xref: /linux/fs/nilfs2/inode.c (revision f132ab7d3ab03c5bae28d31fb80ba77c4da05500)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS inode operations.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include <linux/fiemap.h>
18 #include "nilfs.h"
19 #include "btnode.h"
20 #include "segment.h"
21 #include "page.h"
22 #include "mdt.h"
23 #include "cpfile.h"
24 #include "ifile.h"
25 
26 /**
27  * struct nilfs_iget_args - arguments used during comparison between inodes
28  * @ino: inode number
29  * @cno: checkpoint number
30  * @root: pointer on NILFS root object (mounted checkpoint)
31  * @for_gc: inode for GC flag
32  * @for_btnc: inode for B-tree node cache flag
33  * @for_shadow: inode for shadowed page cache flag
34  */
35 struct nilfs_iget_args {
36 	u64 ino;
37 	__u64 cno;
38 	struct nilfs_root *root;
39 	bool for_gc;
40 	bool for_btnc;
41 	bool for_shadow;
42 };
43 
44 static int nilfs_iget_test(struct inode *inode, void *opaque);
45 
46 void nilfs_inode_add_blocks(struct inode *inode, int n)
47 {
48 	struct nilfs_root *root = NILFS_I(inode)->i_root;
49 
50 	inode_add_bytes(inode, i_blocksize(inode) * n);
51 	if (root)
52 		atomic64_add(n, &root->blocks_count);
53 }
54 
55 void nilfs_inode_sub_blocks(struct inode *inode, int n)
56 {
57 	struct nilfs_root *root = NILFS_I(inode)->i_root;
58 
59 	inode_sub_bytes(inode, i_blocksize(inode) * n);
60 	if (root)
61 		atomic64_sub(n, &root->blocks_count);
62 }
63 
64 /**
65  * nilfs_get_block() - get a file block on the filesystem (callback function)
66  * @inode - inode struct of the target file
67  * @blkoff - file block number
68  * @bh_result - buffer head to be mapped on
69  * @create - indicate whether allocating the block or not when it has not
70  *      been allocated yet.
71  *
72  * This function does not issue actual read request of the specified data
73  * block. It is done by VFS.
74  */
75 int nilfs_get_block(struct inode *inode, sector_t blkoff,
76 		    struct buffer_head *bh_result, int create)
77 {
78 	struct nilfs_inode_info *ii = NILFS_I(inode);
79 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
80 	__u64 blknum = 0;
81 	int err = 0, ret;
82 	unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
83 
84 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
85 	ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
86 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
87 	if (ret >= 0) {	/* found */
88 		map_bh(bh_result, inode->i_sb, blknum);
89 		if (ret > 0)
90 			bh_result->b_size = (ret << inode->i_blkbits);
91 		goto out;
92 	}
93 	/* data block was not found */
94 	if (ret == -ENOENT && create) {
95 		struct nilfs_transaction_info ti;
96 
97 		bh_result->b_blocknr = 0;
98 		err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
99 		if (unlikely(err))
100 			goto out;
101 		err = nilfs_bmap_insert(ii->i_bmap, blkoff,
102 					(unsigned long)bh_result);
103 		if (unlikely(err != 0)) {
104 			if (err == -EEXIST) {
105 				/*
106 				 * The get_block() function could be called
107 				 * from multiple callers for an inode.
108 				 * However, the page having this block must
109 				 * be locked in this case.
110 				 */
111 				nilfs_warn(inode->i_sb,
112 					   "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
113 					   __func__, inode->i_ino,
114 					   (unsigned long long)blkoff);
115 				err = 0;
116 			}
117 			nilfs_transaction_abort(inode->i_sb);
118 			goto out;
119 		}
120 		nilfs_mark_inode_dirty_sync(inode);
121 		nilfs_transaction_commit(inode->i_sb); /* never fails */
122 		/* Error handling should be detailed */
123 		set_buffer_new(bh_result);
124 		set_buffer_delay(bh_result);
125 		map_bh(bh_result, inode->i_sb, 0);
126 		/* Disk block number must be changed to proper value */
127 
128 	} else if (ret == -ENOENT) {
129 		/*
130 		 * not found is not error (e.g. hole); must return without
131 		 * the mapped state flag.
132 		 */
133 		;
134 	} else {
135 		err = ret;
136 	}
137 
138  out:
139 	return err;
140 }
141 
142 /**
143  * nilfs_read_folio() - implement read_folio() method of nilfs_aops {}
144  * address_space_operations.
