272 * %-ERESTARTSYS - Interrupted. 2273 * 2274 * %-ENOMEM - Insufficient memory available. 2275 */ 2276 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2277 loff_t start, loff_t end) 2278 { 2279 struct the_nilfs *nilfs = sb->s_fs_info; 2280 struct nilfs_sc_info *sci = nilfs->ns_writer; 2281 struct nilfs_inode_info *ii; 2282 struct nilfs_transaction_info ti; 2283 int err = 0; 2284 2285 if (sb_rdonly(sb) || unlikely(!sci)) 2286 return -EROFS; 2287 2288 nilfs_transaction_lock(sb, &ti, 0); 2289 2290 ii = NILFS_I(inode); 2291 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2292 nilfs_test_opt(nilfs, STRICT_ORDER) || 2293 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2294 nilfs_discontinued(nilfs)) { 2295 nilfs_transaction_unlock(sb); 2296 err = nilfs_segctor_sync(sci); 2297 return err; 2298 } 2299 2300 spin_lock(&nilfs->ns_inode_lock); 2301 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2302 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2303 spin_unlock(&nilfs->ns_inode_lock); 2304 nilfs_transaction_unlock(sb); 2305 return 0; 2306 } 2307 spin_unlock(&nilfs->ns_inode_lock); 2308 sci->sc_dsync_inode = ii; 2309 sci->sc_dsync_start = start; 2310 sci->sc_dsync_end = end; 2311 2312 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2313 if (!err) 2314 nilfs->ns_flushed_device = 0; 2315 2316 nilfs_transaction_unlock(sb); 2317 return err; 2318 } 2319 2320 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2321 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2322 2323 /** 2324 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2325 * @sci: segment constructor object 2326 */ 2327 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2328 { 2329 spin_lock(&sci->sc_state_lock); 2330 sci->sc_seq_accepted = sci->sc_seq_request; 2331 spin_unlock(&sci->sc_state_lock); 2332 del_timer_sync(&sci->sc_timer); 2333 } 2334 2335 /** 2336 * nilfs_segctor_notify - notify the result of request to caller threads 2337 * @sci: segment constructor object 2338 * @mode: mode of log forming 2339 * @err: error code to be notified 2340 */ 2341 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2342 { 2343 /* Clear requests (even when the construction failed) */ 2344 spin_lock(&sci->sc_state_lock); 2345 2346 if (mode == SC_LSEG_SR) { 2347 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2348 sci->sc_seq_done = sci->sc_seq_accepted; 2349 nilfs_segctor_wakeup(sci, err); 2350 sci->sc_flush_request = 0; 2351 } else { 2352 if (mode == SC_FLUSH_FILE) 2353 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2354 else if (mode == SC_FLUSH_DAT) 2355 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2356 2357 /* re-enable timer if checkpoint creation was not done */ 2358 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2359 time_before(jiffies, sci->sc_timer.expires)) 2360 add_timer(&sci->sc_timer); 2361 } 2362 spin_unlock(&sci->sc_state_lock); 2363 } 2364 2365 /** 2366 * nilfs_segctor_construct - form logs and write them to disk 2367 * @sci: segment constructor object 2368 * @mode: mode of log forming 2369 */ 2370 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2371 { 2372 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2373 struct nilfs_super_block **sbp; 2374 int err = 0; 2375 2376 nilfs_segctor_accept(sci); 2377 2378 if (nilfs_discontinued(nilfs)) 2379 mode = SC_LSEG_SR; 2380 if (!nilfs_segctor_confirm(sci)) 2381 err = nilfs_segctor_do_construct(sci, mode); 2382 2383 if (likely(!err)) { 2384 if (mode != SC_FLUSH_DAT) 2385 atomic_set(&nilfs->ns_ndirtyblks, 0); 2386 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2387 nilfs_discontinued(nilfs)) { 2388 down_write(&nilfs->ns_sem); 2389 err = -EIO; 2390 sbp = nilfs_prepare_super(sci->sc_super, 2391 nilfs_sb_will_flip(nilfs)); 2392 if (likely(sbp)) { 2393 nilfs_set_log_cursor(sbp[0], nilfs); 2394 err = nilfs_commit_super(sci->sc_super, 2395 NILFS_SB_COMMIT); 2396 } 2397 up_write(&nilfs->ns_sem); 2398 } 2399 } 2400 2401 nilfs_segctor_notify(sci, mode, err); 2402 return err; 2403 } 2404 2405 static void nilfs_construction_timeout(struct timer_list *t) 2406 { 2407 