1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 /** 434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area 435 * @sci: segment constructor object 436 * 437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of 438 * the current segment summary block. 439 */ 440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) 441 { 442 struct nilfs_segsum_pointer *ssp; 443 444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; 445 if (ssp->offset < ssp->bh->b_size) 446 memset(ssp->bh->b_data + ssp->offset, 0, 447 ssp->bh->b_size - ssp->offset); 448 } 449 450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 451 { 452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 454 return -E2BIG; /* 455 * The current segment is filled up 456 * (internal code) 457 */ 458 nilfs_segctor_zeropad_segsum(sci); 459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 460 return nilfs_segctor_reset_segment_buffer(sci); 461 } 462 463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 464 { 465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 466 int err; 467 468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 469 err = nilfs_segctor_feed_segment(sci); 470 if (err) 471 return err; 472 segbuf = sci->sc_curseg; 473 } 474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 475 if (likely(!err)) 476 segbuf->sb_sum.flags |= NILFS_SS_SR; 477 return err; 478 } 479 480 /* 481 * Functions for making segment summary and payloads 482 */ 483 static int nilfs_segctor_segsum_block_required( 484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 485 unsigned int binfo_size) 486 { 487 unsigned int blocksize = sci->sc_super->s_blocksize; 488 /* Size of finfo and binfo is enough small against blocksize */ 489 490 return ssp->offset + binfo_size + 491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 492 blocksize; 493 } 494 495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 496 struct inode *inode) 497 { 498 sci->sc_curseg->sb_sum.nfinfo++; 499 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 500 nilfs_segctor_map_segsum_entry( 501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 502 503 if (NILFS_I(inode)->i_root && 504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 506 /* skip finfo */ 507 } 508 509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 510 struct inode *inode) 511 { 512 struct nilfs_finfo *finfo; 513 struct nilfs_inode_info *ii; 514 struct nilfs_segment_buffer *segbuf; 515 __u64 cno; 516 517 if (sci->sc_blk_cnt == 0) 518 return; 519 520 ii = NILFS_I(inode); 521 522 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 523 cno = ii->i_cno; 524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 525 cno = 0; 526 else 527 cno = sci->sc_cno; 528 529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 530 sizeof(*finfo)); 531 finfo->fi_ino = cpu_to_le64(inode->i_ino); 532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 534 finfo->fi_cno = cpu_to_le64(cno); 535 536 segbuf = sci->sc_curseg; 537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 539 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 541 } 542 543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 544 struct buffer_head *bh, 545 struct inode *inode, 546 unsigned int binfo_size) 547 { 548 struct nilfs_segment_buffer *segbuf; 549 int required, err = 0; 550 551 retry: 552 segbuf = sci->sc_curseg; 553 required = nilfs_segctor_segsum_block_required( 554 sci, &sci->sc_binfo_ptr, binfo_size); 555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 556 nilfs_segctor_end_finfo(sci, inode); 557 err = nilfs_segctor_feed_segment(sci); 558 if (err) 559 return err; 560 goto retry; 561 } 562 if (unlikely(required)) { 563 nilfs_segctor_zeropad_segsum(sci); 564 err = nilfs_segbuf_extend_segsum(segbuf); 565 if (unlikely(err)) 566 goto failed; 567 } 568 if (sci->sc_blk_cnt == 0) 569 nilfs_segctor_begin_finfo(sci, inode); 570 571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 572 /* Substitution to vblocknr is delayed until update_blocknr() */ 573 nilfs_segbuf_add_file_buffer(segbuf, bh); 574 sci->sc_blk_cnt++; 575 failed: 576 return err; 577 } 578 579 /* 580 * Callback functions that enumerate, mark, and collect dirty blocks 581 */ 582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 583 struct buffer_head *bh, struct inode *inode) 584 { 585 int err; 586 587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 588 if (err < 0) 589 return err; 590 591 err = nilfs_segctor_add_file_block(sci, bh, inode, 592 sizeof(struct nilfs_binfo_v)); 593 if (!err) 594 sci->sc_datablk_cnt++; 595 return err; 596 } 597 598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 599 struct buffer_head *bh, 600 struct inode *inode) 601 { 602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 603 } 604 605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 606 struct buffer_head *bh, 607 struct inode *inode) 608 { 609 WARN_ON(!buffer_dirty(bh)); 610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 611 } 612 613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 614 struct nilfs_segsum_pointer *ssp, 615 union nilfs_binfo *binfo) 616 { 617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 618 sci, ssp, sizeof(*binfo_v)); 619 *binfo_v = binfo->bi_v; 620 } 621 622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 623 struct nilfs_segsum_pointer *ssp, 624 union nilfs_binfo *binfo) 625 { 626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 627 sci, ssp, sizeof(*vblocknr)); 628 *vblocknr = binfo->bi_v.bi_vblocknr; 629 } 630 631 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 632 .collect_data = nilfs_collect_file_data, 633 .collect_node = nilfs_collect_file_node, 634 .collect_bmap = nilfs_collect_file_bmap, 635 .write_data_binfo = nilfs_write_file_data_binfo, 636 .write_node_binfo = nilfs_write_file_node_binfo, 637 }; 638 639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 640 struct buffer_head *bh, struct inode *inode) 641 { 642 int err; 643 644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 645 if (err < 0) 646 return err; 647 648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 649 if (!err) 650 sci->sc_datablk_cnt++; 651 return err; 652 } 653 654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 655 struct buffer_head *bh, struct inode *inode) 656 { 657 WARN_ON(!buffer_dirty(bh)); 658 return nilfs_segctor_add_file_block(sci, bh, inode, 659 sizeof(struct nilfs_binfo_dat)); 660 } 661 662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 663 struct nilfs_segsum_pointer *ssp, 664 union nilfs_binfo *binfo) 665 { 666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 667 sizeof(*blkoff)); 668 *blkoff = binfo->bi_dat.bi_blkoff; 669 } 670 671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 672 struct nilfs_segsum_pointer *ssp, 673 union nilfs_binfo *binfo) 674 { 675 struct nilfs_binfo_dat *binfo_dat = 676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 677 *binfo_dat = binfo->bi_dat; 678 } 679 680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 681 .collect_data = nilfs_collect_dat_data, 682 .collect_node = nilfs_collect_file_node, 683 .collect_bmap = nilfs_collect_dat_bmap, 684 .write_data_binfo = nilfs_write_dat_data_binfo, 685 .write_node_binfo = nilfs_write_dat_node_binfo, 686 }; 687 688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 689 .collect_data = nilfs_collect_file_data, 690 .collect_node = NULL, 691 .collect_bmap = NULL, 692 .write_data_binfo = nilfs_write_file_data_binfo, 693 .write_node_binfo = NULL, 694 }; 695 696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 697 struct list_head *listp, 698 size_t nlimit, 699 loff_t start, loff_t end) 700 { 701 struct address_space *mapping = inode->i_mapping; 702 struct folio_batch fbatch; 703 pgoff_t index = 0, last = ULONG_MAX; 704 size_t ndirties = 0; 705 int i; 706 707 if (unlikely(start != 0 || end != LLONG_MAX)) { 708 /* 709 * A valid range is given for sync-ing data pages. The 710 * range is rounded to per-page; extra dirty buffers 711 * may be included if blocksize < pagesize. 