145  * @file - file struct of the file to be read
146  * @folio - the folio to be read
147  */
148 static int nilfs_read_folio(struct file *file, struct folio *folio)
149 {
150 	return mpage_read_folio(folio, nilfs_get_block);
151 }
152 
153 static void nilfs_readahead(struct readahead_control *rac)
154 {
155 	mpage_readahead(rac, nilfs_get_block);
156 }
157 
158 static int nilfs_writepages(struct address_space *mapping,
159 			    struct writeback_control *wbc)
160 {
161 	struct inode *inode = mapping->host;
162 	int err = 0;
163 
164 	if (sb_rdonly(inode->i_sb)) {
165 		nilfs_clear_dirty_pages(mapping, false);
166 		return -EROFS;
167 	}
168 
169 	if (wbc->sync_mode == WB_SYNC_ALL)
170 		err = nilfs_construct_dsync_segment(inode->i_sb, inode,
171 						    wbc->range_start,
172 						    wbc->range_end);
173 	return err;
174 }
175 
176 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
177 {
178 	struct inode *inode = page->mapping->host;
179 	int err;
180 
181 	if (sb_rdonly(inode->i_sb)) {
182 		/*
183 		 * It means that filesystem was remounted in read-only
184 		 * mode because of error or metadata corruption. But we
185 		 * have dirty pages that try to be flushed in background.
186 		 * So, here we simply discard this dirty page.
187 		 */
188 		nilfs_clear_dirty_page(page, false);
189 		unlock_page(page);
190 		return -EROFS;
191 	}
192 
193 	redirty_page_for_writepage(wbc, page);
194 	unlock_page(page);
195 
196 	if (wbc->sync_mode == WB_SYNC_ALL) {
197 		err = nilfs_construct_segment(inode->i_sb);
198 		if (unlikely(err))
199 			return err;
200 	} else if (wbc->for_reclaim)
201 		nilfs_flush_segment(inode->i_sb, inode->i_ino);
202 
203 	return 0;
204 }
205 
206 static bool nilfs_dirty_folio(struct address_space *mapping,
207 		struct folio *folio)
208 {
209 	struct inode *inode = mapping->host;
210 	struct buffer_head *head;
211 	unsigned int nr_dirty = 0;
212 	bool ret = filemap_dirty_folio(mapping, folio);
213 
214 	/*
215 	 * The page may not be locked, eg if called from try_to_unmap_one()
216 	 */
217 	spin_lock(&mapping->private_lock);
218 	head = folio_buffers(folio);
219 	if (head) {
220 		struct buffer_head *bh = head;
221 
222 		do {
223 			/* Do not mark hole blocks dirty */
224 			if (buffer_dirty(bh) || !buffer_mapped(bh))
225 				continue;
226 
227 			set_buffer_dirty(bh);
228 			nr_dirty++;
229 		} while (bh = bh->b_this_page, bh != head);
230 	} else if (ret) {
231 		nr_dirty = 1 << (folio_shift(folio) - inode->i_blkbits);
232 	}
233 	spin_unlock(&mapping->private_lock);
234 
235 	if (nr_dirty)
236 		nilfs_set_file_dirty(inode, nr_dirty);
237 	return ret;
238 }
239 
240 void nilfs_write_failed(struct address_space *mapping, loff_t to)
241 {
242 	struct inode *inode = mapping->host;
243 
244 	if (to > inode->i_size) {
245 		truncate_pagecache(inode, inode->i_size);
246 		nilfs_truncate(inode);
247 	}
248 }
249 
250 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
251 			     loff_t pos, unsigned len,
252 			     struct page **pagep, void **fsdata)
253 
254 {
255 	struct inode *inode = mapping->host;
256 	int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
257 
258 	if (unlikely(err))
259 		return err;
260 
261 	err = block_write_begin(mapping, pos, len, pagep, nilfs_get_block);
262 	if (unlikely(err)) {
263 		nilfs_write_failed(mapping, pos + len);
264 		nilfs_transaction_abort(inode->i_sb);
265 	}
266 	return err;
267 }
268 
269 static int nilfs_write_end(struct file *file, struct address_space *mapping,
270 			   loff_t pos, unsigned len, unsigned copied,
271 			   struct page *page, void *fsdata)
272 {
273 	struct inode *inode = mapping->host;
274 	unsigned int start = pos & (PAGE_SIZE - 1);
275 	unsigned int nr_dirty;
276 	int err;
277 
278 	nr_dirty = nilfs_page_count_clean_buffers(page, start,
279 						  start + copied);
280 	copied = generic_write_end(file, mapping, pos, len, copied, page,
281 				   fsdata);
282 	nilfs_set_file_dirty(inode, nr_dirty);
283 	err = nilfs_transaction_commit(inode->i_sb);
284 	return err ? : copied;
285 }
286 
287 static ssize_t
288 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
289 {
290 	struct inode *inode = file_inode(iocb->ki_filp);
291 
292 	if (iov_iter_rw(iter) == WRITE)
293 		return 0;
294 
295 	/* Needs synchronization with the cleaner */
296 	return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
297 }
298 
299 const struct address_space_operations nilfs_aops = {
300 	.writepage		= nilfs_writepage,
301 	.read_folio		= nilfs_read_folio,
302 	.writepages		= nilfs_writepages,
303 	.dirty_folio		= nilfs_dirty_folio,
304 	.readahead		= nilfs_readahead,
305 	.write_begin		= nilfs_write_begin,
