1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS inode operations. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/buffer_head.h> 12 #include <linux/gfp.h> 13 #include <linux/mpage.h> 14 #include <linux/pagemap.h> 15 #include <linux/writeback.h> 16 #include <linux/uio.h> 17 #include <linux/fiemap.h> 18 #include "nilfs.h" 19 #include "btnode.h" 20 #include "segment.h" 21 #include "page.h" 22 #include "mdt.h" 23 #include "cpfile.h" 24 #include "ifile.h" 25 26 /** 27 * struct nilfs_iget_args - arguments used during comparison between inodes 28 * @ino: inode number 29 * @cno: checkpoint number 30 * @root: pointer on NILFS root object (mounted checkpoint) 31 * @for_gc: inode for GC flag 32 * @for_btnc: inode for B-tree node cache flag 33 * @for_shadow: inode for shadowed page cache flag 34 */ 35 struct nilfs_iget_args { 36 u64 ino; 37 __u64 cno; 38 struct nilfs_root *root; 39 bool for_gc; 40 bool for_btnc; 41 bool for_shadow; 42 }; 43 44 static int nilfs_iget_test(struct inode *inode, void *opaque); 45 46 void nilfs_inode_add_blocks(struct inode *inode, int n) 47 { 48 struct nilfs_root *root = NILFS_I(inode)->i_root; 49 50 inode_add_bytes(inode, i_blocksize(inode) * n); 51 if (root) 52 atomic64_add(n, &root->blocks_count); 53 } 54 55 void nilfs_inode_sub_blocks(struct inode *inode, int n) 56 { 57 struct nilfs_root *root = NILFS_I(inode)->i_root; 58 59 inode_sub_bytes(inode, i_blocksize(inode) * n); 60 if (root) 61 atomic64_sub(n, &root->blocks_count); 62 } 63 64 /** 65 * nilfs_get_block() - get a file block on the filesystem (callback function) 66 * @inode - inode struct of the target file 67 * @blkoff - file block number 68 * @bh_result - buffer head to be mapped on 69 * @create - indicate whether allocating the block or not when it has not 70 * been allocated yet. 71 * 72 * This function does not issue actual read request of the specified data 73 * block. It is done by VFS. 74 */ 75 int nilfs_get_block(struct inode *inode, sector_t blkoff, 76 struct buffer_head *bh_result, int create) 77 { 78 struct nilfs_inode_info *ii = NILFS_I(inode); 79 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 80 __u64 blknum = 0; 81 int err = 0, ret; 82 unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits; 83 84 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 85 ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks); 86 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 87 if (ret >= 0) { /* found */ 88 map_bh(bh_result, inode->i_sb, blknum); 89 if (ret > 0) 90 bh_result->b_size = (ret << inode->i_blkbits); 91 goto out; 92 } 93 /* data block was not found */ 94 if (ret == -ENOENT && create) { 95 struct nilfs_transaction_info ti; 96 97 bh_result->b_blocknr = 0; 98 err = nilfs_transaction_begin(inode->i_sb, &ti, 1); 99 if (unlikely(err)) 100 goto out; 101 err = nilfs_bmap_insert(ii->i_bmap, blkoff, 102 (unsigned long)bh_result); 103 if (unlikely(err != 0)) { 104 if (err == -EEXIST) { 105 /* 106 * The get_block() function could be called 107 * from multiple callers for an inode. 108 * However, the page having this block must 109 * be locked in this case. 110 */ 111 nilfs_warn(inode->i_sb, 112 "%s (ino=%lu): a race condition while inserting a data block at offset=%llu", 113 __func__, inode->i_ino, 114 (unsigned long long)blkoff); 115 err = 0; 116 } 117 nilfs_transaction_abort(inode->i_sb); 118 goto out; 119 } 120 nilfs_mark_inode_dirty_sync(inode); 121 nilfs_transaction_commit(inode->i_sb); /* never fails */ 122 /* Error handling should be detailed */ 123 set_buffer_new(bh_result); 124 set_buffer_delay(bh_result); 125 map_bh(bh_result, inode->i_sb, 0); 126 /* Disk block number must be changed to proper value */ 127 128 } else if (ret == -ENOENT) { 129 /* 130 * not found is not error (e.g. hole); must return without 131 * the mapped state flag. 132 */ 133 ; 134 } else { 135 err = ret; 136 } 137 138 out: 139 return err; 140 } 141 142 /** 143 * nilfs_readpage() - implement readpage() method of nilfs_aops {} 144 * address_space_operations. 