712 */ 713 index = start >> PAGE_SHIFT; 714 last = end >> PAGE_SHIFT; 715 } 716 folio_batch_init(&fbatch); 717 repeat: 718 if (unlikely(index > last) || 719 !filemap_get_folios_tag(mapping, &index, last, 720 PAGECACHE_TAG_DIRTY, &fbatch)) 721 return ndirties; 722 723 for (i = 0; i < folio_batch_count(&fbatch); i++) { 724 struct buffer_head *bh, *head; 725 struct folio *folio = fbatch.folios[i]; 726 727 folio_lock(folio); 728 if (unlikely(folio->mapping != mapping)) { 729 /* Exclude folios removed from the address space */ 730 folio_unlock(folio); 731 continue; 732 } 733 head = folio_buffers(folio); 734 if (!head) 735 head = create_empty_buffers(folio, 736 i_blocksize(inode), 0); 737 folio_unlock(folio); 738 739 bh = head; 740 do { 741 if (!buffer_dirty(bh) || buffer_async_write(bh)) 742 continue; 743 get_bh(bh); 744 list_add_tail(&bh->b_assoc_buffers, listp); 745 ndirties++; 746 if (unlikely(ndirties >= nlimit)) { 747 folio_batch_release(&fbatch); 748 cond_resched(); 749 return ndirties; 750 } 751 } while (bh = bh->b_this_page, bh != head); 752 } 753 folio_batch_release(&fbatch); 754 cond_resched(); 755 goto repeat; 756 } 757 758 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 759 struct list_head *listp) 760 { 761 struct nilfs_inode_info *ii = NILFS_I(inode); 762 struct inode *btnc_inode = ii->i_assoc_inode; 763 struct folio_batch fbatch; 764 struct buffer_head *bh, *head; 765 unsigned int i; 766 pgoff_t index = 0; 767 768 if (!btnc_inode) 769 return; 770 folio_batch_init(&fbatch); 771 772 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 773 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 774 for (i = 0; i < folio_batch_count(&fbatch); i++) { 775 bh = head = folio_buffers(fbatch.folios[i]); 776 do { 777 if (buffer_dirty(bh) && 778 !buffer_async_write(bh)) { 779 get_bh(bh); 780 list_add_tail(&bh->b_assoc_buffers, 781 listp); 782 } 783 bh = bh->b_this_page; 784 } while (bh != head); 785 } 786 folio_batch_release(&fbatch); 787 cond_resched(); 788 } 789 } 790 791 static void nilfs_dispose_list(struct the_nilfs *nilfs, 792 struct list_head *head, int force) 793 { 794 struct nilfs_inode_info *ii, *n; 795 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 796 unsigned int nv = 0; 797 798 while (!list_empty(head)) { 799 spin_lock(&nilfs->ns_inode_lock); 800 list_for_each_entry_safe(ii, n, head, i_dirty) { 801 list_del_init(&ii->i_dirty); 802 if (force) { 803 if (unlikely(ii->i_bh)) { 804 brelse(ii->i_bh); 805 ii->i_bh = NULL; 806 } 807 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 808 set_bit(NILFS_I_QUEUED, &ii->i_state); 809 list_add_tail(&ii->i_dirty, 810 &nilfs->ns_dirty_files); 811 continue; 812 } 813 ivec[nv++] = ii; 814 if (nv == SC_N_INODEVEC) 815 break; 816 } 817 spin_unlock(&nilfs->ns_inode_lock); 818 819 for (pii = ivec; nv > 0; pii++, nv--) 820 iput(&(*pii)->vfs_inode); 821 } 822 } 823 824 static void nilfs_iput_work_func(struct work_struct *work) 825 { 826 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 827 sc_iput_work); 828 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 829 830 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 831 } 832 833 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 834 struct nilfs_root *root) 835 { 836 int ret = 0; 837 838 if (nilfs_mdt_fetch_dirty(root->ifile)) 839 ret++; 840 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 841 ret++; 842 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 843 ret++; 844 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 845 ret++; 846 return ret; 847 } 848 849 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 850 { 851 return list_empty(&sci->sc_dirty_files) && 852 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 853 sci->sc_nfreesegs == 0 && 854 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 855 } 856 857 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 858 { 859 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 860 int ret = 0; 861 862 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 863 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 864 865 spin_lock(&nilfs->ns_inode_lock); 866 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 867 ret++; 868 869 spin_unlock(&nilfs->ns_inode_lock); 870 return ret; 871 } 872 873 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 874 { 875 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 876 877 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 878 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 879 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 880 nilfs_mdt_clear_dirty(nilfs->ns_dat); 881 } 882 883 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 884 { 885 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 886 struct buffer_head *bh_cp; 887 struct nilfs_checkpoint *raw_cp; 888 int err; 889 890 /* XXX: this interface will be changed */ 891 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 892 &raw_cp, &bh_cp); 893 if (likely(!err)) { 894 /* 895 * The following code is duplicated with cpfile. But, it is 896 * needed to collect the checkpoint even if it was not newly 897 * created. 898 */ 899 mark_buffer_dirty(bh_cp); 900 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 901 nilfs_cpfile_put_checkpoint( 902 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 903 } else if (err == -EINVAL || err == -ENOENT) { 904 nilfs_error(sci->sc_super, 905 "checkpoint creation failed due to metadata corruption."); 906 err = -EIO; 907 } 908 return err; 909 } 910 911 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 912 { 913 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 914 struct buffer_head *bh_cp; 915 struct nilfs_checkpoint *raw_cp; 916 int err; 917 918 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 919 &raw_cp, &bh_cp); 920 if (unlikely(err)) { 921 if (err == -EINVAL || err == -ENOENT) { 922 nilfs_error(sci->sc_super, 923 "checkpoint finalization failed due to metadata corruption."); 924 err = -EIO; 925 } 926 goto failed_ibh; 927 } 928 raw_cp->cp_snapshot_list.ssl_next = 0; 929 raw_cp->cp_snapshot_list.ssl_prev = 0; 930 raw_cp->cp_inodes_count = 931 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 932 raw_cp->cp_blocks_count = 933 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 934 raw_cp->cp_nblk_inc = 935 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 936 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 937 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 938 939 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 940 nilfs_checkpoint_clear_minor(raw_cp); 941 else 942 nilfs_checkpoint_set_minor(raw_cp); 943 944 nilfs_write_inode_common(sci->sc_root->ifile, 945 &raw_cp->cp_ifile_inode, 1); 946 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 947 return 0; 948 949 failed_ibh: 950 return err; 951 } 952 953 static void nilfs_fill_in_file_bmap(struct inode *ifile, 954 struct nilfs_inode_info *ii) 955 956 { 957 struct buffer_head *ibh; 958 struct nilfs_inode *raw_inode; 959 960 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 961 ibh = ii->i_bh; 962 BUG_ON(!ibh); 963 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 964 ibh); 965 nilfs_bmap_write(ii->i_bmap, raw_inode); 966 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 967 } 968 } 969 970 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 971 { 972 struct nilfs_inode_info *ii; 973 974 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 975 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 976 set_bit(NILFS_I_COLLECTED, &ii->i_state); 977 } 978 } 979 980 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 981 struct the_nilfs *nilfs) 982 { 983 struct buffer_head *bh_sr; 984 struct nilfs_super_root *raw_sr; 985 unsigned int isz, srsz; 986 987 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 988 989 lock_buffer(bh_sr); 990 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 991 isz = nilfs->ns_inode_size; 992 srsz = NILFS_SR_BYTES(isz); 993 994 raw_sr->sr_sum = 0; /* Ensure initialization within this update */ 995 raw_sr->sr_bytes = cpu_to_le16(srsz); 996 raw_sr->sr_nongc_ctime 997 = cpu_to_le64(nilfs_doing_gc() ? 998 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 999 raw_sr->sr_flags = 0; 1000 1001 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 1002 NILFS_SR_DAT_OFFSET(isz), 1); 1003 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 1004 NILFS_SR_CPFILE_OFFSET(isz), 1); 1005 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 1006 NILFS_SR_SUFILE_OFFSET(isz), 1); 1007 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 1008 set_buffer_uptodate(bh_sr); 1009 unlock_buffer(bh_sr); 1010 } 1011 1012 static void nilfs_redirty_inodes(struct list_head *head) 1013 { 1014 struct nilfs_inode_info *ii; 1015 1016 list_for_each_entry(ii, head, i_dirty) { 1017 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 1018 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 1019 } 1020 } 1021 1022 static void nilfs_drop_collected_inodes(struct list_head *head) 1023 { 1024 struct nilfs_inode_info *ii; 1025 1026 list_for_each_entry(ii, head, i_dirty) { 1027 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 1028 continue; 1029 1030 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 1031 set_bit(NILFS_I_UPDATED, &ii->i_state); 1032 } 1033 } 1034 1035 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1036 struct inode *inode, 1037 struct list_head *listp, 1038 int (*collect)(struct nilfs_sc_info *, 1039 struct buffer_head *, 1040 struct inode *)) 1041 { 1042 struct buffer_head *bh, *n; 1043 int err = 0; 1044 1045 if (collect) { 1046 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1047 