306 	.write_end		= nilfs_write_end,
307 	/* .releasepage		= nilfs_releasepage, */
308 	.invalidate_folio	= block_invalidate_folio,
309 	.direct_IO		= nilfs_direct_IO,
310 	.is_partially_uptodate  = block_is_partially_uptodate,
311 };
312 
313 static int nilfs_insert_inode_locked(struct inode *inode,
314 				     struct nilfs_root *root,
315 				     unsigned long ino)
316 {
317 	struct nilfs_iget_args args = {
318 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
319 		.for_btnc = false, .for_shadow = false
320 	};
321 
322 	return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
323 }
324 
325 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
326 {
327 	struct super_block *sb = dir->i_sb;
328 	struct the_nilfs *nilfs = sb->s_fs_info;
329 	struct inode *inode;
330 	struct nilfs_inode_info *ii;
331 	struct nilfs_root *root;
332 	int err = -ENOMEM;
333 	ino_t ino;
334 
335 	inode = new_inode(sb);
336 	if (unlikely(!inode))
337 		goto failed;
338 
339 	mapping_set_gfp_mask(inode->i_mapping,
340 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
341 
342 	root = NILFS_I(dir)->i_root;
343 	ii = NILFS_I(inode);
344 	ii->i_state = BIT(NILFS_I_NEW);
345 	ii->i_root = root;
346 
347 	err = nilfs_ifile_create_inode(root->ifile, &ino, &ii->i_bh);
348 	if (unlikely(err))
349 		goto failed_ifile_create_inode;
350 	/* reference count of i_bh inherits from nilfs_mdt_read_block() */
351 
352 	atomic64_inc(&root->inodes_count);
353 	inode_init_owner(&init_user_ns, inode, dir, mode);
354 	inode->i_ino = ino;
355 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
356 
357 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
358 		err = nilfs_bmap_read(ii->i_bmap, NULL);
359 		if (err < 0)
360 			goto failed_after_creation;
361 
362 		set_bit(NILFS_I_BMAP, &ii->i_state);
363 		/* No lock is needed; iget() ensures it. */
364 	}
365 
366 	ii->i_flags = nilfs_mask_flags(
367 		mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
368 
369 	/* ii->i_file_acl = 0; */
370 	/* ii->i_dir_acl = 0; */
371 	ii->i_dir_start_lookup = 0;
372 	nilfs_set_inode_flags(inode);
373 	spin_lock(&nilfs->ns_next_gen_lock);
374 	inode->i_generation = nilfs->ns_next_generation++;
375 	spin_unlock(&nilfs->ns_next_gen_lock);
376 	if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
377 		err = -EIO;
378 		goto failed_after_creation;
379 	}
380 
381 	err = nilfs_init_acl(inode, dir);
382 	if (unlikely(err))
383 		/*
384 		 * Never occur.  When supporting nilfs_init_acl(),
385 		 * proper cancellation of above jobs should be considered.
386 		 */
387 		goto failed_after_creation;
388 
389 	return inode;
390 
391  failed_after_creation:
392 	clear_nlink(inode);
393 	if (inode->i_state & I_NEW)
394 		unlock_new_inode(inode);
395 	iput(inode);  /*
396 		       * raw_inode will be deleted through
397 		       * nilfs_evict_inode().
398 		       */
399 	goto failed;
400 
401  failed_ifile_create_inode:
402 	make_bad_inode(inode);
403 	iput(inode);
404  failed:
405 	return ERR_PTR(err);
406 }
407 
408 void nilfs_set_inode_flags(struct inode *inode)
409 {
410 	unsigned int flags = NILFS_I(inode)->i_flags;
411 	unsigned int new_fl = 0;
412 
413 	if (flags & FS_SYNC_FL)
414 		new_fl |= S_SYNC;
415 	if (flags & FS_APPEND_FL)
416 		new_fl |= S_APPEND;
417 	if (flags & FS_IMMUTABLE_FL)
418 		new_fl |= S_IMMUTABLE;
419 	if (flags & FS_NOATIME_FL)
420 		new_fl |= S_NOATIME;
421 	if (flags & FS_DIRSYNC_FL)
422 		new_fl |= S_DIRSYNC;
423 	inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
424 			S_NOATIME | S_DIRSYNC);
425 }
426 
427 int nilfs_read_inode_common(struct inode *inode,
428 			    struct nilfs_inode *raw_inode)
429 {
430 	struct nilfs_inode_info *ii = NILFS_I(inode);
431 	int err;
432 
433 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
434 	i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
435 	i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
436 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
437 	inode->i_size = le64_to_cpu(raw_inode->i_size);
438 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
439 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
440 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
441 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
442 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
443 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
444 	if (inode->i_nlink == 0)
445 		return -ESTALE; /* this inode is deleted */
446 
447 	inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
448 	ii->i_flags = le32_to_cpu(raw_inode->i_flags);
449 #if 0
450 	ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
451 	ii->i_dir_acl = S_ISREG(inode->i_mode) ?