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2408 2409 wake_up_process(sci->sc_timer_task); 2410 } 2411 2412 static void 2413 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2414 { 2415 struct nilfs_inode_info *ii, *n; 2416 2417 list_for_each_entry_safe(ii, n, head, i_dirty) { 2418 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2419 continue; 2420 list_del_init(&ii->i_dirty); 2421 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2422 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2423 iput(&ii->vfs_inode); 2424 } 2425 } 2426 2427 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2428 void **kbufs) 2429 { 2430 struct the_nilfs *nilfs = sb->s_fs_info; 2431 struct nilfs_sc_info *sci = nilfs->ns_writer; 2432 struct nilfs_transaction_info ti; 2433 int err; 2434 2435 if (unlikely(!sci)) 2436 return -EROFS; 2437 2438 nilfs_transaction_lock(sb, &ti, 1); 2439 2440 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2441 if (unlikely(err)) 2442 goto out_unlock; 2443 2444 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2445 if (unlikely(err)) { 2446 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2447 goto out_unlock; 2448 } 2449 2450 sci->sc_freesegs = kbufs[4]; 2451 sci->sc_nfreesegs = argv[4].v_nmembs; 2452 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2453 2454 for (;;) { 2455 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2456 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2457 2458 if (likely(!err)) 2459 break; 2460 2461 nilfs_warn(sb, "error %d cleaning segments", err); 2462 set_current_state(TASK_INTERRUPTIBLE); 2463 schedule_timeout(sci->sc_interval); 2464 } 2465 if (nilfs_test_opt(nilfs, DISCARD)) { 2466 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2467 sci->sc_nfreesegs); 2468 if (ret) { 2469 nilfs_warn(sb, 2470 "error %d on discard request, turning discards off for the device", 2471 ret); 2472 nilfs_clear_opt(nilfs, DISCARD); 2473 } 2474 } 2475 2476 out_unlock: 2477 sci->sc_freesegs = NULL; 2478 sci->sc_nfreesegs = 0; 2479 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2480 nilfs_transaction_unlock(sb); 2481 return err; 2482 } 2483 2484 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2485 { 2486 struct nilfs_transaction_info ti; 2487 2488 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2489 nilfs_segctor_construct(sci, mode); 2490 2491 /* 2492 * Unclosed segment should be retried. We do this using sc_timer. 2493 * Timeout of sc_timer will invoke complete construction which leads 2494 * to close the current logical segment. 2495 */ 2496 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2497 nilfs_segctor_start_timer(sci); 2498 2499 nilfs_transaction_unlock(sci->sc_super); 2500 } 2501 2502 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2503 { 2504 int mode = 0; 2505 2506 spin_lock(&sci->sc_state_lock); 2507 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2508 SC_FLUSH_DAT : SC_FLUSH_FILE; 2509 spin_unlock(&sci->sc_state_lock); 2510 2511 if (mode) { 2512 nilfs_segctor_do_construct(sci, mode); 2513 2514 spin_lock(&sci->sc_state_lock); 2515 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2516 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2517 spin_unlock(&sci->sc_state_lock); 2518 } 2519 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2520 } 2521 2522 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2523 { 2524 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2525 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2526 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2527 return SC_FLUSH_FILE; 2528 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2529 return SC_FLUSH_DAT; 2530 } 2531 return SC_LSEG_SR; 2532 } 2533 2534 /** 2535 * nilfs_segctor_thread - main loop of the segment constructor thread. 2536 * @arg: pointer to a struct nilfs_sc_info. 2537 * 2538 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2539 * to execute segment constructions. 