list_del_init(&bh->b_assoc_buffers); 1048 err = collect(sci, bh, inode); 1049 brelse(bh); 1050 if (unlikely(err)) 1051 goto dispose_buffers; 1052 } 1053 return 0; 1054 } 1055 1056 dispose_buffers: 1057 while (!list_empty(listp)) { 1058 bh = list_first_entry(listp, struct buffer_head, 1059 b_assoc_buffers); 1060 list_del_init(&bh->b_assoc_buffers); 1061 brelse(bh); 1062 } 1063 return err; 1064 } 1065 1066 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1067 { 1068 /* Remaining number of blocks within segment buffer */ 1069 return sci->sc_segbuf_nblocks - 1070 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1071 } 1072 1073 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1074 struct inode *inode, 1075 const struct nilfs_sc_operations *sc_ops) 1076 { 1077 LIST_HEAD(data_buffers); 1078 LIST_HEAD(node_buffers); 1079 int err; 1080 1081 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1082 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1083 1084 n = nilfs_lookup_dirty_data_buffers( 1085 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1086 if (n > rest) { 1087 err = nilfs_segctor_apply_buffers( 1088 sci, inode, &data_buffers, 1089 sc_ops->collect_data); 1090 BUG_ON(!err); /* always receive -E2BIG or true error */ 1091 goto break_or_fail; 1092 } 1093 } 1094 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1095 1096 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1097 err = nilfs_segctor_apply_buffers( 1098 sci, inode, &data_buffers, sc_ops->collect_data); 1099 if (unlikely(err)) { 1100 /* dispose node list */ 1101 nilfs_segctor_apply_buffers( 1102 sci, inode, &node_buffers, NULL); 1103 goto break_or_fail; 1104 } 1105 sci->sc_stage.flags |= NILFS_CF_NODE; 1106 } 1107 /* Collect node */ 1108 err = nilfs_segctor_apply_buffers( 1109 sci, inode, &node_buffers, sc_ops->collect_node); 1110 if (unlikely(err)) 1111 goto break_or_fail; 1112 1113 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1114 err = nilfs_segctor_apply_buffers( 1115 sci, inode, &node_buffers, sc_ops->collect_bmap); 1116 if (unlikely(err)) 1117 goto break_or_fail; 1118 1119 nilfs_segctor_end_finfo(sci, inode); 1120 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1121 1122 break_or_fail: 1123 return err; 1124 } 1125 1126 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1127 struct inode *inode) 1128 { 1129 LIST_HEAD(data_buffers); 1130 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1131 int err; 1132 1133 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1134 sci->sc_dsync_start, 1135 sci->sc_dsync_end); 1136 1137 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1138 nilfs_collect_file_data); 1139 if (!err) { 1140 nilfs_segctor_end_finfo(sci, inode); 1141 BUG_ON(n > rest); 1142 /* always receive -E2BIG or true error if n > rest */ 1143 } 1144 return err; 1145 } 1146 1147 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1148 { 1149 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1150 struct list_head *head; 1151 struct nilfs_inode_info *ii; 1152 size_t ndone; 1153 int err = 0; 1154 1155 switch (nilfs_sc_cstage_get(sci)) { 1156 case NILFS_ST_INIT: 1157 /* Pre-processes */ 1158 sci->sc_stage.flags = 0; 1159 1160 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1161 sci->sc_nblk_inc = 0; 1162 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1163 if (mode == SC_LSEG_DSYNC) { 1164 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1165 goto dsync_mode; 1166 } 1167 } 1168 1169 sci->sc_stage.dirty_file_ptr = NULL; 1170 sci->sc_stage.gc_inode_ptr = NULL; 1171 if (mode == SC_FLUSH_DAT) { 1172 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1173 goto dat_stage; 1174 } 1175 nilfs_sc_cstage_inc(sci); 1176 fallthrough; 1177 case NILFS_ST_GC: 1178 if (nilfs_doing_gc()) { 1179 head = &sci->sc_gc_inodes; 1180 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1181 head, i_dirty); 1182 list_for_each_entry_continue(ii, head, i_dirty) { 1183 err = nilfs_segctor_scan_file( 1184 sci, &ii->vfs_inode, 1185 &nilfs_sc_file_ops); 1186 if (unlikely(err)) { 1187 sci->sc_stage.gc_inode_ptr = list_entry( 1188 ii->i_dirty.prev, 1189 struct nilfs_inode_info, 1190 i_dirty); 1191 goto break_or_fail; 1192 } 1193 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1194 } 1195 sci->sc_stage.gc_inode_ptr = NULL; 1196 } 1197 nilfs_sc_cstage_inc(sci); 1198 fallthrough; 1199 case NILFS_ST_FILE: 1200 head = &sci->sc_dirty_files; 1201 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1202 i_dirty); 1203 list_for_each_entry_continue(ii, head, i_dirty) { 1204 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1205 1206 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1207 &nilfs_sc_file_ops); 1208 if (unlikely(err)) { 1209 sci->sc_stage.dirty_file_ptr = 1210 list_entry(ii->i_dirty.prev, 1211 struct nilfs_inode_info, 1212 i_dirty); 1213 goto break_or_fail; 1214 } 1215 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1216 /* XXX: required ? */ 1217 } 1218 sci->sc_stage.dirty_file_ptr = NULL; 1219 if (mode == SC_FLUSH_FILE) { 1220 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1221 return 0; 1222 } 1223 nilfs_sc_cstage_inc(sci); 1224 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1225 fallthrough; 1226 case NILFS_ST_IFILE: 1227 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1228 &nilfs_sc_file_ops); 1229 if (unlikely(err)) 1230 break; 1231 nilfs_sc_cstage_inc(sci); 1232 /* Creating a checkpoint */ 1233 err = nilfs_segctor_create_checkpoint(sci); 1234 if (unlikely(err)) 1235 break; 1236 fallthrough; 1237 case NILFS_ST_CPFILE: 1238 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1239 &nilfs_sc_file_ops); 1240 if (unlikely(err)) 1241 break; 1242 nilfs_sc_cstage_inc(sci); 1243 fallthrough; 1244 case NILFS_ST_SUFILE: 1245 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1246 sci->sc_nfreesegs, &ndone); 1247 if (unlikely(err)) { 1248 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1249 sci->sc_freesegs, ndone, 1250 NULL); 1251 break; 1252 } 1253 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1254 1255 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1256 &nilfs_sc_file_ops); 1257 if (unlikely(err)) 1258 break; 1259 nilfs_sc_cstage_inc(sci); 1260 fallthrough; 1261 case NILFS_ST_DAT: 1262 dat_stage: 1263 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1264 &nilfs_sc_dat_ops); 1265 if (unlikely(err)) 1266 break; 1267 if (mode == SC_FLUSH_DAT) { 1268 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1269 return 0; 1270 } 1271 nilfs_sc_cstage_inc(sci); 1272 fallthrough; 1273 case NILFS_ST_SR: 1274 if (mode == SC_LSEG_SR) { 1275 /* Appending a super root */ 1276 err = nilfs_segctor_add_super_root(sci); 1277 if (unlikely(err)) 1278 break; 1279 } 1280 /* End of a logical segment */ 1281 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1282 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1283 return 0; 1284 case NILFS_ST_DSYNC: 1285 dsync_mode: 1286 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1287 ii = sci->sc_dsync_inode; 1288 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1289 break; 1290 1291 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1292 if (unlikely(err)) 1293 break; 1294 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1295 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1296 return 0; 1297 case NILFS_ST_DONE: 1298 return 0; 1299 default: 1300 BUG(); 1301 } 1302 1303 break_or_fail: 1304 return err; 1305 } 1306 1307 /** 1308 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1309 * @sci: nilfs_sc_info 1310 * @nilfs: nilfs object 1311 */ 1312 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1313 struct the_nilfs *nilfs) 1314 { 1315 struct nilfs_segment_buffer *segbuf, *prev; 1316 __u64 nextnum; 1317 int err, alloc = 0; 1318 1319 segbuf = nilfs_segbuf_new(sci->sc_super); 1320 if (unlikely(!segbuf)) 1321 return -ENOMEM; 1322 1323 if (list_empty(&sci->sc_write_logs)) { 1324 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1325 nilfs->ns_pseg_offset, nilfs); 1326 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1327 nilfs_shift_to_next_segment(nilfs); 1328 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1329 } 1330 1331 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1332 nextnum = nilfs->ns_nextnum; 1333 1334 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1335 /* Start from the head of a new full segment */ 1336 alloc++; 1337 } else { 1338 /* Continue logs */ 1339 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1340 nilfs_segbuf_map_cont(segbuf, prev); 1341 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1342 nextnum = prev->sb_nextnum; 1343 1344 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1345 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1346 segbuf->sb_sum.seg_seq++; 1347 alloc++; 1348 } 1349 } 1350 1351 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1352 if (err) 1353 goto failed; 1354 1355 if (alloc) { 1356 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1357 if (err) 1358 goto failed; 1359 } 1360 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1361 1362 BUG_ON(!list_empty(&sci->sc_segbufs)); 1363 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1364 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1365 return 0; 1366 1367 failed: 1368 nilfs_segbuf_free(segbuf); 1369 return err; 1370 } 1371 1372 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1373 struct the_nilfs *nilfs, int nadd) 1374 { 1375 struct nilfs_segment_buffer *segbuf, *prev; 1376 struct inode *sufile = nilfs->ns_sufile; 1377 __u64 nextnextnum; 1378 LIST_HEAD(list); 1379 int err, ret, i; 1380 1381 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1382 /* 1383 * Since the segment specified with nextnum might be allocated during 1384 * the previous construction, the buffer including its segusage may 1385 * not be dirty. The following call ensures that the buffer is dirty 1386 * and will pin the buffer on memory until the sufile is written. 