452 		0 : le32_to_cpu(raw_inode->i_dir_acl);
453 #endif
454 	ii->i_dir_start_lookup = 0;
455 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
456 
457 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
458 	    S_ISLNK(inode->i_mode)) {
459 		err = nilfs_bmap_read(ii->i_bmap, raw_inode);
460 		if (err < 0)
461 			return err;
462 		set_bit(NILFS_I_BMAP, &ii->i_state);
463 		/* No lock is needed; iget() ensures it. */
464 	}
465 	return 0;
466 }
467 
468 static int __nilfs_read_inode(struct super_block *sb,
469 			      struct nilfs_root *root, unsigned long ino,
470 			      struct inode *inode)
471 {
472 	struct the_nilfs *nilfs = sb->s_fs_info;
473 	struct buffer_head *bh;
474 	struct nilfs_inode *raw_inode;
475 	int err;
476 
477 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
478 	err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
479 	if (unlikely(err))
480 		goto bad_inode;
481 
482 	raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
483 
484 	err = nilfs_read_inode_common(inode, raw_inode);
485 	if (err)
486 		goto failed_unmap;
487 
488 	if (S_ISREG(inode->i_mode)) {
489 		inode->i_op = &nilfs_file_inode_operations;
490 		inode->i_fop = &nilfs_file_operations;
491 		inode->i_mapping->a_ops = &nilfs_aops;
492 	} else if (S_ISDIR(inode->i_mode)) {
493 		inode->i_op = &nilfs_dir_inode_operations;
494 		inode->i_fop = &nilfs_dir_operations;
495 		inode->i_mapping->a_ops = &nilfs_aops;
496 	} else if (S_ISLNK(inode->i_mode)) {
497 		inode->i_op = &nilfs_symlink_inode_operations;
498 		inode_nohighmem(inode);
499 		inode->i_mapping->a_ops = &nilfs_aops;
500 	} else {
501 		inode->i_op = &nilfs_special_inode_operations;
502 		init_special_inode(
503 			inode, inode->i_mode,
504 			huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
505 	}
506 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
507 	brelse(bh);
508 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
509 	nilfs_set_inode_flags(inode);
510 	mapping_set_gfp_mask(inode->i_mapping,
511 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
512 	return 0;
513 
514  failed_unmap:
515 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
516 	brelse(bh);
517 
518  bad_inode:
519 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
520 	return err;
521 }
522 
523 static int nilfs_iget_test(struct inode *inode, void *opaque)
524 {
525 	struct nilfs_iget_args *args = opaque;
526 	struct nilfs_inode_info *ii;
527 
528 	if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
529 		return 0;
530 
531 	ii = NILFS_I(inode);
532 	if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
533 		if (!args->for_btnc)
534 			return 0;
535 	} else if (args->for_btnc) {
536 		return 0;
537 	}
538 	if (test_bit(NILFS_I_SHADOW, &ii->i_state)) {
539 		if (!args->for_shadow)
540 			return 0;
541 	} else if (args->for_shadow) {
542 		return 0;
543 	}
544 
545 	if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
546 		return !args->for_gc;
547 
548 	return args->for_gc && args->cno == ii->i_cno;
549 }
550 
551 static int nilfs_iget_set(struct inode *inode, void *opaque)
552 {
553 	struct nilfs_iget_args *args = opaque;
554 
555 	inode->i_ino = args->ino;
556 	NILFS_I(inode)->i_cno = args->cno;
557 	NILFS_I(inode)->i_root = args->root;
558 	if (args->root && args->ino == NILFS_ROOT_INO)
559 		nilfs_get_root(args->root);
560 
561 	if (args->for_gc)
562 		NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
563 	if (args->for_btnc)
564 		NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
565 	if (args->for_shadow)
566 		NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW);
567 	return 0;
568 }
569 
570 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
571 			    unsigned long ino)
572 {
573 	struct nilfs_iget_args args = {
574 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
575 		.for_btnc = false, .for_shadow = false
576 	};
577 
578 	return ilookup5(sb, ino, nilfs_iget_test, &args);
579 }
580 
581 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
582 				unsigned long ino)
583 {
584 	struct nilfs_iget_args args = {
585 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
586 		.for_btnc = false, .for_shadow = false
587 	};
588 
589 	return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
590 }
591 
592 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
593 			 unsigned long ino)
594 {
595 	struct inode *inode;
596 	int err;
597 
598 	inode = nilfs_iget_locked(sb, root, ino);
599 	if (unlikely(!inode))
600 		return ERR_PTR(-ENOMEM);
601 	if (!(inode->i_state & I_NEW))
602 		return inode;
603 
604 	err = __nilfs_read_inode(sb, root, ino, inode);
605 	if (unlikely(err)) {
606 		iget_failed(inode);
607 		return ERR_PTR(err);
608 	}
609 	unlock_new_inode(inode);
610 	return inode;
611 }
612 
613 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
614 				__u64 cno)
615 {
616 	struct nilfs_iget_args args = {
617 		.ino = ino, .root = NULL, .cno = cno, .for_gc = true,
618 		.for_btnc = false, .for_shadow = false
619 	};
620 	struct inode *inode;
621 	int err;
622 
623 	inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
624 	if (unlikely(!inode))
625 		return ERR_PTR(-ENOMEM);
626 	if (!(inode->i_state & I_NEW))
627 		return inode;
628 
629 	err = nilfs_init_gcinode(inode);
630 	if (unlikely(err)) {
631 		iget_failed(inode);
632 		return ERR_PTR(err);
633 	}
634 	unlock_new_inode(inode);
635 	return inode;
636 }
637 
638 /**
639  * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
640  * @inode: inode object
641  *
642  * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
643  * or does nothing if the inode already has it.  This function allocates
644  * an additional inode to maintain page cache of B-tree nodes one-on-one.