145 * @file - file struct of the file to be read 146 * @page - the page to be read 147 */ 148 static int nilfs_readpage(struct file *file, struct page *page) 149 { 150 return mpage_readpage(page, nilfs_get_block); 151 } 152 153 static void nilfs_readahead(struct readahead_control *rac) 154 { 155 mpage_readahead(rac, nilfs_get_block); 156 } 157 158 static int nilfs_writepages(struct address_space *mapping, 159 struct writeback_control *wbc) 160 { 161 struct inode *inode = mapping->host; 162 int err = 0; 163 164 if (sb_rdonly(inode->i_sb)) { 165 nilfs_clear_dirty_pages(mapping, false); 166 return -EROFS; 167 } 168 169 if (wbc->sync_mode == WB_SYNC_ALL) 170 err = nilfs_construct_dsync_segment(inode->i_sb, inode, 171 wbc->range_start, 172 wbc->range_end); 173 return err; 174 } 175 176 static int nilfs_writepage(struct page *page, struct writeback_control *wbc) 177 { 178 struct inode *inode = page->mapping->host; 179 int err; 180 181 if (sb_rdonly(inode->i_sb)) { 182 /* 183 * It means that filesystem was remounted in read-only 184 * mode because of error or metadata corruption. But we 185 * have dirty pages that try to be flushed in background. 186 * So, here we simply discard this dirty page. 187 */ 188 nilfs_clear_dirty_page(page, false); 189 unlock_page(page); 190 return -EROFS; 191 } 192 193 redirty_page_for_writepage(wbc, page); 194 unlock_page(page); 195 196 if (wbc->sync_mode == WB_SYNC_ALL) { 197 err = nilfs_construct_segment(inode->i_sb); 198 if (unlikely(err)) 199 return err; 200 } else if (wbc->for_reclaim) 201 nilfs_flush_segment(inode->i_sb, inode->i_ino); 202 203 return 0; 204 } 205 206 static bool nilfs_dirty_folio(struct address_space *mapping, 207 struct folio *folio) 208 { 209 struct inode *inode = mapping->host; 210 struct buffer_head *head; 211 unsigned int nr_dirty = 0; 212 bool ret = filemap_dirty_folio(mapping, folio); 213 214 /* 215 * The page may not be locked, eg if called from try_to_unmap_one() 216 */ 217 spin_lock(&mapping->private_lock); 218 head = folio_buffers(folio); 219 if (head) { 220 struct buffer_head *bh = head; 221 222 do { 223 /* Do not mark hole blocks dirty */ 224 if (buffer_dirty(bh) || !buffer_mapped(bh)) 225 continue; 226 227 set_buffer_dirty(bh); 228 nr_dirty++; 229 } while (bh = bh->b_this_page, bh != head); 230 } else if (ret) { 231 nr_dirty = 1 << (folio_shift(folio) - inode->i_blkbits); 232 } 233 spin_unlock(&mapping->private_lock); 234 235 if (nr_dirty) 236 nilfs_set_file_dirty(inode, nr_dirty); 237 return ret; 238 } 239 240 void nilfs_write_failed(struct address_space *mapping, loff_t to) 241 { 242 struct inode *inode = mapping->host; 243 244 if (to > inode->i_size) { 245 truncate_pagecache(inode, inode->i_size); 246 nilfs_truncate(inode); 247 } 248 } 249 250 static int nilfs_write_begin(struct file *file, struct address_space *mapping, 251 loff_t pos, unsigned len, unsigned flags, 252 struct page **pagep, void **fsdata) 253 254 { 255 struct inode *inode = mapping->host; 256 int err = nilfs_transaction_begin(inode->i_sb, NULL, 1); 257 258 if (unlikely(err)) 259 return err; 260 261 err = block_write_begin(mapping, pos, len, flags, pagep, 262 nilfs_get_block); 263 if (unlikely(err)) { 264 nilfs_write_failed(mapping, pos + len); 265 nilfs_transaction_abort(inode->i_sb); 266 } 267 return err; 268 } 269 270 static int nilfs_write_end(struct file *file, struct address_space *mapping, 271 loff_t pos, unsigned len, unsigned copied, 272 struct page *page, void *fsdata) 273 { 274 struct inode *inode = mapping->host; 275 unsigned int start = pos & (PAGE_SIZE - 1); 276 unsigned int nr_dirty; 277 int err; 278 279 nr_dirty = nilfs_page_count_clean_buffers(page, start, 280 start + copied); 281 copied = generic_write_end(file, mapping, pos, len, copied, page, 282 fsdata); 283 nilfs_set_file_dirty(inode, nr_dirty); 284 err = nilfs_transaction_commit(inode->i_sb); 285 return err ? : copied; 286 } 287 288 static ssize_t 289 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 290 { 291 struct inode *inode = file_inode(iocb->ki_filp); 292 293 if (iov_iter_rw(iter) == WRITE) 294 return 0; 295 296 /* Needs synchronization with the cleaner */ 297 return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block); 298 } 299 300 const struct address_space_operations nilfs_aops = { 301 .writepage = nilfs_writepage, 302 .readpage = nilfs_readpage, 303 .writepages = nilfs_writepages, 304 .dirty_folio = nilfs_dirty_folio, 305 .readahead = nilfs_readahead, 306 .write_begin = nilfs_write_begin, 307 .write_end = nilfs_write_end, 308 /* .releasepage = nilfs_releasepage, */ 309 .invalidate_folio = block_invalidate_folio, 310 .direct_IO = nilfs_direct_IO, 311 .is_partially_uptodate = block_is_partially_uptodate, 312 }; 313 314 static int nilfs_insert_inode_locked(struct inode *inode, 315 struct nilfs_root *root, 316 unsigned long ino) 317 { 318 struct nilfs_iget_args args = { 319 .ino = ino, .root = root, .cno = 0, .for_gc = false, 320 .for_btnc = false, .for_shadow = false 