1387 */ 1388 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1389 if (unlikely(err)) 1390 return err; 1391 1392 for (i = 0; i < nadd; i++) { 1393 /* extend segment info */ 1394 err = -ENOMEM; 1395 segbuf = nilfs_segbuf_new(sci->sc_super); 1396 if (unlikely(!segbuf)) 1397 goto failed; 1398 1399 /* map this buffer to region of segment on-disk */ 1400 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1401 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1402 1403 /* allocate the next next full segment */ 1404 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1405 if (unlikely(err)) 1406 goto failed_segbuf; 1407 1408 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1409 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1410 1411 list_add_tail(&segbuf->sb_list, &list); 1412 prev = segbuf; 1413 } 1414 list_splice_tail(&list, &sci->sc_segbufs); 1415 return 0; 1416 1417 failed_segbuf: 1418 nilfs_segbuf_free(segbuf); 1419 failed: 1420 list_for_each_entry(segbuf, &list, sb_list) { 1421 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1422 WARN_ON(ret); /* never fails */ 1423 } 1424 nilfs_destroy_logs(&list); 1425 return err; 1426 } 1427 1428 static void nilfs_free_incomplete_logs(struct list_head *logs, 1429 struct the_nilfs *nilfs) 1430 { 1431 struct nilfs_segment_buffer *segbuf, *prev; 1432 struct inode *sufile = nilfs->ns_sufile; 1433 int ret; 1434 1435 segbuf = NILFS_FIRST_SEGBUF(logs); 1436 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1437 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1438 WARN_ON(ret); /* never fails */ 1439 } 1440 if (atomic_read(&segbuf->sb_err)) { 1441 /* Case 1: The first segment failed */ 1442 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1443 /* 1444 * Case 1a: Partial segment appended into an existing 1445 * segment 1446 */ 1447 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1448 segbuf->sb_fseg_end); 1449 else /* Case 1b: New full segment */ 1450 set_nilfs_discontinued(nilfs); 1451 } 1452 1453 prev = segbuf; 1454 list_for_each_entry_continue(segbuf, logs, sb_list) { 1455 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1456 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1457 WARN_ON(ret); /* never fails */ 1458 } 1459 if (atomic_read(&segbuf->sb_err) && 1460 segbuf->sb_segnum != nilfs->ns_nextnum) 1461 /* Case 2: extended segment (!= next) failed */ 1462 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1463 prev = segbuf; 1464 } 1465 } 1466 1467 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1468 struct inode *sufile) 1469 { 1470 struct nilfs_segment_buffer *segbuf; 1471 unsigned long live_blocks; 1472 int ret; 1473 1474 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1475 live_blocks = segbuf->sb_sum.nblocks + 1476 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1477 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1478 live_blocks, 1479 sci->sc_seg_ctime); 1480 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1481 } 1482 } 1483 1484 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1485 { 1486 struct nilfs_segment_buffer *segbuf; 1487 int ret; 1488 1489 segbuf = NILFS_FIRST_SEGBUF(logs); 1490 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1491 segbuf->sb_pseg_start - 1492 segbuf->sb_fseg_start, 0); 1493 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1494 1495 list_for_each_entry_continue(segbuf, logs, sb_list) { 1496 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1497 0, 0); 1498 WARN_ON(ret); /* always succeed */ 1499 } 1500 } 1501 1502 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1503 struct nilfs_segment_buffer *last, 1504 struct inode *sufile) 1505 { 1506 struct nilfs_segment_buffer *segbuf = last; 1507 int ret; 1508 1509 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1510 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1511 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1512 WARN_ON(ret); 1513 } 1514 nilfs_truncate_logs(&sci->sc_segbufs, last); 1515 } 1516 1517 1518 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1519 struct the_nilfs *nilfs, int mode) 1520 { 1521 struct nilfs_cstage prev_stage = sci->sc_stage; 1522 int err, nadd = 1; 1523 1524 /* Collection retry loop */ 1525 for (;;) { 1526 sci->sc_nblk_this_inc = 0; 1527 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1528 1529 err = nilfs_segctor_reset_segment_buffer(sci); 1530 if (unlikely(err)) 1531 goto failed; 1532 1533 err = nilfs_segctor_collect_blocks(sci, mode); 1534 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1535 if (!err) 1536 break; 1537 1538 if (unlikely(err != -E2BIG)) 1539 goto failed; 1540 1541 /* The current segment is filled up */ 1542 if (mode != SC_LSEG_SR || 1543 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1544 break; 1545 1546 nilfs_clear_logs(&sci->sc_segbufs); 1547 1548 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1549 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1550 sci->sc_freesegs, 1551 sci->sc_nfreesegs, 1552 NULL); 1553 WARN_ON(err); /* do not happen */ 1554 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1555 } 1556 1557 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1558 if (unlikely(err)) 1559 return err; 1560 1561 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1562 sci->sc_stage = prev_stage; 1563 } 1564 nilfs_segctor_zeropad_segsum(sci); 1565 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1566 return 0; 1567 1568 failed: 1569 return err; 1570 } 1571 1572 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1573 struct buffer_head *new_bh) 1574 { 1575 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1576 1577 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1578 /* The caller must release old_bh */ 1579 } 1580 1581 static int 1582 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1583 struct nilfs_segment_buffer *segbuf, 1584 int mode) 1585 { 1586 struct inode *inode = NULL; 1587 sector_t blocknr; 1588 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1589 unsigned long nblocks = 0, ndatablk = 0; 1590 const struct nilfs_sc_operations *sc_op = NULL; 1591 struct nilfs_segsum_pointer ssp; 1592 struct nilfs_finfo *finfo = NULL; 1593 union nilfs_binfo binfo; 1594 struct buffer_head *bh, *bh_org; 1595 ino_t ino = 0; 1596 int err = 0; 1597 1598 if (!nfinfo) 1599 goto out; 1600 1601 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1602 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1603 ssp.offset = sizeof(struct nilfs_segment_summary); 1604 1605 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1606 if (bh == segbuf->sb_super_root) 1607 break; 1608 if (!finfo) { 1609 finfo = nilfs_segctor_map_segsum_entry( 1610 sci, &ssp, sizeof(*finfo)); 1611 ino = le64_to_cpu(finfo->fi_ino); 1612 nblocks = le32_to_cpu(finfo->fi_nblocks); 1613 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1614 1615 inode = bh->b_folio->mapping->host; 1616 1617 if (mode == SC_LSEG_DSYNC) 1618 sc_op = &nilfs_sc_dsync_ops; 1619 else if (ino == NILFS_DAT_INO) 1620 sc_op = &nilfs_sc_dat_ops; 1621 else /* file blocks */ 1622 sc_op = &nilfs_sc_file_ops; 1623 } 1624 bh_org = bh; 1625 get_bh(bh_org); 1626 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1627 &binfo); 1628 if (bh != bh_org) 1629 nilfs_list_replace_buffer(bh_org, bh); 1630 brelse(bh_org); 1631 if (unlikely(err)) 1632 goto failed_bmap; 1633 1634 if (ndatablk > 0) 1635 sc_op->write_data_binfo(sci, &ssp, &binfo); 1636 else 1637 sc_op->write_node_binfo(sci, &ssp, &binfo); 1638 1639 blocknr++; 1640 if (--nblocks == 0) { 1641 finfo = NULL; 1642 if (--nfinfo == 0) 1643 break; 1644 } else if (ndatablk > 0) 1645 ndatablk--; 1646 } 1647 out: 1648 return 0; 1649 1650 failed_bmap: 1651 return err; 1652 } 1653 1654 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1655 { 1656 struct nilfs_segment_buffer *segbuf; 1657 int err; 1658 1659 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1660 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1661 if (unlikely(err)) 1662 return err; 1663 nilfs_segbuf_fill_in_segsum(segbuf); 1664 } 1665 return 0; 1666 } 1667 1668 static void nilfs_begin_page_io(struct page *page) 1669 { 1670 if (!page || PageWriteback(page)) 1671 /* 1672 * For split b-tree node pages, this function may be called 1673 * twice. We ignore the 2nd or later calls by this check. 