645  *
646  * Return Value: On success, 0 is returned. On errors, one of the following
647  * negative error code is returned.
648  *
649  * %-ENOMEM - Insufficient memory available.
650  */
651 int nilfs_attach_btree_node_cache(struct inode *inode)
652 {
653 	struct nilfs_inode_info *ii = NILFS_I(inode);
654 	struct inode *btnc_inode;
655 	struct nilfs_iget_args args;
656 
657 	if (ii->i_assoc_inode)
658 		return 0;
659 
660 	args.ino = inode->i_ino;
661 	args.root = ii->i_root;
662 	args.cno = ii->i_cno;
663 	args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
664 	args.for_btnc = true;
665 	args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0;
666 
667 	btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
668 				  nilfs_iget_set, &args);
669 	if (unlikely(!btnc_inode))
670 		return -ENOMEM;
671 	if (btnc_inode->i_state & I_NEW) {
672 		nilfs_init_btnc_inode(btnc_inode);
673 		unlock_new_inode(btnc_inode);
674 	}
675 	NILFS_I(btnc_inode)->i_assoc_inode = inode;
676 	NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
677 	ii->i_assoc_inode = btnc_inode;
678 
679 	return 0;
680 }
681 
682 /**
683  * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
684  * @inode: inode object
685  *
686  * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
687  * holder inode bound to @inode, or does nothing if @inode doesn't have it.
688  */
689 void nilfs_detach_btree_node_cache(struct inode *inode)
690 {
691 	struct nilfs_inode_info *ii = NILFS_I(inode);
692 	struct inode *btnc_inode = ii->i_assoc_inode;
693 
694 	if (btnc_inode) {
695 		NILFS_I(btnc_inode)->i_assoc_inode = NULL;
696 		ii->i_assoc_inode = NULL;
697 		iput(btnc_inode);
698 	}
699 }
700 
701 /**
702  * nilfs_iget_for_shadow - obtain inode for shadow mapping
703  * @inode: inode object that uses shadow mapping
704  *
705  * nilfs_iget_for_shadow() allocates a pair of inodes that holds page
706  * caches for shadow mapping.  The page cache for data pages is set up
707  * in one inode and the one for b-tree node pages is set up in the
708  * other inode, which is attached to the former inode.
709  *
710  * Return Value: On success, a pointer to the inode for data pages is
711  * returned. On errors, one of the following negative error code is returned
712  * in a pointer type.
713  *
714  * %-ENOMEM - Insufficient memory available.
715  */
716 struct inode *nilfs_iget_for_shadow(struct inode *inode)
717 {
718 	struct nilfs_iget_args args = {
719 		.ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false,
720 		.for_btnc = false, .for_shadow = true
721 	};
722 	struct inode *s_inode;
723 	int err;
724 
725 	s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
726 			       nilfs_iget_set, &args);
727 	if (unlikely(!s_inode))
728 		return ERR_PTR(-ENOMEM);
729 	if (!(s_inode->i_state & I_NEW))
730 		return inode;
731 
732 	NILFS_I(s_inode)->i_flags = 0;
733 	memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap));
734 	mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS);
735 
736 	err = nilfs_attach_btree_node_cache(s_inode);
737 	if (unlikely(err)) {
738 		iget_failed(s_inode);
739 		return ERR_PTR(err);
740 	}
741 	unlock_new_inode(s_inode);
742 	return s_inode;
743 }
744 
745 void nilfs_write_inode_common(struct inode *inode,
746 			      struct nilfs_inode *raw_inode, int has_bmap)
747 {
748 	struct nilfs_inode_info *ii = NILFS_I(inode);
749 
750 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
751 	raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
752 	raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
753 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
754 	raw_inode->i_size = cpu_to_le64(inode->i_size);
755 	raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
756 	raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
757 	raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
758 	raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
759 	raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
760 
761 	raw_inode->i_flags = cpu_to_le32(ii->i_flags);
762 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
763 
764 	if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
765 		struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
766 
767 		/* zero-fill unused portion in the case of super root block */
768 		raw_inode->i_xattr = 0;
769 		raw_inode->i_pad = 0;
770 		memset((void *)raw_inode + sizeof(*raw_inode), 0,
771 		       nilfs->ns_inode_size - sizeof(*raw_inode));
772 	}
773 
774 	if (has_bmap)
775 		nilfs_bmap_write(ii->i_bmap, raw_inode);
776 	else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
777 		raw_inode->i_device_code =
778 			cpu_to_le64(huge_encode_dev(inode->i_rdev));
779 	/*
780 	 * When extending inode, nilfs->ns_inode_size should be checked
781 	 * for substitutions of appended fields.