321 }; 322 323 return insert_inode_locked4(inode, ino, nilfs_iget_test, &args); 324 } 325 326 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode) 327 { 328 struct super_block *sb = dir->i_sb; 329 struct the_nilfs *nilfs = sb->s_fs_info; 330 struct inode *inode; 331 struct nilfs_inode_info *ii; 332 struct nilfs_root *root; 333 int err = -ENOMEM; 334 ino_t ino; 335 336 inode = new_inode(sb); 337 if (unlikely(!inode)) 338 goto failed; 339 340 mapping_set_gfp_mask(inode->i_mapping, 341 mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); 342 343 root = NILFS_I(dir)->i_root; 344 ii = NILFS_I(inode); 345 ii->i_state = BIT(NILFS_I_NEW); 346 ii->i_root = root; 347 348 err = nilfs_ifile_create_inode(root->ifile, &ino, &ii->i_bh); 349 if (unlikely(err)) 350 goto failed_ifile_create_inode; 351 /* reference count of i_bh inherits from nilfs_mdt_read_block() */ 352 353 atomic64_inc(&root->inodes_count); 354 inode_init_owner(&init_user_ns, inode, dir, mode); 355 inode->i_ino = ino; 356 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 357 358 if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) { 359 err = nilfs_bmap_read(ii->i_bmap, NULL); 360 if (err < 0) 361 goto failed_after_creation; 362 363 set_bit(NILFS_I_BMAP, &ii->i_state); 364 /* No lock is needed; iget() ensures it. */ 365 } 366 367 ii->i_flags = nilfs_mask_flags( 368 mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED); 369 370 /* ii->i_file_acl = 0; */ 371 /* ii->i_dir_acl = 0; */ 372 ii->i_dir_start_lookup = 0; 373 nilfs_set_inode_flags(inode); 374 spin_lock(&nilfs->ns_next_gen_lock); 375 inode->i_generation = nilfs->ns_next_generation++; 376 spin_unlock(&nilfs->ns_next_gen_lock); 377 if (nilfs_insert_inode_locked(inode, root, ino) < 0) { 378 err = -EIO; 379 goto failed_after_creation; 380 } 381 382 err = nilfs_init_acl(inode, dir); 383 if (unlikely(err)) 384 /* 385 * Never occur. When supporting nilfs_init_acl(), 386 * proper cancellation of above jobs should be considered. 387 */ 388 goto failed_after_creation; 389 390 return inode; 391 392 failed_after_creation: 393 clear_nlink(inode); 394 if (inode->i_state & I_NEW) 395 unlock_new_inode(inode); 396 iput(inode); /* 397 * raw_inode will be deleted through 398 * nilfs_evict_inode(). 399 */ 400 goto failed; 401 402 failed_ifile_create_inode: 403 make_bad_inode(inode); 404 iput(inode); 405 failed: 406 return ERR_PTR(err); 407 } 408 409 void nilfs_set_inode_flags(struct inode *inode) 410 { 411 unsigned int flags = NILFS_I(inode)->i_flags; 412 unsigned int new_fl = 0; 413 414 if (flags & FS_SYNC_FL) 415 new_fl |= S_SYNC; 416 if (flags & FS_APPEND_FL) 417 new_fl |= S_APPEND; 418 if (flags & FS_IMMUTABLE_FL) 419 new_fl |= S_IMMUTABLE; 420 if (flags & FS_NOATIME_FL) 421 new_fl |= S_NOATIME; 422 if (flags & FS_DIRSYNC_FL) 423 new_fl |= S_DIRSYNC; 424 inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE | 425 S_NOATIME | S_DIRSYNC); 426 } 427 428 int nilfs_read_inode_common(struct inode *inode, 429 struct nilfs_inode *raw_inode) 430 { 431 struct nilfs_inode_info *ii = NILFS_I(inode); 432 int err; 433 434 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 435 i_uid_write(inode, le32_to_cpu(raw_inode->i_uid)); 436 i_gid_write(inode, le32_to_cpu(raw_inode->i_gid)); 437 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 438 inode->i_size = le64_to_cpu(raw_inode->i_size); 439 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 440 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); 441 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 442 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 443 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); 444 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 445 if (inode->i_nlink == 0) 446 return -ESTALE; /* this inode is deleted */ 447 448 inode->i_blocks = le64_to_cpu(raw_inode->i_blocks); 449 ii->i_flags = le32_to_cpu(raw_inode->i_flags); 450 #if 0 451 ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 452 ii->i_dir_acl = S_ISREG(inode->i_mode) ? 