1674 */ 1675 return; 1676 1677 lock_page(page); 1678 clear_page_dirty_for_io(page); 1679 set_page_writeback(page); 1680 unlock_page(page); 1681 } 1682 1683 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1684 { 1685 struct nilfs_segment_buffer *segbuf; 1686 struct page *bd_page = NULL, *fs_page = NULL; 1687 1688 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1689 struct buffer_head *bh; 1690 1691 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1692 b_assoc_buffers) { 1693 if (bh->b_page != bd_page) { 1694 if (bd_page) { 1695 lock_page(bd_page); 1696 clear_page_dirty_for_io(bd_page); 1697 set_page_writeback(bd_page); 1698 unlock_page(bd_page); 1699 } 1700 bd_page = bh->b_page; 1701 } 1702 } 1703 1704 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1705 b_assoc_buffers) { 1706 set_buffer_async_write(bh); 1707 if (bh == segbuf->sb_super_root) { 1708 if (bh->b_page != bd_page) { 1709 lock_page(bd_page); 1710 clear_page_dirty_for_io(bd_page); 1711 set_page_writeback(bd_page); 1712 unlock_page(bd_page); 1713 bd_page = bh->b_page; 1714 } 1715 break; 1716 } 1717 if (bh->b_page != fs_page) { 1718 nilfs_begin_page_io(fs_page); 1719 fs_page = bh->b_page; 1720 } 1721 } 1722 } 1723 if (bd_page) { 1724 lock_page(bd_page); 1725 clear_page_dirty_for_io(bd_page); 1726 set_page_writeback(bd_page); 1727 unlock_page(bd_page); 1728 } 1729 nilfs_begin_page_io(fs_page); 1730 } 1731 1732 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1733 struct the_nilfs *nilfs) 1734 { 1735 int ret; 1736 1737 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1738 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1739 return ret; 1740 } 1741 1742 static void nilfs_end_page_io(struct page *page, int err) 1743 { 1744 if (!page) 1745 return; 1746 1747 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1748 /* 1749 * For b-tree node pages, this function may be called twice 1750 * or more because they might be split in a segment. 1751 */ 1752 if (PageDirty(page)) { 1753 /* 1754 * For pages holding split b-tree node buffers, dirty 1755 * flag on the buffers may be cleared discretely. 1756 * In that case, the page is once redirtied for 1757 * remaining buffers, and it must be cancelled if 1758 * all the buffers get cleaned later. 1759 */ 1760 lock_page(page); 1761 if (nilfs_page_buffers_clean(page)) 1762 __nilfs_clear_page_dirty(page); 1763 unlock_page(page); 1764 } 1765 return; 1766 } 1767 1768 if (!err) { 1769 if (!nilfs_page_buffers_clean(page)) 1770 __set_page_dirty_nobuffers(page); 1771 ClearPageError(page); 1772 } else { 1773 __set_page_dirty_nobuffers(page); 1774 SetPageError(page); 1775 } 1776 1777 end_page_writeback(page); 1778 } 1779 1780 static void nilfs_abort_logs(struct list_head *logs, int err) 1781 { 1782 struct nilfs_segment_buffer *segbuf; 1783 struct page *bd_page = NULL, *fs_page = NULL; 1784 struct buffer_head *bh; 1785 1786 if (list_empty(logs)) 1787 return; 1788 1789 list_for_each_entry(segbuf, logs, sb_list) { 1790 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1791 b_assoc_buffers) { 1792 clear_buffer_uptodate(bh); 1793 if (bh->b_page != bd_page) { 1794 if (bd_page) 1795 end_page_writeback(bd_page); 1796 bd_page = bh->b_page; 1797 } 1798 } 1799 1800 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1801 b_assoc_buffers) { 1802 clear_buffer_async_write(bh); 1803 if (bh == segbuf->sb_super_root) { 1804 clear_buffer_uptodate(bh); 1805 if (bh->b_page != bd_page) { 1806 end_page_writeback(bd_page); 1807 bd_page = bh->b_page; 1808 } 1809 break; 1810 } 1811 if (bh->b_page != fs_page) { 1812 nilfs_end_page_io(fs_page, err); 1813 fs_page = bh->b_page; 1814 } 1815 } 1816 } 1817 if (bd_page) 1818 end_page_writeback(bd_page); 1819 1820 nilfs_end_page_io(fs_page, err); 1821 } 1822 1823 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1824 struct the_nilfs *nilfs, int err) 1825 { 1826 LIST_HEAD(logs); 1827 int ret; 1828 1829 list_splice_tail_init(&sci->sc_write_logs, &logs); 1830 ret = nilfs_wait_on_logs(&logs); 1831 nilfs_abort_logs(&logs, ret ? : err); 1832 1833 list_splice_tail_init(&sci->sc_segbufs, &logs); 1834 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1835 nilfs_free_incomplete_logs(&logs, nilfs); 1836 1837 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1838 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1839 sci->sc_freesegs, 1840 sci->sc_nfreesegs, 1841 NULL); 1842 WARN_ON(ret); /* do not happen */ 1843 } 1844 1845 nilfs_destroy_logs(&logs); 1846 } 1847 1848 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1849 struct nilfs_segment_buffer *segbuf) 1850 { 1851 nilfs->ns_segnum = segbuf->sb_segnum; 1852 nilfs->ns_nextnum = segbuf->sb_nextnum; 1853 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1854 + segbuf->sb_sum.nblocks; 1855 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1856 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1857 } 1858 1859 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1860 { 1861 struct nilfs_segment_buffer *segbuf; 1862 struct page *bd_page = NULL, *fs_page = NULL; 1863 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1864 int update_sr = false; 1865 1866 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1867 struct buffer_head *bh; 1868 1869 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1870 b_assoc_buffers) { 1871 set_buffer_uptodate(bh); 1872 clear_buffer_dirty(bh); 1873 if (bh->b_page != bd_page) { 1874 if (bd_page) 1875 end_page_writeback(bd_page); 1876 bd_page = bh->b_page; 1877 } 1878 } 1879 /* 1880 * We assume that the buffers which belong to the same page 1881 * continue over the buffer list. 1882 * Under this assumption, the last BHs of pages is 1883 * identifiable by the discontinuity of bh->b_page 1884 * (page != fs_page). 1885 * 1886 * For B-tree node blocks, however, this assumption is not 1887 * guaranteed. The cleanup code of B-tree node pages needs 1888 * special care. 1889 */ 1890 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1891 b_assoc_buffers) { 1892 const unsigned long set_bits = BIT(BH_Uptodate); 1893 const unsigned long clear_bits = 1894 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1895 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1896 BIT(BH_NILFS_Redirected)); 1897 1898 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1899 if (bh == segbuf->sb_super_root) { 1900 if (bh->b_page != bd_page) { 1901 end_page_writeback(bd_page); 1902 bd_page = bh->b_page; 1903 } 1904 update_sr = true; 1905 break; 1906 } 1907 if (bh->b_page != fs_page) { 1908 nilfs_end_page_io(fs_page, 0); 1909 fs_page = bh->b_page; 1910 } 1911 } 1912 1913 if (!nilfs_segbuf_simplex(segbuf)) { 1914 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1915 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1916 sci->sc_lseg_stime = jiffies; 1917 } 1918 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1919 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1920 } 1921 } 1922 /* 1923 * Since pages may continue over multiple segment buffers, 1924 * end of the last page must be checked outside of the loop. 1925 */ 1926 if (bd_page) 1927 end_page_writeback(bd_page); 1928 1929 nilfs_end_page_io(fs_page, 0); 1930 1931 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1932 1933 if (nilfs_doing_gc()) 1934 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1935 else 1936 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1937 1938 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1939 1940 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1941 nilfs_set_next_segment(nilfs, segbuf); 1942 1943 if (update_sr) { 1944 nilfs->ns_flushed_device = 0; 1945 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1946 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1947 1948 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1949 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1950 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1951 nilfs_segctor_clear_metadata_dirty(sci); 1952 } else 1953 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1954 } 1955 1956 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1957 { 1958 int ret; 1959 1960 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1961 