2540 */ 2541 static int nilfs_segctor_thread(void *arg) 2542 { 2543 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2544 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2545 int timeout = 0; 2546 2547 sci->sc_timer_task = current; 2548 2549 /* start sync. */ 2550 sci->sc_task = current; 2551 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2552 nilfs_info(sci->sc_super, 2553 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2554 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2555 2556 spin_lock(&sci->sc_state_lock); 2557 loop: 2558 for (;;) { 2559 int mode; 2560 2561 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2562 goto end_thread; 2563 2564 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2565 mode = SC_LSEG_SR; 2566 else if (sci->sc_flush_request) 2567 mode = nilfs_segctor_flush_mode(sci); 2568 else 2569 break; 2570 2571 spin_unlock(&sci->sc_state_lock); 2572 nilfs_segctor_thread_construct(sci, mode); 2573 spin_lock(&sci->sc_state_lock); 2574 timeout = 0; 2575 } 2576 2577 2578 if (freezing(current)) { 2579 spin_unlock(&sci->sc_state_lock); 2580 try_to_freeze(); 2581 spin_lock(&sci->sc_state_lock); 2582 } else { 2583 DEFINE_WAIT(wait); 2584 int should_sleep = 1; 2585 2586 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2587 TASK_INTERRUPTIBLE); 2588 2589 if (sci->sc_seq_request != sci->sc_seq_done) 2590 should_sleep = 0; 2591 else if (sci->sc_flush_request) 2592 should_sleep = 0; 2593 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2594 should_sleep = time_before(jiffies, 2595 sci->sc_timer.expires); 2596 2597 if (should_sleep) { 2598 spin_unlock(&sci->sc_state_lock); 2599 schedule(); 2600 spin_lock(&sci->sc_state_lock); 2601 } 2602 finish_wait(&sci->sc_wait_daemon, &wait); 2603 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2604 time_after_eq(jiffies, sci->sc_timer.expires)); 2605 2606 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2607 set_nilfs_discontinued(nilfs); 2608 } 2609 goto loop; 2610 2611 end_thread: 2612 spin_unlock(&sci->sc_state_lock); 2613 2614 /* end sync. */ 2615 sci->sc_task = NULL; 2616 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2617 return 0; 2618 } 2619 2620 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2621 { 2622 struct task_struct *t; 2623 2624 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2625 if (IS_ERR(t)) { 2626 int err = PTR_ERR(t); 2627 2628 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2629 err); 2630 return err; 2631 } 2632 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2633 return 0; 2634 } 2635 2636 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2637 __acquires(&sci->sc_state_lock) 2638 __releases(&sci->sc_state_lock) 2639 { 2640 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2641 2642 while (sci->sc_task) { 2643 wake_up(&sci->sc_wait_daemon); 2644 spin_unlock(&sci->sc_state_lock); 2645 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2646 spin_lock(&sci->sc_state_lock); 2647 } 2648 } 2649 2650 /* 2651 * Setup & clean-up functions 2652 */ 2653 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2654 struct nilfs_root *root) 2655 { 2656 struct the_nilfs *nilfs = sb->s_fs_info; 2657 struct nilfs_sc_info *sci; 2658 2659 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2660 if (!sci) 2661 return NULL; 2662 2663 sci->sc_super = sb; 2664 2665 nilfs_get_root(root); 2666 sci->sc_root = root; 2667 2668 init_waitqueue_head(&sci->sc_wait_request); 2669 init_waitqueue_head(&sci->sc_wait_daemon); 2670 init_waitqueue_head(&sci->sc_wait_task); 2671 spin_lock_init(&sci->sc_state_lock); 2672 INIT_LIST_HEAD(&sci->sc_dirty_files); 2673 INIT_LIST_HEAD(&sci->sc_segbufs); 2674 INIT_LIST_HEAD(&sci->sc_write_logs); 2675 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2676 INIT_LIST_HEAD(&sci->sc_iput_queue); 2677 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2678 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2679 2680 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2681 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2682 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2683 2684 if (nilfs->ns_interval) 2685 sci->sc_interval = HZ * nilfs->ns_interval; 2686 if (nilfs->ns_watermark) 2687 sci->sc_watermark = nilfs->ns_watermark; 2688 return sci; 2689 } 2690 2691 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2692 { 2693 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2694 2695 /* 2696 * The segctord thread was stopped and its timer was removed. 