453 0 : le32_to_cpu(raw_inode->i_dir_acl); 454 #endif 455 ii->i_dir_start_lookup = 0; 456 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 457 458 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 459 S_ISLNK(inode->i_mode)) { 460 err = nilfs_bmap_read(ii->i_bmap, raw_inode); 461 if (err < 0) 462 return err; 463 set_bit(NILFS_I_BMAP, &ii->i_state); 464 /* No lock is needed; iget() ensures it. */ 465 } 466 return 0; 467 } 468 469 static int __nilfs_read_inode(struct super_block *sb, 470 struct nilfs_root *root, unsigned long ino, 471 struct inode *inode) 472 { 473 struct the_nilfs *nilfs = sb->s_fs_info; 474 struct buffer_head *bh; 475 struct nilfs_inode *raw_inode; 476 int err; 477 478 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 479 err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh); 480 if (unlikely(err)) 481 goto bad_inode; 482 483 raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh); 484 485 err = nilfs_read_inode_common(inode, raw_inode); 486 if (err) 487 goto failed_unmap; 488 489 if (S_ISREG(inode->i_mode)) { 490 inode->i_op = &nilfs_file_inode_operations; 491 inode->i_fop = &nilfs_file_operations; 492 inode->i_mapping->a_ops = &nilfs_aops; 493 } else if (S_ISDIR(inode->i_mode)) { 494 inode->i_op = &nilfs_dir_inode_operations; 495 inode->i_fop = &nilfs_dir_operations; 496 inode->i_mapping->a_ops = &nilfs_aops; 497 } else if (S_ISLNK(inode->i_mode)) { 498 inode->i_op = &nilfs_symlink_inode_operations; 499 inode_nohighmem(inode); 500 inode->i_mapping->a_ops = &nilfs_aops; 501 } else { 502 inode->i_op = &nilfs_special_inode_operations; 503 init_special_inode( 504 inode, inode->i_mode, 505 huge_decode_dev(le64_to_cpu(raw_inode->i_device_code))); 506 } 507 nilfs_ifile_unmap_inode(root->ifile, ino, bh); 508 brelse(bh); 509 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 510 nilfs_set_inode_flags(inode); 511 mapping_set_gfp_mask(inode->i_mapping, 512 mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); 513 return 0; 514 515 failed_unmap: 516 nilfs_ifile_unmap_inode(root->ifile, ino, bh); 517 brelse(bh); 518 519 bad_inode: 520 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 521 return err; 522 } 523 524 static int nilfs_iget_test(struct inode *inode, void *opaque) 525 { 526 struct nilfs_iget_args *args = opaque; 527 struct nilfs_inode_info *ii; 528 529 if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root) 530 return 0; 531 532 ii = NILFS_I(inode); 533 if (test_bit(NILFS_I_BTNC, &ii->i_state)) { 534 if (!args->for_btnc) 535 return 0; 536 } else if (args->for_btnc) { 537 return 0; 538 } 539 if (test_bit(NILFS_I_SHADOW, &ii->i_state)) { 540 if (!args->for_shadow) 541 return 0; 542 } else if (args->for_shadow) { 543 return 0; 544 } 545 546 if (!test_bit(NILFS_I_GCINODE, &ii->i_state)) 547 return !args->for_gc; 548 549 return args->for_gc && args->cno == ii->i_cno; 550 } 551 552 static int nilfs_iget_set(struct inode *inode, void *opaque) 553 { 554 struct nilfs_iget_args *args = opaque; 555 556 inode->i_ino = args->ino; 557 NILFS_I(inode)->i_cno = args->cno; 558 NILFS_I(inode)->i_root = args->root; 559 if (args->root && args->ino == NILFS_ROOT_INO) 560 nilfs_get_root(args->root); 561 562 if (args->for_gc) 563 NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE); 564 if (args->for_btnc) 565 NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC); 566 if (args->for_shadow) 567 NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW); 568 return 0; 569 } 570 571 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root, 572 unsigned long ino) 573 { 574 struct nilfs_iget_args args = { 575 .ino = ino, .root = root, .cno = 0, .for_gc = false, 576 .for_btnc = false, .for_shadow = false 577 }; 578 579 return ilookup5(sb, ino, nilfs_iget_test, &args); 580 } 581 582 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root, 583 unsigned long ino) 584 { 585 struct nilfs_iget_args args = { 586 .ino = ino, .root = root, .cno = 0, .for_gc = false, 587 .for_btnc = false, .for_shadow = false 588 }; 589 590 return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); 591 } 592 593 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root, 594 unsigned long ino) 595 { 596 struct inode *inode; 597 int err; 598 599 inode = nilfs_iget_locked(sb, root, ino); 600 if (unlikely(!inode)) 601 return ERR_PTR(-ENOMEM); 602 if (!(inode->i_state & I_NEW)) 603 return inode; 604 605 err = __nilfs_read_inode(sb, root, ino, inode); 606 if (unlikely(err)) { 607 iget_failed(inode); 608 return ERR_PTR(err); 609 } 610 unlock_new_inode(inode); 611 return inode; 612 } 613 614 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino, 615 __u64 cno) 616 { 617 struct nilfs_iget_args args = { 618 .ino = ino, .root = NULL, .cno = cno, .for_gc = true, 619 .for_btnc = false, .for_shadow = false 620 }; 621 struct inode *inode; 622 int err; 623 624 inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); 625 if (unlikely(!inode)) 626 return ERR_PTR(-ENOMEM); 627 if (!