if (!ret) { 1962 nilfs_segctor_complete_write(sci); 1963 nilfs_destroy_logs(&sci->sc_write_logs); 1964 } 1965 return ret; 1966 } 1967 1968 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1969 struct the_nilfs *nilfs) 1970 { 1971 struct nilfs_inode_info *ii, *n; 1972 struct inode *ifile = sci->sc_root->ifile; 1973 1974 spin_lock(&nilfs->ns_inode_lock); 1975 retry: 1976 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1977 if (!ii->i_bh) { 1978 struct buffer_head *ibh; 1979 int err; 1980 1981 spin_unlock(&nilfs->ns_inode_lock); 1982 err = nilfs_ifile_get_inode_block( 1983 ifile, ii->vfs_inode.i_ino, &ibh); 1984 if (unlikely(err)) { 1985 nilfs_warn(sci->sc_super, 1986 "log writer: error %d getting inode block (ino=%lu)", 1987 err, ii->vfs_inode.i_ino); 1988 return err; 1989 } 1990 spin_lock(&nilfs->ns_inode_lock); 1991 if (likely(!ii->i_bh)) 1992 ii->i_bh = ibh; 1993 else 1994 brelse(ibh); 1995 goto retry; 1996 } 1997 1998 // Always redirty the buffer to avoid race condition 1999 mark_buffer_dirty(ii->i_bh); 2000 nilfs_mdt_mark_dirty(ifile); 2001 2002 clear_bit(NILFS_I_QUEUED, &ii->i_state); 2003 set_bit(NILFS_I_BUSY, &ii->i_state); 2004 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 2005 } 2006 spin_unlock(&nilfs->ns_inode_lock); 2007 2008 return 0; 2009 } 2010 2011 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 2012 struct the_nilfs *nilfs) 2013 { 2014 struct nilfs_inode_info *ii, *n; 2015 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 2016 int defer_iput = false; 2017 2018 spin_lock(&nilfs->ns_inode_lock); 2019 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 2020 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 2021 test_bit(NILFS_I_DIRTY, &ii->i_state)) 2022 continue; 2023 2024 clear_bit(NILFS_I_BUSY, &ii->i_state); 2025 brelse(ii->i_bh); 2026 ii->i_bh = NULL; 2027 list_del_init(&ii->i_dirty); 2028 if (!ii->vfs_inode.i_nlink || during_mount) { 2029 /* 2030 * Defer calling iput() to avoid deadlocks if 2031 * i_nlink == 0 or mount is not yet finished. 2032 */ 2033 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 2034 defer_iput = true; 2035 } else { 2036 spin_unlock(&nilfs->ns_inode_lock); 2037 iput(&ii->vfs_inode); 2038 spin_lock(&nilfs->ns_inode_lock); 2039 } 2040 } 2041 spin_unlock(&nilfs->ns_inode_lock); 2042 2043 if (defer_iput) 2044 schedule_work(&sci->sc_iput_work); 2045 } 2046 2047 /* 2048 * Main procedure of segment constructor 2049 */ 2050 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2051 { 2052 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2053 int err; 2054 2055 if (sb_rdonly(sci->sc_super)) 2056 return -EROFS; 2057 2058 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2059 sci->sc_cno = nilfs->ns_cno; 2060 2061 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2062 if (unlikely(err)) 2063 goto out; 2064 2065 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2066 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2067 2068 if (nilfs_segctor_clean(sci)) 2069 goto out; 2070 2071 do { 2072 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2073 2074 err = nilfs_segctor_begin_construction(sci, nilfs); 2075 if (unlikely(err)) 2076 goto out; 2077 2078 /* Update time stamp */ 2079 sci->sc_seg_ctime = ktime_get_real_seconds(); 2080 2081 err = nilfs_segctor_collect(sci, nilfs, mode); 2082 if (unlikely(err)) 2083 goto failed; 2084 2085 /* Avoid empty segment */ 2086 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2087 nilfs_segbuf_empty(sci->sc_curseg)) { 2088 nilfs_segctor_abort_construction(sci, nilfs, 1); 2089 goto out; 2090 } 2091 2092 err = nilfs_segctor_assign(sci, mode); 2093 if (unlikely(err)) 2094 goto failed; 2095 2096 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2097 nilfs_segctor_fill_in_file_bmap(sci); 2098 2099 if (mode == SC_LSEG_SR && 2100 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2101 err = nilfs_segctor_fill_in_checkpoint(sci); 2102 if (unlikely(err)) 2103 goto failed_to_write; 2104 2105 nilfs_segctor_fill_in_super_root(sci, nilfs); 2106 } 2107 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2108 2109 /* Write partial segments */ 2110 nilfs_segctor_prepare_write(sci); 2111 2112 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2113 nilfs->ns_crc_seed); 2114 2115 err = nilfs_segctor_write(sci, nilfs); 2116 if (unlikely(err)) 2117 goto failed_to_write; 2118 2119 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2120 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2121 /* 2122 * At this point, we avoid double buffering 2123 * for blocksize < pagesize because page dirty 2124 * flag is turned off during write and dirty 2125 * buffers are not properly collected for 2126 * pages crossing over segments. 2127 */ 2128 err = nilfs_segctor_wait(sci); 2129 if (err) 2130 goto failed_to_write; 2131 } 2132 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2133 2134 out: 2135 nilfs_segctor_drop_written_files(sci, nilfs); 2136 return err; 2137 2138 failed_to_write: 2139 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2140 nilfs_redirty_inodes(&sci->sc_dirty_files); 2141 2142 failed: 2143 if (nilfs_doing_gc()) 2144 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2145 nilfs_segctor_abort_construction(sci, nilfs, err); 2146 goto out; 2147 } 2148 2149 /** 2150 * nilfs_segctor_start_timer - set timer of background write 2151 * @sci: nilfs_sc_info 2152 * 2153 * If the timer has already been set, it ignores the new request. 2154 * This function MUST be called within a section locking the segment 2155 * semaphore. 2156 */ 2157 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2158 { 2159 spin_lock(&sci->sc_state_lock); 2160 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2161 sci->sc_timer.expires = jiffies + sci->sc_interval; 2162 add_timer(&sci->sc_timer); 2163 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2164 } 2165 spin_unlock(&sci->sc_state_lock); 2166 } 2167 2168 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2169 { 2170 spin_lock(&sci->sc_state_lock); 2171 if (!(sci->sc_flush_request & BIT(bn))) { 2172 unsigned long prev_req = sci->sc_flush_request; 2173 2174 sci->sc_flush_request |= BIT(bn); 2175 if (!prev_req) 2176 wake_up(&sci->sc_wait_daemon); 2177 } 2178 spin_unlock(&sci->sc_state_lock); 2179 } 2180 2181 /** 2182 * nilfs_flush_segment - trigger a segment construction for resource control 2183 * @sb: super block 2184 * @ino: inode number of the file to be flushed out. 2185 */ 2186 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2187 { 2188 struct the_nilfs *nilfs = sb->s_fs_info; 2189 struct nilfs_sc_info *sci = nilfs->ns_writer; 2190 2191 if (!sci || nilfs_doing_construction()) 2192 return; 2193 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2194 /* assign bit 0 to data files */ 2195 } 2196 2197 struct nilfs_segctor_wait_request { 2198 wait_queue_entry_t wq; 2199 __u32 seq; 2200 int err; 2201 atomic_t done; 2202 }; 2203 2204 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2205 { 2206 struct nilfs_segctor_wait_request wait_req; 2207 int err = 0; 2208 2209 spin_lock(&sci->sc_state_lock); 2210 init_wait(&wait_req.wq); 2211 wait_req.err = 0; 2212 atomic_set(&wait_req.done, 0); 2213 wait_req.seq = ++sci->sc_seq_request; 2214 spin_unlock(&sci->sc_state_lock); 2215 2216 init_waitqueue_entry(&wait_req.wq, current); 2217 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2218 set_current_state(TASK_INTERRUPTIBLE); 2219 wake_up(&sci->sc_wait_daemon); 2220 2221 for (;;) { 2222 if (atomic_read(&wait_req.done)) { 2223 err = wait_req.err; 2224 break; 2225 } 2226 if (!signal_pending(current)) { 2227 schedule(); 2228 continue; 2229 } 2230 err = -ERESTARTSYS; 2231 break; 2232 } 2233 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2234 return err; 2235 } 2236 2237 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2238 { 2239 struct nilfs_segctor_wait_request *wrq, *n; 2240 unsigned long flags; 2241 2242 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2243 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2244 if (!atomic_read(&wrq->done) && 2245 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2246 wrq->err = err; 2247 atomic_set(&wrq->done, 1); 2248 } 2249 if (atomic_read(&wrq->done)) { 2250 wrq->wq.func(&wrq->wq, 2251 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2252 0, NULL); 2253 } 2254 } 2255 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2256 } 2257 2258 /** 2259 * nilfs_construct_segment - construct a logical segment 2260 * @sb: super block 2261 * 2262 * Return Value: On success, 0 is returned. On errors, one of the following 2263 * negative error code is returned. 2264 * 2265 * %-EROFS - Read only filesystem. 2266 * 2267 * %-EIO - I/O error 2268 * 2269 * %-ENOSPC - No space left on device (only in a panic state). 2270 * 2271 * %-ERESTARTSYS - Interrupted. 