782 	 */
783 }
784 
785 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
786 {
787 	ino_t ino = inode->i_ino;
788 	struct nilfs_inode_info *ii = NILFS_I(inode);
789 	struct inode *ifile = ii->i_root->ifile;
790 	struct nilfs_inode *raw_inode;
791 
792 	raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
793 
794 	if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
795 		memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
796 	if (flags & I_DIRTY_DATASYNC)
797 		set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
798 
799 	nilfs_write_inode_common(inode, raw_inode, 0);
800 		/*
801 		 * XXX: call with has_bmap = 0 is a workaround to avoid
802 		 * deadlock of bmap.  This delays update of i_bmap to just
803 		 * before writing.
804 		 */
805 
806 	nilfs_ifile_unmap_inode(ifile, ino, ibh);
807 }
808 
809 #define NILFS_MAX_TRUNCATE_BLOCKS	16384  /* 64MB for 4KB block */
810 
811 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
812 				unsigned long from)
813 {
814 	__u64 b;
815 	int ret;
816 
817 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
818 		return;
819 repeat:
820 	ret = nilfs_bmap_last_key(ii->i_bmap, &b);
821 	if (ret == -ENOENT)
822 		return;
823 	else if (ret < 0)
824 		goto failed;
825 
826 	if (b < from)
827 		return;
828 
829 	b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
830 	ret = nilfs_bmap_truncate(ii->i_bmap, b);
831 	nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
832 	if (!ret || (ret == -ENOMEM &&
833 		     nilfs_bmap_truncate(ii->i_bmap, b) == 0))
834 		goto repeat;
835 
836 failed:
837 	nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
838 		   ret, ii->vfs_inode.i_ino);
839 }
840 
841 void nilfs_truncate(struct inode *inode)
842 {
843 	unsigned long blkoff;
844 	unsigned int blocksize;
845 	struct nilfs_transaction_info ti;
846 	struct super_block *sb = inode->i_sb;
847 	struct nilfs_inode_info *ii = NILFS_I(inode);
848 
849 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
850 		return;
851 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
852 		return;
853 
854 	blocksize = sb->s_blocksize;
855 	blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
856 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
857 
858 	block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
859 
860 	nilfs_truncate_bmap(ii, blkoff);
861 
862 	inode->i_mtime = inode->i_ctime = current_time(inode);
863 	if (IS_SYNC(inode))
864 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
865 
866 	nilfs_mark_inode_dirty(inode);
867 	nilfs_set_file_dirty(inode, 0);
868 	nilfs_transaction_commit(sb);
869 	/*
870 	 * May construct a logical segment and may fail in sync mode.
871 	 * But truncate has no return value.
872 	 */
873 }
874 
875 static void nilfs_clear_inode(struct inode *inode)
876 {
877 	struct nilfs_inode_info *ii = NILFS_I(inode);
878 
879 	/*
880 	 * Free resources allocated in nilfs_read_inode(), here.
881 	 */
882 	BUG_ON(!list_empty(&ii->i_dirty));
883 	brelse(ii->i_bh);
884 	ii->i_bh = NULL;
885 
886 	if (nilfs_is_metadata_file_inode(inode))
887 		nilfs_mdt_clear(inode);
888 
889 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
890 		nilfs_bmap_clear(ii->i_bmap);
891 
892 	if (!test_bit(NILFS_I_BTNC, &ii->i_state))
893 		nilfs_detach_btree_node_cache(inode);
894 
895 	if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
896 		nilfs_put_root(ii->i_root);
897 }
898 
899 void nilfs_evict_inode(struct inode *inode)
900 {
901 	struct nilfs_transaction_info ti;
902 	struct super_block *sb = inode->i_sb;
903 	struct nilfs_inode_info *ii = NILFS_I(inode);
904 	int ret;
905 
906 	if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
907 		truncate_inode_pages_final(&inode->i_data);
908 		clear_inode(inode);
909 		nilfs_clear_inode(inode);
910 		return;
911 	}
912 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
913 
914 	truncate_inode_pages_final(&inode->i_data);
915 
916 	/* TODO: some of the following operations may fail.  */
917 	nilfs_truncate_bmap(ii, 0);
918 	nilfs_mark_inode_dirty(inode);
919 	clear_inode(inode);
920 
921 	ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
922 	if (!ret)
923 		atomic64_dec(&ii->i_root->inodes_count);
924 
925 	nilfs_clear_inode(inode);
926 
927 	if (IS_SYNC(inode))
928 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
929 	nilfs_transaction_commit(sb);
930 	/*
931 	 * May construct a logical segment and may fail in sync mode.
932 	 * But delete_inode has no return value.