(inode->i_state & I_NEW)) 628 return inode; 629 630 err = nilfs_init_gcinode(inode); 631 if (unlikely(err)) { 632 iget_failed(inode); 633 return ERR_PTR(err); 634 } 635 unlock_new_inode(inode); 636 return inode; 637 } 638 639 /** 640 * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode 641 * @inode: inode object 642 * 643 * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode, 644 * or does nothing if the inode already has it. This function allocates 645 * an additional inode to maintain page cache of B-tree nodes one-on-one. 646 * 647 * Return Value: On success, 0 is returned. On errors, one of the following 648 * negative error code is returned. 649 * 650 * %-ENOMEM - Insufficient memory available. 651 */ 652 int nilfs_attach_btree_node_cache(struct inode *inode) 653 { 654 struct nilfs_inode_info *ii = NILFS_I(inode); 655 struct inode *btnc_inode; 656 struct nilfs_iget_args args; 657 658 if (ii->i_assoc_inode) 659 return 0; 660 661 args.ino = inode->i_ino; 662 args.root = ii->i_root; 663 args.cno = ii->i_cno; 664 args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0; 665 args.for_btnc = true; 666 args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0; 667 668 btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test, 669 nilfs_iget_set, &args); 670 if (unlikely(!btnc_inode)) 671 return -ENOMEM; 672 if (btnc_inode->i_state & I_NEW) { 673 nilfs_init_btnc_inode(btnc_inode); 674 unlock_new_inode(btnc_inode); 675 } 676 NILFS_I(btnc_inode)->i_assoc_inode = inode; 677 NILFS_I(btnc_inode)->i_bmap = ii->i_bmap; 678 ii->i_assoc_inode = btnc_inode; 679 680 return 0; 681 } 682 683 /** 684 * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode 685 * @inode: inode object 686 * 687 * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its 688 * holder inode bound to @inode, or does nothing if @inode doesn't have it. 689 */ 690 void nilfs_detach_btree_node_cache(struct inode *inode) 691 { 692 struct nilfs_inode_info *ii = NILFS_I(inode); 693 struct inode *btnc_inode = ii->i_assoc_inode; 694 695 if (btnc_inode) { 696 NILFS_I(btnc_inode)->i_assoc_inode = NULL; 697 ii->i_assoc_inode = NULL; 698 iput(btnc_inode); 699 } 700 } 701 702 /** 703 * nilfs_iget_for_shadow - obtain inode for shadow mapping 704 * @inode: inode object that uses shadow mapping 705 * 706 * nilfs_iget_for_shadow() allocates a pair of inodes that holds page 707 * caches for shadow mapping. The page cache for data pages is set up 708 * in one inode and the one for b-tree node pages is set up in the 709 * other inode, which is attached to the former inode. 710 * 711 * Return Value: On success, a pointer to the inode for data pages is 712 * returned. On errors, one of the following negative error code is returned 713 * in a pointer type. 714 * 715 * %-ENOMEM - Insufficient memory available. 716 */ 717 struct inode *nilfs_iget_for_shadow(struct inode *inode) 718 { 719 struct nilfs_iget_args args = { 720 .ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false, 721 .for_btnc = false, .for_shadow = true 722 }; 723 struct inode *s_inode; 724 int err; 725 726 s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test, 727 nilfs_iget_set, &args); 728 if (unlikely(!s_inode)) 729 return ERR_PTR(-ENOMEM); 730 if (!(s_inode->i_state & I_NEW)) 731 return inode; 732 733 NILFS_I(s_inode)->i_flags = 0; 734 memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap)); 735 mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS); 736 737 err = nilfs_attach_btree_node_cache(s_inode); 738 if (unlikely(err)) { 739 iget_failed(s_inode); 740 return ERR_PTR(err); 741 } 742 unlock_new_inode(s_inode); 743 return s_inode; 744 } 745 746 void nilfs_write_inode_common(struct inode *inode, 747 struct nilfs_inode *raw_inode, int has_bmap) 748 { 749 struct nilfs_inode_info *ii = NILFS_I(inode); 750 751 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 752 raw_inode->i_uid = cpu_to_le32(i_uid_read(inode)); 753 raw_inode->i_gid = cpu_to_le32(i_gid_read(inode)); 754 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 755 raw_inode->i_size = cpu_to_le64(inode->i_size); 756 raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); 757 raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); 758 raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 759 raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 760 raw_inode->i_blocks = cpu_to_le64(inode->i_blocks); 761 762 raw_inode->i_flags = cpu_to_le32(ii->i_flags); 763 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 764 765 if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) { 766 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 767 768 /* zero-fill unused portion in the case of super root block */ 769 raw_inode->i_xattr = 0; 770 raw_inode->i_pad = 0; 771 memset((void *)raw_inode + sizeof(*raw_inode), 0, 772 nilfs->ns_inode_size - sizeof(*raw_inode)); 773 } 774 775 if (has_bmap) 776 nilfs_bmap_write(ii->i_bmap, raw_inode); 777 else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 778 raw_inode->i_device_code = 779 cpu_to_le64(huge_encode_dev(inode->i_rdev)); 780 /* 781 * When extending inode, nilfs->ns_inode_size should be checked 782 * for substitutions of appended fields. 