2272 * 2273 * %-ENOMEM - Insufficient memory available. 2274 */ 2275 int nilfs_construct_segment(struct super_block *sb) 2276 { 2277 struct the_nilfs *nilfs = sb->s_fs_info; 2278 struct nilfs_sc_info *sci = nilfs->ns_writer; 2279 struct nilfs_transaction_info *ti; 2280 2281 if (sb_rdonly(sb) || unlikely(!sci)) 2282 return -EROFS; 2283 2284 /* A call inside transactions causes a deadlock. */ 2285 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2286 2287 return nilfs_segctor_sync(sci); 2288 } 2289 2290 /** 2291 * nilfs_construct_dsync_segment - construct a data-only logical segment 2292 * @sb: super block 2293 * @inode: inode whose data blocks should be written out 2294 * @start: start byte offset 2295 * @end: end byte offset (inclusive) 2296 * 2297 * Return Value: On success, 0 is returned. On errors, one of the following 2298 * negative error code is returned. 2299 * 2300 * %-EROFS - Read only filesystem. 2301 * 2302 * %-EIO - I/O error 2303 * 2304 * %-ENOSPC - No space left on device (only in a panic state). 2305 * 2306 * %-ERESTARTSYS - Interrupted. 2307 * 2308 * %-ENOMEM - Insufficient memory available. 2309 */ 2310 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2311 loff_t start, loff_t end) 2312 { 2313 struct the_nilfs *nilfs = sb->s_fs_info; 2314 struct nilfs_sc_info *sci = nilfs->ns_writer; 2315 struct nilfs_inode_info *ii; 2316 struct nilfs_transaction_info ti; 2317 int err = 0; 2318 2319 if (sb_rdonly(sb) || unlikely(!sci)) 2320 return -EROFS; 2321 2322 nilfs_transaction_lock(sb, &ti, 0); 2323 2324 ii = NILFS_I(inode); 2325 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2326 nilfs_test_opt(nilfs, STRICT_ORDER) || 2327 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2328 nilfs_discontinued(nilfs)) { 2329 nilfs_transaction_unlock(sb); 2330 err = nilfs_segctor_sync(sci); 2331 return err; 2332 } 2333 2334 spin_lock(&nilfs->ns_inode_lock); 2335 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2336 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2337 spin_unlock(&nilfs->ns_inode_lock); 2338 nilfs_transaction_unlock(sb); 2339 return 0; 2340 } 2341 spin_unlock(&nilfs->ns_inode_lock); 2342 sci->sc_dsync_inode = ii; 2343 sci->sc_dsync_start = start; 2344 sci->sc_dsync_end = end; 2345 2346 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2347 if (!err) 2348 nilfs->ns_flushed_device = 0; 2349 2350 nilfs_transaction_unlock(sb); 2351 return err; 2352 } 2353 2354 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2355 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2356 2357 /** 2358 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2359 * @sci: segment constructor object 2360 */ 2361 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2362 { 2363 spin_lock(&sci->sc_state_lock); 2364 sci->sc_seq_accepted = sci->sc_seq_request; 2365 spin_unlock(&sci->sc_state_lock); 2366 del_timer_sync(&sci->sc_timer); 2367 } 2368 2369 /** 2370 * nilfs_segctor_notify - notify the result of request to caller threads 2371 * @sci: segment constructor object 2372 * @mode: mode of log forming 2373 * @err: error code to be notified 2374 */ 2375 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2376 { 2377 /* Clear requests (even when the construction failed) */ 2378 spin_lock(&sci->sc_state_lock); 2379 2380 if (mode == SC_LSEG_SR) { 2381 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2382 sci->sc_seq_done = sci->sc_seq_accepted; 2383 nilfs_segctor_wakeup(sci, err); 2384 sci->sc_flush_request = 0; 2385 } else { 2386 if (mode == SC_FLUSH_FILE) 2387 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2388 else if (mode == SC_FLUSH_DAT) 2389 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2390 2391 /* re-enable timer if checkpoint creation was not done */ 2392 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2393 time_before(jiffies, sci->sc_timer.expires)) 2394 add_timer(&sci->sc_timer); 2395 } 2396 spin_unlock(&sci->sc_state_lock); 2397 } 2398 2399 /** 2400 * nilfs_segctor_construct - form logs and write them to disk 2401 * @sci: segment constructor object 2402 * @mode: mode of log forming 2403 */ 2404 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2405 { 2406 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2407 struct nilfs_super_block **sbp; 2408 int err = 0; 2409 2410 nilfs_segctor_accept(sci); 2411 2412 if (nilfs_discontinued(nilfs)) 2413 mode = SC_LSEG_SR; 2414 if (!nilfs_segctor_confirm(sci)) 2415 err = nilfs_segctor_do_construct(sci, mode); 2416 2417 if (likely(!err)) { 2418 if (mode != SC_FLUSH_DAT) 2419 atomic_set(&nilfs->ns_ndirtyblks, 0); 2420 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2421 nilfs_discontinued(nilfs)) { 2422 down_write(&nilfs->ns_sem); 2423 err = -EIO; 2424 sbp = nilfs_prepare_super(sci->sc_super, 2425 nilfs_sb_will_flip(nilfs)); 2426 if (likely(sbp)) { 2427 nilfs_set_log_cursor(sbp[0], nilfs); 2428 err = nilfs_commit_super(sci->sc_super, 2429 NILFS_SB_COMMIT); 2430 } 2431 up_write(&nilfs->ns_sem); 2432 } 2433 } 2434 2435 nilfs_segctor_notify(sci, mode, err); 2436 return err; 2437 } 2438 2439 static void nilfs_construction_timeout(struct timer_list *t) 2440 { 2441 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2442 2443 wake_up_process(sci->sc_timer_task); 2444 } 2445 2446 static void 2447 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2448 { 2449 struct nilfs_inode_info *ii, *n; 2450 2451 list_for_each_entry_safe(ii, n, head, i_dirty) { 2452 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2453 continue; 2454 list_del_init(&ii->i_dirty); 2455 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2456 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2457 iput(&ii->vfs_inode); 2458 } 2459 } 2460 2461 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2462 void **kbufs) 2463 { 2464 struct the_nilfs *nilfs = sb->s_fs_info; 2465 struct nilfs_sc_info *sci = nilfs->ns_writer; 2466 struct nilfs_transaction_info ti; 2467 int err; 2468 2469 if (unlikely(!sci)) 2470 return -EROFS; 2471 2472 nilfs_transaction_lock(sb, &ti, 1); 2473 2474 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2475 if (unlikely(err)) 2476 goto out_unlock; 2477 2478 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2479 if (unlikely(err)) { 2480 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2481 goto out_unlock; 2482 } 2483 2484 sci->sc_freesegs = kbufs[4]; 2485 sci->sc_nfreesegs = argv[4].v_nmembs; 2486 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2487 2488 for (;;) { 2489 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2490 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2491 2492 if (likely(!err)) 2493 break; 2494 2495 nilfs_warn(sb, "error %d cleaning segments", err); 2496 set_current_state(TASK_INTERRUPTIBLE); 2497 schedule_timeout(sci->sc_interval); 2498 } 2499 if (nilfs_test_opt(nilfs, DISCARD)) { 2500 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2501 sci->sc_nfreesegs); 2502 if (ret) { 2503 nilfs_warn(sb, 2504 "error %d on discard request, turning discards off for the device", 2505 ret); 2506 nilfs_clear_opt(nilfs, DISCARD); 2507 } 2508 } 2509 2510 out_unlock: 2511 sci->sc_freesegs = NULL; 2512 sci->sc_nfreesegs = 0; 2513 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2514 nilfs_transaction_unlock(sb); 2515 return err; 2516 } 2517 2518 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2519 { 2520 struct nilfs_transaction_info ti; 2521 2522 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2523 nilfs_segctor_construct(sci, mode); 2524 2525 /* 2526 * Unclosed segment should be retried. We do this using sc_timer. 2527 * Timeout of sc_timer will invoke complete construction which leads 2528 * to close the current logical segment. 2529 */ 2530 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2531 nilfs_segctor_start_timer(sci); 2532 2533 nilfs_transaction_unlock(sci->sc_super); 2534 } 2535 2536 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2537 { 2538 int mode = 0; 2539 2540 spin_lock(&sci->sc_state_lock); 2541 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2542 SC_FLUSH_DAT : SC_FLUSH_FILE; 2543 spin_unlock(&sci->sc_state_lock); 2544 2545 if (mode) { 2546 nilfs_segctor_do_construct(sci, mode); 2547 2548 spin_lock(&sci->sc_state_lock); 2549 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2550 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2551 spin_unlock(&sci->sc_state_lock); 2552 } 2553 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2554 } 2555 2556 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2557 { 2558 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2559 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2560 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2561 return SC_FLUSH_FILE; 2562 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2563 return SC_FLUSH_DAT; 2564 } 2565 return SC_LSEG_SR; 2566 } 2567 2568 /** 2569 * nilfs_segctor_thread - main loop of the segment constructor thread. 