933 	 */
934 }
935 
936 int nilfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
937 		  struct iattr *iattr)
938 {
939 	struct nilfs_transaction_info ti;
940 	struct inode *inode = d_inode(dentry);
941 	struct super_block *sb = inode->i_sb;
942 	int err;
943 
944 	err = setattr_prepare(&init_user_ns, dentry, iattr);
945 	if (err)
946 		return err;
947 
948 	err = nilfs_transaction_begin(sb, &ti, 0);
949 	if (unlikely(err))
950 		return err;
951 
952 	if ((iattr->ia_valid & ATTR_SIZE) &&
953 	    iattr->ia_size != i_size_read(inode)) {
954 		inode_dio_wait(inode);
955 		truncate_setsize(inode, iattr->ia_size);
956 		nilfs_truncate(inode);
957 	}
958 
959 	setattr_copy(&init_user_ns, inode, iattr);
960 	mark_inode_dirty(inode);
961 
962 	if (iattr->ia_valid & ATTR_MODE) {
963 		err = nilfs_acl_chmod(inode);
964 		if (unlikely(err))
965 			goto out_err;
966 	}
967 
968 	return nilfs_transaction_commit(sb);
969 
970 out_err:
971 	nilfs_transaction_abort(sb);
972 	return err;
973 }
974 
975 int nilfs_permission(struct user_namespace *mnt_userns, struct inode *inode,
976 		     int mask)
977 {
978 	struct nilfs_root *root = NILFS_I(inode)->i_root;
979 
980 	if ((mask & MAY_WRITE) && root &&
981 	    root->cno != NILFS_CPTREE_CURRENT_CNO)
982 		return -EROFS; /* snapshot is not writable */
983 
984 	return generic_permission(&init_user_ns, inode, mask);
985 }
986 
987 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
988 {
989 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
990 	struct nilfs_inode_info *ii = NILFS_I(inode);
991 	int err;
992 
993 	spin_lock(&nilfs->ns_inode_lock);
994 	if (ii->i_bh == NULL) {
995 		spin_unlock(&nilfs->ns_inode_lock);
996 		err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
997 						  inode->i_ino, pbh);
998 		if (unlikely(err))
999 			return err;
1000 		spin_lock(&nilfs->ns_inode_lock);
1001 		if (ii->i_bh == NULL)
1002 			ii->i_bh = *pbh;
1003 		else {
1004 			brelse(*pbh);
1005 			*pbh = ii->i_bh;
1006 		}
1007 	} else
1008 		*pbh = ii->i_bh;
1009 
1010 	get_bh(*pbh);
1011 	spin_unlock(&nilfs->ns_inode_lock);
1012 	return 0;
1013 }
1014 
1015 int nilfs_inode_dirty(struct inode *inode)
1016 {
1017 	struct nilfs_inode_info *ii = NILFS_I(inode);
1018 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1019 	int ret = 0;
1020 
1021 	if (!list_empty(&ii->i_dirty)) {
1022 		spin_lock(&nilfs->ns_inode_lock);
1023 		ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
1024 			test_bit(NILFS_I_BUSY, &ii->i_state);
1025 		spin_unlock(&nilfs->ns_inode_lock);
1026 	}
1027 	return ret;
1028 }
1029 
1030 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
1031 {
1032 	struct nilfs_inode_info *ii = NILFS_I(inode);
1033 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1034 
1035 	atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
1036 
1037 	if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
1038 		return 0;
1039 
1040 	spin_lock(&nilfs->ns_inode_lock);
1041 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
1042 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
1043 		/*
1044 		 * Because this routine may race with nilfs_dispose_list(),
1045 		 * we have to check NILFS_I_QUEUED here, too.
1046 		 */
1047 		if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
1048 			/*
1049 			 * This will happen when somebody is freeing
1050 			 * this inode.
1051 			 */
1052 			nilfs_warn(inode->i_sb,
1053 				   "cannot set file dirty (ino=%lu): the file is being freed",
1054 				   inode->i_ino);
1055 			spin_unlock(&nilfs->ns_inode_lock);
1056 			return -EINVAL; /*
1057 					 * NILFS_I_DIRTY may remain for
1058 					 * freeing inode.
1059 					 */
1060 		}
1061 		list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1062 		set_bit(NILFS_I_QUEUED, &ii->i_state);
1063 	}
1064 	spin_unlock(&nilfs->ns_inode_lock);
1065 	return 0;
1066 }
1067 
1068 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1069 {
1070 	struct buffer_head *ibh;
1071 	int err;
1072 
1073 	err = nilfs_load_inode_block(inode, &ibh);
1074 	if (unlikely(err)) {
1075 		nilfs_warn(inode->i_sb,
1076 			   "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1077 			   inode->i_ino, err);
1078 		return err;
1079 	}
1080 	nilfs_update_inode(inode, ibh, flags);
1081 	mark_buffer_dirty(ibh);
1082 	nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1083 	brelse(ibh);
1084 	return 0;
1085 }
1086 
1087 /**
1088  * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1089  * @inode: inode of the file to be registered.
1090  *
1091  * nilfs_dirty_inode() loads a inode block containing the specified
1092  * @inode and copies data from a nilfs_inode to a corresponding inode
1093  * entry in the inode block. This operation is excluded from the segment
1094  * construction. This function can be called both as a single operation
1095  * and as a part of indivisible file operations.