783 */ 784 } 785 786 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags) 787 { 788 ino_t ino = inode->i_ino; 789 struct nilfs_inode_info *ii = NILFS_I(inode); 790 struct inode *ifile = ii->i_root->ifile; 791 struct nilfs_inode *raw_inode; 792 793 raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh); 794 795 if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state)) 796 memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size); 797 if (flags & I_DIRTY_DATASYNC) 798 set_bit(NILFS_I_INODE_SYNC, &ii->i_state); 799 800 nilfs_write_inode_common(inode, raw_inode, 0); 801 /* 802 * XXX: call with has_bmap = 0 is a workaround to avoid 803 * deadlock of bmap. This delays update of i_bmap to just 804 * before writing. 805 */ 806 807 nilfs_ifile_unmap_inode(ifile, ino, ibh); 808 } 809 810 #define NILFS_MAX_TRUNCATE_BLOCKS 16384 /* 64MB for 4KB block */ 811 812 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii, 813 unsigned long from) 814 { 815 __u64 b; 816 int ret; 817 818 if (!test_bit(NILFS_I_BMAP, &ii->i_state)) 819 return; 820 repeat: 821 ret = nilfs_bmap_last_key(ii->i_bmap, &b); 822 if (ret == -ENOENT) 823 return; 824 else if (ret < 0) 825 goto failed; 826 827 if (b < from) 828 return; 829 830 b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from); 831 ret = nilfs_bmap_truncate(ii->i_bmap, b); 832 nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb); 833 if (!ret || (ret == -ENOMEM && 834 nilfs_bmap_truncate(ii->i_bmap, b) == 0)) 835 goto repeat; 836 837 failed: 838 nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)", 839 ret, ii->vfs_inode.i_ino); 840 } 841 842 void nilfs_truncate(struct inode *inode) 843 { 844 unsigned long blkoff; 845 unsigned int blocksize; 846 struct nilfs_transaction_info ti; 847 struct super_block *sb = inode->i_sb; 848 struct nilfs_inode_info *ii = NILFS_I(inode); 849 850 if (!test_bit(NILFS_I_BMAP, &ii->i_state)) 851 return; 852 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 853 return; 854 855 blocksize = sb->s_blocksize; 856 blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits; 857 nilfs_transaction_begin(sb, &ti, 0); /* never fails */ 858 859 block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block); 860 861 nilfs_truncate_bmap(ii, blkoff); 862 863 inode->i_mtime = inode->i_ctime = current_time(inode); 864 if (IS_SYNC(inode)) 865 nilfs_set_transaction_flag(NILFS_TI_SYNC); 866 867 nilfs_mark_inode_dirty(inode); 868 nilfs_set_file_dirty(inode, 0); 869 nilfs_transaction_commit(sb); 870 /* 871 * May construct a logical segment and may fail in sync mode. 872 * But truncate has no return value. 873 */ 874 } 875 876 static void nilfs_clear_inode(struct inode *inode) 877 { 878 struct nilfs_inode_info *ii = NILFS_I(inode); 879 880 /* 881 * Free resources allocated in nilfs_read_inode(), here. 882 */ 883 BUG_ON(!list_empty(&ii->i_dirty)); 884 brelse(ii->i_bh); 885 ii->i_bh = NULL; 886 887 if (nilfs_is_metadata_file_inode(inode)) 888 nilfs_mdt_clear(inode); 889 890 if (test_bit(NILFS_I_BMAP, &ii->i_state)) 891 nilfs_bmap_clear(ii->i_bmap); 892 893 if (!test_bit(NILFS_I_BTNC, &ii->i_state)) 894 nilfs_detach_btree_node_cache(inode); 895 896 if (ii->i_root && inode->i_ino == NILFS_ROOT_INO) 897 nilfs_put_root(ii->i_root); 898 } 899 900 void nilfs_evict_inode(struct inode *inode) 901 { 902 struct nilfs_transaction_info ti; 903 struct super_block *sb = inode->i_sb; 904 struct nilfs_inode_info *ii = NILFS_I(inode); 905 int ret; 906 907 if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) { 908 truncate_inode_pages_final(&inode->i_data); 909 clear_inode(inode); 910 nilfs_clear_inode(inode); 911 return; 912 } 913 nilfs_transaction_begin(sb, &ti, 0); /* never fails */ 914 915 truncate_inode_pages_final(&inode->i_data); 916 917 /* TODO: some of the following operations may fail. */ 918 nilfs_truncate_bmap(ii, 0); 919 nilfs_mark_inode_dirty(inode); 920 clear_inode(inode); 921 922 ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino); 923 if (!ret) 924 atomic64_dec(&ii->i_root->inodes_count); 925 926 nilfs_clear_inode(inode); 927 928 if (IS_SYNC(inode)) 929 nilfs_set_transaction_flag(NILFS_TI_SYNC); 930 nilfs_transaction_commit(sb); 931 /* 932 * May construct a logical segment and may fail in sync mode. 933 * But delete_inode has no return value. 