2697 * But some tasks remain. 2698 */ 2699 do { 2700 struct nilfs_transaction_info ti; 2701 2702 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2703 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2704 nilfs_transaction_unlock(sci->sc_super); 2705 2706 flush_work(&sci->sc_iput_work); 2707 2708 } while (ret && retrycount-- > 0); 2709 } 2710 2711 /** 2712 * nilfs_segctor_destroy - destroy the segment constructor. 2713 * @sci: nilfs_sc_info 2714 * 2715 * nilfs_segctor_destroy() kills the segctord thread and frees 2716 * the nilfs_sc_info struct. 2717 * Caller must hold the segment semaphore. 2718 */ 2719 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2720 { 2721 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2722 int flag; 2723 2724 up_write(&nilfs->ns_segctor_sem); 2725 2726 spin_lock(&sci->sc_state_lock); 2727 nilfs_segctor_kill_thread(sci); 2728 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2729 || sci->sc_seq_request != sci->sc_seq_done); 2730 spin_unlock(&sci->sc_state_lock); 2731 2732 if (flush_work(&sci->sc_iput_work)) 2733 flag = true; 2734 2735 if (flag || !nilfs_segctor_confirm(sci)) 2736 nilfs_segctor_write_out(sci); 2737 2738 if (!list_empty(&sci->sc_dirty_files)) { 2739 nilfs_warn(sci->sc_super, 2740 "disposed unprocessed dirty file(s) when stopping log writer"); 2741 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2742 } 2743 2744 if (!list_empty(&sci->sc_iput_queue)) { 2745 nilfs_warn(sci->sc_super, 2746 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2747 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2748 } 2749 2750 WARN_ON(!list_empty(&sci->sc_segbufs)); 2751 WARN_ON(!list_empty(&sci->sc_write_logs)); 2752 2753 nilfs_put_root(sci->sc_root); 2754 2755 down_write(&nilfs->ns_segctor_sem); 2756 2757 timer_shutdown_sync(&sci->sc_timer); 2758 kfree(sci); 2759 } 2760 2761 /** 2762 * nilfs_attach_log_writer - attach log writer 2763 * @sb: super block instance 2764 * @root: root object of the current filesystem tree 2765 * 2766 * This allocates a log writer object, initializes it, and starts the 2767 * log writer. 2768 * 2769 * Return Value: On success, 0 is returned. On error, one of the following 2770 * negative error code is returned. 2771 * 2772 * %-ENOMEM - Insufficient memory available. 2773 */ 2774 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2775 { 2776 struct the_nilfs *nilfs = sb->s_fs_info; 2777 int err; 2778 2779 if (nilfs->ns_writer) { 2780 /* 2781 * This happens if the filesystem is made read-only by 2782 * __nilfs_error or nilfs_remount and then remounted 2783 * read/write. In these cases, reuse the existing 2784 * writer. 2785 */ 2786 return 0; 2787 } 2788 2789 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2790 if (!nilfs->ns_writer) 2791 return -ENOMEM; 2792 2793 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2794 2795 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2796 if (unlikely(err)) 2797 nilfs_detach_log_writer(sb); 2798 2799 return err; 2800 } 2801 2802 /** 2803 * nilfs_detach_log_writer - destroy log writer 2804 * @sb: super block instance 2805 * 2806 * This kills log writer daemon, frees the log writer object, and 2807 * destroys list of dirty files. 2808 */ 2809 void nilfs_detach_log_writer(struct super_block *sb) 2810 { 2811 struct the_nilfs *nilfs = sb->s_fs_info; 2812 LIST_HEAD(garbage_list); 2813 2814 down_write(&nilfs->ns_segctor_sem); 2815 if (nilfs->ns_writer) { 2816 nilfs_segctor_destroy(nilfs->ns_writer); 2817 nilfs->ns_writer = NULL; 2818 } 2819 2820 /* Force to free the list of dirty files */ 2821 spin_lock(&nilfs->ns_inode_lock); 2822 if (!list_empty(&nilfs->ns_dirty_files)) { 2823 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2824 nilfs_warn(sb, 2825 "disposed unprocessed dirty file(s) when detaching log writer"); 2826 } 2827 spin_unlock(&nilfs->ns_inode_lock); 2828 up_write(&nilfs->ns_segctor_sem); 2829 2830 nilfs_dispose_list(nilfs, &garbage_list, 1); 2831 } 2832