2570 * @arg: pointer to a struct nilfs_sc_info. 2571 * 2572 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2573 * to execute segment constructions. 2574 */ 2575 static int nilfs_segctor_thread(void *arg) 2576 { 2577 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2578 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2579 int timeout = 0; 2580 2581 sci->sc_timer_task = current; 2582 2583 /* start sync. */ 2584 sci->sc_task = current; 2585 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2586 nilfs_info(sci->sc_super, 2587 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2588 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2589 2590 spin_lock(&sci->sc_state_lock); 2591 loop: 2592 for (;;) { 2593 int mode; 2594 2595 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2596 goto end_thread; 2597 2598 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2599 mode = SC_LSEG_SR; 2600 else if (sci->sc_flush_request) 2601 mode = nilfs_segctor_flush_mode(sci); 2602 else 2603 break; 2604 2605 spin_unlock(&sci->sc_state_lock); 2606 nilfs_segctor_thread_construct(sci, mode); 2607 spin_lock(&sci->sc_state_lock); 2608 timeout = 0; 2609 } 2610 2611 2612 if (freezing(current)) { 2613 spin_unlock(&sci->sc_state_lock); 2614 try_to_freeze(); 2615 spin_lock(&sci->sc_state_lock); 2616 } else { 2617 DEFINE_WAIT(wait); 2618 int should_sleep = 1; 2619 2620 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2621 TASK_INTERRUPTIBLE); 2622 2623 if (sci->sc_seq_request != sci->sc_seq_done) 2624 should_sleep = 0; 2625 else if (sci->sc_flush_request) 2626 should_sleep = 0; 2627 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2628 should_sleep = time_before(jiffies, 2629 sci->sc_timer.expires); 2630 2631 if (should_sleep) { 2632 spin_unlock(&sci->sc_state_lock); 2633 schedule(); 2634 spin_lock(&sci->sc_state_lock); 2635 } 2636 finish_wait(&sci->sc_wait_daemon, &wait); 2637 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2638 time_after_eq(jiffies, sci->sc_timer.expires)); 2639 2640 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2641 set_nilfs_discontinued(nilfs); 2642 } 2643 goto loop; 2644 2645 end_thread: 2646 /* end sync. */ 2647 sci->sc_task = NULL; 2648 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2649 spin_unlock(&sci->sc_state_lock); 2650 return 0; 2651 } 2652 2653 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2654 { 2655 struct task_struct *t; 2656 2657 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2658 if (IS_ERR(t)) { 2659 int err = PTR_ERR(t); 2660 2661 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2662 err); 2663 return err; 2664 } 2665 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2666 return 0; 2667 } 2668 2669 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2670 __acquires(&sci->sc_state_lock) 2671 __releases(&sci->sc_state_lock) 2672 { 2673 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2674 2675 while (sci->sc_task) { 2676 wake_up(&sci->sc_wait_daemon); 2677 spin_unlock(&sci->sc_state_lock); 2678 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2679 spin_lock(&sci->sc_state_lock); 2680 } 2681 } 2682 2683 /* 2684 * Setup & clean-up functions 2685 */ 2686 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2687 struct nilfs_root *root) 2688 { 2689 struct the_nilfs *nilfs = sb->s_fs_info; 2690 struct nilfs_sc_info *sci; 2691 2692 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2693 if (!sci) 2694 return NULL; 2695 2696 sci->sc_super = sb; 2697 2698 nilfs_get_root(root); 2699 sci->sc_root = root; 2700 2701 init_waitqueue_head(&sci->sc_wait_request); 2702 init_waitqueue_head(&sci->sc_wait_daemon); 2703 init_waitqueue_head(&sci->sc_wait_task); 2704 spin_lock_init(&sci->sc_state_lock); 2705 INIT_LIST_HEAD(&sci->sc_dirty_files); 2706 INIT_LIST_HEAD(&sci->sc_segbufs); 2707 INIT_LIST_HEAD(&sci->sc_write_logs); 2708 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2709 INIT_LIST_HEAD(&sci->sc_iput_queue); 2710 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2711 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2712 2713 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2714 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2715 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2716 2717 if (nilfs->ns_interval) 2718 sci->sc_interval = HZ * nilfs->ns_interval; 2719 if (nilfs->ns_watermark) 2720 sci->sc_watermark = nilfs->ns_watermark; 2721 return sci; 2722 } 2723 2724 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2725 { 2726 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2727 2728 /* 2729 * The segctord thread was stopped and its timer was removed. 2730 * But some tasks remain. 2731 */ 2732 do { 2733 struct nilfs_transaction_info ti; 2734 2735 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2736 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2737 nilfs_transaction_unlock(sci->sc_super); 2738 2739 flush_work(&sci->sc_iput_work); 2740 2741 } while (ret && ret != -EROFS && retrycount-- > 0); 2742 } 2743 2744 /** 2745 * nilfs_segctor_destroy - destroy the segment constructor. 2746 * @sci: nilfs_sc_info 2747 * 2748 * nilfs_segctor_destroy() kills the segctord thread and frees 2749 * the nilfs_sc_info struct. 2750 * Caller must hold the segment semaphore. 2751 */ 2752 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2753 { 2754 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2755 int flag; 2756 2757 up_write(&nilfs->ns_segctor_sem); 2758 2759 spin_lock(&sci->sc_state_lock); 2760 nilfs_segctor_kill_thread(sci); 2761 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2762 || sci->sc_seq_request != sci->sc_seq_done); 2763 spin_unlock(&sci->sc_state_lock); 2764 2765 if (flush_work(&sci->sc_iput_work)) 2766 flag = true; 2767 2768 if (flag || !nilfs_segctor_confirm(sci)) 2769 nilfs_segctor_write_out(sci); 2770 2771 if (!list_empty(&sci->sc_dirty_files)) { 2772 nilfs_warn(sci->sc_super, 2773 "disposed unprocessed dirty file(s) when stopping log writer"); 2774 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2775 } 2776 2777 if (!list_empty(&sci->sc_iput_queue)) { 2778 nilfs_warn(sci->sc_super, 2779 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2780 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2781 } 2782 2783 WARN_ON(!list_empty(&sci->sc_segbufs)); 2784 WARN_ON(!list_empty(&sci->sc_write_logs)); 2785 2786 nilfs_put_root(sci->sc_root); 2787 2788 down_write(&nilfs->ns_segctor_sem); 2789 2790 timer_shutdown_sync(&sci->sc_timer); 2791 kfree(sci); 2792 } 2793 2794 /** 2795 * nilfs_attach_log_writer - attach log writer 2796 * @sb: super block instance 2797 * @root: root object of the current filesystem tree 2798 * 2799 * This allocates a log writer object, initializes it, and starts the 2800 * log writer. 2801 * 2802 * Return Value: On success, 0 is returned. On error, one of the following 2803 * negative error code is returned. 2804 * 2805 * %-ENOMEM - Insufficient memory available. 2806 */ 2807 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2808 { 2809 struct the_nilfs *nilfs = sb->s_fs_info; 2810 int err; 2811 2812 if (nilfs->ns_writer) { 2813 /* 2814 * This happens if the filesystem is made read-only by 2815 * __nilfs_error or nilfs_remount and then remounted 2816 * read/write. In these cases, reuse the existing 2817 * writer. 2818 */ 2819 return 0; 2820 } 2821 2822 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2823 if (!nilfs->ns_writer) 2824 return -ENOMEM; 2825 2826 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2827 2828 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2829 if (unlikely(err)) 2830 nilfs_detach_log_writer(sb); 2831 2832 return err; 2833 } 2834 2835 /** 2836 * nilfs_detach_log_writer - destroy log writer 2837 * @sb: super block instance 2838 * 2839 * This kills log writer daemon, frees the log writer object, and 2840 * destroys list of dirty files. 2841 */ 2842 void nilfs_detach_log_writer(struct super_block *sb) 2843 { 2844 struct the_nilfs *nilfs = sb->s_fs_info; 2845 LIST_HEAD(garbage_list); 2846 2847 down_write(&nilfs->ns_segctor_sem); 2848 if (nilfs->ns_writer) { 2849 nilfs_segctor_destroy(nilfs->ns_writer); 2850 nilfs->ns_writer = NULL; 2851 } 2852 set_nilfs_purging(nilfs); 2853 2854 /* Force to free the list of dirty files */ 2855 spin_lock(&nilfs->ns_inode_lock); 2856 if (!list_empty(&nilfs->ns_dirty_files)) { 2857 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2858 nilfs_warn(sb, 2859 "disposed unprocessed dirty file(s) when detaching log writer"); 2860 } 2861 spin_unlock(&nilfs->ns_inode_lock); 2862 up_write(&nilfs->ns_segctor_sem); 2863 2864 nilfs_dispose_list(nilfs, &garbage_list, 1); 2865 clear_nilfs_purging(nilfs); 2866 } 2867