934 */ 935 } 936 937 int nilfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 938 struct iattr *iattr) 939 { 940 struct nilfs_transaction_info ti; 941 struct inode *inode = d_inode(dentry); 942 struct super_block *sb = inode->i_sb; 943 int err; 944 945 err = setattr_prepare(&init_user_ns, dentry, iattr); 946 if (err) 947 return err; 948 949 err = nilfs_transaction_begin(sb, &ti, 0); 950 if (unlikely(err)) 951 return err; 952 953 if ((iattr->ia_valid & ATTR_SIZE) && 954 iattr->ia_size != i_size_read(inode)) { 955 inode_dio_wait(inode); 956 truncate_setsize(inode, iattr->ia_size); 957 nilfs_truncate(inode); 958 } 959 960 setattr_copy(&init_user_ns, inode, iattr); 961 mark_inode_dirty(inode); 962 963 if (iattr->ia_valid & ATTR_MODE) { 964 err = nilfs_acl_chmod(inode); 965 if (unlikely(err)) 966 goto out_err; 967 } 968 969 return nilfs_transaction_commit(sb); 970 971 out_err: 972 nilfs_transaction_abort(sb); 973 return err; 974 } 975 976 int nilfs_permission(struct user_namespace *mnt_userns, struct inode *inode, 977 int mask) 978 { 979 struct nilfs_root *root = NILFS_I(inode)->i_root; 980 981 if ((mask & MAY_WRITE) && root && 982 root->cno != NILFS_CPTREE_CURRENT_CNO) 983 return -EROFS; /* snapshot is not writable */ 984 985 return generic_permission(&init_user_ns, inode, mask); 986 } 987 988 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh) 989 { 990 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 991 struct nilfs_inode_info *ii = NILFS_I(inode); 992 int err; 993 994 spin_lock(&nilfs->ns_inode_lock); 995 if (ii->i_bh == NULL) { 996 spin_unlock(&nilfs->ns_inode_lock); 997 err = nilfs_ifile_get_inode_block(ii->i_root->ifile, 998 inode->i_ino, pbh); 999 if (unlikely(err)) 1000 return err; 1001 spin_lock(&nilfs->ns_inode_lock); 1002 if (ii->i_bh == NULL) 1003 ii->i_bh = *pbh; 1004 else { 1005 brelse(*pbh); 1006 *pbh = ii->i_bh; 1007 } 1008 } else 1009 *pbh = ii->i_bh; 1010 1011 get_bh(*pbh); 1012 spin_unlock(&nilfs->ns_inode_lock); 1013 return 0; 1014 } 1015 1016 int nilfs_inode_dirty(struct inode *inode) 1017 { 1018 struct nilfs_inode_info *ii = NILFS_I(inode); 1019 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1020 int ret = 0; 1021 1022 if (!list_empty(&ii->i_dirty)) { 1023 spin_lock(&nilfs->ns_inode_lock); 1024 ret = test_bit(NILFS_I_DIRTY, &ii->i_state) || 1025 test_bit(NILFS_I_BUSY, &ii->i_state); 1026 spin_unlock(&nilfs->ns_inode_lock); 1027 } 1028 return ret; 1029 } 1030 1031 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty) 1032 { 1033 struct nilfs_inode_info *ii = NILFS_I(inode); 1034 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1035 1036 atomic_add(nr_dirty, &nilfs->ns_ndirtyblks); 1037 1038 if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state)) 1039 return 0; 1040 1041 spin_lock(&nilfs->ns_inode_lock); 1042 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 1043 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 1044 /* 1045 * Because this routine may race with nilfs_dispose_list(), 1046 * we have to check NILFS_I_QUEUED here, too. 1047 */ 1048 if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) { 1049 /* 1050 * This will happen when somebody is freeing 1051 * this inode. 1052 */ 1053 nilfs_warn(inode->i_sb, 1054 "cannot set file dirty (ino=%lu): the file is being freed", 1055 inode->i_ino); 1056 spin_unlock(&nilfs->ns_inode_lock); 1057 return -EINVAL; /* 1058 * NILFS_I_DIRTY may remain for 1059 * freeing inode. 1060 */ 1061 } 1062 list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files); 1063 set_bit(NILFS_I_QUEUED, &ii->i_state); 1064 } 1065 spin_unlock(&nilfs->ns_inode_lock); 1066 return 0; 1067 } 1068 1069 int __nilfs_mark_inode_dirty(struct inode *inode, int flags) 1070 { 1071 struct buffer_head *ibh; 1072 int err; 1073 1074 err = nilfs_load_inode_block(inode, &ibh); 1075 if (unlikely(err)) { 1076 nilfs_warn(inode->i_sb, 1077 "cannot mark inode dirty (ino=%lu): error %d loading inode block", 1078 inode->i_ino, err); 1079 return err; 1080 } 1081 nilfs_update_inode(inode, ibh, flags); 1082 mark_buffer_dirty(ibh); 1083 nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile); 1084 brelse(ibh); 1085 return 0; 1086 } 1087 1088 /** 1089 * nilfs_dirty_inode - reflect changes on given inode to an inode block. 