1096  */
1097 void nilfs_dirty_inode(struct inode *inode, int flags)
1098 {
1099 	struct nilfs_transaction_info ti;
1100 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1101 
1102 	if (is_bad_inode(inode)) {
1103 		nilfs_warn(inode->i_sb,
1104 			   "tried to mark bad_inode dirty. ignored.");
1105 		dump_stack();
1106 		return;
1107 	}
1108 	if (mdi) {
1109 		nilfs_mdt_mark_dirty(inode);
1110 		return;
1111 	}
1112 	nilfs_transaction_begin(inode->i_sb, &ti, 0);
1113 	__nilfs_mark_inode_dirty(inode, flags);
1114 	nilfs_transaction_commit(inode->i_sb); /* never fails */
1115 }
1116 
1117 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1118 		 __u64 start, __u64 len)
1119 {
1120 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1121 	__u64 logical = 0, phys = 0, size = 0;
1122 	__u32 flags = 0;
1123 	loff_t isize;
1124 	sector_t blkoff, end_blkoff;
1125 	sector_t delalloc_blkoff;
1126 	unsigned long delalloc_blklen;
1127 	unsigned int blkbits = inode->i_blkbits;
1128 	int ret, n;
1129 
1130 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
1131 	if (ret)
1132 		return ret;
1133 
1134 	inode_lock(inode);
1135 
1136 	isize = i_size_read(inode);
1137 
1138 	blkoff = start >> blkbits;
1139 	end_blkoff = (start + len - 1) >> blkbits;
1140 
1141 	delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1142 							&delalloc_blkoff);
1143 
1144 	do {
1145 		__u64 blkphy;
1146 		unsigned int maxblocks;
1147 
1148 		if (delalloc_blklen && blkoff == delalloc_blkoff) {
1149 			if (size) {
1150 				/* End of the current extent */
1151 				ret = fiemap_fill_next_extent(
1152 					fieinfo, logical, phys, size, flags);
1153 				if (ret)
1154 					break;
1155 			}
1156 			if (blkoff > end_blkoff)
1157 				break;
1158 
1159 			flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1160 			logical = blkoff << blkbits;
1161 			phys = 0;
1162 			size = delalloc_blklen << blkbits;
1163 
1164 			blkoff = delalloc_blkoff + delalloc_blklen;
1165 			delalloc_blklen = nilfs_find_uncommitted_extent(
1166 				inode, blkoff, &delalloc_blkoff);
1167 			continue;
1168 		}
1169 
1170 		/*
1171 		 * Limit the number of blocks that we look up so as
1172 		 * not to get into the next delayed allocation extent.
1173 		 */
1174 		maxblocks = INT_MAX;
1175 		if (delalloc_blklen)
1176 			maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1177 					  maxblocks);
1178 		blkphy = 0;
1179 
1180 		down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1181 		n = nilfs_bmap_lookup_contig(
1182 			NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1183 		up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1184 
1185 		if (n < 0) {
1186 			int past_eof;
1187 
1188 			if (unlikely(n != -ENOENT))
1189 				break; /* error */
1190 
1191 			/* HOLE */
1192 			blkoff++;
1193 			past_eof = ((blkoff << blkbits) >= isize);
1194 
1195 			if (size) {
1196 				/* End of the current extent */
1197 
1198 				if (past_eof)
1199 					flags |= FIEMAP_EXTENT_LAST;
1200 
1201 				ret = fiemap_fill_next_extent(
1202 					fieinfo, logical, phys, size, flags);
1203 				if (ret)
1204 					break;
1205 				size = 0;
1206 			}
1207 			if (blkoff > end_blkoff || past_eof)
1208 				break;
1209 		} else {
1210 			if (size) {
1211 				if (phys && blkphy << blkbits == phys + size) {
1212 					/* The current extent goes on */
1213 					size += n << blkbits;
1214 				} else {
1215 					/* Terminate the current extent */
1216 					ret = fiemap_fill_next_extent(
1217 						fieinfo, logical, phys, size,
1218 						flags);
1219 					if (ret || blkoff > end_blkoff)
1220 						break;
1221 
1222 					/* Start another extent */
1223 					flags = FIEMAP_EXTENT_MERGED;
1224 					logical = blkoff << blkbits;
1225 					phys = blkphy << blkbits;
1226 					size = n << blkbits;
1227 				}
1228 			} else {
1229 				/* Start a new extent */
1230 				flags = FIEMAP_EXTENT_MERGED;
1231 				logical = blkoff << blkbits;
1232 				phys = blkphy << blkbits;
1233 				size = n << blkbits;
1234 			}
1235 			blkoff += n;
1236 		}
1237 		cond_resched();
1238 	} while (true);
1239 
1240 	/* If ret is 1 then we just hit the end of the extent array */
1241 	if (ret == 1)
1242 		ret = 0;
1243 
1244 	inode_unlock(inode);
1245 	return ret;
1246 }
1247