1090 * @inode: inode of the file to be registered. 1091 * 1092 * nilfs_dirty_inode() loads a inode block containing the specified 1093 * @inode and copies data from a nilfs_inode to a corresponding inode 1094 * entry in the inode block. This operation is excluded from the segment 1095 * construction. This function can be called both as a single operation 1096 * and as a part of indivisible file operations. 1097 */ 1098 void nilfs_dirty_inode(struct inode *inode, int flags) 1099 { 1100 struct nilfs_transaction_info ti; 1101 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 1102 1103 if (is_bad_inode(inode)) { 1104 nilfs_warn(inode->i_sb, 1105 "tried to mark bad_inode dirty. ignored."); 1106 dump_stack(); 1107 return; 1108 } 1109 if (mdi) { 1110 nilfs_mdt_mark_dirty(inode); 1111 return; 1112 } 1113 nilfs_transaction_begin(inode->i_sb, &ti, 0); 1114 __nilfs_mark_inode_dirty(inode, flags); 1115 nilfs_transaction_commit(inode->i_sb); /* never fails */ 1116 } 1117 1118 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1119 __u64 start, __u64 len) 1120 { 1121 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1122 __u64 logical = 0, phys = 0, size = 0; 1123 __u32 flags = 0; 1124 loff_t isize; 1125 sector_t blkoff, end_blkoff; 1126 sector_t delalloc_blkoff; 1127 unsigned long delalloc_blklen; 1128 unsigned int blkbits = inode->i_blkbits; 1129 int ret, n; 1130 1131 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 1132 if (ret) 1133 return ret; 1134 1135 inode_lock(inode); 1136 1137 isize = i_size_read(inode); 1138 1139 blkoff = start >> blkbits; 1140 end_blkoff = (start + len - 1) >> blkbits; 1141 1142 delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff, 1143 &delalloc_blkoff); 1144 1145 do { 1146 __u64 blkphy; 1147 unsigned int maxblocks; 1148 1149 if (delalloc_blklen && blkoff == delalloc_blkoff) { 1150 if (size) { 1151 /* End of the current extent */ 1152 ret = fiemap_fill_next_extent( 1153 fieinfo, logical, phys, size, flags); 1154 if (ret) 1155 break; 1156 } 1157 if (blkoff > end_blkoff) 1158 break; 1159 1160 flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC; 1161 logical = blkoff << blkbits; 1162 phys = 0; 1163 size = delalloc_blklen << blkbits; 1164 1165 blkoff = delalloc_blkoff + delalloc_blklen; 1166 delalloc_blklen = nilfs_find_uncommitted_extent( 1167 inode, blkoff, &delalloc_blkoff); 1168 continue; 1169 } 1170 1171 /* 1172 * Limit the number of blocks that we look up so as 1173 * not to get into the next delayed allocation extent. 1174 */ 1175 maxblocks = INT_MAX; 1176 if (delalloc_blklen) 1177 maxblocks = min_t(sector_t, delalloc_blkoff - blkoff, 1178 maxblocks); 1179 blkphy = 0; 1180 1181 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 1182 n = nilfs_bmap_lookup_contig( 1183 NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks); 1184 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 1185 1186 if (n < 0) { 1187 int past_eof; 1188 1189 if (unlikely(n != -ENOENT)) 1190 break; /* error */ 1191 1192 /* HOLE */ 1193 blkoff++; 1194 past_eof = ((blkoff << blkbits) >= isize); 1195 1196 if (size) { 1197 /* End of the current extent */ 1198 1199 if (past_eof) 1200 flags |= FIEMAP_EXTENT_LAST; 1201 1202 ret = fiemap_fill_next_extent( 1203 fieinfo, logical, phys, size, flags); 1204 if (ret) 1205 break; 1206 size = 0; 1207 } 1208 if (blkoff > end_blkoff || past_eof) 1209 break; 1210 } else { 1211 if (size) { 1212 if (phys && blkphy << blkbits == phys + size) { 1213 /* The current extent goes on */ 1214 size += n << blkbits; 1215 } else { 1216 /* Terminate the current extent */ 1217 ret = fiemap_fill_next_extent( 1218 fieinfo, logical, phys, size, 1219 flags); 1220 if (ret || blkoff > end_blkoff) 1221 break; 1222 1223 /* Start another extent */ 1224 flags = FIEMAP_EXTENT_MERGED; 1225 logical = blkoff << blkbits; 1226 phys = blkphy << blkbits; 1227 size = n << blkbits; 1228 } 1229 } else { 1230 /* Start a new extent */ 1231 flags = FIEMAP_EXTENT_MERGED; 1232 logical = blkoff << blkbits; 1233 phys = blkphy << blkbits; 1234 size = n << blkbits; 1235 } 1236 blkoff += n; 1237 } 1238 cond_resched(); 1239 } while (true); 1240 1241 /* If ret is 1 then we just hit the end of the extent array */ 1242 if (ret == 1) 1243 ret = 0; 1244 1245 inode_unlock(inode); 1246 return ret; 1247 } 1248